WO2020090187A1 - Virtual-image display device and head-up display device - Google Patents

Virtual-image display device and head-up display device Download PDF

Info

Publication number
WO2020090187A1
WO2020090187A1 PCT/JP2019/032057 JP2019032057W WO2020090187A1 WO 2020090187 A1 WO2020090187 A1 WO 2020090187A1 JP 2019032057 W JP2019032057 W JP 2019032057W WO 2020090187 A1 WO2020090187 A1 WO 2020090187A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
virtual image
display device
display
image
Prior art date
Application number
PCT/JP2019/032057
Other languages
French (fr)
Japanese (ja)
Inventor
一能 野口
シュレーダー ハイコ
Original Assignee
コニカミノルタ株式会社
フォルクスヴァーゲン アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, フォルクスヴァーゲン アクチエンゲゼルシャフト filed Critical コニカミノルタ株式会社
Priority to JP2020554774A priority Critical patent/JPWO2020090187A1/en
Publication of WO2020090187A1 publication Critical patent/WO2020090187A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a virtual image display device and a head-up display device.
  • a conventional head-up display (hereinafter, also simply referred to as “HUD”) generally generates a virtual image at a position separated from a driver by a certain distance.
  • the contents displayed by the HUD include vehicle speed and car navigation. It was limited to information.
  • the purpose of mounting the HUD in a vehicle is to support safer driving by minimizing the movement of the driver's line of sight.
  • the display contents such as vehicle speed but also, for example, a vehicle or a pedestrian in front, obstacles, etc. are detected by a camera or a sensor, and the driver is made aware of the danger in advance through the HUD to prevent an accident.
  • a system that prevents the occurrence is more preferable.
  • a danger signal as a virtual image on a see-through image that is a target for detecting a danger of a car, a person, an obstacle, or the like.
  • the distance to the object (object) to be detected as a danger is not constant.
  • a danger signal is displayed and superimposed on a virtual image that is visible 2 m away from a danger 50 m away, a difference in focus position occurs, which causes a problem that human eyes feel discomfort.
  • Various techniques have been proposed as a method of giving a virtual image depth.
  • Patent Document 1 has a problem that the virtual image distance changes when the position of the eye box in the height direction is adjusted.
  • the present invention has been made in view of the above circumstances, and provides a virtual image display device and a head-up display device capable of preventing or suppressing a change in virtual image distance when adjusting the position of the eye box in the height direction. With the goal.
  • a virtual image projection optical system that includes a display element and a mirror that reflects an image formed on the display surface of the display element, converts the image formed on the display surface to form a virtual image, and the mirror.
  • a mirror rotation mechanism for rotating the mirror rotation mechanism, wherein the mirror rotation mechanism rotates the mirror about a position lower than the center of the mirror as a rotation center, thereby adjusting the position of the virtual image in the height direction. apparatus.
  • the virtual image projection optical system further includes a combiner that displays the reflected light from the mirror as a virtual image, and the mirror is arranged immediately before the combiner along the optical path.
  • the virtual image display device according to any one of (3).
  • a sitting height detecting section for detecting the sitting height of the driver is provided, The head-up display device according to (5) above, wherein the position of the virtual image in the height direction is adjusted by the mirror rotation mechanism according to the seat height of the driver detected by the seat height detection unit.
  • the seat height of the driver can be adjusted. Accordingly, when adjusting the position of the eye box in the height direction, it is possible to prevent or suppress the change of the virtual image distance. Therefore, even when the object on which the virtual image is superimposed and displayed exists in the range from the distant to the vicinity, the deviation between the object and the virtual image visible from the driver's eye position is reduced, and a safer driving support system is provided. Can be realized.
  • the same elements will be denoted by the same reference symbols, without redundant description.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios.
  • the horizontal direction of the eye box is the X direction
  • the vertical direction is the Y direction
  • the direction perpendicular to the XY plane is the Z direction.
  • the traveling direction of the vehicle is parallel to the Z direction.
  • FIG. 1 and FIG. 2 are schematic diagrams illustrating a usage state in which a virtual image display device 20 according to the present embodiment and a head-up display device 10 including the virtual image display device 20 are mounted inside a vehicle body 811 of a vehicle 800.
  • the user (driver) 900 is sitting in the driver's seat 816 while gripping the steering wheel 813.
  • the virtual image display device 20 of the head-up display device 10 displays the image information displayed on the display element 21 described later as a virtual image toward the user 900 via the display screen 220. To do.
  • the components other than the display screen 220 of the virtual image display device 20 are installed in the dashboard 814 of the vehicle body 811 so as to be embedded behind the display 815 such as a car navigation system.
  • the virtual image display device 20 emits display light D1 corresponding to a virtual image including driving-related information and the like toward the display screen 220.
  • the display screen 220 is also called a combiner, and is a semi-transparent concave mirror or a plane mirror.
  • the display screen 220 is erected on the dashboard 814 by supporting the lower end thereof, and reflects the display light D1 from the virtual image display device 20 toward the rear side (Z direction) of the vehicle body 811. That is, in the illustrated case, the display screen 220 is an independent type installed separately from the front window 812.
  • the display light D1 reflected by the display screen 220 is guided to the pupil 910 of the user 900 sitting in the driver's seat 816 and an eye box (Eyebox) (see FIG. 3) corresponding to the peripheral position thereof.
  • the eye box is a range in which the user 900 can visually recognize all virtual images formed on the display surface of the display element.
  • the eye box of the user 900 sitting in the driver's seat 816 with the head-up display device 10 mounted on the vehicle 800.
  • the position (height) of the pupil 910 that is, a predetermined range including the eye point EP is set.
  • the range of the eye box is adjusted according to the sitting height of the user 900.
  • the user 900 can observe the display light D1 reflected by the display screen 220, that is, the virtual image i2 as a display image separated by a predetermined distance (virtual image distance) as if it were in front of the vehicle body 811.
  • the user 900 can observe external light transmitted through the display screen 220, that is, a front view, a real image of an automobile or the like.
  • the user 900 observes the virtual image i2 including the driving-related information and the like formed by the reflection of the display light D1 on the display screen 220 so as to be superimposed on the background image behind the display screen 220, that is, the see-through image. it can.
  • FIG. 3 is a schematic diagram showing the configuration of the virtual image display device 20.
  • the virtual image display device 20 includes a display element 21, a virtual image projection optical system 22, a mirror moving mechanism 25, a housing 26, and a display control unit 30.
  • the components of the virtual image display device 20 other than the display screen 220 are housed in the housing 26.
  • the display element 21 has a two-dimensional display surface 21a.
  • the image i1 formed on the display surface 21a is magnified by the virtual image projection optical system 22, converted into a virtual image and projected on the eye box.
  • the display element 21 capable of two-dimensional display the display content of the image i1 can be switched at a relatively high speed.
  • the display element 21 it is preferable to use a transmissive element such as liquid crystal.
  • the virtual image projection optical system 22 includes a display screen 220 and first and second mirrors 221 and 222.
  • the mirrors 221 and 222 have a spherical surface, a parabolic surface, or a free-form surface, and have optical power.
  • the mirror 221 can be, for example, a concave mirror.
  • These optical elements are arranged in the order of the second mirror 222, the first mirror 221, and the display screen 220 along the optical axis AX (optical path).
  • the image i1 formed on the display surface 21a of the display element 21 is sequentially reflected by these optical elements and guided to the eye box. Accordingly, the user 900 can observe the virtual image i2 as a display image that is separated by a predetermined distance (virtual image distance).
  • the mirror moving mechanism 25 includes a drive motor such as a stepping motor and an actuator, and moves the mirror 221 farther from the display element 21 on the optical axis AX (in the optical path) of the plurality of mirrors 221 and 222. ..
  • the virtual image distance is set to a long distance by shifting the mirror 221 along the optical axis AX by the mirror moving mechanism 25 in the direction away from the display element 21.
  • the virtual image distance is set to a short distance by shifting in the opposite direction.
  • the mirror moving mechanism 25 functions as a mirror rotating mechanism and can also tilt the mirror 221 (rotate and move around the X-axis direction).
  • the rotation axis is not limited to around the X-axis direction, and any direction can be selected.
  • the display control unit 30 controls the mirror moving mechanism 25 and tilts the mirror 221 according to the sitting height of the user 900 to adjust the height of the virtual image i2 so that the user 900 can observe the virtual image i2. Adjust the height.
  • the seat height adjustment may be configured to be performed according to an instruction from the user 900, or may be configured to be automatically performed by software when the user 900 sits on the seat.
  • the virtual image display device 20 includes the two mirrors 221 and 222 in the present embodiment, the present invention is not limited to this, and the virtual image display device 20 may include only one mirror 221.
  • FIG. 4 is a block diagram illustrating the hardware configuration of the head-up display device 10.
  • the head-up display device 10 includes a driver detection unit 71, an environment monitoring unit 72, an operation speed acquisition unit 73, and a main control unit 60, in addition to the virtual image display device 20 described above.
  • the main control unit 60 controls the entire head-up display device 10 to display a virtual image corresponding to an object such as an oncoming vehicle or a passerby at an appropriate virtual image distance.
  • the driver detection unit 71 is a unit that detects the presence and the viewpoint position of the user 900 in the vehicle 800, and includes an internal camera 71a facing the driver seat 816, a driver seat image processing unit 71b, and a determination unit 71c. ..
  • the internal camera 71a is installed on the dashboard 814 inside the vehicle body 811 so as to face the driver's seat 816 (see FIG. 2), and captures images of the head of the user 900 sitting in the driver's seat 816 and its surroundings. To do.
  • the image processing unit 71b performs various image processing such as brightness correction on the image captured by the internal camera 71a, and facilitates the processing by the determination unit 71c.
  • the determination unit 71c detects the sitting height, that is, the height of the head or the eye (pupil 910) of the user 900 by extracting or cutting out an object from the driver seat image processed by the image processing unit 71b. Further, from the depth information attached to the driver's seat image, the presence or absence of the head of the user 900 in the vehicle body 811 and the spatial position of the pupil 910 of the user 900, that is, the eye point EP (as a result, the direction of the line of sight) are calculated.
  • the driver detection unit 71 functions as a sitting height detection unit.
  • the environment monitoring unit 72 identifies an object such as a car, a bicycle, or a pedestrian approaching in the front and determines the distance to the object.
  • the environment monitoring unit 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c.
  • the external camera 72a is installed at appropriate places inside and outside the vehicle body 811, and captures an external image of the front or side of the user 900 or the vehicle 800.
  • the image processing unit 72b performs various image processing such as brightness correction on the image captured by the external camera 72a, and facilitates the processing by the determination unit 72c.
  • the determination unit 72c detects the presence or absence of an object such as a car, a bicycle, or a pedestrian by extracting or cutting out an object from the external image processed by the image processing unit 72b, and determines the vehicle from the depth information accompanying the external image.
  • the spatial position of the object in front of 800 is calculated.
  • the internal camera 71a and the external camera 72a include, for example, a compound eye type three-dimensional camera. That is, each of the cameras 71a and 72a is an array of camera elements including a lens for image formation, a CMOS (Complementary Metal-Oxide Semiconductor), and other image pickup elements arranged in a matrix. Drive circuits.
  • the plurality of camera elements forming each of the cameras 71a and 72a are configured to focus at different positions in the depth direction, or to detect relative parallax, and are obtained from each camera element. The distance to each area in the image or the object is determined by analyzing the state of the image (focus state, position of the object, etc.).
  • LIDAR Light Detection And Ranging
  • LIDAR technology it is possible to measure scattered light with respect to pulsed laser irradiation, measure the distance and spread to an object at a long distance, and obtain distance information to the object in the field of view and information about the spread of the object.
  • the radar sensing technology such as the LIDAR technology
  • the technology for detecting the distance of the object from the image information the detection accuracy of the object can be improved.
  • the operation speed acquisition unit 73 acquires operation speed data according to the number of tire rotations from the vehicle body.
  • the operation speed acquisition unit 73 itself may include a GPS sensor, an acceleration sensor, a gyro sensor, etc. to detect the operation speed of the vehicle.
  • the display control unit 30 operates the virtual image display device 20 under the control of the main control unit 60 to display the virtual image i2 with a changed virtual image distance (also referred to as a projection distance) behind the display screen 220.
  • the display control unit 30 generates the virtual image i2 to be displayed on the virtual image display device 20 from the display information including the display shape and the display distance (virtual image distance) received from the environment monitoring unit 72 via the main control unit 60.
  • the virtual image i2 serves as a marker such as a rectangular frame located around the display screen 220 in the depth position direction with respect to an automobile, a bicycle, a pedestrian, or other objects behind the display screen 220.
  • the display form of the virtual image may be a number indicating the speed according to the traveling speed data.
  • the display control unit 30 receives the detection output regarding the presence of the user 900, the position of the eyes, and the sitting height from the driver detection unit 71 via the main control unit 60. As a result, it is possible to automatically start or stop the projection of the virtual image i2 by the virtual image display device 20. Further, the virtual image i2 can be projected only in the direction of the line of sight of the user 900. Furthermore, it is also possible to perform projection in which only the virtual image i2 in the direction of the line of sight of the user 900 is brightened, flashed, or otherwise emphasized.
  • the main control unit 60 sends display information including display shape and virtual image distance setting to the display control unit 30 according to the operation speed data acquired by the operation speed acquisition unit 73.
  • the display information is sent to set the virtual image distance to long distance, medium distance, or short distance, respectively. For example, if the traveling speed is 50 km / h or more, the virtual image distance is set to 24 m, if it is 30 km / h or less, the virtual image distance is set to 4 m, and if it is an intermediate speed, the virtual image distance is set to 7 m.
  • the line-of-sight movement of the user 900 (focusing) can be performed. It is possible to reduce the burden of adjustment.
  • FIG. 5 is a schematic diagram for explaining the change of the display position by tilt when the center of the mirror 221 is set as the rotation center as a comparative example.
  • FIGS. 6A and 6B are schematic diagrams for explaining the tilt when the lower end of the mirror 221 in the present embodiment is the rotation center. 6A and 6B, the components other than the mirror 221 are not shown.
  • the direction of the optical axis AX is changed.
  • the mirror 221 is initially arranged at the reference position M0 and then rotates about the center (center of gravity) C0 of the mirror 221 as the rotation center.
  • the optical axis when the mirror 221 is arranged at M0 is AX0, and the center position in the Y direction when the light reflected by the display screen 220 reaches the pupil 910 of the user 900 (hereinafter, referred to as “display position”). Be Y0.
  • the optical axis is changed to AX1 and light is reflected on the display screen 220 near the user 900, so that the display position is It will be Y1.
  • the optical axis is changed to AX2, and light is reflected on the display screen 220 on the side far from the user 900.
  • the display position is Y2.
  • the display position is changed according to the rotation direction and the rotation angle of the mirror 221. Therefore, when the height of the pupil 910 of the user 900, that is, when the eye point EP is higher or lower than Y0, the display position can be adjusted to a desired height by tilting the mirror 221. Since the eyepoint EP is considered to be proportional to the seat height of the user 900, adjusting the display position to a desired height will be referred to as “sitting height adjustment” in the present specification.
  • the optical path length of the optical axis AX changes. More specifically, when the mirror 221 is tilted clockwise by ⁇ 1, the optical path length L1 of the optical axis AX1 becomes longer than the optical path length L0 of the optical axis AX0. On the other hand, when the mirror 221 is tilted counterclockwise by ⁇ 2, the optical path length L2 of the optical axis AX2 becomes shorter than the optical path length L0 of the optical axis AX0.
  • the optical path length L of the optical axis AX is related to the magnification m of the virtual image i2, and the magnification m increases as the optical path length L extends. That is, the fact that the optical path length of the optical axis AX changes when the seat height is adjusted means that the virtual image distance changes when the seat height is adjusted. Therefore, it is preferable to minimize the change in the optical path length L in the sitting height adjustment.
  • the mirror moving mechanism 25 tilts the mirror 221 around the position lower than the center C0 of the mirror 221 as the rotation center, so that the image i1 is displayed toward the eyepoint EP of the user 900. Adjust to. More specifically, it is as follows.
  • the mirror moving mechanism 25 tilts the mirror 221 with the lower end C1 of the mirror 221 (indicated by “ ⁇ ”) as the center of rotation.
  • the mirror 221 is tilted clockwise by ⁇ 1 and moved from M0 to M3.
  • ⁇ 1 is equal to ⁇ 1
  • M3 is arranged in the same direction as M1 in FIG. 5 and shifted by a distance S1 from M0 in the positive Y and Z directions.
  • the distance S1 corresponds to the shift component of the movement due to the tilt of the mirror 221.
  • the mirror 221 is tilted counterclockwise by ⁇ 2 and moved from M0 to M4.
  • ⁇ 2 is equal to ⁇ 2
  • M4 is arranged in the same direction as M2 in FIG. 5, but shifted in the negative Y and Z directions by a distance S2 from M2.
  • the distance S2 corresponds to the shift component of the movement due to the tilt of the mirror 221.
  • the shift components make the optical path length longer than when tilted about the center C0 of the mirror 221 in FIG. 5 about the rotation center.
  • L0 does not change, but the optical path length L1 becomes shorter and L2 becomes longer.
  • the rotation center is the lower end C1 of the mirror 221, the movable range of the mirror 221 is wider than in the case of the center C0 of the mirror 221, but the volume of the virtual image display device 20 can be prevented from significantly increasing.
  • the rotation center is not limited to the case where the lower end C1 of the mirror 221 is set, and the rotation center can be set at a position between the center C0 of the mirror 221 and the lower end C1.
  • [Table 1] below is an example of the result of calculation by simulation of the virtual image distance on the far side when the rotation center position is the upper end, the center, and the lower end of the mirror 221.
  • the virtual image distance on the far side set according to the traveling speed is 24 [m] (hereinafter, referred to as “set value”).
  • the virtual image distance is set when the lower end of the mirror 221 is the center of rotation, compared to when the upper end or center of the mirror 221 is the center of rotation. It was close to the value.
  • the virtual image distance is closer to the set value when the lower end of the mirror 221 is the rotation center than when the upper end or the center of the mirror 221 is the rotation center. It became a value.
  • the look-down angle is irrespective of the position of the rotation center of the mirror 221 regardless of whether the seat height is standard +25 [mm] or standard -25 [mm]. , And the values were almost constant.
  • the looking down angle is an angle with respect to a horizontal line of a line connecting the center of the pupil 910 of the user 900 and the center of the virtual image i2.
  • FIG. 8 is a schematic diagram showing a modified example of the configuration in which the mirror 221 is tilted.
  • the rotation center of the mirror 221 is set at a position lower than the lower end C1 of the mirror 221.
  • the virtual image display device 20 has, for example, a support member 223 that supports the lower end C1 of the mirror 221.
  • the support member 223 is a rod-shaped member, one end of which is connected to the lower end C1 of the mirror 221, and the other end C2 of which extends to the rotation center of the mirror 221.
  • the support member 223 may be configured to support a portion other than the lower end C1 of the mirror 221.
  • the center of rotation may be a position on an extension line extending downward from the lower end C1 along the shape of the mirror 221.
  • the rotation center may be a position on an extension line extending downward from the lower end C1 along a straight line connecting the center C0 of the mirror 221 and the lower end C1.
  • the movable range of the mirror 221 is expanded, so that the volume of the virtual image display device 20 can be increased.
  • the increase in the volume of the virtual image display device 20 is within the allowable range, theoretically, the change in the virtual image distance at the time of adjusting the seat height is zero, that is, the virtual image distance can be made as close as possible to the set value.
  • the distance between C1 and C2 is equal to the distance between C0 and C1 in consideration of the increase in volume of the virtual image display device 20 and the influence of vibration accompanying the increase in the distance between the rotation center and the mirror 221.
  • the length can be set to be approximately the same as the distance between C0 and C1 from the half length.
  • the virtual image display device and the head-up display device of the present embodiment described above have the following effects.
  • the position in the height direction of the eye box is adjusted by rotating the mirror 221 with the positions C1 and C2 lower than the center C0 of the mirror 221 as the center of rotation. Therefore, according to the sitting height of the user 900, It is possible to prevent or suppress the change of the virtual image distance when adjusting the position of. Therefore, even when the object on which the virtual image is superimposed and displayed exists in the range from the distant to the vicinity, the difference between the object and the virtual image that can be seen from the position of the eye of the user 900 is reduced, and a safer driving support system is provided. Can be realized.
  • the invention is not limited to this, and the virtual image distance may be changed in four or more stages.
  • the height of the virtual image is changed in three steps as the seat height adjustment, but the seat height may be adjusted in four or more steps.
  • head-up display device 20 virtual image display device 21 display element 21a display surface 22 virtual image projection optical system 220 display screen 221, 222 mirror 223 support member 26 housing 30 display control unit 60 main control unit 71 driver detection unit 72 environment monitoring unit 73 Operation speed acquisition unit 800 Vehicle 811 Body 812 Front window 813 Steering wheel 814 Dashboard 815 Display 816 Driver's seat 900 User 910 Eyes AX, AX1, AX2 Optical axis D1 Display light EP Eyepoint i1 image i2 Virtual image L, L1, L2 Optical path length

