WO2020090019A1 - Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium - Google Patents

Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium Download PDF

Info

Publication number
WO2020090019A1
WO2020090019A1 PCT/JP2018/040418 JP2018040418W WO2020090019A1 WO 2020090019 A1 WO2020090019 A1 WO 2020090019A1 JP 2018040418 W JP2018040418 W JP 2018040418W WO 2020090019 A1 WO2020090019 A1 WO 2020090019A1
Authority
WO
WIPO (PCT)
Prior art keywords
odor
data
correction coefficient
sensor
correction
Prior art date
Application number
PCT/JP2018/040418
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 亮太
山田 聡
江藤 力
ひろみ 清水
純子 渡辺
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020554656A priority Critical patent/JP7205549B2/en
Priority to PCT/JP2018/040418 priority patent/WO2020090019A1/en
Publication of WO2020090019A1 publication Critical patent/WO2020090019A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to an odor sensor data correction device and an odor sensor data correction method for correcting odor data output by an odor sensor, and further relates to a computer-readable recording medium recording a program for realizing these.
  • Non-Patent Document 1 discloses an odor sensor provided with a plurality of sensor elements. Specifically, these sensor elements are provided with a sensitive film having different characteristics for each sensor element. In addition, the sensor element is configured to have a unique reaction with respect to the molecule adsorbed on the sensitive film.
  • One example of an object of the present invention is to provide an odor sensor data correction device, an odor sensor data correction method, and a computer-readable recording medium that suppress measurement errors due to individual differences between odor sensors.
  • an odor sensor data correction device Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a calculation unit, a calculation unit, A correction unit that corrects the third odor data obtained by measuring the target odor with the odor sensor based on the correction coefficient, It is characterized by having.
  • an odor sensor data correction method (A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor; (B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient, It is characterized by having.
  • a computer-readable recording medium recording the program according to one aspect of the present invention, On the computer, (A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor; (B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient, It is characterized in that a program including an instruction to execute is recorded.
  • FIG. 1 is a diagram showing an example of an odor sensor data correction device.
  • FIG. 2 is a diagram illustrating an example of a system in a phase for calculating the correction coefficient.
  • FIG. 3 is a diagram showing an example of the data structure of the standard odor data and the measured odor data.
  • FIG. 4 is a diagram showing an example of a waveform of odor data.
  • FIG. 5 is a diagram showing an example of the data structure of the correction coefficient data.
  • FIG. 6 is a diagram showing an example of a system for correcting measured odor data.
  • FIG. 7 is a diagram showing an example of the operation of calculating the correction coefficient of the odor sensor data correction device.
  • FIG. 8 is a diagram showing an example of the operation of the odor sensor data correction device for correcting odor data.
  • FIG. 9 is a diagram illustrating an example of a computer that realizes the odor sensor data correction device.
  • FIG. 1 is a diagram showing an example of an odor sensor data correction device.
  • the odor sensor data correction device 1 shown in FIG. 1 is a device that suppresses measurement errors due to individual differences between odor sensors. Further, as shown in FIG. 1, the odor sensor data correction device 1 includes a calculation unit 2 and a correction unit 3.
  • the calculation unit 2 uses the reference odor data (first odor data) indicating the reference odor (first odor) and the measured odor data obtained by the odor sensor measuring the reference odor (second odor data).
  • the correction coefficient is calculated based on the odor data).
  • the correction unit 3 corrects the measured odor data (third odor data) obtained by the odor sensor measuring the target odor based on the correction coefficient.
  • the calculated correction coefficient is used to correct the measured odor data obtained by the odor sensor measuring the target odor, so that the measurement error due to the individual difference between the odor sensors is suppressed. it can.
  • the odor sensor data correction device 1 described above may have a configuration in which the calculation unit 2 and the correction unit 3 are divided into separate devices as long as the calculation unit 2 and the correction unit 3 are included.
  • the calculation unit 2 and the correction unit 3 are separate devices, for example, the calculation unit 2 may be provided in the inspection device and the correction unit 3 may be provided in the odor analysis device.
  • the inspection device is, for example, a device that sets the above-described correction coefficient and the like at the time of factory shipment.
  • the odor analysis device is, for example, a terminal device directly connected to the odor sensor or a server computer connected to the odor sensor via a network.
  • FIG. 2 is a diagram illustrating an example of a system in a phase for calculating the correction coefficient.
  • the system calculates the correction coefficient using the reference odor sensor 21a, the odor sensor 21b, and the acquisition unit 23 in addition to the calculation unit 2. ..
  • the reference odor sensor 21a has a sensitive film 22a and a sensitive film 22b.
  • the odor sensor 21b has a sensitive film 22c and a sensitive film 22d.
  • the calculation unit 2 includes a preprocessing unit 24, a correction coefficient calculation unit 25, and a correction coefficient acquisition unit 26.
