JP2014134326A - Electric power management system - Google Patents

Electric power management system Download PDF

Info

Publication number
JP2014134326A
JP2014134326A JP2013001730A JP2013001730A JP2014134326A JP 2014134326 A JP2014134326 A JP 2014134326A JP 2013001730 A JP2013001730 A JP 2013001730A JP 2013001730 A JP2013001730 A JP 2013001730A JP 2014134326 A JP2014134326 A JP 2014134326A
Authority
JP
Japan
Prior art keywords
power
electric power
air
surplus
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013001730A
Other languages
Japanese (ja)
Other versions
JP6105939B2 (en
Inventor
Hiroshi Yagisawa
博史 八木沢
Shozo Kishii
晶三 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2013001730A priority Critical patent/JP6105939B2/en
Publication of JP2014134326A publication Critical patent/JP2014134326A/en
Application granted granted Critical
Publication of JP6105939B2 publication Critical patent/JP6105939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Building Environments (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric power management system capable of highly efficiently storing heat by making effective use of surplus electric power if the surplus electric power is generated in the electric power generated by a solar battery.SOLUTION: An electric power management system comprises: a solar battery 3 installed on a roof 2, and generating electric power by solar energy; an air conditioner (heat pump type air conditioner) 6 installed in an underfloor space 11; and a control unit 7 that compares the electric power generated by the solar battery 3 with consumed electric power consumed by electric power load devices 10a and 10b, the control unit controlling the air conditioner 6 to operate with surplus electric power if it is determined that the electric power generated by the solar battery 3 is higher than the consumed electric power and the surplus electric power is present, and that this surplus electric power is equal to or higher than specified electric power with which the air conditioner 6 operates. Heat energy obtained when the air conditioner 6 operates with the surplus electric power under control of the control unit 7 is stored in the underfloor space 11.

Description

本発明は、太陽光発電装置を備えた戸建てなどの住宅での電力管理システムに関する。   The present invention relates to a power management system in a house such as a detached house provided with a solar power generation device.

近年、省エネや創エネを目的として、太陽光発電装置を備えた戸建て住宅や集合住宅などが増加してきている。太陽光発電装置の太陽電池(ソーラパネル)は、晴天時の昼間などは発電電力が最も高くなり、曇りや雨天時などで太陽光の照度が低いと発電電力が減少し、更に、太陽が出ていない夜間では発電電力がゼロとなるという発電特性を有している。   In recent years, detached houses and apartment houses equipped with solar power generation devices have been increasing for the purpose of energy saving and energy creation. Solar cells (solar panels) of solar power generators generate the highest power during the daytime in fine weather, etc., and the generated power decreases when the illuminance of sunlight is low, such as in cloudy or rainy weather. It has a power generation characteristic that generated power becomes zero at night.

このように、太陽電池による発電電力は晴天時の昼間などでは最も高くなるが、一般の家庭等では住宅内の電力負荷機器(例えば、照明、冷蔵庫など)への通電によって消費される昼間の消費電力は、朝夕や夜間に消費される消費電力に比べて少なく、晴天時の昼間は太陽電池による発電電力に余剰電力が生じる。   In this way, the power generated by solar cells is highest during daytime in fine weather, but in ordinary homes, etc., daytime consumption is consumed by energizing the power load equipment in the house (for example, lighting, refrigerator, etc.). The electric power is less than the electric power consumed in the morning and evening and at night, and surplus electric power is generated in the electric power generated by the solar cell during the daytime in fine weather.

このため、近年では、太陽光発電装置の太陽電池による発電電力に余剰電力が生じた場合、住宅に接続されている商用電源(電力系統)にこの余剰電力を逆供給(売電)する制度が導入されている。現行制度では、太陽光発電装置を備えた住宅がまだ十分に普及していないので普及を促すために余剰電力の売電単価が高く設定されており、この余剰電力を売電することによるユーザ(余剰電力の売電者)側の不利益はない。   For this reason, in recent years, when surplus power is generated in the power generated by the solar battery of the solar power generation device, there is a system that reversely supplies (sells) this surplus power to the commercial power source (power system) connected to the house. Has been introduced. Under the current system, houses with solar power generation devices are not yet widespread, so the unit price of surplus power is set high in order to encourage the spread, and users who sell this surplus power ( There is no penalty on the surplus power seller.

ところで、将来的に太陽光発電装置を備えた住宅が普及するにつれて、余剰電力の売電単価が下がることは必然であり、また省エネの観点からも、余剰電力は自宅内で有効に活用することが望ましい。   By the way, it is inevitable that the unit price of surplus power will decrease as houses equipped with solar power generation equipment become popular in the future, and from the viewpoint of energy saving, surplus power should be used effectively at home. Is desirable.