Abstract

[Problem] To provide a virtual-image display device and a head-up display device capable of preventing or suppressing a change in virtual image distance when adjusting the position of an eyebox in the height direction. [Solution] This virtual-image display device has a display element 21, a virtual-image projection optical system 22, and a mirror rotation mechanism 25. The virtual-image projection optical system 22 is provided with a mirror 221 that reflects an image formed on the display surface 21a of the display element 21 and converts an image i1 formed on the display surface 21a into a virtual image i2. The mirror rotation mechanism 25 rotates the mirror 221. The mirror rotation mechanism 25 rotates the mirror 221 around a position lower than the center of the mirror 221 to adjust the position of an eyebox in the height direction.

Description

虚像表示装置、およびヘッドアップディスプレイ装置Virtual image display device and head-up display device
 本発明は、虚像表示装置、およびヘッドアップディスプレイ装置に関する。 The present invention relates to a virtual image display device and a head-up display device.
 従来のヘッドアップディスプレイ(以下、単に「HUD」ともいう)は、虚像を運転者からある一定の距離だけ離れた位置に生成するのが一般的であり、HUDによる表示内容は、車速、カーナビゲーション情報等に限られていた。そもそもHUDを車両に搭載する目的は、運転者の視線移動を最小限に抑えることで、より安全な運転を支援するものである。安全運転支援という意味においては、車速等の表示内容だけではなく、例えば前方の車、歩行者、障害物等をカメラやセンサーで検知し、HUDを通じて運転者に事前に危険を察知させて事故を未然に防ぐようなシステムの方がより好ましい。こういったシステムを実現するには、例えば車、人、障害物等の危険を察知させる対象となるシースルー像に対して虚像としての危険信号を重畳させて表示させることが考えられる。 A conventional head-up display (hereinafter, also simply referred to as “HUD”) generally generates a virtual image at a position separated from a driver by a certain distance. The contents displayed by the HUD include vehicle speed and car navigation. It was limited to information. In the first place, the purpose of mounting the HUD in a vehicle is to support safer driving by minimizing the movement of the driver's line of sight. In the sense of safe driving assistance, not only the display contents such as vehicle speed but also, for example, a vehicle or a pedestrian in front, obstacles, etc. are detected by a camera or a sensor, and the driver is made aware of the danger in advance through the HUD to prevent an accident. A system that prevents the occurrence is more preferable. In order to realize such a system, for example, it is conceivable to superimpose and display a danger signal as a virtual image on a see-through image that is a target for detecting a danger of a car, a person, an obstacle, or the like.
 このような虚像を表示させる際に、危険を察知させる対象となる物(対象物)との距離は一定ではない。例えば50m先の危険に対して2m先に見える虚像に危険信号を表示して重畳させると焦点位置の違いが生じるため、人間の目には、違和感が生じるという課題がある。このような課題を解決する手法としては、実物に対して虚像を奥行き方向も含めて重畳させることが考えられる。虚像に奥行きを持たせる手法として各種の技術が提案されている。 When displaying such a virtual image, the distance to the object (object) to be detected as a danger is not constant. For example, when a danger signal is displayed and superimposed on a virtual image that is visible 2 m away from a danger 50 m away, a difference in focus position occurs, which causes a problem that human eyes feel discomfort. As a method for solving such a problem, it is conceivable to superimpose a virtual image on the real object including the depth direction. Various techniques have been proposed as a method of giving a virtual image depth.
 また、座席に座る運転者の瞳の高さは、運転者の座高により変化するので、運転者の座高に応じてアイボックス(Eyebox)の高さ方向の位置を調整する必要がある。これに関連して、HUD光学系のミラーを回転することにより、アイボックスの高さ方向の位置を調整する技術が知られている(例えば、下記特許文献1)。 Also, since the height of the eyes of the driver sitting in the seat changes depending on the seat height of the driver, it is necessary to adjust the position of the eyebox in the height direction according to the seat height of the driver. In relation to this, a technique is known in which the position of the eye box in the height direction is adjusted by rotating the mirror of the HUD optical system (for example, Patent Document 1 below).
特開2017-26675号公報JP, 2017-26675, A
 しかしながら、特許文献1の技術では、アイボックスの高さ方向位置を調整する際に虚像距離が変化するという問題がある。 However, the technique of Patent Document 1 has a problem that the virtual image distance changes when the position of the eye box in the height direction is adjusted.
 本発明は、上記事情に鑑みてなされたものであり、アイボックスの高さ方向の位置を調整する際に虚像距離の変化を防止または抑制できる虚像表示装置、およびヘッドアップディスプレイ装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a virtual image display device and a head-up display device capable of preventing or suppressing a change in virtual image distance when adjusting the position of the eye box in the height direction. With the goal.
 本発明の上記目的は、下記の手段によって達成される。 The above object of the present invention is achieved by the following means.
 (1)表示素子と、前記表示素子の表示面に形成された像を反射するミラーを備え、前記表示面に形成された像を変換し、虚像を形成する虚像投影光学系と、前記ミラーを回転させるミラー回転機構と、を有し、前記ミラー回転機構が、前記ミラーの中心よりも低い位置を回転中心として前記ミラーを回転させることで、虚像の高さ方向の位置を調整する、虚像表示装置。 (1) A virtual image projection optical system that includes a display element and a mirror that reflects an image formed on the display surface of the display element, converts the image formed on the display surface to form a virtual image, and the mirror. A mirror rotation mechanism for rotating the mirror rotation mechanism, wherein the mirror rotation mechanism rotates the mirror about a position lower than the center of the mirror as a rotation center, thereby adjusting the position of the virtual image in the height direction. apparatus.
 (2)前記回転中心は、前記ミラーの下端に配置されている、上記(1)に記載の虚像表示装置。 (2) The virtual image display device according to (1), wherein the rotation center is located at the lower end of the mirror.
 (3)前記回転中心は、前記ミラーの下端よりも低い位置に配置されている、上記(1)に記載の虚像表示装置。 (3) The virtual image display device according to (1), wherein the center of rotation is arranged at a position lower than the lower end of the mirror.
 (4)前記虚像投影光学系は、前記ミラーからの反射光を虚像として表示するコンバイナーをさらに有し、前記ミラーは、光路に沿って前記コンバイナーの直前に配置されている、上記(1)~(3)のいずれか1つに記載の虚像表示装置。 (4) The virtual image projection optical system further includes a combiner that displays the reflected light from the mirror as a virtual image, and the mirror is arranged immediately before the combiner along the optical path. The virtual image display device according to any one of (3).
 (5)上記(1)~(4)のいずれか1つに記載の虚像表示装置を有し、
 運転者の座高に応じて、前記ミラー回転機構により虚像の高さ方向の位置を調整する、ヘッドアップディスプレイ装置。
(5) The virtual image display device according to any one of (1) to (4) above,
A head-up display device in which the position of a virtual image in the height direction is adjusted by the mirror rotation mechanism according to the sitting height of a driver.
 (6)さらに、運転者の座高を検出する座高検出部を有し、
 前記座高検出部で検出した、前記運転者の座高に応じて、前記ミラー回転機構により虚像の高さ方向の位置を調整する、上記(5)に記載のヘッドアップディスプレイ装置。
(6) Further, a sitting height detecting section for detecting the sitting height of the driver is provided,
The head-up display device according to (5) above, wherein the position of the virtual image in the height direction is adjusted by the mirror rotation mechanism according to the seat height of the driver detected by the seat height detection unit.
 本発明によれば、虚像投影光学系のミラーの中心よりも低い位置を回転中心としてミラーを回転することにより、アイボックスの高さ方向の位置を調整するので、運転者の座高の高さに応じてアイボックスの高さ方向の位置を調整する際に、虚像距離が変化することを防止または抑制できる。したがって、虚像を重畳して表示する対象物が遠方から近傍までの範囲に存在する場合でも、運転者の眼の位置から見える対象物と虚像とのズレが少なくなり、より安全な運転支援システムを実現することができる。 According to the present invention, since the position of the eye box in the height direction is adjusted by rotating the mirror around the position lower than the center of the mirror of the virtual image projection optical system, the seat height of the driver can be adjusted. Accordingly, when adjusting the position of the eye box in the height direction, it is possible to prevent or suppress the change of the virtual image distance. Therefore, even when the object on which the virtual image is superimposed and displayed exists in the range from the distant to the vicinity, the deviation between the object and the virtual image visible from the driver's eye position is reduced, and a safer driving support system is provided. Can be realized.
本実施形態に係るヘッドアップディスプレイ装置を車両に搭載した状態を示す断面図である。It is a sectional view showing the state where the head up display device concerning this embodiment was carried in vehicles. ヘッドアップディスプレイ装置を搭載した車両を内側から見た模式図である。It is the schematic diagram which looked at the vehicle carrying the head-up display device from the inside. 虚像表示装置の構成を示す模式図である。It is a schematic diagram which shows the structure of a virtual image display apparatus. ヘッドアップディスプレイ装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of a head-up display device. 比較例としてミラーの中心を回転中心とした場合のミラーチルトによる表示位置の変更について説明するための模式図である。FIG. 11 is a schematic diagram for explaining a change in display position due to mirror tilt when the center of the mirror is the center of rotation as a comparative example. ミラーの下端を回転中心とした場合のチルトについて説明するための模式図である。It is a schematic diagram for demonstrating tilt when the lower end of a mirror is made into a rotation center. ミラーの下端を回転中心とした場合のチルトについて説明するための模式図である。It is a schematic diagram for demonstrating tilt when the lower end of a mirror is made into a rotation center. ミラーの下端を回転中心とした場合のチルトによる表示位置の変更について説明するための模式図である。FIG. 9 is a schematic diagram for explaining a change in display position due to tilt when the lower end of the mirror is the rotation center. ミラーをチルトする構成の一変形例を示す模式図である。It is a schematic diagram which shows one modification of the structure which tilts a mirror.
