WO2020090092A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020090092A1
WO2020090092A1 PCT/JP2018/040751 JP2018040751W WO2020090092A1 WO 2020090092 A1 WO2020090092 A1 WO 2020090092A1 JP 2018040751 W JP2018040751 W JP 2018040751W WO 2020090092 A1 WO2020090092 A1 WO 2020090092A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
transmission
information
resource
unit
Prior art date
Application number
PCT/JP2018/040751
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP18938920.8A priority Critical patent/EP3876626A4/en
Priority to PCT/JP2018/040751 priority patent/WO2020090092A1/ja
Publication of WO2020090092A1 publication Critical patent/WO2020090092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (3GPP (Third Generation Partnership Project) Rel. (Release) 8, 9).
  • ⁇ LTE successor system for example, 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), 3GPP Rel.15 or later
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later is also under consideration.
  • RLM Radio Link Monitoring
  • RLM Radio Link Monitoring
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • BFR beam failure recovery
  • the UE detects a beam failure using the configured reference signal resource.
  • the UE corresponds to the transmission configuration indication (TCI: Transmission Configuration Indication) state (TCI-state) of the control resource set (CORESET: COntrol REsource SET). It is considered to use up to two reference signal indexes as a set of indexes corresponding to the resource.
  • TCI Transmission Configuration Indication
  • CORESET COntrol REsource SET
  • the UE when the resource is not set for the UE and more than two CORESETs are set, the UE is included in the set from two or more indexes corresponding to these CORESETs. You need to determine the index up to.
  • an object of the present disclosure is to provide a user terminal and a wireless communication method that can appropriately detect a beam failure.
  • a user terminal includes a receiver that receives a reference signal (RS) for beam failure detection (BFD: Beam Failure Detection), and a set of RS indexes corresponding to the BFD resource. Up to a predetermined number for determining the RS index to be included in the set in consideration of whether the TCI (Transmission Configuration Indication) state is set in CORESET (COntrol REsource SET) when is not set by upper layer signaling. And a control unit for selecting CORESET.
  • RS reference signal
  • BFD Beam Failure Detection
  • a beam obstruction can be appropriately detected.
  • FIG. 1 is a diagram showing an example of a beam recovery procedure in Rel-15 NR.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
  • reception processing for example, reception, demapping, demodulation, and decoding
  • TCI state Transmission Configuration Indication state
  • the TCI state is information related to signal / channel pseudo collocation (QCL: Quasi-Co-Location), and may also be called spatial reception parameter, spatial relation information (spatial relation info), or the like.
  • the TCI state may be set in the UE per channel or per signal.
  • QCL is an index showing the statistical properties of signals / channels. For example, when a certain signal / channel and another signal / channel have a QCL relationship, the Doppler shift, the Doppler spread, and the average delay (average delay) between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial reception parameter (Spatial Rx Parameter)) are the same (meaning that at least one of them is QCL). You may.
  • the spatial reception parameter may correspond to the reception beam of the UE (for example, reception analog beam), and the beam may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined as the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, which parameters are shown below: QCL type A: Doppler shift, Doppler spread, average delay and delay spread, ⁇ QCL Type B: Doppler shift and Doppler spread, QCL type C: Doppler shift and average delay, QCL type D: spatial reception parameter.
  • QCL assumption The UE's assumption that a given CORESET, channel or reference signal has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal is called QCL assumption. May be.
  • the UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state is, for example, between a target channel (or a reference signal (RS: Reference Signal) for the channel) and another signal (for example, another downlink reference signal (DL-RS: Downlink Reference Signal)). It may be information about QCL.
  • the TCI state may be set (instructed) by upper layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or the like, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Control Element
  • MAC PDU Protocol Data Unit
  • the broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other System Information) etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • the channel for which the TCI state is set is, for example, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a downlink control channel (PDCCH: Physical Downlink Control Channel), an uplink shared channel (PUSCH: Physical Uplink Shared Channel), It may be at least one of the uplink control channels (PUCCH: Physical Uplink Control Channel).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (SSB: Synchronization Signal Block), a channel state information reference signal (CSI-RS: Channel State Information Reference Signal), a measurement reference signal (SRS: Sounding). It may be at least one of Reference Signal).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • SRS Sounding
  • SSB is a signal block including at least one of a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a broadcast channel (PBCH: Physical Broadcast Channel).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the TCI state information element (“TCI-state IE” of RRC) set by higher layer signaling may include one or more pieces of QCL information (“QCL-Info”).
  • the QCL information may include at least one of information regarding DL-RS (DL-RS related information) having a QCL relationship and information indicating a QCL type (QCL type information).
  • the DL-RS related information includes information such as a DL-RS index (eg, SSB index, non-zero power CSI-RS resource ID), a cell index where the RS is located, and a BWP (Bandwidth Part) index where the RS is located. May be included.
  • the UE detects the SSB and based on the information (eg, MIB) transmitted by the PBCH, the control resource set (eg, SIB1 (System Information Block 1), RMSI (Remaining Minimum System Information)) based on the information (eg, MIB).
  • SIB1 System Information Block 1
  • RMSI Remaining Minimum System Information
  • CORESET COntrol REsource SET
  • CORESET corresponds to a PDCCH allocation candidate area.
  • CORESET for SIB1 (or RMSI) may be referred to as CORESET for PDCCH (DCI) used for PDSCH schedule carrying SIB1.
  • DCI PDCCH
  • CORESET # 0 may be associated with one or more search space sets.
  • the search space set may include at least one of a common search space set (common search space set) and a UE-specific search space set (UE specific search space set).
  • search space set and search space may be read as each other.
  • the search space associated with CORESET # 0 is search space # 0 (searchSpaceZero), search space for SIB1 (type 0 PDCCH common search space, searchSpaceSIB), OSI search space (type 0A PDCCH common search space, searchSpaceOtherSystemInformation). ), A search space for paging (type 2 PDCCH common search space, pagingSearchSpace), a random access search space (type 1 PDCCH common search space, ra-SearchSpace), and the like.
  • CORESET # 0 may be determined.
  • the UE determines at least one of frequency resource, time resource, minimum channel bandwidth and subcarrier spacing (SCS) of CORESET # 0 based on these indexes or parameters. May be.
  • SCS subcarrier spacing
  • the bandwidth of CORESET # 0 may correspond to the bandwidth of the BWP for initial access (also referred to as the initial BWP).
  • the UE may set an available TCI state by using RRC signaling for CORESET other than CORESET # 0, and one or more TCI states among the set TCI states may be set based on MAC CE. You may activate.
  • the MAC CE may be called TCI State Indication for UE-specific PDCCH MAC CE (TCI State Indication for UE-specific PDCCH MAC CE).
  • TCI State Indication for UE-specific PDCCH MAC CE TCI State Indication for UE-specific PDCCH MAC CE.
  • the UE may monitor CORESET based on the active TCI state corresponding to the CORESET.
  • the antenna port of the PDCCH demodulation reference signal (DMRS: Demodulation Reference Signal) in CORESET # 0 (or the search space associated with CORESET # 0) and the detected SSB have a QCL relationship.
  • DMRS Demodulation Reference Signal
  • the UE assumes that a predetermined CORESET, channel or reference signal has a specific QCL (for example, QCL type D) relationship with another CORESET, channel or reference signal, as a QCL assumption. May be called.
  • the QCL assumption in CORESET # 0 may be changed according to the random access procedure.
  • the SSB or CSI-RS corresponding to the random access channel (PRACH: Physical Random Access Channel) to be transmitted has a specific QCL relationship (for example, QCL type D) with the DMRS of the PDCCH of CORESET # 0. You may assume.
  • the signal that is DMRS and QCL of PDCCH may be referred to as the QCL source of PDCCH.
  • the UE may set the correspondence between the PRACH preamble and resources for non-collision random access (CFRA: Contention Free Random Access) and one or more SSBs or CSI-RSs by upper layer signaling.
  • CFRA Contention Free Random Access
  • the UE may measure the SSB or CSI-RS and may transmit the PRACH using the PRACH resource corresponding to the specific SSB or CSI-RS based on the measurement result.
  • the UE may determine the specific SSB or CSI-RS as the QCL source for CORESET # 0 after CFRA.
