WO2020090112A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2020090112A1
WO2020090112A1 PCT/JP2018/040866 JP2018040866W WO2020090112A1 WO 2020090112 A1 WO2020090112 A1 WO 2020090112A1 JP 2018040866 W JP2018040866 W JP 2018040866W WO 2020090112 A1 WO2020090112 A1 WO 2020090112A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature
pump
heat medium
heat storage
Prior art date
Application number
PCT/JP2018/040866
Other languages
French (fr)
Japanese (ja)
Inventor
耕司 松澤
服部 太郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020554735A priority Critical patent/JP6972378B2/en
Priority to PCT/JP2018/040866 priority patent/WO2020090112A1/en
Priority to DE112018008116.8T priority patent/DE112018008116T5/en
Publication of WO2020090112A1 publication Critical patent/WO2020090112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F2005/0025Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using heat exchange fluid storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to an air conditioner that works with an in-house power generator.
  • an air conditioner that works with an in-house power generator is installed.
  • the private power generation device include a power generation device using natural energy such as a solar power generation device.
  • the air conditioner stores heat supplied from a heat source device such as a heat pump outdoor unit using a refrigerant and an electric heater, for example, in a heat storage tank connected to the heat medium circuit, by hot or cold heat stored in the heat storage tank. Perform heating or cooling.
  • Patent Document 1 discloses a control device that controls a bathroom hot water supply device that operates in conjunction with a solar power generation device.
  • the generated power acquired by the power acquisition unit becomes larger than the demand power, and the hot water serving as the heat medium can be provided for the user.
  • the control device operates electric heating devices such as a bathroom hot water supply device and an air conditioner so that the temperature of the heat medium becomes higher than the temperature during actual use.
  • control device disclosed in Patent Document 1 changes the preset temperature of the air-conditioning room or the preset hot water supply for the bathroom to raise the temperature of the heat medium in advance above the temperature during actual use. Therefore, if the bathing time is earlier than planned, the temperature of the bathtub is not lowered, which may impair the comfort of the user.
  • the present invention has been made to solve the above problems, and provides an air conditioner that does not impair the comfort of the user.
  • the first pump that conveys the first heat medium supplied from the heat source device and the heat storage tank in which the first heat medium that is conveyed by the first pump flows are connected by piping.
  • the first heat medium circuit connected, the second pump that conveys the second heat medium, the heat storage tank that exchanges heat between the first heat medium and the second heat medium, and the second pump A second heat medium circuit in which a second heat medium that has been conveyed and a heat exchanger on the use side for exchanging heat with the heat medium on the use side to be air-conditioned are connected by piping, and the generated power supplied from the private power generator Is detected as surplus by the surplus power detection unit that detects that the target temperature of the air conditioning target is detected by the user side temperature detection unit that is equal to or higher than the upper limit temperature threshold value. In that case, continue the operation of the first pump, One and a control unit for stopping the operation of the second pump, the.
  • the operation of the first pump is continued and the operation of the second pump is stopped. Since the first pump operates, heat is stored in the heat storage tank, and the second pump stops, so that heat is not supplied to the air conditioning target.
  • the air conditioner stores heat in the heat storage tank without changing the set temperature of the air conditioning target when the generated power becomes excessive. Therefore, the comfort of the user is not impaired regardless of the time when the user uses the object to be air-conditioned.
  • 5 is a flowchart showing an operation of the control unit 50 according to the first embodiment of the present invention. 5 is a timing chart showing an operation of the control unit 50 according to the first embodiment of the present invention.
  • 8 is a timing chart showing the operation of the control unit 50 of the comparative example. 7 is a graph showing an intermittent operation of the second pump 41 according to the second embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a heat source system of an air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes a heat source device 5, a first heat medium circuit 3, a second heat medium circuit 4, a supply temperature detection unit 10, a return temperature detection unit 11, and The tank temperature detection unit 12 is provided.
  • the heat source unit 5 is, for example, the outdoor unit 20 and the electric heater 26.
  • the outdoor unit 20 is provided with a compressor 21, a flow path switching device 22, an outdoor heat exchanger 23, an expansion section 24, and a cascade heat exchanger 25.
  • radiant floor heating with hot water can be cited.
  • the compressor 21, the flow path switching device 22, the outdoor heat exchanger 23, the expansion unit 24, and the cascade heat exchanger 25 are connected by piping to form the refrigerant circuit 2.
  • the compressor 21 sucks in a low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges it as a high-temperature and high-pressure refrigerant.
  • the flow path switching device 22 switches the direction in which the refrigerant flows in the refrigerant circuit 2, and is, for example, a four-way valve.
  • the outdoor heat exchanger 23 exchanges heat between, for example, outdoor air and a refrigerant, and functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the expansion unit 24 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant, and is, for example, an electronic expansion valve whose opening is adjusted.
  • the cascade heat exchanger 25 exchanges heat between the first heat medium flowing through the first heat medium circuit 3 and the refrigerant, and acts as a condenser during heating operation and as an evaporator during cooling operation. To do.
  • the electric heater 26 heats the first heat medium by the supplied electricity.
  • the outdoor unit 20 and the electric heater 26 are used as the heat source device 5 in the first embodiment, either one of them may be used, or another device may be used.
  • the first heat medium circuit 3 includes a first pump 31, a cascade heat exchanger 25, an electric heater 26, and a heat storage tank 32 connected by piping.
  • the first pump 31 conveys the first heat medium supplied from the heat source device 5 including the outdoor unit 20 and the electric heater 26.
  • the first heat medium carried by the first pump 31 flows through the heat storage tank 32, and the heat of the first heat medium is stored therein. Further, the heat storage tank 32 exchanges heat between the second heat medium flowing through the second heat medium circuit 4 and the first heat medium.
  • the heat of the first heat medium is warm when the outdoor unit 20 is in heating operation, and is cold when the outdoor unit 20 is in cooling operation.
  • the first heat medium is, for example, water or brine.
  • the second heat medium circuit 4 is formed by connecting the second pump 41, the heat storage tank 32, and the use side heat exchanger 42 by piping.
  • the second pump 41 conveys the second heat medium that has exchanged heat with the first heat medium in the heat storage tank 32.
  • the utilization side heat exchanger 42 is provided in the space of the air conditioning target 9 and exchanges heat between the second heat medium conveyed by the second pump 41 and the utilization side heat medium of the air conditioning target 9. ..
  • the use side heat exchanger 42 acts as a radiator, and when cold heat is stored in the heat storage tank 32, the use side heat exchanger 42 acts as a cooler.
  • the air-conditioning target 9 is, for example, the interior of a building.
  • the second heat medium is, for example, water or brine.
  • the supply temperature detection unit 10 is provided in the second heat medium circuit 4, and detects the supply temperature of the second heat medium that flows out from the heat storage tank 32 and flows into the usage-side heat exchanger 42.
  • the return temperature detection unit 11 is provided in the second heat medium circuit 4, and detects the return temperature of the second heat medium that flows out from the usage-side heat exchanger 42 and flows into the heat storage tank 32.
  • the tank temperature detection unit 12 detects the heat storage temperature of the heat storage tank 32.
  • the first embodiment exemplifies a case where the supply temperature detection unit 10, the return temperature detection unit 11, and the tank temperature detection unit 12 are thermistors.
  • FIG. 2 is a hardware configuration diagram showing a connection configuration between the heat source system and the control unit 50 of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes a remote controller 6 and a controller 50.
  • the remote controller 6 sets, for example, the target supply temperature to the air conditioning target 9 during heating, the target heat storage temperature of the heat storage tank 32, and the like.
  • the control unit 50 controls the operation of the air conditioning apparatus 1.
  • the surplus power detection unit 7a and the use side temperature detection unit 8a will be described.
  • the surplus power detection unit 7a detects that the generated power supplied from the private power generation device 13 such as a solar power generation device is surplus.
  • the surplus of the generated power means a state in which, for example, the power that exceeds the power required in the house is being generated by the private power generation device 13.
  • the usage-side temperature detection unit 8a detects the target temperature of the air conditioning target 9.
  • the control unit 50 acquires the information on the generated power transmitted from the surplus power detection unit 7a via the first external device 7, and the information on the target temperature transmitted from the usage-side temperature detection unit 8a as the second external device. It is acquired via the device 8.
  • the first external device 7 has a function of determining whether heat can be stored in the heat storage tank 32 based on the detection result of the surplus power detection unit 7a, and transmits a heat storage command to the control unit 50.
  • the second external device 8 is, for example, an indoor temperature detecting thermostat, determines whether to permit or prohibit the air conditioning operation based on the set temperature of the air conditioning target 9 and the target temperature of the air conditioning target 9, and informs the control unit 50 of the air conditioning request information. Command is sent.
  • the control unit 50 selects the temperature detection unit to be controlled based on the air conditioning request information from the second external device 8 and controls the operations of the first pump 31 and the second pump 41.
  • the temperature detection unit to be controlled is the supply temperature detection unit 10 or the tank temperature detection unit 12.
  • the second external device 8 suppresses the further temperature increase, and thus the air conditioning operation is performed.
  • the prohibition command is transmitted to the control unit 50.
  • the second external device 8 transmits a command to permit the air conditioning operation to the control unit 50.
  • the upper limit temperature threshold and the lower limit temperature threshold which are the temperature ranges in which the air conditioning operation is permitted, are determined by the second external device 8 or the control unit 50.
  • FIG. 3 is a functional block diagram showing the control unit 50 according to the first embodiment of the present invention.
  • the control unit 50 includes a data collection unit 51, a condition determination unit 52, and a control command unit 53.
  • the data collection means 51 collects data such as the set temperature in the remote controller 6, the detection result of the supply temperature detection unit 10, the detection result of the return temperature detection unit 11 and the detection result of the tank temperature detection unit 12.
  • the condition determining unit 52 of the air conditioner 1 is based on the data collected by the data collecting unit 51, the information on the generated power acquired from the first external device 7 and the information on the target temperature acquired from the second external device 8. Determine the motion.
  • the operation of the air conditioner 1 is, for example, heat storage in the heat storage tank 32, heat supply to the air conditioning target 9 or stop of heat supply to the air conditioning target 9.
  • the condition determining means 52 determines whether the generated power is surplus by the surplus power detection unit 7a, and also determines whether the target temperature detected by the usage side temperature detection unit 8a is equal to or higher than the upper limit temperature threshold. When the generated power is surplus and the target temperature is equal to or higher than the upper limit temperature threshold, the condition determining means 52 stores heat in the heat storage tank 32 and stops the heat supply to the air conditioning target 9 so as to stop the heat supply. Request to 53.
  • condition determining means 52 determines whether the target temperature detected by the use side temperature detecting unit 8a is equal to or lower than the lower limit temperature threshold value during the heating operation. When the target temperature is equal to or lower than the lower limit temperature threshold, the condition determination unit 52 requests the control command unit 53 to stop the heat storage in the heat storage tank 32 and supply the heat to the air conditioning target 9. Further, the condition determination means 52 determines whether the heat storage temperature detected by the tank temperature detection unit 12 is equal to or lower than the heat storage temperature threshold value during the heating operation. When the heat storage temperature is equal to or lower than the heat storage temperature threshold, the condition determination means 52 requests the control command means 53 to store heat in the heat storage tank 32 and supply heat to the air conditioning target 9.
  • the control command means 53 determines the operation of the heat source device 5 including the outdoor unit 20 and the electric heater 26, the first pump 31 and the second pump 41 based on the determination result of the condition determination means 52, and determines the operation. Instruct each device to perform the specified operation.
  • the control command unit 53 operates as follows. It is instructed to continue the operation and stop the operation of the second pump 41. Further, the control command means 53 stops the operation of the first pump 31 and the operation of the second pump 41 when the target temperature detected by the usage-side temperature detection unit 8a is equal to or lower than the lower limit temperature threshold value during the heating operation. Command to start.