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また図面においては、アイボックスの横方向をX方向、縦方向をY方向とし、XY平面に垂直な方向をZ方向とする。また虚像表示装置を車両に搭載した状態において、車両の進行方向は、Z方向に平行である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description. Also, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios. In the drawings, the horizontal direction of the eye box is the X direction, the vertical direction is the Y direction, and the direction perpendicular to the XY plane is the Z direction. Further, when the virtual image display device is mounted on the vehicle, the traveling direction of the vehicle is parallel to the Z direction.
 図1、図2は、本実施形態に係る虚像表示装置20、およびこれを含むヘッドアップディスプレイ装置10を車両800の車体811内に搭載した使用状態を説明する模式図である。ユーザー(運転者)900は、ハンドル813を握りながら運転席816に座っている。図1、図2に示すように、ヘッドアップディスプレイ装置10の虚像表示装置20は、後述する表示素子21に表示されている画像情報を、表示スクリーン220を介してユーザー900に向けて虚像として表示する。 FIG. 1 and FIG. 2 are schematic diagrams illustrating a usage state in which a virtual image display device 20 according to the present embodiment and a head-up display device 10 including the virtual image display device 20 are mounted inside a vehicle body 811 of a vehicle 800. The user (driver) 900 is sitting in the driver's seat 816 while gripping the steering wheel 813. As shown in FIGS. 1 and 2, the virtual image display device 20 of the head-up display device 10 displays the image information displayed on the display element 21 described later as a virtual image toward the user 900 via the display screen 220. To do.
 虚像表示装置20の表示スクリーン220以外の構成は、車体811のダッシュボード814内にカーナビゲーション等のディスプレイ815の背後に埋め込むように設置されている。虚像表示装置20は、運転関連情報等を含む虚像に対応する表示光D1を表示スクリーン220に向けて射出する。表示スクリーン220は、コンバイナーとも呼ばれ、半透過性を有する凹面鏡、または平面鏡である。表示スクリーン220は、下端の支持によってダッシュボード814上に立設され、虚像表示装置20からの表示光D1を車体811の後方側(Z方向)に向けて反射する。すなわち、図示の場合、表示スクリーン220は、フロントウィンドウ812とは別体で設置される独立型のものとなっている。表示スクリーン220で反射された表示光D1は、運転席816に座ったユーザー900の瞳910、およびその周辺位置に対応するアイボックス(Eyebox)(図3参照)に導かれる。 The components other than the display screen 220 of the virtual image display device 20 are installed in the dashboard 814 of the vehicle body 811 so as to be embedded behind the display 815 such as a car navigation system. The virtual image display device 20 emits display light D1 corresponding to a virtual image including driving-related information and the like toward the display screen 220. The display screen 220 is also called a combiner, and is a semi-transparent concave mirror or a plane mirror. The display screen 220 is erected on the dashboard 814 by supporting the lower end thereof, and reflects the display light D1 from the virtual image display device 20 toward the rear side (Z direction) of the vehicle body 811. That is, in the illustrated case, the display screen 220 is an independent type installed separately from the front window 812. The display light D1 reflected by the display screen 220 is guided to the pupil 910 of the user 900 sitting in the driver's seat 816 and an eye box (Eyebox) (see FIG. 3) corresponding to the peripheral position thereof.
 アイボックスは、ユーザー900が表示素子の表示面に形成された全ての虚像を視認できる範囲であり、ヘッドアップディスプレイ装置10が車両800に搭載された状態で、運転席816に座ったユーザー900の瞳910の位置(高さ)、すなわちアイポイントEPを含む所定の範囲に設定される。アイボックスの範囲は、ユーザー900の座高に応じて調整される。 The eye box is a range in which the user 900 can visually recognize all virtual images formed on the display surface of the display element. The eye box of the user 900 sitting in the driver's seat 816 with the head-up display device 10 mounted on the vehicle 800. The position (height) of the pupil 910, that is, a predetermined range including the eye point EP is set. The range of the eye box is adjusted according to the sitting height of the user 900.
 ユーザー900は、表示スクリーン220で反射された表示光D1、つまり、あたかも車体811の前方にあるように、所定距離(虚像距離)離れた表示像としての虚像i2を観察することができる。一方、ユーザー900は、表示スクリーン220を透過した外界光、つまり前方景色、自動車等の実像を観察することができる。結果的に、ユーザー900は、表示スクリーン220を透過した背後の外界像、すなわちシースルー像に重ねて、表示スクリーン220での表示光D1の反射によって形成される運転関連情報等を含む虚像i2を観察できる。 The user 900 can observe the display light D1 reflected by the display screen 220, that is, the virtual image i2 as a display image separated by a predetermined distance (virtual image distance) as if it were in front of the vehicle body 811. On the other hand, the user 900 can observe external light transmitted through the display screen 220, that is, a front view, a real image of an automobile or the like. As a result, the user 900 observes the virtual image i2 including the driving-related information and the like formed by the reflection of the display light D1 on the display screen 220 so as to be superimposed on the background image behind the display screen 220, that is, the see-through image. it can.
 図3は、虚像表示装置20の構成を示す模式図である。図3に示すように、虚像表示装置20は、表示素子21、虚像投影光学系22、ミラー移動機構25、ハウジング26、および表示制御部30を備える。ハウジング26内には、表示スクリーン220以外の虚像表示装置20の各構成要素が収納される。 FIG. 3 is a schematic diagram showing the configuration of the virtual image display device 20. As shown in FIG. 3, the virtual image display device 20 includes a display element 21, a virtual image projection optical system 22, a mirror moving mechanism 25, a housing 26, and a display control unit 30. The components of the virtual image display device 20 other than the display screen 220 are housed in the housing 26.
 表示素子21は、2次元的な表示面21aを有する。表示面21aに形成された像i1は、虚像投影光学系22で拡大されてアイボックスへ、虚像として変換して投影される。この際、2次元表示が可能な表示素子21を用いることで、像i1の表示内容の切り換えを比較的高速で行える。表示素子21としては液晶等の透過型の素子を用いることが好ましい。 The display element 21 has a two-dimensional display surface 21a. The image i1 formed on the display surface 21a is magnified by the virtual image projection optical system 22, converted into a virtual image and projected on the eye box. At this time, by using the display element 21 capable of two-dimensional display, the display content of the image i1 can be switched at a relatively high speed. As the display element 21, it is preferable to use a transmissive element such as liquid crystal.
 虚像投影光学系22は、表示スクリーン220、および第1、第2のミラー221、222を含む。ミラー221、222は、表面形状が球面、放物面、または自由曲面であり、光学的なパワーを持つ。ミラー221は、例えば凹面鏡でありうる。これらの光学素子は、光軸AX(光路)に沿って、第2のミラー222、第1のミラー221、表示スクリーン220の順で配置される。表示素子21の表示面21aに形成された像i1は、これらの光学素子に順次反射され、アイボックスに導かれる。これにより、ユーザー900は、所定距離(虚像距離)離れた表示像としての虚像i2を観察することができる。 The virtual image projection optical system 22 includes a display screen 220 and first and second mirrors 221 and 222. The mirrors 221 and 222 have a spherical surface, a parabolic surface, or a free-form surface, and have optical power. The mirror 221 can be, for example, a concave mirror. These optical elements are arranged in the order of the second mirror 222, the first mirror 221, and the display screen 220 along the optical axis AX (optical path). The image i1 formed on the display surface 21a of the display element 21 is sequentially reflected by these optical elements and guided to the eye box. Accordingly, the user 900 can observe the virtual image i2 as a display image that is separated by a predetermined distance (virtual image distance).
 ミラー移動機構25は、ステッピングモーター等の駆動モーターと、アクチュエーターから構成され、複数のミラー221、222のうち、光軸AX上(光路中)において、表示素子21から遠い方のミラー221を移動させる。 The mirror moving mechanism 25 includes a drive motor such as a stepping motor and an actuator, and moves the mirror 221 farther from the display element 21 on the optical axis AX (in the optical path) of the plurality of mirrors 221 and 222. ..
 ミラー移動機構25により、ミラー221を光軸AXに沿って、表示素子21から遠ざける方向にシフトさせることにより、虚像距離を遠距離にする。また、反対に近づける方向にシフトさせることにより、虚像距離を近距離にする。 The virtual image distance is set to a long distance by shifting the mirror 221 along the optical axis AX by the mirror moving mechanism 25 in the direction away from the display element 21. In addition, the virtual image distance is set to a short distance by shifting in the opposite direction.
 さらに、本実施形態では、ミラー移動機構25は、ミラー回転機構として機能し、ミラー221をチルト(X軸方向回りの回転移動)させることもできる。回転軸はX軸方向回りに限らず任意の方向を選ぶことが出来る。ミラー移動機構25によりミラー221がチルトされることにより、光軸AXの方向が変更され、ミラー221からの表示光D1が表示スクリーン220上で反射する位置が移動する。これにより、表示スクリーン220で反射された表示光D1の向きが変更される。 Furthermore, in the present embodiment, the mirror moving mechanism 25 functions as a mirror rotating mechanism and can also tilt the mirror 221 (rotate and move around the X-axis direction). The rotation axis is not limited to around the X-axis direction, and any direction can be selected. By tilting the mirror 221 by the mirror moving mechanism 25, the direction of the optical axis AX is changed, and the position where the display light D1 from the mirror 221 is reflected on the display screen 220 moves. As a result, the direction of the display light D1 reflected by the display screen 220 is changed.
 表示制御部30は、後述する座高調整において、ミラー移動機構25を制御し、ユーザー900の座高に応じて、ミラー221をチルトすることにより、ユーザー900が虚像i2を観察できるように虚像i2の高さを調整する。なお、座高調整は、ユーザー900の指示に応じて実施するように構成されてもよいし、ユーザー900が座席に座ったときに、ソフトウェアにより自動的に実施するように構成されてもよい。 The display control unit 30 controls the mirror moving mechanism 25 and tilts the mirror 221 according to the sitting height of the user 900 to adjust the height of the virtual image i2 so that the user 900 can observe the virtual image i2. Adjust the height. The seat height adjustment may be configured to be performed according to an instruction from the user 900, or may be configured to be automatically performed by software when the user 900 sits on the seat.