  • the UE may determine the SSB selected (or determined) during collision-based random access (CBRA: Contention Based Random Access) as the QCL source for CORESET # 0 after CBRA.
  • CBRA collision-based Random Access
  • BFR In NR, it is considered to perform communication using beamforming. Further, in order to suppress the occurrence of radio link failure (RLF), when the quality of a specific beam deteriorates, switching to another beam (beam recovery (BR), beam failure recovery (BR: Beam Recovery) BFR: Beam Failure Recovery), L1 / L2 (Layer 1 / Layer 2) beam recovery, etc.) procedures are under consideration. Note that the BFR procedure may be simply called BFR.
  • RLF radio link failure
  • the beam failure in the present disclosure may be called a link failure.
  • FIG. 1 is a diagram showing an example of a beam recovery procedure in Rel-15 NR.
  • the number of beams and the like are examples, and the number is not limited to this.
  • the UE performs measurement based on RS resources transmitted using two beams.
  • the RS may be at least one of SSB and CSI-RS.
  • the RS measured in step S101 may be referred to as an RS (BFD-RS: Beam Failure Detection RS) for beam obstacle detection. Beam obstruction detection may simply be referred to as obstruction detection.
  • step S102 the UE cannot detect the BFD-RS (or the reception quality of the RS deteriorates) because the radio wave from the base station is disturbed.
  • Such interference may occur due to the effects of obstacles, fading, interference, etc. between the UE and the base station, for example.
  • the UE detects a beam obstacle when a predetermined condition is satisfied. For example, when the BLER (Block Error Rate) is less than the threshold for all the set BFD-RSs, the UE may detect the occurrence of a beam failure. When the occurrence of a beam failure is detected, the lower layer (physical (PHY) layer) of the UE may notify (instruct) the upper layer (MAC layer) of the beam failure instance.
  • BLER Block Error Rate
  • the criterion for judgment is not limited to BLER, but may be reference signal received power (L1-RSRP: Layer 1 Reference Signal Received Power) in the physical layer.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • the RSRP of the present disclosure may be replaced with RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), and other information related to power or quality.
  • the beam obstacle detection may be performed based on the PDCCH or the like.
  • the BFD-RS may be expected to be the DMRS and QCL of the PDCCH monitored by the UE.
  • BFD-RS eg, RS index, resource, number, port number, precoding, etc.
  • BFD beam fault detection
  • the information on the BFD-RS may be replaced with the information on the BFD resource, the information on the BFD-RS resource, and the like.
  • the MAC layer of the UE may start a predetermined timer (may be called a beam failure detection timer) when receiving the beam failure instance notification from the PHY layer of the UE.
  • a predetermined timer may be called a beam failure detection timer
  • the MAC layer of the UE receives the beam failure instance notification a certain number of times (for example, "beamFailureInstanceMaxCount" set in RRC) before the timer expires, the UE triggers BFR (for example, one of the random access procedures described below). May be started).
  • the base station may determine that the UE has detected a beam failure when there is no notification from the UE or when a predetermined signal (beam recovery request in step S104) is received from the UE.
  • step S103 the UE starts searching for a new candidate beam (new candidate beam) to be newly used for communication in order to recover the beam.
  • the UE may select a new candidate beam corresponding to the RS by measuring the predetermined RS.
  • the RS measured in step S103 may be called an RS (NCBI-RS: New Candidate Beam Identification RS) for identifying a new candidate beam, a CBI-RS, a CB-RS (Candidate Beam RS), or the like.
  • NCBI-RS may be the same as or different from BFD-RS.
  • the new candidate beam may be simply called a candidate beam.
  • the UE may determine a beam corresponding to an RS that satisfies a predetermined condition as a new candidate beam.
  • the UE may determine the new candidate beam based on, for example, the RS whose L1-RSRP exceeds the threshold value among the set NCBI-RSs.
  • the criterion (criteria) for the judgment is not limited to L1-RSRP.
  • L1-RSRP for SSB may be referred to as SS-RSRP.
  • L1-RSRP for CSI-RS may be referred to as CSI-RSRP.
  • NCBI-RS for example, RS resource, number, port number, precoding, etc.
  • NCBI new candidate beam identification
  • the information regarding NCBI-RS may be acquired based on the information regarding BFD-RS.
  • the information on NCBI-RS may be called information on NBCI resources.
  • BFD-RS may be replaced with a radio link monitoring reference signal (RLM-RS: Radio Link Monitoring RS).
  • RLM-RS Radio Link Monitoring RS
  • step S104 the UE that has identified the new candidate beam transmits a beam recovery request (BFRQ: Beam Failure Recovery reQuest).
  • the beam recovery request may be called a beam recovery request signal, a beam failure recovery request signal, or the like.
  • the BFRQ may be transmitted using at least one of PUCCH, PRACH, PUSCH, and configured grant PUSCH, for example.
  • the UE may transmit the preamble (also referred to as RA preamble, PRACH, etc.) as BFRQ using the PRACH resource.
  • Information regarding the correspondence between the detected DL-RS (beam) and PRACH resource (RA preamble) may be set in the UE by, for example, higher layer signaling (RRC signaling, etc.).
  • BFRQ may include information on the new candidate beam specified in step S103.
  • Resources for BFRQ may be associated with the new candidate beam.
  • Beam information includes a beam index (BI: Beam Index), a port index of a predetermined reference signal, a resource index (for example, CSI-RS resource indicator (CRI: CSI-RS Resource Indicator), SSB resource indicator (SSBRI)), etc. May be used for notification.
  • BI Beam Index
  • CRI CSI-RS Resource Indicator
  • SSBRI SSB resource indicator
  • the base station that has detected the BFRQ transmits a response signal to the BFRQ from the UE (may be called a gNB response or the like).
  • the response signal may include reconfiguration information for one or more beams (for example, DL-RS resource configuration information).
  • the UE may determine the transmit beam and / or the receive beam to use based on the beam reconfiguration information.
  • the response signal may be transmitted in the UE common search space of PDCCH, for example.
  • the response signal is notified using a DCI (PDCCH) having a Cyclic Redundancy Check (CRC) scrambled by a UE identifier (eg, Cell-Radio RNTI (C-RNTI: Cell-Radio RNTI)) May be done.
  • a UE identifier eg, Cell-Radio RNTI (C-RNTI: Cell-Radio RNTI)
  • the UE may determine that the contention resolution has succeeded.
  • the UE may monitor the response signal based on at least one of CORESET for BFR and search space set for BFR.
  • a period for the UE to monitor a response from the base station (eg, gNB) to the BFRQ may be set.
  • the period may be referred to as, for example, a gNB response window, a gNB window, a beam recovery request response window, or the like.
  • the UE may retransmit the BFRQ if there is no gNB response detected within the window period.
  • the UE may send a message indicating that the beam reconfiguration is completed to the base station.
  • the message may be transmitted by PUCCH or PUSCH, for example.
  • the beam recovery success may represent, for example, the case where step S106 is reached.
  • the beam failure failure may correspond to, for example, that the BFRQ transmission reaches a predetermined number of times or that the beam failure recovery timer (Beam-failure-recovery-Timer) expires.
  • CORESET # 0 it is being considered to use CORESET # 0 not only for initial access but also for unicast PDCCH after RRC connection. However, in order to allocate the unicast PDCCH to CORESET # 0, it is necessary to perform the BFR procedure for the PDCCH of CORESET # 0.
  • the base station sets up to two BFD resources per BWP for the UE using upper layer signaling.
  • the UE may be provided with resources related to the purpose of the beam failure (“beamFailure”) in the failure detection resource setting information (eg, upper layer parameters “failureDetectionResourcesToAddModList”, “failureDetectionResources”, etc.). ..
  • the UE may be provided with the set of indexes corresponding to the resources for BFD by the higher layer parameter.
  • the set may be, for example, a set of periodic CSI-RS resource configuration indices (eg, non-zero power CSI-RS resource ID).
  • the set may be referred to as a set q 0 bar (here, q 0 bar is a notation in which “q 0 ” is overlined), an index set, and the like.
  • the set is simply referred to as “set q 0 ”.
  • the UE may detect the beam obstacle by performing L1-RSRP measurement or the like using the RS resource corresponding to the index included in the set q 0 .