このため、例えば特許文献1に記載の発明では、例えば、冬季の晴天時の昼間に太陽電池による発電電力に余剰電力が生じた場合、室温が所定温度を超えるとファンを正回転させて室内の空気(熱)を床下に供給して、床下に設置した蓄熱材に熱エネルギーとして蓄熱させ、夜間には、ファンを逆回転させてこの蓄熱された熱エネルギーで加熱された空気を室内に供給するようにしている。   For this reason, for example, in the invention described in Patent Document 1, for example, when surplus power is generated in the solar battery during the daytime in fine weather in winter, when the room temperature exceeds a predetermined temperature, the fan is rotated in the forward direction. Air (heat) is supplied under the floor, the heat storage material installed under the floor is stored as heat energy, and at night, the fan is rotated backward to supply air heated by the stored heat energy into the room. I am doing so.

特開2012−100420号公報(段落0051、0052)JP2012-100420A (paragraphs 0051 and 0052)

前記特許文献1に記載の発明では、上記したように冬季の晴天時の昼間に太陽電池による発電電力に余剰電力が生じた場合に、建物内の室温が所定温度を超えると、この余剰電力でファンを駆動回転して室内の所定温度を超えている空気を床下に供給し、床下に設置した蓄熱材に熱エネルギーとして蓄熱する構成である。   In the invention described in Patent Document 1, as described above, when surplus power is generated in the power generated by the solar cell during the daytime in winter, when the room temperature in the building exceeds a predetermined temperature, the surplus power is In this configuration, the fan is driven and rotated to supply air under a predetermined temperature in the room to the floor, and the heat storage material installed under the floor stores heat as heat energy.

しかしながら、冬季では晴れている昼間でも建物内の室温はさほど高くないので、床下に設置した蓄熱材に熱エネルギーとして蓄熱する際の蓄熱効率は低いものとなる。このため、夜間に蓄熱材から室内側に供給される熱エネルギーは小さく、効果的な空調調整を行うことができない。   However, since the room temperature in the building is not so high even in the daytime when it is sunny in winter, the heat storage efficiency when storing heat as heat energy in the heat storage material installed under the floor is low. For this reason, the thermal energy supplied from the heat storage material to the indoor side at night is small, and effective air conditioning adjustment cannot be performed.

そこで、本発明は、太陽電池による発電電力に余剰電力が生じた場合に、この余剰電力を有効に利用して高効率で蓄熱を行うことができる電力管理システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a power management system that can efficiently store heat by effectively using the surplus power when surplus power is generated in the power generated by the solar cell.

前記目的を達成するために本発明に係る電力管理システムは、太陽光によって発電する太陽電池と、建物の床下空間部に設置された空調手段と、前記太陽電池の発電電力と、建物内の電力負荷機器で消費される消費電力とを比較し、前記太陽電池の発電電力の方が前記消費電力よりも大きくて余剰電力が有り、かつこの余剰電力が前記空調手段を運転する規定電力以上であると判断した場合に、前記余剰電力で前記空調手段を運転するように制御する制御手段とを備え、前記制御手段による前記制御により前記余剰電力で前記空調手段を運転したときに得られる熱エネルギーを、前記床下空間部内に蓄熱させることを特徴としている。   In order to achieve the above object, a power management system according to the present invention includes a solar cell that generates power by sunlight, air-conditioning means installed in an underfloor space of a building, generated power of the solar cell, and power in the building. Compared with the power consumed by the load device, the generated power of the solar cell is larger than the consumed power and there is surplus power, and this surplus power is equal to or higher than the specified power for operating the air conditioning means. Control means for controlling the air conditioning means to operate with the surplus power when it is determined that the thermal energy obtained when the air conditioning means is operated with the surplus power by the control by the control means. In addition, heat is stored in the underfloor space.

本発明に係る電力管理システムによれば、余剰電力で床下空間部内の空調手段を運転することにより、余剰電力を有効に利用して床下空間部内に熱エネルギーを高効率で蓄熱させることができる。   According to the power management system of the present invention, by operating the air conditioning means in the underfloor space with surplus power, it is possible to efficiently use the surplus power to store heat energy in the underfloor space with high efficiency.

本発明の実施形態に係る電力管理システムを示す概略構成図。1 is a schematic configuration diagram showing a power management system according to an embodiment of the present invention. 冬季の晴天時における太陽電池で発電された発電電力を時系列で示した図。The figure which showed in time series the electric power generated with the solar cell at the time of fine weather in winter. 床下空間部内に蓄熱されている熱エネルギーによって暖められた空気を、床面上の室内に供給したとき(実線a)と、供給しなかったとき(破線b)の室内温度の変化を示した図。The figure which showed the change of the indoor temperature when the air heated by the thermal energy stored in the underfloor space part is supplied into the room on the floor (solid line a) and when it is not supplied (broken line b) .