 なお、本実施形態において、虚像表示装置20は、2枚のミラー221、222を含む例を示したが、これに限られず、1枚のミラー221のみを備える構成であってもよい。 Although the virtual image display device 20 includes the two mirrors 221 and 222 in the present embodiment, the present invention is not limited to this, and the virtual image display device 20 may include only one mirror 221.
 (ヘッドアップディスプレイ装置10)
 図4は、ヘッドアップディスプレイ装置10のハードウェア構成を説明するブロック図である。ヘッドアップディスプレイ装置10は、上述した虚像表示装置20の他に、運転者検出部71、環境監視部72、運行速度取得部73および主制御部60を備える。主制御部60は、ヘッドアップディスプレイ装置10全体を制御することで、対向車両、通行者等のオブジェクトに対応させた虚像を適切な虚像距離で表示する。
(Head-up display device 10)
FIG. 4 is a block diagram illustrating the hardware configuration of the head-up display device 10. The head-up display device 10 includes a driver detection unit 71, an environment monitoring unit 72, an operation speed acquisition unit 73, and a main control unit 60, in addition to the virtual image display device 20 described above. The main control unit 60 controls the entire head-up display device 10 to display a virtual image corresponding to an object such as an oncoming vehicle or a passerby at an appropriate virtual image distance.
 運転者検出部71は、車両800内のユーザー900の存在や視点位置を検出する部分であり、運転席816に向けた内部用カメラ71a、運転席用画像処理部71b、および判断部71cを備える。内部用カメラ71aは、車体811内のダッシュボード814に、運転席816に対向して設置されており(図2参照)、運転席816に座るユーザー900の頭部、およびその周辺の画像を撮影する。画像処理部71bは、内部用カメラ71aで撮影した画像に対して明るさ補正等の各種画像処理を行い、判断部71cでの処理を容易にする。判断部71cは、画像処理部71bで処理した運転席画像からオブジェクトの抽出、または切り出しを行うことによって座高、すなわちユーザー900の頭部、または眼(瞳910)の高さを検出する。また、運転席画像に付随する奥行情報から車体811内におけるユーザー900の頭部の存否とともにユーザー900の瞳910の空間的な位置、すなわちアイポイントEP(結果的に視線の方向)を算出する。運転者検出部71は、座高検出部として機能する。 The driver detection unit 71 is a unit that detects the presence and the viewpoint position of the user 900 in the vehicle 800, and includes an internal camera 71a facing the driver seat 816, a driver seat image processing unit 71b, and a determination unit 71c. .. The internal camera 71a is installed on the dashboard 814 inside the vehicle body 811 so as to face the driver's seat 816 (see FIG. 2), and captures images of the head of the user 900 sitting in the driver's seat 816 and its surroundings. To do. The image processing unit 71b performs various image processing such as brightness correction on the image captured by the internal camera 71a, and facilitates the processing by the determination unit 71c. The determination unit 71c detects the sitting height, that is, the height of the head or the eye (pupil 910) of the user 900 by extracting or cutting out an object from the driver seat image processed by the image processing unit 71b. Further, from the depth information attached to the driver's seat image, the presence or absence of the head of the user 900 in the vehicle body 811 and the spatial position of the pupil 910 of the user 900, that is, the eye point EP (as a result, the direction of the line of sight) are calculated. The driver detection unit 71 functions as a sitting height detection unit.
 環境監視部72は、前方に近接する自動車、自転車、歩行者等のオブジェクトを識別するとともに、オブジェクトまでの距離を判定する。環境監視部72は、外部用カメラ72a、外部用画像処理部72b、および判断部72cを備える。外部用カメラ72aは車体811内外の適所に設置されており、ユーザー900または車両800の前方、側方等の外部画像を撮影する。画像処理部72bは、外部用カメラ72aで撮影した画像に対して明るさ補正等の各種画像処理を行い、判断部72cでの処理を容易にする。判断部72cは、画像処理部72bで処理した外部画像からオブジェクトの抽出、または切り出しを行うことによって自動車、自転車、歩行者等のオブジェクトの存否を検出するとともに、外部画像に付随する奥行情報から車両800前方におけるオブジェクトの空間的な位置を算出する。 The environment monitoring unit 72 identifies an object such as a car, a bicycle, or a pedestrian approaching in the front and determines the distance to the object. The environment monitoring unit 72 includes an external camera 72a, an external image processing unit 72b, and a determination unit 72c. The external camera 72a is installed at appropriate places inside and outside the vehicle body 811, and captures an external image of the front or side of the user 900 or the vehicle 800. The image processing unit 72b performs various image processing such as brightness correction on the image captured by the external camera 72a, and facilitates the processing by the determination unit 72c. The determination unit 72c detects the presence or absence of an object such as a car, a bicycle, or a pedestrian by extracting or cutting out an object from the external image processed by the image processing unit 72b, and determines the vehicle from the depth information accompanying the external image. The spatial position of the object in front of 800 is calculated.
 なお、内部用カメラ71aや外部用カメラ72aは、例えば複眼型の3次元カメラを含む。つまり、両カメラ71a、72aは、結像用のレンズと、CMOS(Complementary Metal-Oxide Semiconductor)、その他の撮像素子とを一組とするカメラ素子をマトリックス状に配列したものであり、撮像素子用の駆動回路をそれぞれ有する。各カメラ71a、72aを構成する複数のカメラ素子は、例えば奥行方向の異なる位置にピントを合わせるようになっており、或いは相対的な視差を検出できるようになっており、各カメラ素子から得た画像の状態(フォーカス状態、オブジェクトの位置等)を解析することで、画像内の各領域、またはオブジェクトまでの距離を判定する。 The internal camera 71a and the external camera 72a include, for example, a compound eye type three-dimensional camera. That is, each of the cameras 71a and 72a is an array of camera elements including a lens for image formation, a CMOS (Complementary Metal-Oxide Semiconductor), and other image pickup elements arranged in a matrix. Drive circuits. The plurality of camera elements forming each of the cameras 71a and 72a are configured to focus at different positions in the depth direction, or to detect relative parallax, and are obtained from each camera element. The distance to each area in the image or the object is determined by analyzing the state of the image (focus state, position of the object, etc.).
 さらに、複眼型の外部用カメラ72aに代えて、LIDAR(Light Detection And Ranging)技術を用いてもよい。これにより検出領域内の各部(領域、またはオブジェクト)に関して奥行方向の距離情報を得ることができる。LIDAR技術により、パルス状のレーザー照射に対する散乱光を測定し、遠距離にあるオブジェクトまでの距離や拡がり計測して視野内のオブジェクトまでの距離情報やオブジェクトの拡がりに関する情報を取得できる。このLIDAR技術のようなレーダーセンシング技術と画像情報からオブジェクトの距離等を検出する技術とを組み合わせることによって、オブジェクトの検出精度を高めることができる。 Further, in place of the compound-eye type external camera 72a, LIDAR (Light Detection And Ranging) technology may be used. This makes it possible to obtain distance information in the depth direction for each part (area or object) in the detection area. With the LIDAR technology, it is possible to measure scattered light with respect to pulsed laser irradiation, measure the distance and spread to an object at a long distance, and obtain distance information to the object in the field of view and information about the spread of the object. By combining the radar sensing technology such as the LIDAR technology and the technology for detecting the distance of the object from the image information, the detection accuracy of the object can be improved.
 運行速度取得部73は、車両本体からタイヤ回転数に応じた運行速度データを取得する。なお、運行速度取得部73自体が、GPSセンサー、加速度センサー、ジャイロセンサー等を備え、車両の運行速度を検出するようにしてもよい。 The operation speed acquisition unit 73 acquires operation speed data according to the number of tire rotations from the vehicle body. The operation speed acquisition unit 73 itself may include a GPS sensor, an acceleration sensor, a gyro sensor, etc. to detect the operation speed of the vehicle.
 表示制御部30は、主制御部60の制御下で虚像表示装置20を動作させて、表示スクリーン220の背後に虚像距離(投影距離ともいう)を変更した虚像i2を表示させる。表示制御部30は、主制御部60を介して環境監視部72から受信した表示形状や表示距離(虚像距離)を含む表示情報から、虚像表示装置20に表示させる虚像i2を生成する。虚像i2は、例えば表示スクリーン220の背後に存在する自動車、自転車、歩行者その他のオブジェクトに対してその奥行き位置方向に関して周辺に位置する矩形フレームのような標識になる。また虚像の表示形態としては、運行速度データに応じた、速度を示す数字であってもよい。 The display control unit 30 operates the virtual image display device 20 under the control of the main control unit 60 to display the virtual image i2 with a changed virtual image distance (also referred to as a projection distance) behind the display screen 220. The display control unit 30 generates the virtual image i2 to be displayed on the virtual image display device 20 from the display information including the display shape and the display distance (virtual image distance) received from the environment monitoring unit 72 via the main control unit 60. The virtual image i2 serves as a marker such as a rectangular frame located around the display screen 220 in the depth position direction with respect to an automobile, a bicycle, a pedestrian, or other objects behind the display screen 220. The display form of the virtual image may be a number indicating the speed according to the traveling speed data.
 表示制御部30は、主制御部60を介して運転者検出部71からユーザー900の存在や目の位置や座高に関する検出出力を受け取る。これにより、虚像表示装置20による虚像i2の投影の自動的な開始や停止が可能になる。また、ユーザー900の視線の方向のみに虚像i2の投影を行うこともできる。さらに、ユーザー900の視線の方向の虚像i2のみを明るくする、点滅する等の強調を行った投影を行うこともできる。 The display control unit 30 receives the detection output regarding the presence of the user 900, the position of the eyes, and the sitting height from the driver detection unit 71 via the main control unit 60. As a result, it is possible to automatically start or stop the projection of the virtual image i2 by the virtual image display device 20. Further, the virtual image i2 can be projected only in the direction of the line of sight of the user 900. Furthermore, it is also possible to perform projection in which only the virtual image i2 in the direction of the line of sight of the user 900 is brightened, flashed, or otherwise emphasized.