  • providing the above-described upper layer parameter indicating the information of the index corresponding to the BFD resource is interchangeable with setting the BFD resource, setting the BFD-RS, and the like. May be
  • the UE when the UE is not configured with the BFD resource, the UE has the same value as the RS index in the RS set indicated by the TCI state of CORESET used for monitoring the PDCCH periodically. It is under consideration to determine the index of the setting of the appropriate CSI-RS resource to be included in the set q 0 .
  • the UE expects the set q 0 to contain up to two RS indexes. Note that if one TCI state has two RS indexes, it is considered that the set q 0 includes the RS index corresponding to the setting of the QCL type D for the corresponding TCI state.
  • NR can set more than two (eg, three) CORESETs per BWP for the UE. Further, for CORESET, one or more TCI states indicating the QCL relationship between the DMRS port of the PDCCH and a predetermined DL-RS (CSI-RS, SSB, etc.) may be set, or may not be set.
  • CSI-RS CSI-RS, SSB, etc.
  • the UE is set to two CORESETs corresponding to these CORESETs. From the higher RS index, up to two indices to include in the set q 0 need to be determined.
  • the inventors of the present invention have come up with a method of determining a reference signal index for appropriately detecting a beam obstruction.
  • CORESET in which the TCI state is not set may be read as CORESET # 0 or may be read as CORESET other than CORESET # 0. Further, “CORESET in which the TCI state is not set” may be replaced with CORESET in which the TCI state is set but the TCI state is not instructed or activated.
  • the UE when the UE is not configured with the BFD resource, the UE selects the CORESET used for monitoring the PDCCH by at least one of the following embodiments 1-1 and 1-2 (hereinafter, The indices of the RSs respectively specified based on the two CORESETs (also referred to as decisions) may be decided to be included in the set q 0 .
  • the UE determines two CORESETs from the smaller monitoring cycle of the related (corresponding) search space set. If the monitoring intervals of the search space sets associated with the two CORESETs are the same, the CORESET with the larger CORESET ID may be selected, or both may be selected.
  • the UE determines two CORESETs from the smaller CORESET having a smaller monitoring period of the related (corresponding) search space set. If the monitoring intervals of the search space sets associated with the two CORESETs are the same, the CORESET with the larger CORESET ID may be selected, or both may be selected.
  • the UE may include, for example, the index of the RS provided by the active TCI state of the CORESET in the set q 0 .
  • the UE may include, for example, the index of the RS provided by the QCL assumption of the CORESET in the set q 0 .
  • the determination method of CORESET for BFD when the resource for BFD is not set is compatible with the determination method of CORESET for RLM when RLM-RS is not set. Can be higher.
  • link recovery using the same CORESET can be made redundant.
  • the BFD completes the processing in L1 / L2 (layer 1 / layer 2), so that quick link recovery can be expected.
  • the UE when the UE is not configured with the BFD resource, the UE selects CORESET used for monitoring the PDCCH by at least one of the following embodiments 2-1 and 2-2.
  • the index of each RS provided by the active TCI states of one CORESET may be determined to be included in the set q 0 .
  • the UE determines two CORESETs from the smaller CORESET ID among the CORESETs in which the TCI state is set.
  • the UE determines two CORESETs from the smaller CORESET IDs among the CORESETs regardless of whether the TCI state is set.
  • the UE may include, for example, the index of the RS provided by the active TCI state of the CORESET in the set q 0 .
  • the UE may include, for example, the index of the RS provided by the QCL assumption of the CORESET in the set q 0 .
  • the method of determining the CORESET for the BFD when the BFD resource is not set is different from the method of determining the CORESET for the RLM when the RLM-RS is not set. be able to.
  • the BFR can cover a broken link that is not covered by the RLM.
  • the TCI state is set first
  • the second is the small monitoring cycle
  • the third is the CORESET selection giving priority to the size of the CORESET ID.
  • CORESET selection in which the monitoring cycle is firstly small and the size of CORESET ID is secondly prioritized is shown.
  • the TCI state is set first, and the CORESET selection that gives priority to the small CORESET ID is shown second.
  • CORESET selection giving priority to the small CORESET ID is shown.
  • the UE may select CORESET used for monitoring the PDCCH when the resource for BFD is not configured, based on any of the following elements or a combination thereof: ⁇ TCI status is set / not in CORESET, ⁇ Size / Smallness of CORESET ID, -The size / smallness of the monitoring cycle of the search space set related to CORESET, ⁇ Size (length) / smallness (shortness) of CSI-RS cycle for BFD detection, Which search space set is associated with CORESET (eg, common search space set, UE-specific search space set, etc.).
  • Priority order of these elements may be arbitrary.
  • the BFD of CORESET # 0, which is considered to be the most important, can be suitably implemented.
  • the BFD of PDCCH which is considered to be relatively poor in quality, can be suitably implemented.
  • more accurate (highly reliable) BFD can be preferably implemented.
  • BFD of PDCCH By prioritizing CORESET corresponding to the common search space set, BFD of PDCCH, which is generally considered to be more important, can be implemented. On the other hand, by prioritizing CORESET corresponding to the UE-specific search space set, BFD of PDCCH that is important for the schedule such as PDSCH and PUSCH including TCI status indication MAC CE can be implemented.
  • the RS index included in the set q 0 may be limited to an index corresponding to the active TCI state of CORESET, or all the TCI states set in CORESET (or assumed). (QCL state).
  • the “two” may be replaced by a predetermined number larger than two.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using LTE (Long Term Evolution), 5G NR (5th generation mobile communication system New Radio), etc. specified by 3GPP (Third Generation Partnership Project) ..
  • the wireless communication system 1 may support dual connectivity (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)) between multiple RATs (Radio Access Technology).
  • MR-DC has dual connectivity (EN-DC: E-UTRA-NR Dual Connectivity) between LTE (E-UTRA: Evolved Universal Terrestrial Radio Access) and NR, and dual connectivity (NE-DC: NR) between NR and LTE.
  • -E-UTRA Dual Connectivity etc.
  • the LTE (E-UTRA) base station (eNB) is the master node (MN: Master Node), and the NR base station (gNB) is the secondary node (SN: Secondary Node).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations within the same RAT (for example, dual connectivity (NN-DC: NR-NR Dual Connectivity) in which both MN and SN are NR base stations (gNB)). ) May be supported.
  • dual connectivity for example, dual connectivity (NN-DC: NR-NR Dual Connectivity) in which both MN and SN are NR base stations (gNB)).
  • gNB NR base stations
  • the radio communication system 1 includes a base station 11 forming a macro cell C1 having a relatively wide coverage and a base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement and the number of each cell and user terminal 20 are not limited to those shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation) using a plurality of component carriers (CC: Component Carrier) and dual connectivity (DC).
  • Carrier Aggregation Carrier Aggregation
  • CC Component Carrier
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (FR1: Frequency Range 1) and the second frequency band (FR2: Frequency Range 2).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may perform communication by using at least one of time division duplex (TDD: Time Division Duplex) and frequency division duplex (FDD: Frequency Division Duplex) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an IAB (Integrated Access Backhaul) donor and the base station 12 corresponding to the relay station (IAB) is the IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one of EPC (Evolved Packet Core), 5GCN (5G Core Network), NGC (Next Generation Core), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM) based wireless access method may be used.
  • OFDM Orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiplex
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • other wireless access methods such as another single carrier transmission method and another multicarrier transmission method may be used as the UL and DL wireless access methods.
  • downlink shared channels PDSCH: Physical Downlink Shared Channel
  • broadcast channels PBCH: Physical Broadcast Channel
  • downlink control channels PUCCH: Physical Downlink Control
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH) shared by each user terminal 20 are used. : Physical Random Access Channel) etc. may be used.
  • User data, upper layer control information, SIB (System Information Block), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include downlink control information (DCI: Downlink Control Information) including scheduling information of at least one of PDSCH and PUSCH, for example.
  • DCI Downlink Control Information
  • the DCI for scheduling PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI for scheduling PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set COntrol REsource SET
  • a search space search space
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESET associated with a search space based on the search space settings.
  • One SS may correspond to PDCCH candidates that correspond to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information CSI: Channel State Information
  • delivery confirmation information eg, HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement), ACK / NACK, etc.