  • control unit 50 stops the heat source device 5. Further, the control command means 53 starts the operation of the first pump 31 and the operation of the second pump 41 when the heat storage temperature detected by the tank temperature detection unit 12 is equal to or lower than the heat storage temperature threshold value during the heating operation. Command to continue.
  • the heating operation of the operation modes of the air conditioner 1 will be described.
  • the refrigerant circuit 2 will be described.
  • the refrigerant sucked into the compressor 21 is compressed by the compressor 21 and discharged in a high temperature and high pressure gas state.
  • the high-temperature, high-pressure gas-state refrigerant discharged from the compressor 21 passes through the flow path switching device 22 and flows into the cascade heat exchanger 25 that functions as a condenser, and in the cascade heat exchanger 25, Is heat-exchanged with the first heat medium flowing in the heat medium circuit 3 to be condensed and liquefied. At this time, the first heat medium is warmed.
  • the condensed liquid state refrigerant flows into the expansion section 24, and is expanded and decompressed in the expansion section 24 to become a low temperature and low pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 23 that functions as an evaporator, and is heat-exchanged with the outdoor air in the outdoor heat exchanger 23 to be evaporated and gasified.
  • the evaporated low-temperature low-pressure gas-state refrigerant passes through the flow path switching device 22 and is sucked into the compressor 21.
  • the first heat medium circuit 3 will be described.
  • the first heat medium carried by the first pump 31 is heat-exchanged with the refrigerant flowing through the refrigerant circuit 2 by the cascade heat exchanger 25 to be heated.
  • the heated first heat medium is further heated by the electric heater 26 and flows into the heat storage tank 32.
  • heat is stored in the heat storage tank 32.
  • the first heat medium that has flowed into the heat storage tank 32 is heat-exchanged with the second heat medium that flows into the second heat medium circuit 4, is cooled, and is sucked into the first pump 31.
  • the second heat medium circuit 4 will be described.
  • the second heat medium transported by the second pump 41 is heat-exchanged with the first heat medium in the heat storage tank 32 to be heated.
  • the heated second heat medium is cooled by heat exchange with the use side heat medium in the use side heat exchanger 42.
  • the heat medium on the utilization side is heated, and the air conditioning target 9 is heated.
  • the cooled second heat medium is sucked into the second pump 41.
  • the cooling operation In the cooling operation, the refrigerant sucked into the compressor 21 is compressed by the compressor 21 and discharged in a high temperature and high pressure gas state.
  • the high-temperature, high-pressure gas-state refrigerant discharged from the compressor 21 passes through the flow path switching device 22 and flows into the outdoor heat exchanger 23 that functions as a condenser, and in the outdoor heat exchanger 23, the outdoor air is discharged. Is heat-exchanged with and condensed to liquefy.
  • the condensed liquid state refrigerant flows into the expansion section 24, and is expanded and decompressed in the expansion section 24 to become a low temperature and low pressure gas-liquid two-phase state refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the cascade heat exchanger 25 that acts as an evaporator, and is heat-exchanged with the first heat medium flowing in the first heat medium circuit 3 in the cascade heat exchanger 25. Vaporize and gasify.
  • the evaporated low-temperature low-pressure gas-state refrigerant passes through the flow path switching device 22 and is sucked into the compressor 21.
  • the first heat medium circuit 3 In the cooling operation, the heater is stopped.
  • the first heat medium carried by the first pump 31 is heat-exchanged with the refrigerant flowing through the refrigerant circuit 2 by the cascade heat exchanger 25 to be cooled, and then flows into the heat storage tank 32.
  • cold heat is stored in the heat storage tank 32.
  • the first heat medium that has flowed into the heat storage tank 32 is heat-exchanged with the second heat medium that flows into the second heat medium circuit 4, is heated, and is sucked into the first pump 31.
  • the second heat medium circuit 4 will be described.
  • the second heat medium transported by the second pump 41 is cooled by exchanging heat with the first heat medium in the heat storage tank 32.
  • the cooled second heat medium is heated by heat exchange with the use side heat medium in the use side heat exchanger 42.
  • the heat medium on the utilization side is cooled, and the air conditioning target 9 is cooled.
  • the heated second heat medium is sucked into the second pump 41.
  • FIG. 4 is a flowchart showing the operation of the control unit 50 according to the first embodiment of the present invention.
  • the control command means 53 operates the first pump 31 and the second pump 41 (step ST1).
  • the condition determination means 52 determines whether the generated power is surplus and the target temperature is equal to or higher than the upper limit temperature threshold (step ST2). If the generated power is surplus and the target temperature is equal to or higher than the upper limit temperature threshold, the control command unit 53 continues the operation of the first pump 31 and stops the operation of the second pump 41 (step ST3). ..
  • the condition determination means 52 determines whether the target temperature is less than or equal to the lower limit temperature threshold (step ST4). If the target temperature is less than or equal to the lower limit temperature threshold, the control command means 53 causes the operation of the first pump 31. Is stopped and the operation of the second pump 41 is started (step ST5). Then, the condition determination means 52 determines whether the heat storage temperature is equal to or lower than the heat storage temperature threshold (step ST6), and if the heat storage temperature is equal to or lower than the heat storage temperature threshold, the control command means 53 causes the operation of the first pump 31. And the operation of the second pump 41 is continued (step ST7).
  • FIG. 5 is a timing chart showing the operation of the control unit 50 according to the first embodiment of the present invention.
  • the target temperature of the air conditioning target 9 is about 19 ° C.
  • the heat storage temperature of the heat storage tank 32 is about 35 ° C.
  • the supply temperature to the air conditioning target 9 is about 40 ° C. Is.
  • the target temperature is set to maintain a range of 19 ° C to 21 ° C as a comfort region in order to maintain user comfort. That is, the upper limit temperature threshold is 21 ° C and the lower limit temperature threshold is 19 ° C.
  • the target supply temperature to the air conditioning target 9 is raised to the maximum temperature at which the use side heat exchanger 42 can operate.
  • the target supply temperature is raised from 40 ° C to 50 ° C.
  • the temperature may be set as the target heat storage temperature by the remote controller 6 or the like. While the heat storage to the heat storage tank 32 progresses, the heat storage temperature of the heat storage tank 32 rises, and accordingly, the supply temperature to the air conditioning target 9 also rises, and the target temperature of the air conditioning target 9 also rises.
  • the heat is stored in the heat storage tank 32, the heat is supplied to the air-conditioning target 9. Therefore, when the heat storage temperature rises to a predetermined temperature, it does not rise any further. Therefore, when the supply temperature to the air-conditioning target 9 also rises to 60 ° C., for example, 60 ° C. is maintained.
  • the control unit 50 stops the operation of the second pump 41. Note that as long as the generated power is surplus, the control unit 50 continues the operation of the first pump 31 and the heat storage in the heat storage tank 32 is continued.
  • the heat storage temperature of the heat storage tank 32 rises.
  • the upper limit temperature of the heat storage tank 32 is set to 60 ° C, and if it exceeds 60 ° C, further heat storage is not performed.
  • the control unit 50 does not operate the first pump 31 while stopping the heat source device 5, but starts the operation of the second pump 41. To do. As a result, the target temperature of the air conditioning target 9 rises due to the heat stored in the heat storage tank 32.
  • the control unit 50 receives a command for prohibiting the air conditioning operation from the second external device 8 while the second pump 41 is operating, the heat source device 5, the first pump 31, and the second pump 41. Are stopped and the system waits until a command for permitting air conditioning operation is received from the second external device 8.
  • the operation of the first pump 31 is continued and the operation of the second pump 41 is continued. Stop. Since the first pump 31 operates, heat is stored in the heat storage tank 32, and the second pump 41 stops, so that heat is not supplied to the air conditioning target 9. In this way, the air conditioner 1 stores heat in the heat storage tank 32 without changing the set temperature of the air conditioning target 9 when the generated power becomes excessive. Therefore, the comfort of the user is not impaired regardless of the time when the user uses the air conditioning target 9.
  • control unit 50 stops the operation of the first pump 31 and starts the operation of the second pump 41 when the target temperature detected by the use side temperature detection unit 8a is equal to or lower than the lower limit temperature threshold. Since the first pump 31 is stopped, heat is not stored in the heat storage tank 32, and the second pump 41 operates, so that the heat in the heat storage tank 32 is supplied to the air conditioning target 9. In this way, the target temperature of the air conditioning target 9 can be raised only by the heat stored in the heat storage tank 32, which contributes to energy saving.
  • FIG. 6 is a timing chart showing the operation of the control unit of the comparative example.
  • the operation of the control unit of the comparative example will be described.
  • the temperature of the bathtub falls to an appropriate temperature over time.
  • the temperature at the time of actual use is 40 ° C.
  • the scheduled bath time is 21:00.
  • the bathroom hot water supply set temperature is changed from 40 ° C. to 60 ° C. This raises the bathroom to 60 ° C.
  • the scheduled bathing time is 21:00, if the bathing time is earlier than planned, the temperature of the bathtub has not dropped and the user feels heat and is uncomfortable.
  • the heat is stored in the heat storage tank 32 without changing the set temperature of the air conditioning target 9. Therefore, the comfort of the user is not impaired regardless of the time when the user uses the air conditioning target 9.
  • FIG. 7 is a graph showing the intermittent operation of the second pump 41 according to the second embodiment of the present invention.
  • the second embodiment differs from the first embodiment in that the second pump 41 is intermittently operated when the air-conditioning target 9 is heated only by the heat stored in the heat storage tank 32.
  • the same parts as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted. Differences from the first embodiment will be mainly described.
  • the control unit 50 intermittently operates the second pump 41 at set time intervals.
  • the ON time and the OFF time of the intermittent operation are set by the remote controller 6.
  • the supply temperature to the air-conditioning target 9 is higher than the normal target supply temperature.
  • Embodiment 3 In the second embodiment, the case where the ON time and the OFF time of the intermittent operation of the second pump 41 are set by the remote controller 6 has been described.
  • the third embodiment differs from the second embodiment in that the ON time and the OFF time of the intermittent operation are set based on the temperature of the second heat medium.
  • the remote controller 6 sets the calculation cycle time for intermittent operation.
  • the target value of the supply temperature to the air conditioning target 9 in the normal heating operation using the heat source device 5 is the target supply temperature.
  • the specific heat during normal heating operation is referred to as the specific heat during normal operation
  • the flow rate during normal heating operation is referred to as the normal flow rate.
  • the ON time is obtained from the ratio of the heat supply amount calculated from the target temperature of the air conditioning target 9 and the heat supply amount calculated from the heat storage temperature of the heat storage tank 32. That is, the ON time is obtained from the following equation (1) using the specific heat during the main control and the flow rate during the main control.
  • the heat storage temperature of the heat storage tank 32 is used as the temperature of the second heat medium.
  • ON time calculation cycle time ⁇ [ ⁇ specific heat at normal time ⁇ (target supply temperature ⁇ target temperature of air conditioning target 9) ⁇ flow rate at normal time ⁇ / ⁇ specific heat at this control ⁇ (heat storage temperature of heat storage tank 32 ⁇ air conditioning target) Target temperature of 9) ⁇ flow rate at the time of this control ⁇ ] (1)
  • ON time calculation cycle time ⁇ ⁇ (target supply temperature ⁇ target temperature of air conditioning target 9) / (heat storage temperature of heat storage tank 32 ⁇ target temperature of air conditioning target 9) ⁇ (3)
  • the heat storage temperature of the heat storage tank 32 is used as the temperature of the second heat medium, but the supply temperature to the air conditioning target 9 may be used.
  • the time interval of the intermittent operation of the second pump 41 is set based on the temperature of the second heat medium.
  • the higher the temperature of the second heat medium the shorter the ON time, and the less heat is supplied to the air conditioning target 9.
  • the time interval may be set for each intermittent operation.
  • the heat storage temperature of the heat storage tank 32 used for the calculation of the ON time and the OFF time is the latest heat storage temperature of the heat storage tank 32 for each calculation cycle time.
  • the ON time of the second pump 41 is shorter than the OFF time.
  • the second pump 41 operates, the second heat medium that has been heat-exchanged and cooled by the use-side heat exchanger 42 flows into the heat storage tank 32, so that the heat storage temperature of the heat storage tank 32 gradually increases. descend.
  • the latest heat storage temperature of the heat storage tank 32 is used as the heat storage temperature of the heat storage tank 32 for each calculation cycle time, so that the ON time and the OFF time are reviewed to a time suitable for the heat storage temperature of the heat storage tank 32. You can Therefore, the heat can be appropriately supplied to the air conditioning target 9.
  • the heat storage temperature of the heat storage tank 32 may be the supply temperature to the air conditioning target 9.