 主制御部60は、運行速度取得部73が取得した運行速度データに応じて、表示制御部30に表示形状、および虚像距離の設定を含む表示情報を送る。運行速度が高速、中速、低速の場合には、それぞれ虚像距離を遠距離、中距離、近距離に設定するように表示情報を送る。例えば運行速度が50km/h以上であれば虚像距離を24mに、30km/h以下であれば虚像距離を4mに、その中間の速度であれば虚像距離を7mに設定する。 The main control unit 60 sends display information including display shape and virtual image distance setting to the display control unit 30 according to the operation speed data acquired by the operation speed acquisition unit 73. When the operating speed is high, medium, or low, the display information is sent to set the virtual image distance to long distance, medium distance, or short distance, respectively. For example, if the traveling speed is 50 km / h or more, the virtual image distance is set to 24 m, if it is 30 km / h or less, the virtual image distance is set to 4 m, and if it is an intermediate speed, the virtual image distance is set to 7 m.
 このように、本実施形態に係るヘッドアップディスプレイ装置では、虚像表示装置20を搭載した車両の運行速度、またはオブジェクトの位置に応じて、虚像距離を変更することで、ユーザー900の視線移動(ピント合わせ)の負担を軽減できる。 As described above, in the head-up display device according to the present embodiment, by changing the virtual image distance according to the traveling speed of the vehicle equipped with the virtual image display device 20 or the position of the object, the line-of-sight movement of the user 900 (focusing) can be performed. It is possible to reduce the burden of adjustment.
 (座高調整の原理)
 図5~図6Bを参照し、本実施形態の座高調整について説明する。図5は、比較例としてミラー221の中心を回転中心とした場合のチルトによる表示位置の変更について説明するための模式図である。また、図6A、図6Bは、本実施形態におけるミラー221の下端を回転中心とした場合のチルトについて説明するための模式図である。なお、図6A、図6Bにおいて、ミラー221以外の構成要素の図示を省略している。
(Principle of sitting height adjustment)
The seat height adjustment of the present embodiment will be described with reference to FIGS. 5 to 6B. FIG. 5 is a schematic diagram for explaining the change of the display position by tilt when the center of the mirror 221 is set as the rotation center as a comparative example. Further, FIGS. 6A and 6B are schematic diagrams for explaining the tilt when the lower end of the mirror 221 in the present embodiment is the rotation center. 6A and 6B, the components other than the mirror 221 are not shown.
 図5に示すように、ミラー移動機構25がミラー221をチルトすると、光軸AXの向きが変更される。例えば、ミラー221が、当初、基準位置M0に配置されており、その後、ミラー221の中心(重心)C0を回転中心として、回転する場合について説明する。ミラー221がM0に配置されているときの光軸をAX0とし、表示スクリーン220で反射された光がユーザー900の瞳910へ到達するときのY方向の中心位置(以下、「表示位置」という)をY0とする。 As shown in FIG. 5, when the mirror moving mechanism 25 tilts the mirror 221, the direction of the optical axis AX is changed. For example, a case will be described in which the mirror 221 is initially arranged at the reference position M0 and then rotates about the center (center of gravity) C0 of the mirror 221 as the rotation center. The optical axis when the mirror 221 is arranged at M0 is AX0, and the center position in the Y direction when the light reflected by the display screen 220 reaches the pupil 910 of the user 900 (hereinafter, referred to as “display position”). Be Y0.
 ミラー221を時計回りに所定角度φ1だけチルトし、M0からM1に移動した場合、光軸はAX1に変更され、ユーザー900に近い側の表示スクリーン220上で光が反射されるため、表示位置はY1になる。一方、ミラー221を反時計回りに所定角度φ2だけチルトし、M0からM2に移動した場合、光軸はAX2に変更され、ユーザー900に遠い側の表示スクリーン220上で光が反射されるため、表示位置はY2になる。 When the mirror 221 is tilted clockwise by a predetermined angle φ1 and is moved from M0 to M1, the optical axis is changed to AX1 and light is reflected on the display screen 220 near the user 900, so that the display position is It will be Y1. On the other hand, when the mirror 221 is tilted counterclockwise by a predetermined angle φ2 and moved from M0 to M2, the optical axis is changed to AX2, and light is reflected on the display screen 220 on the side far from the user 900. The display position is Y2.
 このように、ミラー221をチルトすることにより、ミラー221の回転方向および回転角度に応じて表示位置が変更される。したがって、ユーザー900の瞳910の高さ、すなわちアイポイントEPがY0よりも高い場合、または低い場合は、ミラー221をチルトすることにより、表示位置を所望の高さに調整できる。なお、アイポイントEPは、ユーザー900の座高に比例すると考えられるので、以下、本明細書では、表示位置を所望の高さに調整することを「座高調整」という。 By tilting the mirror 221, the display position is changed according to the rotation direction and the rotation angle of the mirror 221. Therefore, when the height of the pupil 910 of the user 900, that is, when the eye point EP is higher or lower than Y0, the display position can be adjusted to a desired height by tilting the mirror 221. Since the eyepoint EP is considered to be proportional to the seat height of the user 900, adjusting the display position to a desired height will be referred to as “sitting height adjustment” in the present specification.
 しかし、上述のようにミラー221の中心C0を回転中心として、ミラー221をチルトすることで座高調整する場合、光軸AXの光路長が変化する。より具体的には、ミラー221を時計回りにφ1だけチルトした場合、光軸AX1の光路長L1は、光軸AX0の光路長L0よりも長くなる。一方、ミラー221を反時計回りにφ2だけチルトした場合、光軸AX2の光路長L2は、光軸AX0の光路長L0よりも短くなる。光軸AXの光路長Lは、虚像i2の倍率mに関係し、光路長Lが延びると倍率mが大きくなる。すなわち、座高調整時に光軸AXの光路長が変化するということは、座高調整時に虚像距離が変化することを意味する。したがって、座高調整では、光路長Lの変化を最小限に留めることが好ましい。 However, as described above, when the sitting height is adjusted by tilting the mirror 221 with the center C0 of the mirror 221 as the center of rotation, the optical path length of the optical axis AX changes. More specifically, when the mirror 221 is tilted clockwise by φ1, the optical path length L1 of the optical axis AX1 becomes longer than the optical path length L0 of the optical axis AX0. On the other hand, when the mirror 221 is tilted counterclockwise by φ2, the optical path length L2 of the optical axis AX2 becomes shorter than the optical path length L0 of the optical axis AX0. The optical path length L of the optical axis AX is related to the magnification m of the virtual image i2, and the magnification m increases as the optical path length L extends. That is, the fact that the optical path length of the optical axis AX changes when the seat height is adjusted means that the virtual image distance changes when the seat height is adjusted. Therefore, it is preferable to minimize the change in the optical path length L in the sitting height adjustment.
 そこで、本実施形態では、ミラー移動機構25が、ミラー221の中心C0よりも低い位置を回転中心としてミラー221をチルトすることにより、像i1がユーザー900のアイポイントEPに向けて表示されるように調整する。より具体的には、以下のとおりである。 Therefore, in the present embodiment, the mirror moving mechanism 25 tilts the mirror 221 around the position lower than the center C0 of the mirror 221 as the rotation center, so that the image i1 is displayed toward the eyepoint EP of the user 900. Adjust to. More specifically, it is as follows.
 例えば、図6Aに示すように、ミラー移動機構25は、ミラー221の下端C1(「●」で示す)を回転中心として、ミラー221をチルトする。ミラー221を時計回りにθ1だけチルトし、M0からM3に移動する。θ1がφ1に等しい場合、M3は、図5におけるM1と同じ向きで、Y方向およびZ方向の正の方向に、M0から距離S1だけシフトされた配置である。距離S1は、ミラー221のチルトによる移動のシフト成分に相当する。 For example, as shown in FIG. 6A, the mirror moving mechanism 25 tilts the mirror 221 with the lower end C1 of the mirror 221 (indicated by “●”) as the center of rotation. The mirror 221 is tilted clockwise by θ1 and moved from M0 to M3. When θ1 is equal to φ1, M3 is arranged in the same direction as M1 in FIG. 5 and shifted by a distance S1 from M0 in the positive Y and Z directions. The distance S1 corresponds to the shift component of the movement due to the tilt of the mirror 221.
 また、図6Bに示すように、ミラー221を反時計回りにθ2だけチルトし、M0からM4に移動する。θ2がφ2に等しい場合、M4は、図5におけるM2と同じ向きで、Y方向およびZ方向の負の方向に、M2から距離S2だけシフトされた配置である。距離S2は、ミラー221のチルトによる移動のシフト成分に相当する。 Also, as shown in FIG. 6B, the mirror 221 is tilted counterclockwise by θ2 and moved from M0 to M4. When θ2 is equal to φ2, M4 is arranged in the same direction as M2 in FIG. 5, but shifted in the negative Y and Z directions by a distance S2 from M2. The distance S2 corresponds to the shift component of the movement due to the tilt of the mirror 221.
 図7に示すように、ミラー221の下端C1を回転中心としてチルトした場合、シフト成分(S1,S2)により、図5においてミラー221の中心C0を回転中心としてチルトした場合に比べて、光路長L0は変わらないが、光路長L1は短くなり、L2は長くなる。 As shown in FIG. 7, when the lower end C1 of the mirror 221 is tilted about the rotation center, the shift components (S1 and S2) make the optical path length longer than when tilted about the center C0 of the mirror 221 in FIG. 5 about the rotation center. L0 does not change, but the optical path length L1 becomes shorter and L2 becomes longer.
 したがって、ミラー221の下端C1を回転中心としてチルトした場合は、ミラー221の中心C0を回転中心としてチルトした場合に比べて、光路長L1とL0との差、およびL2とL0との差が小さくなる。 Therefore, when tilting with the lower end C1 of the mirror 221 as the center of rotation, the difference between the optical path lengths L1 and L0 and the difference between L2 and L0 are smaller than when tilting with the center C0 of the mirror 221 as the center of rotation. Become.
 なお、回転中心をミラー221の下端C1とする場合、ミラー221の中心C0の場合に比べて、ミラー221の可動範囲が広がるものの、虚像表示装置20の体積が大幅に増加することは回避できる。また、回転中心をミラー221の下端C1とする場合に限定されず、ミラー221の中心C0と下端C1との間の位置に回転中心を設定することもできる。 Note that when the rotation center is the lower end C1 of the mirror 221, the movable range of the mirror 221 is wider than in the case of the center C0 of the mirror 221, but the volume of the virtual image display device 20 can be prevented from significantly increasing. Further, the rotation center is not limited to the case where the lower end C1 of the mirror 221 is set, and the rotation center can be set at a position between the center C0 of the mirror 221 and the lower end C1.
 (実施例)
 本実施形態では、座高が標準のユーザー用の「標準」と、これよりも低い、高いユーザー用の「低」、「高」の3水準で調整できるようにしている。座高調整で「高」に設定する場合は、表示位置またはアイボックスの中心は、Y方向でH1=25[mm]上がる。一方、座高調整で「低」に設定する場合は、表示位置またはアイボックスの中心は、Y方向でH2=25[mm]下がる。
(Example)