  • scheduling request SR: Scheduling Request
  • a random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding “link”. Further, it may be expressed without adding "Physical" to the head of each channel.
  • a synchronization signal (SS: Synchronization Signal), a downlink reference signal (DL-RS: Downlink Reference Signal), etc. may be transmitted.
  • DL-RS a cell-specific reference signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS demodulation reference signal
  • Reference Signal position determination reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal), for example.
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS / PBCH block, SSB (SS Block), or the like. Note that SS and SSB may also be referred to as reference signals.
  • a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), etc. may be transmitted as an uplink reference signal (UL-RS: Uplink Reference Signal).
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
  • FIG. 3 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. It should be noted that the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140 may each be provided with one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140, measurement, and the like.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the generated data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, radio resource management, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, an RF (Radio Frequency) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, etc., which are explained based on common knowledge in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may include a reception processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmission / reception antenna 130 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmitting / receiving unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer (for example, for data and control information acquired from the control unit 110) (for example, RLC retransmission control), MAC (Medium Access Control) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) processing on the bit string to be transmitted.
  • the baseband signal may be output by performing transmission processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and the like.
  • IFFT inverse fast Fourier transform
  • the transmitter / receiver 120 may modulate the baseband signal into a radio frequency band, perform filter processing, amplify, and the like, and transmit the radio frequency band signal via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc., on a signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT: Fast Fourier Transform) processing, and inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) on the acquired baseband signal.
  • FFT Fast Fourier Transform
  • IDFT inverse discrete Fourier transform
  • User data is applied by applying reception processing such as processing (as required), filter processing, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing. May be obtained.
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 123 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission path interface 140 transmits / receives signals (backhaul signaling) to / from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 may be configured by at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the transmission / reception unit 120 may transmit a reference signal (RS: Reference Signal) for beam failure detection (BFD: Beam Failure Detection) to the user terminal 20.
  • RS Reference Signal
  • BFD Beam Failure Detection
  • FIG. 4 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each include one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 may be assumed to also have other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, etc. using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the data to the transmitting / receiving unit 220.
  • the transmitting / receiving unit 220 may include a baseband unit 221, an RF unit 222, and a measuring unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 may include a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common knowledge in the technical field of the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may include a reception processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmission / reception antenna 230 can be configured by an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmitter / receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitter / receiver 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission / reception unit 220 processes the PDCP layer, the RLC layer (for example, RLC retransmission control), and the MAC layer (for example, for the data and control information acquired from the control unit 210). , HARQ retransmission control) may be performed to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), and IFFT processing on the bit string to be transmitted.
  • the baseband signal may be output by performing transmission processing such as precoding, digital-analog conversion, or the like.
  • the transmission / reception unit 220 transmits the channel using a DFT-s-OFDM waveform when transform precoding is enabled for the channel (for example, PUSCH).
  • the DFT process may be performed as the transmission process, or otherwise, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the radio frequency band for the baseband signal, and transmit the radio frequency band signal via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc., on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmitting / receiving unit 220 (reception processing unit 2212) performs analog-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the acquired baseband signal.
  • User data and the like may be acquired by applying reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing.
  • the transmission / reception unit 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 may be configured by at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission path interface 240.
  • the transmitter / receiver 220 may receive a reference signal (RS) for beam failure detection (BFD: Beam Failure Detection).
  • RS reference signal
  • BFD Beam Failure Detection
  • the control unit 210 when the set of RS index corresponding to the BFD resource is not set by upper layer signaling (for example, failure detection resource setting information (upper layer parameters “failureDetectionResourcesToAddModList”, “failureDetectionResources”, etc.)), In consideration of whether the TCI state is set in CORESET, CORESET up to a predetermined number (for example, 2) for determining the RS index included in the set may be selected (determined).
  • upper layer signaling for example, failure detection resource setting information (upper layer parameters “failureDetectionResourcesToAddModList”, “failureDetectionResources”, etc.)
  • the control unit 210 does not have to select CORESET (for example, CORESET # 0) for which the TCI state is not set as the CORESET up to the predetermined number.
  • CORESET for example, CORESET # 0
  • the control unit 210 gives priority to the TCI state being set first, the monitoring cycle being second, the size of CORESET-ID (identifier of CORESET) being third, and the predetermined number up to the predetermined number. You may select CORESET. For example, when the number of CORESETs in which the TCI state is set is larger than the predetermined number, the control unit 210 identifies a CORESET having a smaller monitoring cycle among them, and when the identified CORESET is further larger than the predetermined number. In this case, CORESET having a larger CORESET-ID may be selected as the CORESET up to the predetermined number.
  • the control unit 210 may determine that CORESET having a smaller CORESET-ID is more preferentially included in the CORESET up to the predetermined number.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional blocks may be realized by combining the one device or the plurality of devices with software.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the implementation method is not particularly limited.
  • the base station, the user terminal, and the like may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the terms such as a device, a circuit, a device, a section, and a unit are interchangeable with each other.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, the processor 1001 performs an arithmetic operation by loading predetermined software (program) on hardware such as the processor 1001, the memory 1002, and the communication via the communication device 1004. Is controlled, and at least one of reading and writing of data in the memory 1002 and the storage 1003 is controlled.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, a calculation device, a register, and the like.
  • CPU central processing unit
  • the control unit 110 (210) and the transmission / reception unit 120 (220) described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be implemented by a control program stored in the memory 1002 and operating in the processor 1001, and may be implemented similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or another suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 may store an executable program (program code), a software module, etc. for implementing the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and / or other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and / or other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of a frequency division duplex (FDD: Frequency Division Duplex) and a time division duplex (TDD: Time Division Duplex). May be composed of
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmitter / receiver 120 (220) may be physically or logically separated from the transmitter 120a (220a) and the receiver 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that implements output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and part or all of each functional block may be realized by using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • CMOS complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • CC Component Carrier
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • the numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transmission / reception At least one of a specific filtering process performed by the device in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • a slot may be composed of one or more symbols (such as OFDM (Orthogonal Frequency Division Multiplexing) symbol and SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be configured with a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit for transmitting signals. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them. It should be noted that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be
  • the unit representing the TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI means, for example, the minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the transport block, code block, codeword, etc. may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • the TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may be configured by one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (PRB: Physical RB), subcarrier group (SCG: Sub-Carrier Group), resource element group (REG: Resource Element Group), PRB pair, RB pair, etc. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB pair, etc. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (may also be called a partial bandwidth) represents a subset of continuous common RBs (common resource blocks) for a certain neurology in a certain carrier. Good.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE does not have to assume that it will send and receive predetermined signals / channels outside the active BWP.
  • BWP bitmap
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and the number included in RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • Information and signals can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input and output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated or added. The output information, signal, etc. may be deleted. The input information, signal, etc. may be transmitted to another device.
  • Information notification is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control)).
  • DCI Downlink Control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • Signaling broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof Good.
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • the notification of the predetermined information is not limited to the explicit notification, and may be implicitly (for example, by not notifying the predetermined information or another information). May be carried out).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. , May be performed by comparison of numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • the software uses a wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and / or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo-collocation (QCL: Quasi-Co-Location)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation) ",” spatial domain filter “,” transmission power “,” phase rotation “,” antenna port “,” antenna port group “,” layer “,” number of layers “,” Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable. Can be used for.
  • base station (BS: Base Station)", “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ “Access point”, “transmission point (TP: Transmission Point)”, “reception point (RP: Reception Point)”, “transmission / reception point (TRP: Transmission / Reception Point)", “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier”, etc.
  • a base station may be referred to by terms such as macro cell, small cell, femto cell, pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being defined by a base station subsystem (eg, indoor small base station (RRH: It is also possible to provide communication services by Remote Radio Head)).
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and / or a base station subsystem providing communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a wireless communication device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user terminals (eg, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the above-described base station 10.
  • the words such as “up” and “down” may be replaced with the words corresponding to the communication between terminals (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station 10 may have the function of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal include a base station and one or more network nodes other than the base station (for example, It is obvious that MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. can be considered, but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be used by switching according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods and a next-generation system extended based on these.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions.
  • judgment means “judging", “calculating”, “computing”, “processing”, “deriving”, “investigating”, “searching” (looking up, search, inquiry) ( For example, it may be considered to be a “decision” for a search in a table, database or another data structure), ascertaining, etc.