以下、本発明を図示の実施形態に基づいて説明する。図1は、本発明の実施形態に係る電力管理システムを示す概略構成図である。なお、図1に示す本実施形態は、太陽光発電装置を備えた戸建住宅での電力管理システムの例である。   Hereinafter, the present invention will be described based on the illustrated embodiments. FIG. 1 is a schematic configuration diagram showing a power management system according to an embodiment of the present invention. In addition, this embodiment shown in FIG. 1 is an example of the power management system in the detached house provided with the solar power generation device.

図1に示すように、本実施形態に係る電力管理システムは、戸建住宅1の屋根2に設置された太陽電池(ソーラパネル)3、PCS(パワーコンディショナ)4、分電盤5、ヒートポンプ式空調機(以下、「空調機」という)6、制御ユニット7を主構成要素として備えている。   As shown in FIG. 1, the power management system according to the present embodiment includes a solar cell (solar panel) 3, a PCS (power conditioner) 4, a distribution board 5, and a heat pump installed on a roof 2 of a detached house 1. A type air conditioner (hereinafter referred to as “air conditioner”) 6 and a control unit 7 are provided as main components.

太陽電池3は、太陽光を受けて直流の発電電力を発生する。PCS(Power Conditioning Subsystem)4は、太陽電池3による発電で得られた直流の発電電力を入力し、交流電力(通常は家庭用の100Vの交流電力)に変換する機能を有している。また、PCS4は、変換されたこの交流電力を、電力メータ8を介して住宅内に供給される商用電源(電力系統)9に協調させる系統連系運転機能を有している。太陽電池3とPCS4とによって太陽光発電装置が構成されている。   The solar cell 3 receives sunlight and generates DC generated power. The PCS (Power Conditioning Subsystem) 4 has a function of inputting DC generated power obtained by power generation by the solar cell 3 and converting it into AC power (usually 100 V AC power for home use). Further, the PCS 4 has a grid-connected operation function for coordinating the converted AC power with a commercial power source (power system) 9 supplied into the house via the power meter 8. A solar power generation device is constituted by the solar cell 3 and the PCS 4.

PCS4で調整された交流電力は、分電盤5を介して住宅内の電力負荷機器(例えば、照明器具、冷蔵庫、空調機器、各種家電機器など)10a,10b…、及び空調機6に供給される。   The AC power adjusted by the PCS 4 is supplied to the power load equipment (for example, lighting equipment, refrigerator, air conditioning equipment, various home appliances, etc.) 10a, 10b... The

空調機6は、戸建住宅1の床下空間部11の一方(図1では右側)の側部付近に設置した室内機6aと、屋外に設置した屋外機6bとで構成されており、室内機6aと屋外機6bとの間は、冷媒を循環させるための循環パイプ12a,12bで接続されている。この空調機6の運転により、床下空間部11内に温風又は冷風を放出させることができる。   The air conditioner 6 includes an indoor unit 6a installed near one side (right side in FIG. 1) of the underfloor space 11 of the detached house 1 and an outdoor unit 6b installed outdoors. 6a and the outdoor unit 6b are connected by circulation pipes 12a and 12b for circulating the refrigerant. By operating the air conditioner 6, warm air or cold air can be discharged into the underfloor space 11.

床下空間部11は、戸建住宅1の基礎断熱として構築された基礎底盤コンクリート1aとその側縁に立設された基礎側壁コンクリート1bと、床面13とで囲まれた空間領域である。また、基礎側壁コンクリート1bの内面には、断熱効果を高めるためにグラスウールなどの基礎断熱材14が取り付けられている。なお、断熱効果をより高めるために、床面13の床下空間部11側にも断熱材を取り付けてもよい。   The underfloor space portion 11 is a space region surrounded by a floor surface 13 and a foundation side wall concrete 1 a constructed as foundation heat insulation of the detached house 1, foundation side wall concrete 1 b erected on the side edge thereof. Moreover, in order to enhance the heat insulating effect, a basic heat insulating material 14 such as glass wool is attached to the inner surface of the basic side wall concrete 1b. In order to further enhance the heat insulating effect, a heat insulating material may be attached also to the underfloor space 11 side of the floor surface 13.

床下空間部11上の床面13の両側付近には、空気循環用の吹出し口15と吸込み口16がそれぞれ設けられており、室内機6a側にある吸込み口16は、吸込み用パイプ17を介して室内機6aの吸入口に連結されている。この室内機6aの吸入口内には吸入用のファン(不図示)が設けられている。なお、吹出し口15は、床面13に複数設けていてもよい。   An air circulation outlet 15 and a suction port 16 are provided near both sides of the floor surface 13 on the underfloor space 11, and the suction port 16 on the indoor unit 6 a side is connected via a suction pipe 17. And connected to the inlet of the indoor unit 6a. A suction fan (not shown) is provided in the suction port of the indoor unit 6a. A plurality of outlets 15 may be provided on the floor surface 13.