Abstract

This air conditioning device is provided with: a first heat medium circuit in which a first pump that delivers a first heat medium supplied from a heat source apparatus and a heat storage tank, through which flows the first heat medium delivered by the first pump, are connected by piping; a second heat medium circuit in which a second pump that delivers a second heat medium, a heat storage tank in which heat exchange is performed between the first heat medium and the second heat medium, and aa usage-side heat exchanger that performs heat exchange between the second heat medium delivered by the second pump and a usage-side heat medium to be air-conditioned are connected by piping; and a control unit that continues the operation of the first pump and stops the operation of the second pump when a surplus power detecting unit for detecting a surplus of power supplied from an independent power generator detects that there is a surplus of generated power, and when a target temperature detected by a usage-side temperature detecting unit for detecting the target temperature of an air conditioning target, is equal to or greater than an upper limit temperature threshold.

Description

空気調和装置Air conditioner
 本発明は、自家発電装置と連動する空気調和装置に関する。 The present invention relates to an air conditioner that works with an in-house power generator.
 従来、個人住宅又はアパート等の比較的小規模な建物において、自家発電装置と連動する空気調和装置が設置されている。自家発電装置としては、例えば太陽光発電装置といった自然エネルギーによる発電装置が挙げられる。空気調和装置は、例えば冷媒を用いたヒートポンプ室外機及び電気ヒータ等の熱源機から供給される熱を、熱媒体回路に接続された蓄熱タンクに蓄え、蓄熱タンクに蓄えられた温熱又は冷熱によって、暖房又は冷房を行う。 Conventionally, in a relatively small building such as a private house or an apartment, an air conditioner that works with an in-house power generator is installed. Examples of the private power generation device include a power generation device using natural energy such as a solar power generation device. The air conditioner stores heat supplied from a heat source device such as a heat pump outdoor unit using a refrigerant and an electric heater, for example, in a heat storage tank connected to the heat medium circuit, by hot or cold heat stored in the heat storage tank. Perform heating or cooling.
 ここで、欧州では、水循環による床暖房、ラジエータ又はファンコイル等の空調システムが一般的に用いられている。近年、一般住宅において、太陽光発電が広く普及しており、太陽光発電によって得られる熱を一時的に蓄える蓄熱タンクが空調回路に接続されている。特許文献1には、太陽光発電装置と連動する浴室給湯装置を制御する制御装置が開示されている。特許文献1において、浴槽の使用開始時刻よりも前に、電力取得部によって取得された発電電力が需用電力よりも大きくなって、熱媒体である湯が使用者用に供され得る状態となったとき、制御装置は、熱媒体の温度が実使用時の温度よりも高くなるように、浴室給湯装置及び空調装置といった電熱機器を動作させる。これにより、ユーザが実際に入浴したときには、浴槽の温度が時間経過によって適温に下がった状態となる。即ち、特許文献1は、発電電力が余剰となった場合、空調室内設定温度又は浴室給湯設定温度等を変更して蓄熱し、省エネルギーを図ろうとするものである。 Here, in Europe, floor heating by water circulation, air conditioning systems such as radiators or fan coils are generally used. 2. Description of the Related Art In recent years, photovoltaic power generation has become widespread in general houses, and a heat storage tank that temporarily stores heat obtained by photovoltaic power generation is connected to an air conditioning circuit. Patent Document 1 discloses a control device that controls a bathroom hot water supply device that operates in conjunction with a solar power generation device. In Patent Document 1, before the start time of using the bathtub, the generated power acquired by the power acquisition unit becomes larger than the demand power, and the hot water serving as the heat medium can be provided for the user. At this time, the control device operates electric heating devices such as a bathroom hot water supply device and an air conditioner so that the temperature of the heat medium becomes higher than the temperature during actual use. As a result, when the user actually takes a bath, the temperature of the bathtub falls to an appropriate temperature over time. That is, in Patent Document 1, when the generated power becomes excessive, the set temperature of the air-conditioning room or the set temperature of the bathroom hot water is changed to store heat, thereby attempting to save energy.
特開2017-156018号公報JP, 2017-156018, A
 しかしながら、特許文献1に開示された制御装置は、空調室内設定温度又は浴室給湯設定温度等を変更して、熱媒体の温度を予め実使用時の温度よりも高めている。このため、入浴する時間が予定よりも早まった場合、浴槽の温度が下がっておらず、ユーザの快適性を損なうおそれがある。 However, the control device disclosed in Patent Document 1 changes the preset temperature of the air-conditioning room or the preset hot water supply for the bathroom to raise the temperature of the heat medium in advance above the temperature during actual use. Therefore, if the bathing time is earlier than planned, the temperature of the bathtub is not lowered, which may impair the comfort of the user.
 本発明は、上記のような課題を解決するためになされたもので、ユーザの快適性を損なわない空気調和装置を提供するものである。 The present invention has been made to solve the above problems, and provides an air conditioner that does not impair the comfort of the user.
 本発明に係る空気調和装置は、熱源機から供給される第1の熱媒体を搬送する第1のポンプと、第1のポンプによって搬送された第1の熱媒体が流れる蓄熱タンクとが配管により接続された第1の熱媒体回路と、第2の熱媒体を搬送する第2のポンプと、第1の熱媒体と第2の熱媒体とを熱交換する蓄熱タンクと、第2のポンプによって搬送された第2の熱媒体と空調対象の利用側熱媒体とを熱交換する利用側熱交換器とが配管により接続された第2の熱媒体回路と、自家発電装置から供給される発電電力が余剰であることを検出する余剰電力検出部によって発電電力が余剰であることが検出されて、空調対象の対象温度を検出する利用側温度検出部によって検出された対象温度が上限温度閾値以上の場合、第1のポンプの動作を継続し、且つ第2のポンプの動作を停止する制御部と、を備える。 In the air conditioner according to the present invention, the first pump that conveys the first heat medium supplied from the heat source device and the heat storage tank in which the first heat medium that is conveyed by the first pump flows are connected by piping. The first heat medium circuit connected, the second pump that conveys the second heat medium, the heat storage tank that exchanges heat between the first heat medium and the second heat medium, and the second pump A second heat medium circuit in which a second heat medium that has been conveyed and a heat exchanger on the use side for exchanging heat with the heat medium on the use side to be air-conditioned are connected by piping, and the generated power supplied from the private power generator Is detected as surplus by the surplus power detection unit that detects that the target temperature of the air conditioning target is detected by the user side temperature detection unit that is equal to or higher than the upper limit temperature threshold value. In that case, continue the operation of the first pump, One and a control unit for stopping the operation of the second pump, the.
 本発明によれば、発電電力が余剰であることが検出されて、対象温度が上限温度閾値以上の場合、第1のポンプの動作を継続して第2のポンプの動作を停止する。第1のポンプが動作するため、蓄熱タンクに熱が蓄えられ、第2のポンプが停止するため、空調対象に熱が供給されない。このように、空気調和装置は、発電電力が余剰となった場合、空調対象の設定温度を変更せずに、蓄熱タンクに熱を蓄える。従って、ユーザが空調対象を利用する時間にかかわらず、ユーザの快適性を損なわない。 According to the present invention, when it is detected that the generated power is excessive and the target temperature is equal to or higher than the upper limit temperature threshold, the operation of the first pump is continued and the operation of the second pump is stopped. Since the first pump operates, heat is stored in the heat storage tank, and the second pump stops, so that heat is not supplied to the air conditioning target. In this way, the air conditioner stores heat in the heat storage tank without changing the set temperature of the air conditioning target when the generated power becomes excessive. Therefore, the comfort of the user is not impaired regardless of the time when the user uses the object to be air-conditioned.
本発明の実施の形態1に係る空気調和装置1の熱源系統を示す回路図である。It is a circuit diagram which shows the heat-source system of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置1の熱源系統と制御部50との接続構成を示すハードウエア構成図である。It is a hardware block diagram which shows the connection structure of the heat source system and the control part 50 of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御部50を示す機能ブロック図である。It is a functional block diagram which shows the control part 50 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御部50の動作を示すフローチャートである。5 is a flowchart showing an operation of the control unit 50 according to the first embodiment of the present invention. 本発明の実施の形態1に係る制御部50の動作を示すタイミングチャートである。5 is a timing chart showing an operation of the control unit 50 according to the first embodiment of the present invention. 比較例の制御部50の動作を示すタイミングチャートである。8 is a timing chart showing the operation of the control unit 50 of the comparative example. 本発明の実施の形態2に係る第2のポンプ41の間欠運転を示すグラフである。7 is a graph showing an intermittent operation of the second pump 41 according to the second embodiment of the present invention.
実施の形態1.
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空気調和装置1の熱源系統を示す回路図である。図1に示すように、空気調和装置1は、熱源機5と、第1の熱媒体回路3と、第2の熱媒体回路4と、供給温度検出部10と、戻り温度検出部11と、タンク温度検出部12とを備えている。熱源機5は、例えば室外機20及び電気ヒータ26である。室外機20には、圧縮機21、流路切替装置22、室外熱交換器23、膨張部24及びカスケード熱交換器25が設けられている。ここで、空気調和装置1として、例えば温水による輻射式床暖房が挙げられる。
Embodiment 1.
Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a heat source system of an air conditioner 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioner 1 includes a heat source device 5, a first heat medium circuit 3, a second heat medium circuit 4, a supply temperature detection unit 10, a return temperature detection unit 11, and The tank temperature detection unit 12 is provided. The heat source unit 5 is, for example, the outdoor unit 20 and the electric heater 26. The outdoor unit 20 is provided with a compressor 21, a flow path switching device 22, an outdoor heat exchanger 23, an expansion section 24, and a cascade heat exchanger 25. Here, as the air conditioner 1, for example, radiant floor heating with hot water can be cited.
 圧縮機21、流路切替装置22、室外熱交換器23、膨張部24及びカスケード熱交換器25が配管により接続されて冷媒回路2が構成されている。圧縮機21は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置22は、冷媒回路2において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器23は、例えば室外空気と冷媒との間で熱交換するものであり、暖房運転時には蒸発器として作用し、冷房運転時には凝縮器として作用する。膨張部24は、冷媒を減圧して膨張する減圧弁又は膨張弁であり、例えば開度が調整される電子式膨張弁である。カスケード熱交換器25は、第1の熱媒体回路3に流れる第1の熱媒体と冷媒との間で熱交換するものであり、暖房運転時には凝縮器として作用し、冷房運転時には蒸発器として作用する。 The compressor 21, the flow path switching device 22, the outdoor heat exchanger 23, the expansion unit 24, and the cascade heat exchanger 25 are connected by piping to form the refrigerant circuit 2. The compressor 21 sucks in a low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges it as a high-temperature and high-pressure refrigerant. The flow path switching device 22 switches the direction in which the refrigerant flows in the refrigerant circuit 2, and is, for example, a four-way valve. The outdoor heat exchanger 23 exchanges heat between, for example, outdoor air and a refrigerant, and functions as an evaporator during heating operation and as a condenser during cooling operation. The expansion unit 24 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant, and is, for example, an electronic expansion valve whose opening is adjusted. The cascade heat exchanger 25 exchanges heat between the first heat medium flowing through the first heat medium circuit 3 and the refrigerant, and acts as a condenser during heating operation and as an evaporator during cooling operation. To do.
 電気ヒータ26は、供給される電気によって第1の熱媒体を加熱する。なお、本実施の形態1では、熱源機5として、室外機20及び電気ヒータ26を採用しているが、いずれか一方でもよいし、別の機器としてもよい。 The electric heater 26 heats the first heat medium by the supplied electricity. Although the outdoor unit 20 and the electric heater 26 are used as the heat source device 5 in the first embodiment, either one of them may be used, or another device may be used.
 第1の熱媒体回路3は、第1のポンプ31と、カスケード熱交換器25と、電気ヒータ26と、蓄熱タンク32とが配管により接続されたものである。第1のポンプ31は、室外機20及び電気ヒータ26から構成された熱源機5から供給される第1の熱媒体を搬送する。蓄熱タンク32は、第1のポンプ31によって搬送された第1の熱媒体が流れるものであり、第1の熱媒体の熱が蓄えられる。また、蓄熱タンク32は、第2の熱媒体回路4に流れる第2の熱媒体と第1の熱媒体との間で熱交換する。第1の熱媒体の熱は、室外機20が暖房運転を行っているときは温熱であり、室外機20が冷房運転を行っているときは冷熱である。なお、第1の熱媒体は、例えば水又はブラインである。 The first heat medium circuit 3 includes a first pump 31, a cascade heat exchanger 25, an electric heater 26, and a heat storage tank 32 connected by piping. The first pump 31 conveys the first heat medium supplied from the heat source device 5 including the outdoor unit 20 and the electric heater 26. The first heat medium carried by the first pump 31 flows through the heat storage tank 32, and the heat of the first heat medium is stored therein. Further, the heat storage tank 32 exchanges heat between the second heat medium flowing through the second heat medium circuit 4 and the first heat medium. The heat of the first heat medium is warm when the outdoor unit 20 is in heating operation, and is cold when the outdoor unit 20 is in cooling operation. The first heat medium is, for example, water or brine.