  • “decision” means receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (access). Accessing (eg, accessing data in memory), etc., may be considered to be a “decision.”
  • judgment (decision) is considered to be “judgment (decision)” of resolving, selecting, choosing, establishing, establishing, comparing, etc. Good. That is, “determination (decision)” may be regarded as “determination (decision)” of some operation.
  • connection refers to any direct or indirect connection or coupling between two or more elements. And can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave Regions
  • electromagnetic energy having wavelengths in the light (both visible and invisible) region, etc. can be used to be considered “connected” or “coupled” to each other.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed as “different” as well.

Abstract

本開示の一態様に係るユーザ端末は、ビーム障害検出(BFD:Beam Failure Detection)のための参照信号(RS:Reference Signal)を受信する受信部と、前記BFD用リソースに対応するRSインデックスのセットを上位レイヤシグナリングによって設定されない場合に、CORESET(COntrol REsource SET)にTCI(Transmission Configuration Indication)状態が設定されるか否かを考慮して、前記セットに含めるRSインデックスを決定するための所定数までのCORESETを選択する制御部と、を有することを特徴とする。本開示の一態様によれば、適切にビーム障害を検出できる。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(3GPP(Third Generation Partnership Project) Rel.(Release)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、3GPP Rel.15以降などともいう)も検討されている。
 既存のLTEシステム(LTE Rel.8-14)では、無線リンク品質のモニタリング(無線リンクモニタリング(RLM:Radio Link Monitoring))が行われる。RLMより無線リンク障害(RLF:Radio Link Failure)が検出されると、RRC(Radio Resource Control)コネクションの再確立(re-establishment)がユーザ端末(UE:User Equipment)に要求される。
 将来の無線通信システム(例えば、NR)では、ビーム障害を検出して他のビームに切り替える手順(ビーム障害回復(BFR:Beam Failure Recovery)手順、BFRなどと呼ばれてもよい)を実施することが検討されている。
 BFRのために、UEは、設定された参照信号リソースを用いてビーム障害を検出する。一方で、現状のNRでは、当該リソースが設定されない場合には、UEは、制御リソースセット(CORESET:COntrol REsource SET)の送信設定指示(TCI:Transmission Configuration Indication)状態(TCI-state)に対応する、2つまでの参照信号インデックスを、当該リソースに対応するインデックスのセットとして用いることが検討されている。
 したがって、UEに対して上記リソースが設定されず、かつ2つより多いCORESETが設定される場合には、当該UEは、これらのCORESETに対応する2つより多いインデックスから、上記セットに含める2つまでのインデックスを決定する必要がある。
 しかしながら、このような場合にどうやって上記セットに含めるインデックスを選択するかについては、検討が進んでいない。これについて明確に規定しなければ、適切にビーム障害を検出できず、通信スループットが低下するおそれがある。
 そこで、本開示は、適切にビーム障害を検出できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、ビーム障害検出(BFD:Beam Failure Detection)のための参照信号(RS:Reference Signal)を受信する受信部と、前記BFD用リソースに対応するRSインデックスのセットを上位レイヤシグナリングによって設定されない場合に、CORESET(COntrol REsource SET)にTCI(Transmission Configuration Indication)状態が設定されるか否かを考慮して、前記セットに含めるRSインデックスを決定するための所定数までのCORESETを選択する制御部と、を有することを特徴とする。
 本開示の一態様によれば、適切にビーム障害を検出できる。
図1は、Rel-15 NRにおけるビーム回復手順の一例を示す図である。 図2は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図3は、一実施形態に係る基地局の構成の一例を示す図である。 図4は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図5は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(QCL/TCI)
 NRでは、送信設定指示状態(TCI状態(Transmission Configuration Indication state))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)の受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。
 ここで、TCI状態とは、信号/チャネルの疑似コロケーション(QCL:Quasi-Co-Location)に関する情報であり、空間受信パラメータ、空間関係情報(spatial relation info)などとも呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
 ・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB:ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC:ドップラーシフト及び平均遅延、
 ・QCLタイプD:空間受信パラメータ。
 所定のCORESET、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(又は当該チャネル用の参照信号(RS:Reference Signal))と、別の信号(例えば、別の下り参照信号(DL-RS:Downlink Reference Signal))とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、その他のシステム情報(OSI:Other System Information)などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(DCI:Downlink Control Information)であってもよい。
 TCI状態が設定(指定)されるチャネルは、例えば、下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(SSB:Synchronization Signal Block)、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、測定用参照信号(SRS:Sounding Reference Signal)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(PSS:Primary Synchronization Signal)、セカンダリ同期信号(SSS:Secondary Synchronization Signal)及びブロードキャストチャネル(PBCH:Physical Broadcast Channel)の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、1つ又は複数のQCL情報(「QCL-Info」)を含んでもよい。QCL情報は、QCL関係となるDL-RSに関する情報(DL-RS関連情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。DL-RS関連情報は、DL-RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RSリソースID)、RSが位置するセルのインデックス、RSが位置するBWP(Bandwidth Part)のインデックスなどの情報を含んでもよい。
(CORESET#0)
 NRにおける初期アクセスでは、SSBの検出、PBCHによって伝送されるブロードキャスト情報の取得、ランダムアクセスによる接続確立などが行われる。
 UEは、SSBを検出し、PBCHによって伝達される情報(例えば、MIB)に基づいて、システム情報(例えば、SIB1(System Information Block 1)、RMSI(Remaining Minimum System Information))用の制御リソースセット(CORESET:COntrol REsource SET)を決定してもよい。
 CORESETは、PDCCHの割り当て候補領域に該当する。SIB1(又はRMSI)用のCORESETは、SIB1を伝達するPDSCHのスケジュールに用いられるPDCCH(DCI)のためのCORESETと呼ばれてもよい。
 SIB1用のCORESETは、CORESET#0(controlResourceSetZero)、CORESET ID(RRCパラメータ「ControlResourceSetId」に対応)=0のCORESET、PBCH(MIB)又はサービングセル共通設定(RRC情報要素「ServingCellConfigCommon」)を介して設定されるCORESET、共通CORESET(common CORESET)、共通CORESET#0、セル固有(cell specific)のCORESET、タイプ0のPDCCH共通サーチスペースに対応するCORESET、などとも呼ばれる。
 CORESET#0には、1以上のサーチスペースセットが関連付けられていてもよい。当該サーチスペースセットは、共通サーチスペースセット(common search space set)及びUE固有サーチスペースセット(UE specific search space set)の少なくとも一方を含んでいてもよい。本開示では、サーチスペースセット及びサーチスペースは互いに読み替えられてもよい。
 CORESET#0に関連付けられるサーチスペースは、サーチスペース#0(searchSpaceZero)、SIB1用のサーチスペース(タイプ0のPDCCH共通サーチスペース、searchSpaceSIB)、OSI用のサーチスペース(タイプ0AのPDCCH共通サーチスペース、searchSpaceOtherSystemInformation)、ページング用のサーチスペース(タイプ2のPDCCH共通サーチスペース、pagingSearchSpace)、ランダムアクセス用のサーチスペース(タイプ1のPDCCH共通サーチスペース、ra-SearchSpace)などの少なくとも1つを含んでいてもよい。
 UEは、MIB内の所定ビット数(例えば、8ビット)のインデックス(pdcch-ConfigSIB1、RMSI-PDCCH-Configなどともいう)又はSIB1内のCORESET#0用のパラメータ(controlResourceSetZeroともいう)に基づいて、CORESET#0を決定してもよい。
 例えば、UEは、これらのインデックス又はパラメータに基づいて、CORESET#0の周波数リソース、時間リソース、最小チャネル帯域幅(minimum channel bandwidth)及びサブキャリア間隔(SCS:SubCarrier Spacing)の少なくとも1つを決定してもよい。
 CORESET#0の帯域幅は、初期アクセス用のBWP(初期(initial)BWPともいう)の帯域幅に該当してもよい。