In the present embodiment, adjustment is possible in three levels of "standard" for users with standard sitting height and "low" and "high" for users with lower and higher sitting heights. When "high" is set by sitting height adjustment, the display position or the center of the eye box is raised by H1 = 25 [mm] in the Y direction. On the other hand, when the seat height is set to “low”, the display position or the center of the eye box is lowered by H2 = 25 [mm] in the Y direction.
 下記の表1は、回転中心位置をミラー221の上端、中心、および下端とした場合における遠側の虚像距離をシミュレーションによって計算した結果の一例である。上述のように、運行速度に応じて設定された遠側の虚像距離は、24[m]である(以下、「設定値」という)。 [Table 1] below is an example of the result of calculation by simulation of the virtual image distance on the far side when the rotation center position is the upper end, the center, and the lower end of the mirror 221. As described above, the virtual image distance on the far side set according to the traveling speed is 24 [m] (hereinafter, referred to as “set value”).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、座高が標準+25[mm]の場合において、ミラー221の下端を回転中心とした場合は、ミラー221の上端または中心を回転中心とした場合に比べて、虚像距離が設定値に近い値となった。 As shown in Table 1, when the sitting height is standard +25 [mm], the virtual image distance is set when the lower end of the mirror 221 is the center of rotation, compared to when the upper end or center of the mirror 221 is the center of rotation. It was close to the value.
 また、座高が標準-25[mm]の場合においても、ミラー221の下端を回転中心とした場合は、ミラー221の上端または中心を回転中心とした場合に比べて、虚像距離が設定値に近い値となった。 Even when the seat height is standard -25 [mm], the virtual image distance is closer to the set value when the lower end of the mirror 221 is the rotation center than when the upper end or the center of the mirror 221 is the rotation center. It became a value.
 なお、表1には、括弧内に、設定値と計算値のディオプター(DPT)の差ΔDPTも併せて記載されている。例えば、座高が標準+25[mm]の場合において、ミラー221の上端を回転中心とした場合は、ΔDPT=ABS(1/24-1/135.0)≒0.034となる。ここで、ABS(…)は、(…)の絶対値を表す。 Note that in Table 1, the difference ΔDPT between the diopter (DPT) between the set value and the calculated value is also shown in parentheses. For example, when the sitting height is standard +25 [mm] and the upper end of the mirror 221 is the center of rotation, ΔDPT = ABS (1 / 24-1 / 135.0) ≈0.034. Here, ABS (...) Represents the absolute value of (...).
 また、表1には計算結果は記載されていないが、見下ろし角は、座高が標準+25[mm]、標準-25[mm]のいずれの場合についても、ミラー221の回転中心の位置にかかわらず、それぞれ概ね一定の値となった。見下ろし角は、ユーザー900の瞳910の中心と、虚像i2の中心とを結ぶ線の水平線に対する角度である。 In addition, although the calculation result is not shown in Table 1, the look-down angle is irrespective of the position of the rotation center of the mirror 221 regardless of whether the seat height is standard +25 [mm] or standard -25 [mm]. , And the values were almost constant. The looking down angle is an angle with respect to a horizontal line of a line connecting the center of the pupil 910 of the user 900 and the center of the virtual image i2.
 (変形例)
 図8は、ミラー221をチルトする構成の一変形例を示す模式図である。本変形例では、ミラー221の下端C1よりも低い位置にミラー221の回転中心が設定される。
(Modification)
FIG. 8 is a schematic diagram showing a modified example of the configuration in which the mirror 221 is tilted. In this modification, the rotation center of the mirror 221 is set at a position lower than the lower end C1 of the mirror 221.
 虚像表示装置20は、例えばミラー221の下端C1を支持する支持部材223を有する。支持部材223は、棒状の部材であり、一端部がミラー221の下端C1に連結され、他端部C2がミラー221の回転中心まで延伸されている。なお、支持部材223がミラー221の下端C1以外の他の部分を支持するように構成することもできる。 The virtual image display device 20 has, for example, a support member 223 that supports the lower end C1 of the mirror 221. The support member 223 is a rod-shaped member, one end of which is connected to the lower end C1 of the mirror 221, and the other end C2 of which extends to the rotation center of the mirror 221. The support member 223 may be configured to support a portion other than the lower end C1 of the mirror 221.
 回転中心がミラー221の下端C1よりも低い位置に設定されることにより、ミラー221のチルトによる移動のシフト成分が増加する。したがって、座高調整時の虚像距離の変化をさらに小さくできる。たとえば、回転中心は、ミラー221の形状に沿って下端C1から下方へ向けて延長した延長線上の位置でありうる。あるいは、回転中心は、ミラー221の中心C0と下端C1とを結ぶ直線に沿って下端C1から下方へ向けて延長した延長線上の位置であってもよい。 By setting the center of rotation at a position lower than the lower end C1 of the mirror 221, the shift component of the movement due to the tilt of the mirror 221 increases. Therefore, the change in the virtual image distance when adjusting the sitting height can be further reduced. For example, the center of rotation may be a position on an extension line extending downward from the lower end C1 along the shape of the mirror 221. Alternatively, the rotation center may be a position on an extension line extending downward from the lower end C1 along a straight line connecting the center C0 of the mirror 221 and the lower end C1.
 なお、ミラー221の回転中心がミラー221の下端C1よりも低い位置に設定されることにより、ミラー221の可動範囲が広がるため、虚像表示装置20の体積が増加しうる。虚像表示装置20の体積の増加が許容できる範囲である場合、理論的には、座高調整時の虚像距離の変化をゼロ、すなわち虚像距離を設定値に限りなく近づけられる。 Note that, by setting the rotation center of the mirror 221 at a position lower than the lower end C1 of the mirror 221, the movable range of the mirror 221 is expanded, so that the volume of the virtual image display device 20 can be increased. When the increase in the volume of the virtual image display device 20 is within the allowable range, theoretically, the change in the virtual image distance at the time of adjusting the seat height is zero, that is, the virtual image distance can be made as close as possible to the set value.
 本変形例では、虚像表示装置20の体積増加や、回転中心とミラー221間の距離が長くなることに伴う振動の影響を考慮し、C1,C2間の距離が、C0,C1間の距離の半分の長さからC0,C1間の距離と同程度の長さになるように設定されうる。 In the present modification, the distance between C1 and C2 is equal to the distance between C0 and C1 in consideration of the increase in volume of the virtual image display device 20 and the influence of vibration accompanying the increase in the distance between the rotation center and the mirror 221. The length can be set to be approximately the same as the distance between C0 and C1 from the half length.
 以上で説明した本実施形態の虚像表示装置、およびヘッドアップディスプレイ装置は、下記の効果を奏する。 The virtual image display device and the head-up display device of the present embodiment described above have the following effects.
 ミラー221の中心C0よりも低い位置C1,C2を回転中心としてミラー221を回転することにより、アイボックスの高さ方向の位置を調整するので、ユーザー900の座高に応じてアイボックスの高さ方向の位置を調整する際に、虚像距離が変化することを防止または抑制できる。したがって、虚像を重畳して表示する対象物が遠方から近傍までの範囲に存在する場合でも、ユーザー900の眼の位置から見える対象物と虚像とのズレが少なくなり、より安全な運転支援システムを実現することができる。 The position in the height direction of the eye box is adjusted by rotating the mirror 221 with the positions C1 and C2 lower than the center C0 of the mirror 221 as the center of rotation. Therefore, according to the sitting height of the user 900, It is possible to prevent or suppress the change of the virtual image distance when adjusting the position of. Therefore, even when the object on which the virtual image is superimposed and displayed exists in the range from the distant to the vicinity, the difference between the object and the virtual image that can be seen from the position of the eye of the user 900 is reduced, and a safer driving support system is provided. Can be realized.
 以上に説明した虚像表示装置、およびヘッドアップディスプレイ装置の構成は、上述の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上述の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な虚像表示装置、およびヘッドアップディスプレイ装置が備える構成を排除するものではない。 The virtual image display device described above, and the configuration of the head-up display device, the main configuration has been described in describing the features of the above embodiment, not limited to the above configuration, within the scope of the claims, Various modifications can be made. Further, the configurations included in a general virtual image display device and a head-up display device are not excluded.
 例えば、上述の実施形態においては、3段階で虚像距離を変更する例を示したが、これに限られず、4段階以上の多段階で、虚像距離を変更するようにしてもよい。同様に上述の形態では、座高調整として3段階で虚像の高さを変更したが、4段階以上の多段階で、座高調整するようにしてもよい。 For example, in the above-described embodiment, an example in which the virtual image distance is changed in three stages is shown, but the invention is not limited to this, and the virtual image distance may be changed in four or more stages. Similarly, in the above-described embodiment, the height of the virtual image is changed in three steps as the seat height adjustment, but the seat height may be adjusted in four or more steps.
 本出願は、2018年10月29日に出願された日本国特許出願番号2018-203123号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2018-203123 filed on Oct. 29, 2018, the disclosure content of which is incorporated by reference in its entirety.
10 ヘッドアップディスプレイ装置
20 虚像表示装置
 21 表示素子
  21a 表示面
 22 虚像投影光学系
  220 表示スクリーン
  221、222 ミラー
  223 支持部材
 26 ハウジング
 30 表示制御部
 60 主制御部
 71 運転者検出部
 72 環境監視部
 73 運行速度取得部
800 車両
 811 車体
 812 フロントウィンドウ
 813 ハンドル
 814 ダッシュボード
 815 ディスプレイ
 816 運転席
 900 ユーザー
 910 瞳
 AX,AX1,AX2 光軸
 D1 表示光
 EP アイポイント
 i1 像
 i2 虚像
 L,L1,L2 光路長
10 head-up display device 20 virtual image display device 21 display element 21a display surface 22 virtual image projection optical system 220 display screen 221, 222 mirror 223 support member 26 housing 30 display control unit 60 main control unit 71 driver detection unit 72 environment monitoring unit 73 Operation speed acquisition unit 800 Vehicle 811 Body 812 Front window 813 Steering wheel 814 Dashboard 815 Display 816 Driver's seat 900 User 910 Eyes AX, AX1, AX2 Optical axis D1 Display light EP Eyepoint i1 image i2 Virtual image L, L1, L2 Optical path length