床面13の吹出し口15と吸込み口16には、開閉可能な蓋(不図示)が設けられており、電動アクチュエータ(不図示)によって空調機6の運転に連動して開閉することができる。なお、この蓋はユーザ(住居人)の操作によって手動でも開閉することもできる。   The air outlet 15 and the air inlet 16 of the floor 13 are provided with lids (not shown) that can be opened and closed, and can be opened and closed in conjunction with the operation of the air conditioner 6 by an electric actuator (not shown). The lid can be opened and closed manually by a user (resident).

制御ユニット7は、PCS4から入力される太陽電池3の発電電力と、住宅内の電力負荷機器10a,10b…への通電によって消費される消費電力とを比較する。   The control unit 7 compares the generated power of the solar cell 3 input from the PCS 4 with the power consumption consumed by energizing the power load devices 10a, 10b.

そして、制御ユニット7は、この比較で太陽電池3の発電電力の方が前記消費電力よりも大きく、かつこのときの余剰電力が空調機6の運転に必要な規定電力以上であると判断した場合、この余剰電力を分電盤5を介して空調機6側に供給するように制御する。   When the control unit 7 determines that the generated power of the solar cell 3 is larger than the consumed power and the surplus power at this time is equal to or higher than the specified power required for the operation of the air conditioner 6 in this comparison. The surplus power is controlled to be supplied to the air conditioner 6 through the distribution board 5.

また、この比較で太陽電池3の発電電力の方が前記消費電力よりも大きく、かつこのときの余剰電力が空調機6の運転に必要な規定電力以下であると判断した場合、この余剰電力を空調機6には供給せず、この余剰電力を商用電源(電力系統)9側に逆潮流するように制御して、電力会社にその余剰電力を売電する。   In addition, when it is determined in this comparison that the generated power of the solar cell 3 is larger than the consumed power and the surplus power at this time is equal to or less than the specified power required for the operation of the air conditioner 6, the surplus power is The surplus power is not supplied to the air conditioner 6 and is controlled so that the surplus power flows backward to the commercial power source (power system) 9 side, and the surplus power is sold to the power company.

また、制御ユニット7は、雨天やくもりなどで太陽電池3の発電電力が前記消費電力よりも少ないと判断した場合、商用電源(電力系統)9側から不足分の電力の供給を受けるように制御する。   Further, the control unit 7 performs control so as to receive supply of insufficient power from the commercial power source (power system) 9 side when it is determined that the generated power of the solar cell 3 is less than the power consumption due to rain or cloudy weather. To do.

なお、夜間においては太陽電池3の発電電力はゼロなので、制御ユニット7は、夜間の間は商用電源(電力系統)9側から電力メータ8を介して交流電力の供給を受けるように制御する。   Since the generated power of the solar cell 3 is zero at night, the control unit 7 performs control so that AC power is supplied from the commercial power source (power system) 9 side via the power meter 8 during the night.

制御ユニット7には、消費電力や太陽電池3の発電電力の値などを表示する表示部、各種操作ボタン等を有する操作パネル18が接続されている。この操作パネル18の操作ボタンをユーザ(住居人)が操作することで、電力管理をユーザの判断で任意に行うこともできる。   Connected to the control unit 7 is an operation panel 18 having a display unit for displaying power consumption, the value of power generated by the solar cell 3, and various operation buttons. The user (resident) operates the operation buttons on the operation panel 18 so that power management can be arbitrarily performed based on the user's judgment.

例えば、制御ユニット7の比較で太陽電池3の発電電力の方が消費電力よりも大きく、かつこのときの余剰電力が空調機6の運転に必要な規定電力以上であると判断した場合において、上記したように余剰電力を空調機6側に供給することなくこの余剰電力を商用電源(電力系統)9側に逆潮流するように切り替えて、電力会社にその余剰電力を売電することもできる。   For example, when it is determined by comparison of the control unit 7 that the generated power of the solar cell 3 is larger than the consumed power, and the surplus power at this time is equal to or higher than the specified power required for the operation of the air conditioner 6, As described above, the surplus power can be switched to reverse flow to the commercial power source (power system) 9 side without supplying the surplus power to the air conditioner 6 side, and the surplus power can be sold to the power company.

また、ユーザ(住居人)による操作パネル18の操作によって、空調機6を商用電源(電力系統)9からの電力で任意に運転することもできる。   Further, the air conditioner 6 can be arbitrarily operated with electric power from the commercial power source (power system) 9 by the operation of the operation panel 18 by the user (resident).