 UEは、CORESET#0以外のCORESETについては、RRCシグナリングを用いて利用可能なTCI状態が設定されてもよく、設定されたTCI状態のうち1つ又は複数のTCI状態を、MAC CEに基づいてアクティベートしてもよい。当該MAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)と呼ばれてもよい。UEは、CORESETのモニタを、当該CORESETに対応するアクティブなTCI状態に基づいて実施してもよい。
 一方、UEは、CORESET#0(又はCORESET#0に関連付けられるサーチスペース)におけるPDCCHの復調用参照信号(DMRS:Demodulation Reference Signal)のアンテナポートと、検出したSSBとが、QCLの関係にあると想定してもよい。なお、所定のCORESET、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 CORESET#0におけるQCL想定は、ランダムアクセス手順に従って変更されてもよい。UEは、例えば、送信するランダムアクセスチャネル(PRACH:Physical Random Access Channel)に対応するSSB又はCSI-RSが、CORESET#0のPDCCHのDMRSと特定のQCL関係(例えば、QCLタイプD)であると想定してもよい。PDCCHのDMRSとQCLである信号は、PDCCHのQCLソースと呼ばれてもよい。
 UEは、上位レイヤシグナリングによって、非衝突型ランダムアクセス(CFRA:Contention Free Random Access)用のPRACHプリアンブル及びリソースと、1以上のSSB又はCSI-RSとの対応関係を設定されてもよい。
 UEは、SSB又はCSI-RSを測定し、測定結果に基づく特定のSSB又はCSI-RSに対応するPRACHリソースを用いて、PRACHを送信してもよい。UEは、当該特定のSSB又はCSI-RSを、CFRA後のCORESET#0用のQCLソースとして決定してもよい。
 UEは、衝突型ランダムアクセス(CBRA:Contention Based Random Access)中に選択(又は決定)したSSBを、CBRA後のCORESET#0用のQCLソースとして決定してもよい。
(BFR)
 NRでは、ビームフォーミングを利用して通信を行うことが検討されている。また、無線リンク障害(RLF:Radio Link Failure)の発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(BR:Beam Recovery)、ビーム障害回復(BFR:Beam Failure Recovery)、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施することが検討されている。なお、BFR手順は単にBFRと呼ばれてもよい。
 なお、本開示におけるビーム障害(beam failure)は、リンク障害(link failure)と呼ばれてもよい。
 図1は、Rel-15 NRにおけるビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。
 図1の初期状態(ステップS101)において、UEは、2つのビームを用いて送信されるRSリソースに基づく測定を実施する。当該RSは、SSB及びCSI-RSの少なくとも1つであってもよい。ステップS101において測定されるRSは、ビーム障害検出のためのRS(BFD-RS:Beam Failure Detection RS)などと呼ばれてもよい。ビーム障害検出は、単に障害検出と呼ばれてもよい。
 ステップS102において、基地局からの電波が妨害されたことによって、UEはBFD-RSを検出できない(又はRSの受信品質が劣化する)。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
 UEは、所定の条件が満たされると、ビーム障害を検出する。UEは、例えば、設定されたBFD-RSの全てについて、BLER(Block Error Rate)が閾値未満である場合、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、UEの下位レイヤ(物理(PHY)レイヤ)は、上位レイヤ(MACレイヤ)に対してビーム障害インスタンスを通知(指示)してもよい。
 なお、判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(L1-RSRP:Layer 1 Reference Signal Received Power)であってもよい。なお、本開示のRSRPは、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、その他の電力又は品質に関する情報で読み替えられてもよい。
 また、RS測定の代わりに又はRS測定に加えて、PDCCHなどに基づいてビーム障害検出が実施されてもよい。BFD-RSは、UEによってモニタされるPDCCHのDMRSとQCLであると期待されてもよい。
 BFD-RSに関する情報(例えば、RSのインデックス、リソース、数、ポート数、プリコーディングなど)、ビーム障害検出(BFD)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。BFD-RSに関する情報は、BFD用リソースに関する情報、BFD-RSリソースに関する情報などと互いに読み替えられてもよい。
 UEのMACレイヤは、UEのPHYレイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマ(ビーム障害検出タイマと呼ばれてもよい)を開始してもよい。UEのMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(例えば、RRCで設定される「beamFailureInstanceMaxCount」)以上受信したら、BFRをトリガ(例えば、後述のランダムアクセス手順のいずれかを開始)してもよい。
 基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
 ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、所定のRSを測定することによって、当該RSに対応する新候補ビームを選択してもよい。ステップS103において測定されるRSは、新候補ビーム識別のためのRS(NCBI-RS:New Candidate Beam Identification RS)、CBI-RS、CB-RS(Candidate Beam RS)などと呼ばれてもよい。NCBI-RSは、BFD-RSと同じであってもよいし、異なってもよい。なお、新候補ビームは、単に候補ビームと呼ばれてもよい。
 UEは、所定の条件を満たすRSに対応するビームを、新候補ビームとして決定してもよい。UEは、例えば、設定されたNCBI-RSのうち、L1-RSRPが閾値を超えるRSに基づいて、新候補ビームを決定してもよい。なお、判断の基準(クライテリア)は、L1-RSRPに限られない。SSBに関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。
 NCBI-RSに関する情報(例えば、RSのリソース、数、ポート数、プリコーディングなど)、新候補ビーム識別(NCBI)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。NCBI-RSに関する情報は、BFD-RSに関する情報に基づいて取得されてもよい。NCBI-RSに関する情報は、NBCI用リソースに関する情報などと呼ばれてもよい。
 なお、BFD-RS、NCBI-RSなどは、無線リンクモニタリング参照信号(RLM-RS:Radio Link Monitoring RS)で読み替えられてもよい。
 ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(BFRQ:Beam Failure Recovery reQuest)を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
 BFRQは、例えば、PUCCH、PRACH、PUSCH、コンフィギュアドグラント(configured grant)PUSCHの少なくとも1つを用いて送信されてもよい。UEは、PRACHリソースを用いてプリアンブル(RAプリアンブル、PRACHなどともいう)をBFRQとして送信してもよい。
 検出したDL-RS(ビーム)とPRACHリソース(RAプリアンブル)との対応関係に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によってUEに設定されてもよい。
 BFRQは、ステップS103において特定された新候補ビームの情報を含んでもよい。BFRQのためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(BI:Beam Index)、所定の参照信号のポートインデックス、リソースインデックス(例えば、CSI-RSリソース指標(CRI:CSI-RS Resource Indicator)、SSBリソース指標(SSBRI))などを用いて通知されてもよい。
 ステップS105において、BFRQを検出した基地局は、UEからのBFRQに対する応答信号(gNBレスポンスなどと呼ばれてもよい)を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
 当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。当該応答信号は、UEの識別子(例えば、セル-無線RNTI(C-RNTI:Cell-Radio RNTI))によってスクランブルされた巡回冗長検査(CRC:Cyclic Redundancy Check)を有するDCI(PDCCH)を用いて通知されてもよい。UEは、自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断してもよい。
 UEは、当該応答信号を、BFR用のCORESET及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
 ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
 ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
 ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばBFRQ送信が所定の回数に達した、又はビーム障害回復タイマ(Beam-failure-recovery-Timer)が満了したことに該当してもよい。
 なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
 ところで、上述のとおり、CORESET#0のビーム(QCL想定)を、ランダムアクセス手順において送信されるPRACHに対応して変更することが検討されている。CORESET#0のビームを、明示的に、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)を用いて設定することも検討されている。
 また、CORESET#0を初期アクセスだけでなく、RRC接続後のユニキャストPDCCHに利用することが検討されている。しかし、CORESET#0にユニキャストPDCCHを配置するためには、CORESET#0のPDCCHについて、BFR手順を実施することが必要となる。
 NRでは、基地局がUEに対して、BWPにつき最大2つのBFD用リソースを、上位レイヤシグナリングを用いて設定することが検討されている。例えば、UEは、障害検出用リソース設定情報(例えば、上位レイヤパラメータの「failureDetectionResourcesToAddModList」、「failureDetectionResources」など)においてビーム障害("beamFailure”)の目的(purpose)に関連するリソースを提供されてもよい。
 UEは、当該上位レイヤパラメータによって、BFD用リソースに対応するインデックスのセットを提供されてもよい。当該セットは、例えば、周期的なCSI-RSリソースの設定のインデックス(例えば、ノンゼロパワーCSI-RSリソースID)のセットであってもよい。当該セットは、セットqバー(ここで、qバーは「q」にオーバーラインを付した表記)、インデックスセットなどと呼ばれてもよい。以下、当該セットのことは、単に「セットq」と表記する。
 UEは、セットqに含まれるインデックスに対応するRSリソースを用いてL1-RSRP測定などを実施し、ビーム障害を検出してもよい。
 なお、本開示において、BFD用リソースに対応するインデックスの情報を示す上述の上位レイヤパラメータを提供されることは、BFD用リソースを設定されること、BFD-RSを設定されることなどと互いに読み替えられてもよい。