Claims (6)

  1.  表示素子と、
     前記表示素子の表示面に形成された像を反射するミラーを備え、前記表示面に形成された像を変換し、虚像を形成する虚像投影光学系と、
     前記ミラーを回転させるミラー回転機構と、を有し、
     前記ミラー回転機構が、前記ミラーの中心よりも低い位置を回転中心として前記ミラーを回転させることで、虚像の高さ方向の位置を調整する、虚像表示装置。
    A display element,
    A virtual image projection optical system that includes a mirror that reflects an image formed on the display surface of the display element, converts the image formed on the display surface, and forms a virtual image;
    A mirror rotation mechanism for rotating the mirror,
    The virtual image display device, wherein the mirror rotating mechanism adjusts the position of the virtual image in the height direction by rotating the mirror around a position lower than the center of the mirror as a rotation center.
  2.  前記回転中心は、前記ミラーの下端に配置されている、請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein the rotation center is arranged at a lower end of the mirror.
  3.  前記回転中心は、前記ミラーの下端よりも低い位置に配置されている、請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, wherein the rotation center is arranged at a position lower than a lower end of the mirror.
  4.  前記虚像投影光学系は、前記ミラーからの反射光を虚像として表示するコンバイナーをさらに有し、前記ミラーは、光路に沿って前記コンバイナーの直前に配置されている、請求項1~3のいずれか1項に記載の虚像表示装置。 The virtual image projection optical system further includes a combiner that displays reflected light from the mirror as a virtual image, and the mirror is arranged immediately before the combiner along an optical path. The virtual image display device according to item 1.
  5.  請求項1~4のいずれか1項に記載の虚像表示装置を有し、
     運転者の座高に応じて、前記ミラー回転機構により虚像の高さ方向の位置を調整する、ヘッドアップディスプレイ装置。
    A virtual image display device according to any one of claims 1 to 4,
    A head-up display device in which the position of a virtual image in the height direction is adjusted by the mirror rotation mechanism according to the sitting height of a driver.
  6.  さらに、運転者の座高を検出する座高検出部を有し、
     前記座高検出部で検出した、前記運転者の座高に応じて、前記ミラー回転機構により虚像の高さ方向の位置を調整する、請求項5に記載のヘッドアップディスプレイ装置。
    Furthermore, it has a sitting height detection unit that detects the sitting height of the driver,
    The head-up display device according to claim 5, wherein the position of the virtual image in the height direction is adjusted by the mirror rotation mechanism according to the seat height of the driver detected by the seat height detection unit.
PCT/JP2019/032057 2018-10-29 2019-08-15 Virtual-image display device and head-up display device WO2020090187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020554774A JPWO2020090187A1 (en) 2018-10-29 2019-08-15 Virtual image display device and head-up display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203123 2018-10-29
JP2018203123 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020090187A1 true WO2020090187A1 (en) 2020-05-07