 第2の熱媒体回路4は、第2のポンプ41と、蓄熱タンク32と、利用側熱交換器42とが配管により接続されたものである。第2のポンプ41は、蓄熱タンク32において第1の熱媒体と熱交換された第2の熱媒体を搬送する。利用側熱交換器42は、空調対象9の空間に設けられており、第2のポンプ41によって搬送された第2の熱媒体と空調対象9の利用側熱媒体とを熱交換するものである。蓄熱タンク32に温熱が蓄えられている場合、利用側熱交換器42は放熱器として作用し、蓄熱タンク32に冷熱が蓄えられている場合、利用側熱交換器42は冷却器として作用する。なお、空調対象9は、例えば建物の室内である。なお、第2の熱媒体は、例えば水又はブラインである。 The second heat medium circuit 4 is formed by connecting the second pump 41, the heat storage tank 32, and the use side heat exchanger 42 by piping. The second pump 41 conveys the second heat medium that has exchanged heat with the first heat medium in the heat storage tank 32. The utilization side heat exchanger 42 is provided in the space of the air conditioning target 9 and exchanges heat between the second heat medium conveyed by the second pump 41 and the utilization side heat medium of the air conditioning target 9. .. When warm heat is stored in the heat storage tank 32, the use side heat exchanger 42 acts as a radiator, and when cold heat is stored in the heat storage tank 32, the use side heat exchanger 42 acts as a cooler. The air-conditioning target 9 is, for example, the interior of a building. The second heat medium is, for example, water or brine.
 供給温度検出部10は、第2の熱媒体回路4に設けられ、蓄熱タンク32から流出して利用側熱交換器42に流入する第2の熱媒体の供給温度を検出する。戻り温度検出部11は、第2の熱媒体回路4に設けられ、利用側熱交換器42から流出して蓄熱タンク32に流入する第2の熱媒体の戻り温度を検出する。タンク温度検出部12は、蓄熱タンク32の蓄熱温度を検出する。本実施の形態1では、供給温度検出部10、戻り温度検出部11及びタンク温度検出部12がサーミスタである場合について例示している。 The supply temperature detection unit 10 is provided in the second heat medium circuit 4, and detects the supply temperature of the second heat medium that flows out from the heat storage tank 32 and flows into the usage-side heat exchanger 42. The return temperature detection unit 11 is provided in the second heat medium circuit 4, and detects the return temperature of the second heat medium that flows out from the usage-side heat exchanger 42 and flows into the heat storage tank 32. The tank temperature detection unit 12 detects the heat storage temperature of the heat storage tank 32. The first embodiment exemplifies a case where the supply temperature detection unit 10, the return temperature detection unit 11, and the tank temperature detection unit 12 are thermistors.
 図2は、本発明の実施の形態1に係る空気調和装置1の熱源系統と制御部50との接続構成を示すハードウエア構成図である。空気調和装置1は、リモートコントローラ6と、制御部50とを備えている。リモートコントローラ6は、例えば暖房時における空調対象9への目標供給温度及び蓄熱タンク32の目標蓄熱温度等を設定するものである。 FIG. 2 is a hardware configuration diagram showing a connection configuration between the heat source system and the control unit 50 of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention. The air conditioner 1 includes a remote controller 6 and a controller 50. The remote controller 6 sets, for example, the target supply temperature to the air conditioning target 9 during heating, the target heat storage temperature of the heat storage tank 32, and the like.
 制御部50は、空気調和装置1の動作を制御するものである。ここで、余剰電力検出部7a及び利用側温度検出部8aについて説明する。余剰電力検出部7aは、例えば太陽光発電装置といった自家発電装置13から供給される発電電力が余剰であることを検出する。ここで、発電電力が余剰とは、例えば住宅内で要求されている電力を超えた電力が、自家発電装置13によって生成されている状態をいう。利用側温度検出部8aは、空調対象9の対象温度を検出する。制御部50は、余剰電力検出部7aから送信される発電電力の情報を、第1外部装置7を介して取得し、利用側温度検出部8aから送信される対象温度の情報を、第2外部装置8を介して取得する。 The control unit 50 controls the operation of the air conditioning apparatus 1. Here, the surplus power detection unit 7a and the use side temperature detection unit 8a will be described. The surplus power detection unit 7a detects that the generated power supplied from the private power generation device 13 such as a solar power generation device is surplus. Here, the surplus of the generated power means a state in which, for example, the power that exceeds the power required in the house is being generated by the private power generation device 13. The usage-side temperature detection unit 8a detects the target temperature of the air conditioning target 9. The control unit 50 acquires the information on the generated power transmitted from the surplus power detection unit 7a via the first external device 7, and the information on the target temperature transmitted from the usage-side temperature detection unit 8a as the second external device. It is acquired via the device 8.
 ここで、第1外部装置7は、余剰電力検出部7aの検出結果に基づいて、蓄熱タンク32に蓄熱することが可能かを判断する機能を有し、制御部50に蓄熱の指令を送信する。第2外部装置8は、例えば室内温度検知サーモスタットであり、空調対象9の設定温度と空調対象9の対象温度とに基づいて、空調運転の許可又は禁止を判定し、制御部50に空調要求情報の指令を送信する。制御部50は、第2外部装置8からの空調要求情報に基づいて、制御対象となる温度検出部を選択して、第1のポンプ31及び第2のポンプ41の動作を制御する。制御対象となる温度検出部は、供給温度検出部10又はタンク温度検出部12である。 Here, the first external device 7 has a function of determining whether heat can be stored in the heat storage tank 32 based on the detection result of the surplus power detection unit 7a, and transmits a heat storage command to the control unit 50. .. The second external device 8 is, for example, an indoor temperature detecting thermostat, determines whether to permit or prohibit the air conditioning operation based on the set temperature of the air conditioning target 9 and the target temperature of the air conditioning target 9, and informs the control unit 50 of the air conditioning request information. Command is sent. The control unit 50 selects the temperature detection unit to be controlled based on the air conditioning request information from the second external device 8 and controls the operations of the first pump 31 and the second pump 41. The temperature detection unit to be controlled is the supply temperature detection unit 10 or the tank temperature detection unit 12.
 例えば、第2外部装置8は、暖房運転において、空調対象9の設定温度が20℃の場合に、空調対象9の対象温度が21℃となると、更なる温度上昇を抑制するため、空調運転を禁止する指令を制御部50に送信する。また、第2外部装置8は、再び空調対象9の対象温度が20℃となると、空調運転を許可する指令を制御部50に送信する。なお、空調運転を許可する温度範囲である上限温度閾値及び下限温度閾値は、第2外部装置8又は制御部50によって決定される。 For example, when the set temperature of the air conditioning target 9 is 20 ° C. and the target temperature of the air conditioning target 9 becomes 21 ° C. in the heating operation, the second external device 8 suppresses the further temperature increase, and thus the air conditioning operation is performed. The prohibition command is transmitted to the control unit 50. Moreover, when the target temperature of the air conditioning target 9 reaches 20 ° C. again, the second external device 8 transmits a command to permit the air conditioning operation to the control unit 50. The upper limit temperature threshold and the lower limit temperature threshold, which are the temperature ranges in which the air conditioning operation is permitted, are determined by the second external device 8 or the control unit 50.
 図3は、本発明の実施の形態1に係る制御部50を示す機能ブロック図である。図3に示すように、制御部50は、データ収集手段51と、条件判定手段52と、制御指令手段53とを有している。データ収集手段51は、リモートコントローラ6における設定温度、供給温度検出部10の検出結果、戻り温度検出部11の検出結果及びタンク温度検出部12の検出結果等のデータを収集するものである。 FIG. 3 is a functional block diagram showing the control unit 50 according to the first embodiment of the present invention. As shown in FIG. 3, the control unit 50 includes a data collection unit 51, a condition determination unit 52, and a control command unit 53. The data collection means 51 collects data such as the set temperature in the remote controller 6, the detection result of the supply temperature detection unit 10, the detection result of the return temperature detection unit 11 and the detection result of the tank temperature detection unit 12.
 条件判定手段52は、データ収集手段51によって収集されたデータ、第1外部装置7から取得した発電電力の情報及び第2外部装置8から取得した対象温度の情報に基づいて、空気調和装置1の動作を判定する。空気調和装置1の動作とは、例えば蓄熱タンク32への蓄熱、空調対象9への熱供給又は空調対象9への熱供給停止等である。条件判定手段52は、余剰電力検出部7aによって発電電力が余剰であるかを判定し、また、利用側温度検出部8aによって検出された対象温度が上限温度閾値以上であるかを判定する。条件判定手段52は、発電電力が余剰であり、且つ、対象温度が上限温度閾値以上の場合、蓄熱タンク32への蓄熱を実施し、空調対象9への熱供給を停止するように制御指令手段53に要求する。 The condition determining unit 52 of the air conditioner 1 is based on the data collected by the data collecting unit 51, the information on the generated power acquired from the first external device 7 and the information on the target temperature acquired from the second external device 8. Determine the motion. The operation of the air conditioner 1 is, for example, heat storage in the heat storage tank 32, heat supply to the air conditioning target 9 or stop of heat supply to the air conditioning target 9. The condition determining means 52 determines whether the generated power is surplus by the surplus power detection unit 7a, and also determines whether the target temperature detected by the usage side temperature detection unit 8a is equal to or higher than the upper limit temperature threshold. When the generated power is surplus and the target temperature is equal to or higher than the upper limit temperature threshold, the condition determining means 52 stores heat in the heat storage tank 32 and stops the heat supply to the air conditioning target 9 so as to stop the heat supply. Request to 53.
 また、条件判定手段52は、暖房運転時に、利用側温度検出部8aによって検出された対象温度が下限温度閾値以下であるかを判定する。条件判定手段52は、対象温度が下限温度閾値以下の場合、蓄熱タンク32への蓄熱を停止し、空調対象9への熱供給を実施するように制御指令手段53に要求する。更に、条件判定手段52は、暖房運転時に、タンク温度検出部12によって検出された蓄熱温度が蓄熱温度閾値以下であるかを判定する。条件判定手段52は、蓄熱温度が蓄熱温度閾値以下の場合、蓄熱タンク32への蓄熱を実施し、空調対象9への熱供給を実施するように制御指令手段53に要求する。 Further, the condition determining means 52 determines whether the target temperature detected by the use side temperature detecting unit 8a is equal to or lower than the lower limit temperature threshold value during the heating operation. When the target temperature is equal to or lower than the lower limit temperature threshold, the condition determination unit 52 requests the control command unit 53 to stop the heat storage in the heat storage tank 32 and supply the heat to the air conditioning target 9. Further, the condition determination means 52 determines whether the heat storage temperature detected by the tank temperature detection unit 12 is equal to or lower than the heat storage temperature threshold value during the heating operation. When the heat storage temperature is equal to or lower than the heat storage temperature threshold, the condition determination means 52 requests the control command means 53 to store heat in the heat storage tank 32 and supply heat to the air conditioning target 9.
 制御指令手段53は、条件判定手段52の判定結果に基づいて、室外機20及び電気ヒータ26から構成される熱源機5、第1のポンプ31及び第2のポンプ41の動作を決定し、決定した動作を実施するようそれぞれの機器に指令する。制御指令手段53は、余剰電力検出部7aによって発電電力が余剰であることが検出されて、利用側温度検出部8aによって検出された対象温度が上限温度閾値以上の場合、第1のポンプ31の動作を継続し、第2のポンプ41の動作を停止するよう指令する。また、制御指令手段53は、暖房運転時に、利用側温度検出部8aによって検出された対象温度が下限温度閾値以下の場合、第1のポンプ31の動作を停止し、第2のポンプ41の動作を開始するよう指令する。その際、制御部50は、熱源機5を停止する。更に、制御指令手段53は、暖房運転時に、タンク温度検出部12によって検出された蓄熱温度が蓄熱温度閾値以下の場合、第1のポンプ31の動作を開始し、第2のポンプ41の動作を継続するよう指令する。 The control command means 53 determines the operation of the heat source device 5 including the outdoor unit 20 and the electric heater 26, the first pump 31 and the second pump 41 based on the determination result of the condition determination means 52, and determines the operation. Instruct each device to perform the specified operation. When the surplus power detection unit 7a detects that the generated power is surplus and the target temperature detected by the usage-side temperature detection unit 8a is equal to or higher than the upper limit temperature threshold, the control command unit 53 operates as follows. It is instructed to continue the operation and stop the operation of the second pump 41. Further, the control command means 53 stops the operation of the first pump 31 and the operation of the second pump 41 when the target temperature detected by the usage-side temperature detection unit 8a is equal to or lower than the lower limit temperature threshold value during the heating operation. Command to start. At that time, the control unit 50 stops the heat source device 5. Further, the control command means 53 starts the operation of the first pump 31 and the operation of the second pump 41 when the heat storage temperature detected by the tank temperature detection unit 12 is equal to or lower than the heat storage temperature threshold value during the heating operation. Command to continue.
 (運転モード、暖房運転)
 次に、空気調和装置1の運転モードのうち暖房運転について説明する。先ず、冷媒回路2について説明する。暖房運転において、圧縮機21に吸入された冷媒は、圧縮機21によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機21から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置22を通過して、凝縮器として作用するカスケード熱交換器25に流入し、カスケード熱交換器25において、第1の熱媒体回路3に流れる第1の熱媒体と熱交換されて凝縮して液化する。このとき、第1の熱媒体が暖められる。凝縮された液状態の冷媒は、膨張部24に流入し、膨張部24において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器23に流入し、室外熱交換器23において、室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置22を通過して、圧縮機21に吸入される。
(Operation mode, heating operation)