  • the acquisition unit 23 acquires a measurement result (reference odor data) obtained by the reference odor sensor 21a, which is the reference odor sensor, measuring the reference odor (reference gas).
  • the reference odor data may be data obtained from one reference odor sensor, or may be a plurality of measurement results obtained by measuring the reference odors from a plurality of reference odor sensors.
  • the standard odor data may be obtained by using statistical processing such as average and median.
  • the calculation unit 2 acquires the measurement result (measured odor data) obtained by measuring the reference odor by the odor sensor 21b for which the correction coefficient is set. After that, the calculation unit 2 uses the reference odor data and the measured odor data obtained by measuring the reference odor to calculate a correction coefficient for correcting the measured odor data obtained by the odor sensor 21b when measuring the target odor. calculate.
  • the reference odor sensor 21a is a reference odor sensor used when calculating the correction coefficient, and has one or more sensitive films 22.
  • the reference odor sensor 21a has sensitive films 22a and 22b. Specifically, the reference odor sensor 21a measures the reference odor and outputs the reference odor data for each of the sensitive films 22a and 22b to the acquisition unit 23.
  • the odor sensor 21b is an odor sensor for which a correction coefficient is set, and has one or more sensitive films 22.
  • the odor sensor 21b has sensitive films 22c and 22d.
  • the odor sensor 21b measures the reference odor and outputs the reference odor data to the calculation unit 2 for each of the sensitive films 22c and 22d. Further, at the time of measurement, the odor of the target is measured, and the measured odor data obtained by measuring the odor of the target for each of the sensitive films 22c and 22d is output to the calculation unit 2.
  • the odor sensor 21 is a sensor that detects a chemical substance in the air by using an element that detects a chemical substance.
  • an odor sensor is a cantilever if it utilizes changes in physical quantities related to device viscoelasticity and dynamic characteristics (mass, moment of inertia, etc.) due to adsorption and desorption of molecules on a sensitive film.
  • Formula, film type, optical type, piezo, vibration response may be used.
  • a membrane surface stress sensor MMSS: Membrane-type Surface Stress Sensor
  • MSS is an odor sensor that has multiple MSS elements.
  • the MSS element has a sensitive film, a support member that supports the sensitive film, a wiring substrate that surrounds the support member, and a plurality of bridges that connect the support member and the wiring substrate.
  • the bridge also has a piezoresistive element.
  • the support member is a member that supports the sensitive film, and has a mechanism of distorting according to the strain of the sensitive film.
  • the bridge is connected to the support member, and when stress is applied to the bridge due to the strain described above, the electrical resistance of the piezoresistive element embedded in the bridge changes. That is, the MSS measures this electrical resistance and outputs odor data representing the measurement result via the wiring board.
  • the material of the sensitive film of the MSS element differs for each MSS element, but the type of substance detected by the MSS element is not fixed to one. Therefore, the material of the sensitive film differs depending on the set of substances that make up the odor.
  • the sensitive film is formed by depositing a chemical substance on the substrate for constructing the sensitive film.
  • a method such as liquid application by an inkjet method, a dip method, or vapor deposition is used.
  • the acquisition unit 23 acquires reference odor data representing the measurement result for each sensitive film 22 from the reference odor sensor 21a. Specifically, the acquisition unit 23 stores the reference odor data acquired from the reference odor sensor 21a in a storage unit (not shown) in advance. For example, the acquisition unit 23 acquires reference odor data in which the sensitized film identification information for identifying each of the sensitized films 22 and the odor data output by each of the responsive films 22 are associated and stored in the storage unit.
  • the storage unit described above may be provided inside the odor sensor data correction device 1 or may be provided outside the odor sensor data correction device 1. When provided externally, the odor sensor data correction apparatus 1 communicates with the externally provided storage unit to acquire the reference odor data.
  • FIG. 3 is a diagram showing an example of the data structure of the standard odor data and the measured odor data.
  • the reference odor data 31 in FIG. 3 is “1” and “2” that represent the sensitive film identification information that identifies the sensitive films 22a and 22b, and “data1” and “data2” that represent the odor data output by each of the sensitive films 22a and 22b. And are associated and stored.
  • the calculation unit 2 calculates a correction coefficient for each sensitive film 22.
  • the calculation unit 2 also includes a preprocessing unit 24, a correction coefficient calculation unit 25, and a correction coefficient acquisition unit 26.
  • the preprocessing unit 24 may not be provided in the calculation unit 2.
  • the calculation unit 2 first acquires the measured odor data obtained by measuring the reference odor from the target odor sensor 21b.
  • the measured odor data 32 in FIG. 3 represents "3" and "4" representing the sensitive film identification information for identifying the sensitive films 22c and 22d, and the odor data obtained by measuring the reference odors output by the sensitive films 22c and 22d. "data3" and “data4" are associated with each other.