次に、上記した本実施形態に係る電力管理システムによる電力管理制御について説明する。   Next, power management control by the power management system according to the above-described embodiment will be described.

例えば、図2に示すように、冬季の晴天時の昼間(日中)では太陽電池3によって発電された発電電力(図2の実線a)が時系列に得られる。また、住宅内の電力負荷機器10a,10b…への通電によって消費電力(図2の破線b)が時系列に変化する。なお、図2に示した時系列の消費電力は、昼間においては居住者が不在の場合である。また、図2では、太陽電池3の昼間の発電電力の方が朝方や夜間での消費電力よりも高い例であるが、消費電力は各電力負荷機器10a,10b…のON/OFF状況によって大きく変化する。   For example, as shown in FIG. 2, the generated power (solid line a in FIG. 2) generated by the solar cell 3 is obtained in time series during daytime (daytime) in fine weather in winter. Further, the power consumption (broken line b in FIG. 2) changes in time series by energizing the power load devices 10a, 10b. Note that the time-series power consumption shown in FIG. 2 is when no resident is present during the daytime. 2 shows an example in which the generated power in the daytime of the solar cell 3 is higher than the power consumption in the morning or at night, but the power consumption increases depending on the ON / OFF status of each power load device 10a, 10b. Change.

図2に示すように、昼間において居住者が不在であれば昼間の消費電力は小さく、帰宅して在室している夕方から夜にかけての消費電力が最も高くなる。このように、冬季の晴天時の昼間では、太陽電池3で発電される電力(発電電力)に大きな余剰電力が生じる。   As shown in FIG. 2, if no resident is present during the daytime, the power consumption during the daytime is small, and the power consumption from evening to night when returning home is highest. In this way, a large surplus electric power is generated in the electric power (generated electric power) generated by the solar cell 3 during the daytime in fine weather in winter.

そして、制御ユニット7は、PCS4から入力される太陽電池3の時系列の発電電力と、住宅内の電力負荷機器10a,10b…への通電によって消費される時系列の消費電力とを比較し、太陽電池3の発電電力の方が消費電力よりも大きく、かつこのときの余剰電力が空調機6の運転に必要な規定電力以上であると判断した場合、この余剰電力を分電盤5を介して空調機6側に供給するように制御する。この際、床面13の吹出し口15と吸込み口16は蓋(不図示)で閉じられている。   Then, the control unit 7 compares the time-series generated power of the solar cell 3 input from the PCS 4 with the time-series power consumption consumed by energizing the power load devices 10a, 10b. When it is determined that the generated power of the solar cell 3 is larger than the consumed power and the surplus power at this time is equal to or higher than the specified power required for the operation of the air conditioner 6, the surplus power is passed through the distribution board 5. And control to supply to the air conditioner 6 side. At this time, the outlet 15 and the inlet 16 of the floor 13 are closed by a lid (not shown).

そして、この余剰電力で昼間に空調機6を暖房運転することで、床下空間部11内の空気が暖められ、熱エネルギーとして蓄えられる。なお、本実施形態では、基礎側壁コンクリート1bの内面に基礎断熱材14を取り付けているので、床下空間部11内での蓄熱効率を高めることができる。また、蓄熱効率をより高めるために、床下空間部11内に蓄熱体(例えば、コンクリートや石、周知の潜熱蓄熱材など)を設置してもよい。   And the air in the underfloor space part 11 is warmed by heating operation of the air conditioner 6 in the daytime with this surplus electric power, and is stored as thermal energy. In addition, in this embodiment, since the foundation heat insulating material 14 is attached to the inner surface of the foundation side wall concrete 1b, the heat storage efficiency in the underfloor space part 11 can be improved. In order to further increase the heat storage efficiency, a heat storage body (for example, concrete, stone, a known latent heat storage material, or the like) may be installed in the underfloor space 11.

空調機6の運転は、余剰電力が空調機6の運転に必要な規定電力以下になるまで行われる。なお、余剰電力が空調機6の規定電力以下になる前でも、運転開始から所定時間経過後に空調機6の運転を停止するようにしてもよい。   The operation of the air conditioner 6 is performed until the surplus power becomes equal to or less than the specified power necessary for the operation of the air conditioner 6. The operation of the air conditioner 6 may be stopped after a predetermined time has elapsed since the start of operation even before the surplus power becomes equal to or less than the specified power of the air conditioner 6.