Next, the heating operation of the operation modes of the air conditioner 1 will be described. First, the refrigerant circuit 2 will be described. In the heating operation, the refrigerant sucked into the compressor 21 is compressed by the compressor 21 and discharged in a high temperature and high pressure gas state. The high-temperature, high-pressure gas-state refrigerant discharged from the compressor 21 passes through the flow path switching device 22 and flows into the cascade heat exchanger 25 that functions as a condenser, and in the cascade heat exchanger 25, Is heat-exchanged with the first heat medium flowing in the heat medium circuit 3 to be condensed and liquefied. At this time, the first heat medium is warmed. The condensed liquid state refrigerant flows into the expansion section 24, and is expanded and decompressed in the expansion section 24 to become a low temperature and low pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 23 that functions as an evaporator, and is heat-exchanged with the outdoor air in the outdoor heat exchanger 23 to be evaporated and gasified. The evaporated low-temperature low-pressure gas-state refrigerant passes through the flow path switching device 22 and is sucked into the compressor 21.
 次に、第1の熱媒体回路3について説明する。第1のポンプ31によって搬送された第1の熱媒体は、カスケード熱交換器25によって冷媒回路2に流れる冷媒と熱交換されて加熱される。加熱された第1の熱媒体は、電気ヒータ26によって更に加熱されて、蓄熱タンク32に流入する。これにより、蓄熱タンク32に温熱が蓄えられる。蓄熱タンク32に流入した第1の熱媒体は、第2の熱媒体回路4に流れる第2の熱媒体と熱交換されて冷却され、第1のポンプ31に吸入される。 Next, the first heat medium circuit 3 will be described. The first heat medium carried by the first pump 31 is heat-exchanged with the refrigerant flowing through the refrigerant circuit 2 by the cascade heat exchanger 25 to be heated. The heated first heat medium is further heated by the electric heater 26 and flows into the heat storage tank 32. As a result, heat is stored in the heat storage tank 32. The first heat medium that has flowed into the heat storage tank 32 is heat-exchanged with the second heat medium that flows into the second heat medium circuit 4, is cooled, and is sucked into the first pump 31.
 次に、第2の熱媒体回路4について説明する。第2のポンプ41によって搬送された第2の熱媒体は、蓄熱タンク32において第1の熱媒体と熱交換されて加熱される。加熱された第2の熱媒体は、利用側熱交換器42において利用側熱媒体と熱交換されて冷却される。このとき、利用側熱媒体は加熱され、空調対象9において暖房が実施される。冷却された第2の熱媒体は、第2のポンプ41に吸入される。 Next, the second heat medium circuit 4 will be described. The second heat medium transported by the second pump 41 is heat-exchanged with the first heat medium in the heat storage tank 32 to be heated. The heated second heat medium is cooled by heat exchange with the use side heat medium in the use side heat exchanger 42. At this time, the heat medium on the utilization side is heated, and the air conditioning target 9 is heated. The cooled second heat medium is sucked into the second pump 41.
 (運転モード、冷房運転)
 次に、冷房運転について説明する。冷房運転において、圧縮機21に吸入された冷媒は、圧縮機21によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機21から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置22を通過して、凝縮器として作用する室外熱交換器23に流入し、室外熱交換器23において、室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部24に流入し、膨張部24において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用するカスケード熱交換器25に流入し、カスケード熱交換器25において、第1の熱媒体回路3に流れる第1の熱媒体と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置22を通過して、圧縮機21に吸入される。
(Operation mode, cooling operation)
Next, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 21 is compressed by the compressor 21 and discharged in a high temperature and high pressure gas state. The high-temperature, high-pressure gas-state refrigerant discharged from the compressor 21 passes through the flow path switching device 22 and flows into the outdoor heat exchanger 23 that functions as a condenser, and in the outdoor heat exchanger 23, the outdoor air is discharged. Is heat-exchanged with and condensed to liquefy. The condensed liquid state refrigerant flows into the expansion section 24, and is expanded and decompressed in the expansion section 24 to become a low temperature and low pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the cascade heat exchanger 25 that acts as an evaporator, and is heat-exchanged with the first heat medium flowing in the first heat medium circuit 3 in the cascade heat exchanger 25. Vaporize and gasify. The evaporated low-temperature low-pressure gas-state refrigerant passes through the flow path switching device 22 and is sucked into the compressor 21.
 次に、第1の熱媒体回路3について説明する。冷房運転では、加熱ヒータは停止している。第1のポンプ31によって搬送された第1の熱媒体は、カスケード熱交換器25によって冷媒回路2に流れる冷媒と熱交換されて冷却されて、蓄熱タンク32に流入する。これにより、蓄熱タンク32に冷熱が蓄えられる。蓄熱タンク32に流入した第1の熱媒体は、第2の熱媒体回路4に流れる第2の熱媒体と熱交換されて加熱され、第1のポンプ31に吸入される。 Next, the first heat medium circuit 3 will be described. In the cooling operation, the heater is stopped. The first heat medium carried by the first pump 31 is heat-exchanged with the refrigerant flowing through the refrigerant circuit 2 by the cascade heat exchanger 25 to be cooled, and then flows into the heat storage tank 32. As a result, cold heat is stored in the heat storage tank 32. The first heat medium that has flowed into the heat storage tank 32 is heat-exchanged with the second heat medium that flows into the second heat medium circuit 4, is heated, and is sucked into the first pump 31.
 次に、第2の熱媒体回路4について説明する。第2のポンプ41によって搬送された第2の熱媒体は、蓄熱タンク32において第1の熱媒体と熱交換されて冷却される。冷却された第2の熱媒体は、利用側熱交換器42において利用側熱媒体と熱交換されて加熱される。このとき、利用側熱媒体は冷却され、空調対象9において冷房が実施される。加熱された第2の熱媒体は、第2のポンプ41に吸入される。 Next, the second heat medium circuit 4 will be described. The second heat medium transported by the second pump 41 is cooled by exchanging heat with the first heat medium in the heat storage tank 32. The cooled second heat medium is heated by heat exchange with the use side heat medium in the use side heat exchanger 42. At this time, the heat medium on the utilization side is cooled, and the air conditioning target 9 is cooled. The heated second heat medium is sucked into the second pump 41.
 図4は、本発明の実施の形態1に係る制御部50の動作を示すフローチャートである。次に、制御部50の動作について説明する。図4に示すように、通常の暖房運転において、制御指令手段53は、第1のポンプ31及び第2のポンプ41を動作させている(ステップST1)。条件判定手段52は、発電電力が余剰であり、且つ対象温度が上限温度閾値以上であるかを判定する(ステップST2)。そして、発電電力が余剰であり対象温度が上限温度閾値以上であれば、制御指令手段53は、第1のポンプ31の動作を継続し、第2のポンプ41の動作を停止する(ステップST3)。 FIG. 4 is a flowchart showing the operation of the control unit 50 according to the first embodiment of the present invention. Next, the operation of the control unit 50 will be described. As shown in FIG. 4, in the normal heating operation, the control command means 53 operates the first pump 31 and the second pump 41 (step ST1). The condition determination means 52 determines whether the generated power is surplus and the target temperature is equal to or higher than the upper limit temperature threshold (step ST2). If the generated power is surplus and the target temperature is equal to or higher than the upper limit temperature threshold, the control command unit 53 continues the operation of the first pump 31 and stops the operation of the second pump 41 (step ST3). ..
 その後、条件判定手段52は、対象温度が下限温度閾値以下であるかを判定し(ステップST4)、対象温度が下限温度閾値以下であれば、制御指令手段53は、第1のポンプ31の動作を停止し、第2のポンプ41の動作を開始する(ステップST5)。そして、条件判定手段52は、蓄熱温度が蓄熱温度閾値以下であるかを判定し(ステップST6)、蓄熱温度が蓄熱温度閾値以下であれば、制御指令手段53は、第1のポンプ31の動作を開始し、第2のポンプ41の動作を継続する(ステップST7)。 Then, the condition determination means 52 determines whether the target temperature is less than or equal to the lower limit temperature threshold (step ST4). If the target temperature is less than or equal to the lower limit temperature threshold, the control command means 53 causes the operation of the first pump 31. Is stopped and the operation of the second pump 41 is started (step ST5). Then, the condition determination means 52 determines whether the heat storage temperature is equal to or lower than the heat storage temperature threshold (step ST6), and if the heat storage temperature is equal to or lower than the heat storage temperature threshold, the control command means 53 causes the operation of the first pump 31. And the operation of the second pump 41 is continued (step ST7).
 図5は、本発明の実施の形態1に係る制御部50の動作を示すタイミングチャートである。図5に示すように、通常の暖房運転において、空調対象9の対象温度は約19℃であり、蓄熱タンク32の蓄熱温度は約35℃であり、空調対象9への供給温度は約40℃である。なお、対象温度は、ユーザの快適性を維持するため、19℃~21℃の範囲を快適領域として維持するよう設定されている。即ち、上限温度閾値は21℃であり、下限温度閾値は19℃である。 FIG. 5 is a timing chart showing the operation of the control unit 50 according to the first embodiment of the present invention. As shown in FIG. 5, in normal heating operation, the target temperature of the air conditioning target 9 is about 19 ° C., the heat storage temperature of the heat storage tank 32 is about 35 ° C., and the supply temperature to the air conditioning target 9 is about 40 ° C. Is. The target temperature is set to maintain a range of 19 ° C to 21 ° C as a comfort region in order to maintain user comfort. That is, the upper limit temperature threshold is 21 ° C and the lower limit temperature threshold is 19 ° C.
 12時から16時までは、自家発電装置13によって自家発電が行われて蓄熱タンク32への蓄熱が行われ、空調対象9に対し暖房運転も行われる。その際、空調対象9への暖房の継続が優先される。このため、空調対象9への目標供給温度が、利用側熱交換器42で運転可能な最大温度まで引き上げられる。例えば、目標供給温度が40℃から50℃に引き上げられる。なお、温度は、リモートコントローラ6等によって、目標蓄熱温度として設定されてもよい。蓄熱タンク32への蓄熱が進むうち、蓄熱タンク32の蓄熱温度が上昇し、これに伴い、空調対象9への供給温度も上昇し、空調対象9の対象温度も上昇する。ここで、蓄熱タンク32への蓄熱が行われても、空調対象9への熱の供給が行われるため、蓄熱温度は所定の温度まで上昇するとそれ以上は上がらない。従って、空調対象9への供給温度も、例えば60℃まで上昇すると、60℃が維持される。 From 12:00 to 16:00, private power generation is performed by the private power generator 13, heat is stored in the heat storage tank 32, and heating operation is also performed on the air-conditioning target 9. At that time, continuation of heating of the air-conditioning target 9 is prioritized. Therefore, the target supply temperature to the air conditioning target 9 is raised to the maximum temperature at which the use side heat exchanger 42 can operate. For example, the target supply temperature is raised from 40 ° C to 50 ° C. The temperature may be set as the target heat storage temperature by the remote controller 6 or the like. While the heat storage to the heat storage tank 32 progresses, the heat storage temperature of the heat storage tank 32 rises, and accordingly, the supply temperature to the air conditioning target 9 also rises, and the target temperature of the air conditioning target 9 also rises. Here, even if the heat is stored in the heat storage tank 32, the heat is supplied to the air-conditioning target 9. Therefore, when the heat storage temperature rises to a predetermined temperature, it does not rise any further. Therefore, when the supply temperature to the air-conditioning target 9 also rises to 60 ° C., for example, 60 ° C. is maintained.
 16時になって、対象温度が21℃となった場合、これ以上空調対象9の対象温度が上昇すると、ユーザの快適性を損なうおそれがあるため、暖房が禁止される。具体的には、制御部50は、第2のポンプ41の動作を停止する。なお、発電電力が余剰である限り、制御部50は、第1のポンプ31の動作を継続し、蓄熱タンク32への蓄熱が継続される。ここで、空調対象9への熱の供給が行われないため、蓄熱タンク32の蓄熱温度は上昇する。本実施の形態1では、蓄熱タンク32の上限温度を60℃としており、60℃を超えると、それ以上の蓄熱は行われない。空調運転が許可されている場合は、利用側熱交換器42に温熱が供給されているが、空調運転が禁止されている場合は、蓄熱タンク32に蓄えられた熱は、冷却されない。このため、目標蓄熱温度=蓄熱タンク32の蓄熱温度となる。 If the target temperature becomes 21 ° C. at 16:00, if the target temperature of the air conditioning target 9 further rises, the comfort of the user may be impaired, so heating is prohibited. Specifically, the control unit 50 stops the operation of the second pump 41. Note that as long as the generated power is surplus, the control unit 50 continues the operation of the first pump 31 and the heat storage in the heat storage tank 32 is continued. Here, since heat is not supplied to the air conditioning target 9, the heat storage temperature of the heat storage tank 32 rises. In the first embodiment, the upper limit temperature of the heat storage tank 32 is set to 60 ° C, and if it exceeds 60 ° C, further heat storage is not performed. When the air conditioning operation is permitted, warm heat is supplied to the use side heat exchanger 42, but when the air conditioning operation is prohibited, the heat stored in the heat storage tank 32 is not cooled. Therefore, the target heat storage temperature = heat storage temperature of the heat storage tank 32.
 21時になって、対象温度が19℃となった場合、これ以上空調対象9の対象温度が低下すると、ユーザの快適性を損なうおそれがあるため、暖房が再開される。ここで、蓄熱タンク32には十分に熱が蓄えられているため、制御部50は、熱源機5を停止しつつ第1のポンプ31の動作は行わず、第2のポンプ41の動作を開始する。これにより、蓄熱タンク32に蓄えられた熱によって、空調対象9の対象温度が上昇する。なお、第2のポンプ41が動作している間、制御部50が第2外部装置8から空調運転を禁止する指令を受信した場合、熱源機5、第1のポンプ31及び第2のポンプ41を含む機器を停止させ、第2外部装置8から空調運転を許可する指令を受信するまで待機する。 At 21:00, when the target temperature becomes 19 ° C, if the target temperature of the air conditioning target 9 further decreases, the comfort of the user may be impaired, so heating is restarted. Here, since the heat storage tank 32 sufficiently stores heat, the control unit 50 does not operate the first pump 31 while stopping the heat source device 5, but starts the operation of the second pump 41. To do. As a result, the target temperature of the air conditioning target 9 rises due to the heat stored in the heat storage tank 32. When the control unit 50 receives a command for prohibiting the air conditioning operation from the second external device 8 while the second pump 41 is operating, the heat source device 5, the first pump 31, and the second pump 41. Are stopped and the system waits until a command for permitting air conditioning operation is received from the second external device 8.