 一方で、現状のNRでは、UEは、BFD用リソースを設定されない場合には、PDCCHをモニタリングするために用いられるCORESETのTCI状態によって指示されるRSセット内のRSインデックスと同じ値である周期的なCSI-RSリソースの設定のインデックスを、セットqに含めるように決定することが検討されている。
 UEは、セットqが2つまでのRSインデックスを含むことを期待する。なお、1つのTCI状態に2つのRSインデックスがある場合、セットqは、対応するTCI状態のためのQCLタイプDの設定に該当するRSインデックスを含むことが検討されている。
 NRでは、UEに対して、BWPにつき2つより多い(例えば、3つ)のCORESETを設定できる。また、CORESETにつき、PDCCHのDMRSポートと所定のDL-RS(CSI-RS、SSBなど)とのQCL関係を示すTCI状態が1つ以上設定されてもよいし、設定されなくてもよい。
 したがって、UEに対して2つより多いCORESETが設定され、かつ、BFD用リソースに対応するインデックスの情報を示す上位レイヤパラメータを提供されない場合には、当該UEは、これらのCORESETに対応する2つより多いRSインデックスから、セットqに含める2つまでのインデックスを決定する必要がある。
 しかしながら、このような場合にどうやってセットqに含めるインデックスを選択するかについて、検討が進んでいない。例えば、CORESET#0にTCI状態が設定されるケース、されないケースが考えられるが、CORESET#0の取り扱いをどのようにするかについては検討が進んでいない。これらについて明確に規定しなければ、適切にビーム障害を検出できず、通信スループットが低下するおそれがある。
 そこで、本発明者らは、適切にビーム障害を検出するための参照信号インデックスの決定方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、以下の説明では、「TCI状態が設定されないCORESET」はCORESET#0で読み替えられてもよいし、CORESET#0以外のCORESETで読み替えられてもよい。また、「TCI状態が設定されないCORESET」は、TCI状態が設定されているが、TCI状態が指示されない又はアクティベートされていないCORESETで読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態において、UEは、BFD用リソースを設定されない場合には、PDCCHをモニタリングするために用いられるCORESETについて、以下の実施形態1-1及び1-2の少なくとも一方によって選択(以下、決定とも呼ぶ)される2つのCORESETに基づいてそれぞれ特定されるRSのインデックスを、セットqに含めるように決定してもよい。
 実施形態1-1では、UEは、TCI状態が設定されるCORESETのうち、関連する(対応する)サーチスペースセットのモニタリング周期が小さい方から2つのCORESETを決定する。なお、2つのCORESETにそれぞれ関連するサーチスペースセットのモニタリング周期が同じ場合、CORESET IDが大きい方のCORESETを選択してもよいし、両方を選択してもよい。
 実施形態1-2では、UEは、TCI状態が設定されるか否かに関わらず、CORESETのうち、関連する(対応する)サーチスペースセットのモニタリング周期が小さい方から2つのCORESETを決定する。なお、2つのCORESETにそれぞれ関連するサーチスペースセットのモニタリング周期が同じ場合、CORESET IDが大きい方のCORESETを選択してもよいし、両方を選択してもよい。
 TCI状態が設定されるCORESETが選択される場合、UEは、例えば、当該CORESETのアクティブなTCI状態によって提供されるRSのインデックスを、セットqに含めてもよい。
 TCI状態が設定されないCORESETが選択される場合、UEは、例えば、当該CORESETのQCL想定によって提供されるRSのインデックスを、セットqに含めてもよい。
 以上説明した第1の実施形態によれば、BFD用リソースを設定されない場合のBFDのためのCORESETの決定方法を、RLM-RSが設定されない場合のRLMのためのCORESETの決定方法と親和性を高くすることができる。この場合、リンク切れの扱いをRLM及びBFRで同じにすることができるため、同じCORESETを用いたリンク回復を冗長化できる。なお、RLMに比べてBFDの方が、L1/L2(レイヤ1/レイヤ2)で処理が完結するため迅速なリンク回復が期待できる。
<第2の実施形態>
 第2の実施形態において、UEは、BFD用リソースを設定されない場合には、PDCCHをモニタリングするために用いられるCORESETについて、以下の実施形態2-1及び2-2の少なくとも一方によって選択される2つのCORESETのアクティブなTCI状態によって提供されるそれぞれのRSのインデックスを、セットqに含めるように決定してもよい。
 実施形態2-1では、UEは、TCI状態が設定されるCORESETのうち、CORESET IDが小さい方から2つのCORESETを決定する。
 実施形態2-2では、UEは、TCI状態が設定されるか否かに関わらず、CORESETのうち、CORESET IDが小さい方から2つのCORESETを決定する。
 TCI状態が設定されるCORESETが選択される場合、UEは、例えば、当該CORESETのアクティブなTCI状態によって提供されるRSのインデックスを、セットqに含めてもよい。
 TCI状態が設定されないCORESETが選択される場合、UEは、例えば、当該CORESETのQCL想定によって提供されるRSのインデックスを、セットqに含めてもよい。
 以上説明した第2の実施形態によれば、BFD用リソースを設定されない場合のBFDのためのCORESETの決定方法を、RLM-RSが設定されない場合のRLMのためのCORESETの決定方法とは異ならせることができる。この場合、RLMではカバーしていないリンク切れをBFRでカバーすることができる。
<変形例>
 実施形態1-1では、1番目にTCI状態が設定されていること、2番目にモニタリング周期の小ささ、3番目にCORESET IDの大きさを優先するCORESET選択を示した。実施形態1-2では、1番目にモニタリング周期の小ささ、2番目にCORESET IDの大きさを優先するCORESET選択を示した。
 また、実施形態2-1では、1番目にTCI状態が設定されていること、2番目にCORESET IDの小ささを優先するCORESET選択を示した。実施形態2-2では、CORESET IDの小ささを優先するCORESET選択を示した。
 これ以外にも、UEは、BFD用リソースを設定されない場合のPDCCHをモニタリングするために用いられるCORESETを、以下のような要素のいずれか又はこれらの組み合わせに基づいて選択してもよい:
・CORESETにTCI状態が設定されている/いない、
・CORESET IDの大きさ/小ささ、
・CORESETに関連するサーチスペースセットのモニタリング周期の大きさ/小ささ、
・BFD検出用のCSI-RS周期の大きさ(長さ)/小ささ(短さ)、
・CORESETに関連するサーチスペースセットがどのサーチスペースセットか(例えば、共通サーチスペースセットか、UE固有サーチスペースセットかなど)。
 これらの要素の優先順は、任意の順番であってもよい。
 CORESET IDの小ささを優先することによって、最も重要と考えられるCORESET#0のBFDを好適に実施できる。
 上記モニタリング周期の大きさを優先することによって、障害発生に気付きにくい長周期のPDCCHの障害を好適に検出できる。一方、上記モニタリング周期の小ささを優先することによって、低遅延向けのPDCCHの障害を好適に検出できる。
 上記CSI-RS周期の大きさを優先することによって、品質が比較的悪いと考えられるPDCCHのBFDを好適に実施できる。一方、上記CSI-RS周期の小ささを優先することによって、より正確な(高信頼の)BFDを好適に実施できる。
 共通サーチスペースセットに対応するCORESETを優先することによって、一般的により重要と考えられるPDCCHのBFDを実施できる。一方、UE固有サーチスペースセットに対応するCORESETを優先することによって、TCI状態指示MAC CEを含むPDSCH、PUSCHなどのスケジュールに重要なPDCCHのBFDを実施できる。
 なお、本開示の各実施形態において、セットqに含めるRSインデックスは、CORESETのアクティブなTCI状態に対応するインデックスに限定されてもよいし、CORESETに設定された全てのTCI状態(又は想定するQCL状態)に対応するインデックスから決定されてもよい。
 また、セットqに含めるインデックスは2つとして説明したが、この「2つ」は2より大きい所定数で読み替えられてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図2は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、3GPP(Third Generation Partnership Project)によって仕様化されるLTE(Long Term Evolution)、5G NR(5th generation mobile communication system New Radio)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity))をサポートしてもよい。MR-DCは、LTE(E-UTRA:Evolved Universal Terrestrial Radio Access)とNRとのデュアルコネクティビティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRとLTEとのデュアルコネクティビティ(NE-DC:NR-E-UTRA Dual Connectivity)などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN:Master Node)であり、NRの基地局(gNB)がセカンダリーノード(SN:Secondary Node)である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NN-DC:NR-NR Dual Connectivity))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(CC:Component Carrier)を用いたキャリアアグリゲーション(Carrier Aggregation)及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(FR1:Frequency Range 1)及び第2の周波数帯(FR2:Frequency Range 2)の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(TDD:Time Division Duplex)及び周波数分割複信(FDD:Frequency Division Duplex)の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIAB(Integrated Access Backhaul)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、EPC(Evolved Packet Core)、5GCN(5G Core Network)、NGC(Next Generation Core)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(DL:Downlink)及び上りリンク(UL:Uplink)の少なくとも一方において、CP-OFDM(Cyclic Prefix OFDM)、DFT-s-OFDM(Discrete Fourier Transform Spread OFDM)、OFDMA(Orthogonal Frequency Division Multiple Access)、SC-FDMA(Single Carrier Frequency Division Multiple Access)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel)などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、MIB(Master Information Block)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(CORESET:COntrol REsource SET)及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのSSは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(CSI:Channel State Information)、送達確認情報(例えば、HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement)、ACK/NACKなどと呼ばれてもよい)、スケジューリングリクエスト(SR:Scheduling