このように、この空調機6はヒートポンプ式なので、COP(仕事率)が4程度(もしくは4以上)と優れており、床下空間部11内に高効率で蓄熱することができる。更に、太陽電池3による発電電力の余剰電力で空調機6を暖房運転しているので、余剰電力を無駄にすることなく有効に利用することが可能となる。   Thus, since this air conditioner 6 is a heat pump type, COP (work rate) is excellent at about 4 (or 4 or more), and heat can be stored in the underfloor space 11 with high efficiency. Furthermore, since the air conditioner 6 is heated with surplus power generated by the solar cell 3, the surplus power can be effectively used without being wasted.

そして、夕方から夜にかけて(夕方だけ、或いは夜間だけでもよい)、床面13の吹出し口15と吸込み口16を閉じている蓋(不図示)を、電動アクチュエータ(不図示)の駆動、又はユーザ(住居人)による手動操作で開く。そして、商用電源(電力系統)9からの交流電力で室内機6aの吸入用のファン(不図示)を回転駆動し、吸込み口16と吸込み用パイプ17を通して床面13上の床上空間部(リビングルームなどの室内)19の空気を吸入することで、床下空間部11と床上空間部19との間で空気の循環が行われる。なお、この場合には室内機6aの吸入用のファン(不図示)を回転駆動するだけなので、消費電力は小さい。   Then, from the evening to the night (only in the evening or at night), the lid (not shown) that closes the outlet 15 and the inlet 16 on the floor 13 is driven by an electric actuator (not shown) or the user. Open manually by (resident). Then, a suction fan (not shown) of the indoor unit 6 a is rotationally driven by AC power from the commercial power source (power system) 9, and the space above the floor (living room) on the floor surface 13 through the suction port 16 and the suction pipe 17. The air is circulated between the underfloor space portion 11 and the above-floor space portion 19 by inhaling air in the room 19). In this case, the power consumption is small because only the suction fan (not shown) of the indoor unit 6a is rotationally driven.

これにより、床下空間部11内に蓄熱されている熱エネルギーによって暖められた空気が、吹出し口15を通して床面13上の床上空間部19に吹き出され、更に吸込み口16と吸込み用パイプ17を通して床下空間部11に戻されるので、暖められた空気が効果的に床上空間部19に供給され、床上空間部19を暖めることができる。   As a result, the air heated by the heat energy stored in the underfloor space 11 is blown out to the upper space 19 on the floor surface 13 through the blowout port 15, and further under the floor through the suction port 16 and the suction pipe 17. Since it returns to the space part 11, the warmed air is effectively supplied to the floor space part 19, and the floor space part 19 can be warmed.

図3は、夕方から夜にかけて、床下空間部11内に蓄熱されている熱エネルギーによって暖められた空気を、床面13上の床上空間部(室内)19に供給したとき(図3の実線a)と、供給しなかったとき(図3の破線b)の室内温度の変化を示した測定結果である。   FIG. 3 shows a case where the air heated by the heat energy stored in the underfloor space portion 11 is supplied from the evening to the night to the above-floor space portion (indoor) 19 on the floor surface 13 (solid line a in FIG. 3). ) And measurement results showing changes in room temperature when not supplied (broken line b in FIG. 3).

このように、床下空間部11内に蓄熱されている熱エネルギーによって暖められた空気を床上空間部19に供給することで、夕方から夜にかけての室温の低下を緩やかに抑えることができる。   In this way, by supplying the air heated by the thermal energy stored in the underfloor space 11 to the above-floor space 19, it is possible to moderately suppress a decrease in room temperature from evening to night.

また、床下空間部11内の空調機6は商用電源(電力系統)9でも運転可能なので、この空調機6を主となる室内空調機として、夕方から夜にかけて暖房運転することができる。この際、吸込み口16に接続された吸込み用パイプ17が室内機6aの吸入口に連結されているので、室内機6aで吸気することで床上空間部19内の空気と床下空間部11内の空気が効果的に循環され、床上空間部19の温度を短時間で上げることができる。   Moreover, since the air conditioner 6 in the underfloor space 11 can be operated by a commercial power source (electric power system) 9, the air conditioner 6 can be operated as a main indoor air conditioner from the evening to the night. At this time, since the suction pipe 17 connected to the suction port 16 is connected to the suction port of the indoor unit 6a, the air in the floor space 19 and the floor space 11 are sucked by the indoor unit 6a. Air is circulated effectively, and the temperature of the floor space 19 can be raised in a short time.

更に、上記したように床下空間部11内に蓄熱されている熱エネルギーによって暖められた空気が床上空間部19に供給されているので、低消費電力で空調機6を運転(低出力運転)しても床上空間部19を十分に暖房することが可能となり、電力料金の削減も図ることができる。   Further, as described above, since the air heated by the thermal energy stored in the underfloor space 11 is supplied to the above-floor space 19, the air conditioner 6 is operated (low power operation) with low power consumption. However, it is possible to sufficiently heat the floor space portion 19 and to reduce the power charge.