 本実施の形態1によれば、発電電力が余剰であることが検出されて、対象温度が上限温度閾値以上の場合、第1のポンプ31の動作を継続して第2のポンプ41の動作を停止する。第1のポンプ31が動作するため、蓄熱タンク32に熱が蓄えられ、第2のポンプ41が停止するため、空調対象9に熱が供給されない。このように、空気調和装置1は、発電電力が余剰となった場合、空調対象9の設定温度を変更せずに、蓄熱タンク32に熱を蓄える。従って、ユーザが空調対象9を利用する時間にかかわらず、ユーザの快適性を損なわない。 According to the first embodiment, when the generated power is detected to be excessive and the target temperature is equal to or higher than the upper limit temperature threshold, the operation of the first pump 31 is continued and the operation of the second pump 41 is continued. Stop. Since the first pump 31 operates, heat is stored in the heat storage tank 32, and the second pump 41 stops, so that heat is not supplied to the air conditioning target 9. In this way, the air conditioner 1 stores heat in the heat storage tank 32 without changing the set temperature of the air conditioning target 9 when the generated power becomes excessive. Therefore, the comfort of the user is not impaired regardless of the time when the user uses the air conditioning target 9.
 また、制御部50は、利用側温度検出部8aによって検出された対象温度が下限温度閾値以下の場合、第1のポンプ31の動作を停止し、且つ第2のポンプ41の動作を開始する。第1のポンプ31が停止するため、蓄熱タンク32に熱は蓄えられず、第2のポンプ41が動作するため、蓄熱タンク32の熱が空調対象9に供給される。このように、蓄熱タンク32に蓄えられた熱のみで、空調対象9の対象温度を上昇させることができるため、省エネルギーに資する。 Further, the control unit 50 stops the operation of the first pump 31 and starts the operation of the second pump 41 when the target temperature detected by the use side temperature detection unit 8a is equal to or lower than the lower limit temperature threshold. Since the first pump 31 is stopped, heat is not stored in the heat storage tank 32, and the second pump 41 operates, so that the heat in the heat storage tank 32 is supplied to the air conditioning target 9. In this way, the target temperature of the air conditioning target 9 can be raised only by the heat stored in the heat storage tank 32, which contributes to energy saving.
 図6は、比較例の制御部の動作を示すタイミングチャートである。ここで、比較例の制御部の動作について説明する。比較例では、発電電力が余剰となった場合、熱媒体の温度が実使用時の温度よりも高くなるように、空調室内設定温度又は浴室給湯設定温度等を変更する。これにより、ユーザが実際に入浴したときには、浴槽の温度が時間経過によって適温に下がった状態となる。ここで、実使用時の温度を40℃とし、入浴予定時刻を21時とする。図6に示すように、12時に、発電電力が余剰となった場合、浴室給湯設定温度を40℃から60℃に変更する。これにより、浴室は60℃まで上昇する。入浴予定時刻は21時であるが、仮に、入浴する時間が予定よりも早まった場合、浴槽の温度が下がっておらず、ユーザは熱さを感じて不快である。 FIG. 6 is a timing chart showing the operation of the control unit of the comparative example. Here, the operation of the control unit of the comparative example will be described. In the comparative example, when the generated power becomes surplus, the air-conditioned room set temperature, the bathroom hot water set temperature, etc. are changed so that the temperature of the heat medium becomes higher than the temperature at the time of actual use. As a result, when the user actually takes a bath, the temperature of the bathtub falls to an appropriate temperature over time. Here, the temperature at the time of actual use is 40 ° C., and the scheduled bath time is 21:00. As shown in FIG. 6, if the generated power becomes excessive at 12:00, the bathroom hot water supply set temperature is changed from 40 ° C. to 60 ° C. This raises the bathroom to 60 ° C. Although the scheduled bathing time is 21:00, if the bathing time is earlier than planned, the temperature of the bathtub has not dropped and the user feels heat and is uncomfortable.
 これに対し、本実施の形態1は、発電電力が余剰となった場合、空調対象9の設定温度を変更せずに、蓄熱タンク32に熱を蓄える。従って、ユーザが空調対象9を利用する時間にかかわらず、ユーザの快適性を損なわない。 On the other hand, in the first embodiment, when the generated power becomes excessive, the heat is stored in the heat storage tank 32 without changing the set temperature of the air conditioning target 9. Therefore, the comfort of the user is not impaired regardless of the time when the user uses the air conditioning target 9.
実施の形態2.
 図7は、本発明の実施の形態2に係る第2のポンプ41の間欠運転を示すグラフである。本実施の形態2は、蓄熱タンク32に蓄えられた熱のみによって空調対象9を暖房する場合に、第2のポンプ41を間欠運転する点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 7 is a graph showing the intermittent operation of the second pump 41 according to the second embodiment of the present invention. The second embodiment differs from the first embodiment in that the second pump 41 is intermittently operated when the air-conditioning target 9 is heated only by the heat stored in the heat storage tank 32. In the second embodiment, the same parts as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted. Differences from the first embodiment will be mainly described.
 図7に示すように、制御部50は、第2のポンプ41を設定された時間間隔で間欠運転する。間欠運転のON時間とOFF時間とは、リモートコントローラ6によって設定される。実施の形態1の図5の21時からの制御のように、蓄熱タンク32に十分に熱が蓄えられている場合、空調対象9への供給温度は、通常の目標供給温度よりも高い温度となる。本実施の形態2では、第2のポンプ41が間欠運転することによって、空調対象9の対象温度が急激に上昇することを抑制することができる。 As shown in FIG. 7, the control unit 50 intermittently operates the second pump 41 at set time intervals. The ON time and the OFF time of the intermittent operation are set by the remote controller 6. When sufficient heat is stored in the heat storage tank 32 as in the control from 21:00 in FIG. 5 of the first embodiment, the supply temperature to the air-conditioning target 9 is higher than the normal target supply temperature. Become. In the second embodiment, it is possible to prevent the target temperature of the air-conditioning target 9 from rapidly increasing due to the intermittent operation of the second pump 41.
実施の形態3.
 実施の形態2では、第2のポンプ41の間欠運転のON時間とOFF時間とが、リモートコントローラ6によって設定される場合について説明している。本実施の形態3では、間欠運転のON時間とOFF時間とが、第2の熱媒体の温度に基づいて設定される点で、実施の形態2と相違する。
Embodiment 3.
In the second embodiment, the case where the ON time and the OFF time of the intermittent operation of the second pump 41 are set by the remote controller 6 has been described. The third embodiment differs from the second embodiment in that the ON time and the OFF time of the intermittent operation are set based on the temperature of the second heat medium.
 先ず、リモートコントローラ6によって、間欠運転の計算周期時間が設定される。ここで、熱源機5を使用する通常の暖房運転の空調対象9への供給温度の目標値は、目標供給温度である。また、通常の暖房運転時の比熱を、通常時の比熱とし、通常の暖房運転時の流量を通常時の流量とする。ON時間は、空調対象9の対象温度から算出される供給熱量と、蓄熱タンク32の蓄熱温度から算出される供給熱量との比率から求められる。即ち、ON時間は、本制御時の比熱と本制御時の流量を用いて、下記式(1)から求められる。なお、式(1)では、第2の熱媒体の温度として、蓄熱タンク32の蓄熱温度が使用されている。 First, the remote controller 6 sets the calculation cycle time for intermittent operation. Here, the target value of the supply temperature to the air conditioning target 9 in the normal heating operation using the heat source device 5 is the target supply temperature. Further, the specific heat during normal heating operation is referred to as the specific heat during normal operation, and the flow rate during normal heating operation is referred to as the normal flow rate. The ON time is obtained from the ratio of the heat supply amount calculated from the target temperature of the air conditioning target 9 and the heat supply amount calculated from the heat storage temperature of the heat storage tank 32. That is, the ON time is obtained from the following equation (1) using the specific heat during the main control and the flow rate during the main control. In the formula (1), the heat storage temperature of the heat storage tank 32 is used as the temperature of the second heat medium.
 [数1]
 ON時間=計算周期時間×[{通常時の比熱×(目標供給温度-空調対象9の対象温度)×通常時の流量}/{本制御時の比熱×(蓄熱タンク32の蓄熱温度-空調対象9の対象温度)×本制御時の流量}]・・・(1)
[Equation 1]
ON time = calculation cycle time × [{specific heat at normal time × (target supply temperature−target temperature of air conditioning target 9) × flow rate at normal time} / {specific heat at this control × (heat storage temperature of heat storage tank 32−air conditioning target) Target temperature of 9) × flow rate at the time of this control}] (1)
 そして、OFF時間は、下記式(2)から求められる。 Then, the OFF time is obtained from the following equation (2).
 [数2]
 OFF時間=計算周期時間-ON時間・・・(2)
[Equation 2]
OFF time = calculation cycle time-ON time (2)
 なお、通常時の比熱と本制御時の比熱とを同一とみなし、通常時の流量と本制御時の流量とを同一とみなすと、式(1)は、下記式(3)のように簡略化される。 If the specific heat at the normal time and the specific heat at the main control are regarded as the same, and the flow rate at the normal time and the flow rate at the main control are regarded as the same, the formula (1) is simplified as the following formula (3). Be converted.
 [数3]
 ON時間=計算周期時間×{(目標供給温度-空調対象9の対象温度)/(蓄熱タンク32の蓄熱温度-空調対象9の対象温度)}・・・(3)
[Equation 3]
ON time = calculation cycle time × {(target supply temperature−target temperature of air conditioning target 9) / (heat storage temperature of heat storage tank 32−target temperature of air conditioning target 9)} (3)
 なお、本実施の形態3では、第2の熱媒体の温度として、蓄熱タンク32の蓄熱温度が用いられているが、空調対象9への供給温度が用いられてもよい。 In the third embodiment, the heat storage temperature of the heat storage tank 32 is used as the temperature of the second heat medium, but the supply temperature to the air conditioning target 9 may be used.
 本実施の形態3によれば、第2のポンプ41の間欠運転の時間間隔が、第2の熱媒体の温度に基づいて設定されている。第2の熱媒体の温度が高いほどON時間が短くなって、空調対象9への熱の供給が少なくなる。第2の熱媒体の温度が低いほどON時間が長くなって、空調対象9への熱の供給が多くなる。このように、第2の熱媒体の温度に基づいて、空調対象9への熱の供給量を変化させるため、空調対象9の対象温度が急激に上昇することを更に抑制することができる。 According to the third embodiment, the time interval of the intermittent operation of the second pump 41 is set based on the temperature of the second heat medium. The higher the temperature of the second heat medium, the shorter the ON time, and the less heat is supplied to the air conditioning target 9. The lower the temperature of the second heat medium is, the longer the ON time is, and the more heat is supplied to the air conditioning target 9. In this way, since the amount of heat supplied to the air conditioning target 9 is changed based on the temperature of the second heat medium, it is possible to further prevent the target temperature of the air conditioning target 9 from rapidly increasing.
 なお、時間間隔は、間欠運転毎に設定されてもよい。この場合、ON時間及びOFF時間の計算に用いられる蓄熱タンク32の蓄熱温度は、計算周期時間毎に、最新の蓄熱タンク32の蓄熱温度とする。ここで、暖房運転において、初期の蓄熱タンク32の蓄熱温度が高温の場合、第2のポンプ41のON時間がOFF時間よりも短いものとする。第2のポンプ41が運転することによって、蓄熱タンク32には、利用側熱交換器42によって熱交換されて冷却された第2の熱媒体が流入するため、徐々に蓄熱タンク32の蓄熱温度が低下する。そこで、蓄熱タンク32の蓄熱温度として、計算周期時間毎に、最新の蓄熱タンク32の蓄熱温度が用いられることによって、ON時間及びOFF時間を、蓄熱タンク32の蓄熱温度に適合した時間に見直すことができる。従って、空調対象9への熱の供給を適切に行うことができる。なお、この場合も、蓄熱タンク32の蓄熱温度は、空調対象9への供給温度としてもよい。 Note that the time interval may be set for each intermittent operation. In this case, the heat storage temperature of the heat storage tank 32 used for the calculation of the ON time and the OFF time is the latest heat storage temperature of the heat storage tank 32 for each calculation cycle time. Here, in the heating operation, when the initial heat storage temperature of the heat storage tank 32 is high, the ON time of the second pump 41 is shorter than the OFF time. When the second pump 41 operates, the second heat medium that has been heat-exchanged and cooled by the use-side heat exchanger 42 flows into the heat storage tank 32, so that the heat storage temperature of the heat storage tank 32 gradually increases. descend. Therefore, the latest heat storage temperature of the heat storage tank 32 is used as the heat storage temperature of the heat storage tank 32 for each calculation cycle time, so that the ON time and the OFF time are reviewed to a time suitable for the heat storage temperature of the heat storage tank 32. You can Therefore, the heat can be appropriately supplied to the air conditioning target 9. In this case as well, the heat storage temperature of the heat storage tank 32 may be the supply temperature to the air conditioning target 9.
 1 空気調和装置、2 冷媒回路、3 第1の熱媒体回路、4 第2の熱媒体回路、5熱源機、6 リモートコントローラ、7 第1外部装置、7a 余剰電力検出部、8 第2外部装置、8a 利用側温度検出部、9 空調対象、10 供給温度検出部、11 戻り温度検出部、12 タンク温度検出部、13 自家発電装置、20 室外機、21 圧縮機、22 流路切替装置、23 室外熱交換器、24 膨張部、25 カスケード熱交換器、26 電気ヒータ、31 第1のポンプ、32 蓄熱タンク、41 第2のポンプ、42 利用側熱交換器、50 制御部、51 データ収集手段、52 条件判定手段、53 制御指令手段。 1 air conditioner, 2 refrigerant circuit, 3 first heat medium circuit, 4 second heat medium circuit, 5 heat source device, 6 remote controller, 7 first external device, 7a surplus power detector, 8 second external device , 8a user side temperature detection unit, 9 air conditioning target, 10 supply temperature detection unit, 11 return temperature detection unit, 12 tank temperature detection unit, 13 private power generator, 20 outdoor unit, 21 compressor, 22 flow path switching unit, 23 Outdoor heat exchanger, 24 expansion section, 25 cascade heat exchanger, 26 electric heater, 31 first pump, 32 heat storage tank, 41 second pump, 42 usage side heat exchanger, 50 control section, 51 data collection means , 52 condition determination means, 53 control command means.