Family

ID=70464463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032057 WO2020090187A1 (en) 2018-10-29 2019-08-15 Virtual-image display device and head-up display device

Country Status (2)

Country Link
JP (1) JPWO2020090187A1 (en)
WO (1) WO2020090187A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114077063A (en) * 2020-08-13 2022-02-22 矢崎总业株式会社 Display device for vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08156646A (en) * 1994-12-02 1996-06-18 Fujitsu Ltd Display device
JP2000137189A (en) * 1998-11-02 2000-05-16 Kansei Corp Head-up display device
JP2007326409A (en) * 2006-06-06 2007-12-20 Toyota Motor Corp Display device for vehicle
JP2015099186A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Display device for vehicle
JP2016088124A (en) * 2014-10-30 2016-05-23 日本精機株式会社 Head-up display device
JP2016143407A (en) * 2015-01-30 2016-08-08 鴻海精密工業股▲ふん▼有限公司 Portable type vehicle control device, vehicle device and vehicle control method
JP2017026675A (en) * 2015-07-16 2017-02-02 パナソニックIpマネジメント株式会社 Head-up display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08156646A (en) * 1994-12-02 1996-06-18 Fujitsu Ltd Display device
JP2000137189A (en) * 1998-11-02 2000-05-16 Kansei Corp Head-up display device
JP2007326409A (en) * 2006-06-06 2007-12-20 Toyota Motor Corp Display device for vehicle
JP2015099186A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Display device for vehicle
JP2016088124A (en) * 2014-10-30 2016-05-23 日本精機株式会社 Head-up display device
JP2016143407A (en) * 2015-01-30 2016-08-08 鴻海精密工業股▲ふん▼有限公司 Portable type vehicle control device, vehicle device and vehicle control method
JP2017026675A (en) * 2015-07-16 2017-02-02 パナソニックIpマネジメント株式会社 Head-up display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114077063A (en) * 2020-08-13 2022-02-22 矢崎总业株式会社 Display device for vehicle

Also Published As

Publication number Publication date
JPWO2020090187A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US10754154B2 (en) Display device and moving body having display device
US10302940B2 (en) Head-up display
CN110573369B (en) Head-up display device and display control method thereof
CN111169382B (en) Driving support device, driving support system, driving support method, and program
WO2018079794A1 (en) Virtual image display optical system and image display device
WO2016190135A1 (en) Vehicular display system
JP6899082B2 (en) Head-up display
CN110955045B (en) Display device, display control method, and storage medium
US10971116B2 (en) Display device, control method for placement of a virtual image on a projection surface of a vehicle, and storage medium
JP2018077400A (en) Head-up display
US11130404B2 (en) Head-up display apparatus
WO2020090187A1 (en) Virtual-image display device and head-up display device
JP2007047735A (en) Visual information display device and visual information display method
JP6481445B2 (en) Head-up display
WO2019124323A1 (en) Virtual image display device and headup display device
JP2019197102A (en) Virtual image display device and head-up display device
WO2018199244A1 (en) Display system
JP2019191368A (en) Virtual image display device and head-up display device
WO2019107225A1 (en) Virtual-image display device and head-up display device
WO2018199246A1 (en) Virtual image display device, and display system for moving body
JP2023066556A (en) head-up display device
JP2020056901A (en) Virtual image display device and head-up display device
JPWO2019138914A1 (en) Virtual image display device and head-up display device
JP2013026798A (en) Image display unit
KR20140118155A (en) head up display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878514

Country of ref document: EP

Kind code of ref document: A1