1 戸建住宅
1a 基礎底盤コンクリート(基礎底盤部)
1b 基礎側壁コンクリート(基礎側壁部)
2 屋根
3 太陽電池
4 PCS
5 分電盤
6 空調機
6a 室内機
7 制御ユニット(制御手段)
9 商用電源(電力系統)
11 床下空間部
14 基礎断熱材
19 床上空間部(室内)
1 Detached house 1a Foundation bottom concrete (foundation base)
1b Foundation side wall concrete (foundation side wall)
2 Roof 3 Solar cell 4 PCS
5 Distribution board 6 Air conditioner 6a Indoor unit 7 Control unit (control means)
9 Commercial power supply (electric power system)
11 Below-floor space 14 Basic insulation 19 Above-floor space (indoor)

Claims (5)

太陽光によって発電する太陽電池と、
建物の床下空間部に設置された空調手段と、
前記太陽電池の発電電力と、建物内の電力負荷機器で消費される消費電力とを比較し、前記太陽電池の発電電力の方が前記消費電力よりも大きくて余剰電力が有り、かつこの余剰電力が前記空調手段を運転する規定電力以上であると判断した場合に、前記余剰電力で前記空調手段を運転するように制御する制御手段とを備え、
前記制御手段による前記制御により前記余剰電力で前記空調手段を運転したときに得られる熱エネルギーを、前記床下空間部内に蓄熱させることを特徴とする電力管理システム。
Solar cells that generate electricity by sunlight,
Air-conditioning means installed in the space under the floor of the building;
The generated power of the solar cell is compared with the consumed power consumed by the power load device in the building, the generated power of the solar cell is larger than the consumed power and there is surplus power, and this surplus power Control means for controlling the air-conditioning means to operate with the surplus power when it is determined that the air-conditioning means is equal to or higher than the specified power for operating the air-conditioning means,
The power management system characterized in that heat energy obtained when the air conditioning means is operated with the surplus power by the control by the control means is stored in the underfloor space.
前記太陽電池が発電を行う昼間に、前記床下空間部内に蓄熱された前記熱エネルギーによって暖められた空気は、夕方又は/及び夜間に前記床下空間部内から建物内の室内に供給されることを特徴とする請求項1に記載の電力管理システム。   During the daytime when the solar cell generates power, the air heated by the thermal energy stored in the underfloor space is supplied from the underfloor space into the interior of the building in the evening or / and at night. The power management system according to claim 1. 前記床下空間部は、前記建物の床面と基礎底盤部と基礎側壁部とで囲まれた空間であり、少なくとも前記基礎側壁部の内面に基礎断熱材が取り付けられている特徴とする請求項1又は2に記載の電力管理システム。   2. The underfloor space portion is a space surrounded by a floor surface, a foundation bottom portion, and a foundation side wall portion of the building, and a basic heat insulating material is attached to at least an inner surface of the foundation side wall portion. Or the power management system of 2. 前記空調手段は、商用電源の電力系統によっても運転可能であることを特徴とする請求項1乃至3のいずれか一項に記載の電力管理システム。   The power management system according to any one of claims 1 to 3, wherein the air conditioning unit can be operated by a power system of a commercial power source. 前記空調手段は、ヒートポンプ式の空調機であることを特徴とする請求項1乃至4のいずれか一項に記載の電力管理システム。   5. The power management system according to claim 1, wherein the air conditioning unit is a heat pump type air conditioner.
JP2013001730A 2013-01-09 2013-01-09 Power management system Active JP6105939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001730A JP6105939B2 (en) 2013-01-09 2013-01-09 Power management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001730A JP6105939B2 (en) 2013-01-09 2013-01-09 Power management system

Publications (2)

Publication Number Publication Date
JP2014134326A true JP2014134326A (en) 2014-07-24
JP6105939B2 JP6105939B2 (en) 2017-03-29

Family

ID=51412744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001730A Active JP6105939B2 (en) 2013-01-09 2013-01-09 Power management system

Country Status (1)