Claims (7)

  1.  熱源機から供給される第1の熱媒体を搬送する第1のポンプと、前記第1のポンプによって搬送された前記第1の熱媒体が流れる蓄熱タンクとが配管により接続された第1の熱媒体回路と、
     第2の熱媒体を搬送する第2のポンプと、前記第1の熱媒体と前記第2の熱媒体とを熱交換する前記蓄熱タンクと、前記第2のポンプによって搬送された前記第2の熱媒体と空調対象の利用側熱媒体とを熱交換する利用側熱交換器とが配管により接続された第2の熱媒体回路と、
     自家発電装置から供給される発電電力が余剰であることを検出する余剰電力検出部によって前記発電電力が余剰であることが検出されて、空調対象の対象温度を検出する利用側温度検出部によって検出された対象温度が上限温度閾値以上の場合、前記第1のポンプの動作を継続し、且つ前記第2のポンプの動作を停止する制御部と、
     を備える空気調和装置。
    A first pump in which a first pump that conveys a first heat medium supplied from a heat source device and a heat storage tank in which the first heat medium that is conveyed by the first pump flows are connected by piping A medium circuit,
    A second pump that conveys a second heat medium, the heat storage tank that exchanges heat between the first heat medium and the second heat medium, and the second pump that is conveyed by the second pump. A second heat medium circuit in which a heat medium and a user-side heat exchanger for exchanging heat with the user-side heat medium to be air-conditioned are connected by pipes;
    The surplus power detection unit that detects that the generated power supplied from the private power generation device is surplus is detected as the surplus power generation power, and is detected by the usage-side temperature detection unit that detects the target temperature of the air conditioning target. A controlled unit that continues the operation of the first pump and stops the operation of the second pump when the determined target temperature is equal to or higher than the upper limit temperature threshold value;
    An air conditioner equipped with.
  2.  前記制御部は、
     前記利用側温度検出部によって検出された対象温度が下限温度閾値以下の場合、前記第1のポンプの動作を停止し、且つ前記第2のポンプの動作を開始するものである
     請求項1記載の空気調和装置。
    The control unit is
    The operation of the first pump is stopped and the operation of the second pump is started when the target temperature detected by the usage-side temperature detection unit is equal to or lower than a lower limit temperature threshold value. Air conditioner.
  3.  前記制御部は、
     前記第2のポンプを設定された時間間隔で間欠運転する
     請求項2記載の空気調和装置。
    The control unit is
    The air conditioner according to claim 2, wherein the second pump is intermittently operated at a set time interval.
  4.  前記時間間隔は、
     前記第2の熱媒体の温度に基づいて設定される
     請求項3記載の空気調和装置。
    The time interval is
    The air conditioner according to claim 3, wherein the air conditioner is set based on the temperature of the second heat medium.
  5.  前記蓄熱タンクの蓄熱温度を検出するタンク温度検出部を更に備え、
     前記時間間隔は、
     前記利用側温度検出部によって検出された対象温度から算出される供給熱量と、前記タンク温度検出部によって検出された蓄熱温度から算出される供給熱量との比率から求められる
     請求項4記載の空気調和装置。
    Further comprising a tank temperature detection unit for detecting the heat storage temperature of the heat storage tank,
    The time interval is
    The air conditioner according to claim 4, which is obtained from a ratio of a heat supply amount calculated from the target temperature detected by the usage-side temperature detection unit and a heat supply amount calculated from the heat storage temperature detected by the tank temperature detection unit. apparatus.
  6.  前記利用側熱交換器に流入する前記第2の熱媒体の供給温度を検出する供給温度検出部を更に備え、
     前記時間間隔は、
     前記利用側温度検出部によって検出された対象温度から算出される供給熱量と、前記供給温度検出部によって検出された供給温度から算出される供給熱量との比率から求められる
     請求項4記載の空気調和装置。
    Further comprising a supply temperature detector for detecting a supply temperature of the second heat medium flowing into the utilization side heat exchanger,
    The time interval is
    The air conditioner according to claim 4, which is obtained from a ratio of a heat supply amount calculated from the target temperature detected by the usage-side temperature detection unit and a heat supply amount calculated from the supply temperature detected by the supply temperature detection unit. apparatus.
  7.  前記時間間隔は、
     間欠運転毎に設定される
     請求項4~6のいずれか1項に記載の空気調和装置。
    The time interval is
    The air conditioner according to any one of claims 4 to 6, which is set for each intermittent operation.
PCT/JP2018/040866 2018-11-02 2018-11-02 Air conditioning device WO2020090112A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020554735A JP6972378B2 (en) 2018-11-02 2018-11-02 Air conditioner
PCT/JP2018/040866 WO2020090112A1 (en) 2018-11-02 2018-11-02 Air conditioning device
DE112018008116.8T DE112018008116T5 (en) 2018-11-02 2018-11-02 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040866 WO2020090112A1 (en) 2018-11-02 2018-11-02 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2020090112A1 true WO2020090112A1 (en) 2020-05-07