Request)などが伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(SS:Synchronization Signal)、下りリンク参照信号(DL-RS:Downlink Reference Signal)などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)、位相トラッキング参照信号(PTRS:Phase Tracking Reference Signal)などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(PSS:Primary Synchronization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronization Signal)の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SSB(SS Block)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(UL-RS:Uplink Reference Signal)として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図3は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、RF(Radio Frequency)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、PDCP(Packet Data Convergence Protocol)レイヤの処理、RLC(Radio Link Control)レイヤの処理(例えば、RLC再送制御)、MAC(Medium Access Control)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(DFT:Discrete Fourier Transform)処理(必要に応じて)、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部123は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、ユーザ端末20に対して、ビーム障害検出(BFD:Beam Failure Detection)のための参照信号(RS:Reference Signal)を送信してもよい。
(ユーザ端末)
 図4は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、ビーム障害検出(BFD:Beam Failure Detection)のための参照信号(RS:Reference Signal)を受信してもよい。
 制御部210は、上記BFD用リソースに対応するRSインデックスのセットを上位レイヤシグナリング(例えば、障害検出用リソース設定情報(上位レイヤパラメータの「failureDetectionResourcesToAddModList」、「failureDetectionResources」など))によって設定されない場合に、CORESETにTCI状態が設定されるか否かを考慮して、前記セットに含めるRSインデックスを決定するための所定数(例えば、2)までのCORESETを選択(決定)してもよい。
 制御部210は、TCI状態が設定されないCORESET(例えば、CORESET#0)を、前記所定数までのCORESETとして選択しなくてもよい。
 制御部210は、1番目にTCI状態が設定されていること、2番目にモニタリング周期の小ささ、3番目にCORESET-ID(CORESETの識別子)の大きさを優先して、前記所定数までのCORESETを選択してもよい。例えば、制御部210は、TCI状態が設定されているCORESETが上記所定数より多い場合には、その中でモニタリング周期がより小さいCORESETを特定し、当該特定したCORESETがさらに上記所定数より多い場合には、CORESET-IDがより大きいCORESETを、前記所定数までのCORESETとして選択してもよい。
 制御部210は、CORESET-IDがより小さいCORESETを、より優先的に前記所定数までのCORESETに含めるように決定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図5は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「TCI状態(Transmission Configuration Indication state)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1.  ビーム障害検出(BFD:Beam Failure Detection)のための参照信号(RS:Reference Signal)を受信する受信部と、
     前記BFD用リソースに対応するRSインデックスのセットを上位レイヤシグナリングによって設定されない場合に、CORESET(COntrol REsource SET)にTCI(Transmission Configuration Indication)状態が設定されるか否かを考慮して、前記セットに含めるRSインデックスを決定するための所定数までのCORESETを選択する制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、TCI状態が設定されないCORESETを、前記所定数までのCORESETとして選択しないことを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、1番目にTCI状態が設定されていること、2番目にモニタリング周期の小ささ、3番目にCORESET-IDの大きさを優先して、前記所定数までのCORESETを選択することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、CORESET-IDがより小さいCORESETを、より優先的に前記所定数までのCORESETに含めるように選択することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  5.  ビーム障害検出(BFD:Beam Failure Detection)のための参照信号(RS:Reference Signal)を受信するステップと、
     前記BFD用リソースに対応するRSインデックスのセットを上位レイヤシグナリングによって設定されない場合に、CORESET(COntrol REsource SET)にTCI(Transmission Configuration Indication)状態が設定されるか否かを考慮して、前記セットに含めるRSインデックスを決定するための所定数までのCORESETを選択するステップと、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/040751 2018-11-01 2018-11-01 ユーザ端末及び無線通信方法 WO2020090092A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18938920.8A EP3876626A4 (en) 2018-11-01 2018-11-01 USER TERMINAL AND WIRELESS COMMUNICATION METHOD
PCT/JP2018/040751 WO2020090092A1 (ja) 2018-11-01 2018-11-01 ユーザ端末及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040751 WO2020090092A1 (ja) 2018-11-01 2018-11-01 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020090092A1 true WO2020090092A1 (ja) 2020-05-07

Family

ID=70461827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040751 WO2020090092A1 (ja) 2018-11-01 2018-11-01 ユーザ端末及び無線通信方法

Country Status (2)

Country Link
EP (1) EP3876626A4 (ja)
WO (1) WO2020090092A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029975A1 (ja) * 2020-08-06 2022-02-10 株式会社Nttドコモ 端末、無線通信方法及び基地局

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059140A1 (ja) * 2018-09-21 2020-03-26 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Beam management for NR", 3GPP TSG-RAN WG1 #94BIS RL-1811633, 30 September 2018 (2018-09-30), XP051519027 *
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213,, no. V15.3.0, 1 October 2018 (2018-10-01), XP051487512 *
See also references of EP3876626A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029975A1 (ja) * 2020-08-06 2022-02-10 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
EP3876626A4 (en) 2022-06-22
EP3876626A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP7320762B2 (ja) 端末、無線通信方法及びシステム
JP7323612B2 (ja) 端末、無線通信方法及びシステム
JP7407726B2 (ja) 端末、無線通信方法及びシステム
JP7201699B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7227343B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020090059A1 (ja) ユーザ端末及び無線通信方法
JP7355808B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020090119A1 (ja) ユーザ端末及び無線通信方法
WO2021161472A1 (ja) 端末、無線通信方法及び基地局
WO2021070391A1 (ja) 端末及び無線通信方法
WO2020054074A1 (ja) ユーザ端末及び無線通信方法
JP7244637B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7279087B2 (ja) 端末、無線通信方法、及びシステム
WO2020121412A1 (ja) ユーザ端末及び無線通信方法
WO2020090120A1 (ja) ユーザ端末及び無線通信方法
WO2020090061A1 (ja) ユーザ端末
US20230069636A1 (en) Terminal, radio communication method, and base station
JP7414382B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020090092A1 (ja) ユーザ端末及び無線通信方法
KR102638575B1 (ko) 단말 및 무선 통신 방법
JP7395606B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022034655A1 (ja) 端末、無線通信方法及び基地局
WO2021229818A1 (ja) 端末、無線通信方法及び基地局
WO2022029975A1 (ja) 端末、無線通信方法及び基地局
WO2023007659A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938920

Country of ref document: EP

Effective date: 20210601

NENP Non-entry into the national phase

Ref country code: JP