Country Link
JP (1) JP6105939B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065682A (en) * 2014-09-25 2016-04-28 大阪瓦斯株式会社 Fuel cell device utilization-type air conditioning system
CN105683665A (en) * 2016-01-17 2016-06-15 吴鹏 Energy-saving air conditioning system
JP2016123241A (en) * 2014-12-25 2016-07-07 株式会社村田製作所 Power conditioner
CN106014640A (en) * 2016-06-27 2016-10-12 黄友锋 Load adjustment and control method for electric power system
JP2018004331A (en) * 2016-06-28 2018-01-11 トヨタホーム株式会社 Installation structure of power management device and building
WO2020090112A1 (en) * 2018-11-02 2020-05-07 三菱電機株式会社 Air conditioning device
WO2020195338A1 (en) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 Air conditioning system controller
CN113108442A (en) * 2021-04-21 2021-07-13 珠海格力电器股份有限公司 Capacity allocation method and apparatus, multi-split air conditioner, and storage medium
WO2023119688A1 (en) * 2021-12-23 2023-06-29 貴宏 田中 Solar power generation system, renewable energy power generation system, and method for controlling load in renewable energy power generation system
JP7449178B2 (en) 2020-06-16 2024-03-13 積水化学工業株式会社 Residential air conditioning equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155937A (en) * 2003-11-20 2005-06-16 Sekisui Chem Co Ltd Air conditioner, and heating apparatus
JP2006153351A (en) * 2004-11-29 2006-06-15 Panahome Corp Temperature control structure and method for building
JP2012100420A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Energy management system and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155937A (en) * 2003-11-20 2005-06-16 Sekisui Chem Co Ltd Air conditioner, and heating apparatus
JP2006153351A (en) * 2004-11-29 2006-06-15 Panahome Corp Temperature control structure and method for building
JP2012100420A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Energy management system and program

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065682A (en) * 2014-09-25 2016-04-28 大阪瓦斯株式会社 Fuel cell device utilization-type air conditioning system
JP2016123241A (en) * 2014-12-25 2016-07-07 株式会社村田製作所 Power conditioner
CN105683665A (en) * 2016-01-17 2016-06-15 吴鹏 Energy-saving air conditioning system
CN106014640A (en) * 2016-06-27 2016-10-12 黄友锋 Load adjustment and control method for electric power system
JP2018004331A (en) * 2016-06-28 2018-01-11 トヨタホーム株式会社 Installation structure of power management device and building
JPWO2020090112A1 (en) * 2018-11-02 2021-06-10 三菱電機株式会社 Air conditioner
WO2020090112A1 (en) * 2018-11-02 2020-05-07 三菱電機株式会社 Air conditioning device
WO2020195338A1 (en) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 Air conditioning system controller
JPWO2020195338A1 (en) * 2019-03-26 2021-11-04 パナソニックIpマネジメント株式会社 Air conditioning system controller
JP7022906B2 (en) 2019-03-26 2022-02-21 パナソニックIpマネジメント株式会社 Air conditioning system controller
JP7449178B2 (en) 2020-06-16 2024-03-13 積水化学工業株式会社 Residential air conditioning equipment
CN113108442A (en) * 2021-04-21 2021-07-13 珠海格力电器股份有限公司 Capacity allocation method and apparatus, multi-split air conditioner, and storage medium
WO2023119688A1 (en) * 2021-12-23 2023-06-29 貴宏 田中 Solar power generation system, renewable energy power generation system, and method for controlling load in renewable energy power generation system

Also Published As

Publication number Publication date
JP6105939B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6105939B2 (en) Power management system
Wang et al. Case study of zero energy house design in UK
US20020117166A1 (en) Solar-system house
Testi et al. Cost-optimal sizing of solar thermal and photovoltaic systems for the heating and cooling needs of a nearly Zero-Energy Building: the case study of a farm hostel in Italy
JPWO2017195885A1 (en) Floor air conditioning system
Arteconi et al. Demand side management of a building summer cooling load by means of a thermal energy storage
JP2010115043A (en) Charger, building including the same, and hot-water generator
CN111023259A (en) Passive room system
CN204902073U (en) Photovoltaic radiation air conditioning system
JPH0595639A (en) Power supply system in highly-airtight heat-insulated residence
JP2010159889A (en) Multipurpose heat storage device combining high-temperature solar heat collector with electric heater
CN103633724A (en) Solar energy air-conditioner power supply system
WO2017120950A1 (en) Smart energy-saving air-conditioning system
JP6265587B2 (en) Air conditioning system for apartment houses
CN205825309U (en) Photovoltaic generation refrigerated air-conditioning system
JP2007166833A (en) Collective housing
JP2006097425A (en) Method of ventilating solar system house
JP2014017068A (en) Exhaust heat utilization system of power storage device
JP6423609B2 (en) Energy utilization system and building using solar power generation heat collecting composite panel
JP6071474B2 (en) Air conditioning equipment
JP2010165593A (en) Storage battery housing structure, and building
JP5820612B2 (en) Air conditioning system
Abdullah et al. Comparison of Mainsversus Standalone PV Electricity to Powera Residentialstandalone Solar Absorption Chillerin Australia
Thür et al. Smart grid and PV driven heat pump as thermal battery in small buildings for optimized electricity consumption
Zheng et al. Design and optimization of zero-energy-consumption based solar energy residential building systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R151 Written notification of patent or utility model registration

Ref document number: 6105939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151