Family

ID=70463073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040866 WO2020090112A1 (en) 2018-11-02 2018-11-02 Air conditioning device

Country Status (3)

Country Link
JP (1) JP6972378B2 (en)
DE (1) DE112018008116T5 (en)
WO (1) WO2020090112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230148170A1 (en) * 2021-11-05 2023-05-11 Emerson Climate Technologies, Inc. Thermal Battery And Heat Exchanger Assembly Using Phase Change Material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182971A (en) * 1999-12-24 2001-07-06 Hitachi Ltd Air conditioning system and its control method
JP2006336949A (en) * 2005-06-02 2006-12-14 Hitachi Ltd Heat storage type air conditioner
WO2010050001A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2010196946A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
JP2010255995A (en) * 2009-04-02 2010-11-11 Miura Co Ltd Water cooling device
JP2014134326A (en) * 2013-01-09 2014-07-24 Sekisui Chem Co Ltd Electric power management system
JP2014236581A (en) * 2013-05-31 2014-12-15 ダイキン工業株式会社 Demand response system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253616B2 (en) * 2004-05-24 2009-04-15 関西電力株式会社 Hybrid hot water supply system
JP5060206B2 (en) * 2007-08-21 2012-10-31 大阪瓦斯株式会社 Heat consumption calculation system
KR101479685B1 (en) * 2012-08-31 2015-01-07 대한민국 Regenerative greenhouse heating system
CN205425150U (en) * 2015-10-12 2016-08-03 李延魁 Water conservancy bleeder mechanism with heat accumulation function
JP6513257B2 (en) * 2018-04-17 2019-05-15 三菱電機株式会社 Controller, schedule creation method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182971A (en) * 1999-12-24 2001-07-06 Hitachi Ltd Air conditioning system and its control method
JP2006336949A (en) * 2005-06-02 2006-12-14 Hitachi Ltd Heat storage type air conditioner
WO2010050001A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2010196946A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
JP2010255995A (en) * 2009-04-02 2010-11-11 Miura Co Ltd Water cooling device
JP2014134326A (en) * 2013-01-09 2014-07-24 Sekisui Chem Co Ltd Electric power management system
JP2014236581A (en) * 2013-05-31 2014-12-15 ダイキン工業株式会社 Demand response system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230148170A1 (en) * 2021-11-05 2023-05-11 Emerson Climate Technologies, Inc. Thermal Battery And Heat Exchanger Assembly Using Phase Change Material

Also Published As

Publication number Publication date
JPWO2020090112A1 (en) 2021-06-10
DE112018008116T5 (en) 2021-07-22
JP6972378B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US10648684B2 (en) Air-conditioning apparatus and air-conditioning control method
US20150128628A1 (en) Air-conditioning apparatus
JP5858062B2 (en) Air conditioning system
US9625187B2 (en) Combined air-conditioning and hot-water supply system
JP5861726B2 (en) Air conditioning system
JP6289668B2 (en) Air conditioning and hot water supply complex system
JP6289734B2 (en) Air conditioning and hot water supply complex system
US20190309995A1 (en) System for air-conditioning and hot-water supply
US10921023B2 (en) System for air-conditioning and hot-water supply
JP2007163071A (en) Heat pump type cooling/heating system
JPWO2020161805A1 (en) Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
WO2014083652A1 (en) Air conditioning device
JP6972378B2 (en) Air conditioner
JP2008025879A (en) Control device of refrigerating device
JP2009287898A (en) Heat pump type hot water heat utilizing system
JP2023065680A (en) Refrigeration cycle device
EP3594588B1 (en) Geothermal heat pump device
JPWO2017046853A1 (en) Air conditioning apparatus and air conditioning control method
EP3974746A1 (en) A heat pump system
JP7068537B1 (en) Air conditioner and control method
JP2019529856A (en) Air conditioning and hot water supply system
JP2000179917A (en) Method for operating air conditioner
JP2000171102A (en) Hot water storage type heat source device for hot water supply
JP5642270B2 (en) Air conditioner
JP2022155001A (en) air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554735

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18938788

Country of ref document: EP

Kind code of ref document: A1