  • the calculation unit 2 calculates the correction coefficient for each sensitive film 22 using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, when the sensitive film “1” (22a) and the sensitive film “3” (22c) are the sensitive films corresponding to each other, the calculation unit 2 responds to the odor data “data1” of the sensitive film “1” and the sensitive film. The correction coefficient is calculated using the odor data “data3” of the film “3”. Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The correction coefficient is calculated using the odor data “data4” of “”.
  • the pre-processing unit 24 performs pre-processing on the standard odor data and the measured odor data obtained by measuring the standard odor. Specifically, as shown in Equation 1, the standard odor data and the measured odor data obtained by measuring the standard odor are preprocessed using a linear conversion matrix. However, the linear conversion matrix does not necessarily have to be used for the preprocessing.
  • the pre-processing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. is there.
  • FIG. 4 is a diagram showing an example of a waveform of odor data.
  • the vertical axis shows the level L of the odor data
  • the horizontal axis shows the time t.
  • the acquisition of the statistical amount is, for example, a process of calculating an amplitude and an average.
  • the process of calculating the amplitude in the example of FIG. 4, the level L0 at the time t0 and the level Lm at the time tm are acquired, and the difference (Lm ⁇ L0) between the level Lm and the level L0 is set as the amplitude.
  • the amplitude is related to the magnitude of the reaction of the sensitive membrane 22.
  • the process of calculating the amplitude from the level of the odor data can be expressed using, for example, a linear conversion matrix shown in Formula 2.
  • the average of some or all of the levels of odor data is calculated.
  • the process of calculating the average is such that, when calculating the average of the levels from time t0 to time tn in FIG. 4, when the number of odor data sampled during the time from time t0 to time tn is N, the odor data N Calculate the average of the individual levels. By calculating the average in this way, it is expected to reduce noise based on the odor data.
  • the downsampling is, for example, a process (thinning process) of acquiring odor data at predetermined intervals.
  • the downsampling By using downsampling, the amount of data can be suppressed, so that the processing speed can be improved.
  • the downsampling process can be expressed using, for example, a linear transformation matrix as shown in Equation 4.
  • the linear transformation matrix of the example of Expression 4 thins out the odor data to 1/3.
  • the smoothing is a process of applying a moving average filter, a Gaussian filter, a median filter, or the like to the odor data. By using the smoothing, it is possible to reduce the noise on the level of the odor data.
  • the smoothing process uses, for example, a moving average filter or a Gaussian filter.
  • the kernels of the equations 5 and 6 are used, respectively.
  • the kernel of the moving average filter is expressed by Equation 5.
  • the kernel is expressed as (1/3/1/3 1/3).
  • the odor data can be smoothed by the moving average filter by multiplying the kernel and the odor data while shifting them and further adding them.
  • the processing of the moving average filter can be expressed by using, for example, a linear conversion matrix shown in Expression 7.
  • the odor data can be smoothed by Gaussian by performing the same calculation after determining the kernel by setting the size of the kernel to (1 ⁇ 3) and the magnitude of the variance to 1, for example.
  • the median filter if the kernel size is (1 ⁇ 3), the data is selected while shifting the odor data by three, and if the median of each is taken, it is smoothed by the median filter. Can be converted.
  • the moving average filter, Gaussian filter, and median filter are examples, and smoothing may be performed using another filter such as a Gabor filter.
  • the presented numerical value is an example, and another numerical value may be used to determine the kernel.
  • the removal of offset is, for example, a process of subtracting an average value of a part or all of the levels from each level of the odor data, or a process of subtracting the level of the odor data at a predetermined time from each level of the odor data.
  • the process of subtracting the average value of the levels from the level of the odor data is expressed using, for example, a linear conversion matrix shown in Expression 8.
  • the extraction of the feature amount of the rate constant contribution will be described.
  • the odor data may be converted such that the magnitude of the contribution of the speed of adsorption / desorption of molecules to the sensitive film (rate constant) is used as the characteristic amount.
  • a linear transformation matrix as shown in Expression 10 may be used.
  • Weighting is a process of assigning weight by designating the odor data of a place to be emphasized. By weighting, any important part of the odor data can be emphasized.
  • a linear transformation matrix as shown in Expression 11 may be used.
  • the linear conversion matrix shown in Expression 11 is a linear conversion matrix for making the levels L0 and Lm notice in the odor data acquired from the time immediately before the rising time t0 of the waveform in FIG. 4 to the time immediately after the falling time tm. Is. That is, the values 0.1, 0.3, and 0.1 of Expression 11 make the levels L1 and Lm and the level L in the vicinity thereof large.
  • a linear model such as Expression 12 is used as it is or as a part of an equation.
  • this linear model its output is determined based on the total value obtained by adding the weights w i and x i together. That is, it is considered that the larger the absolute values of w i and x i are, the more they contribute to the output. Therefore, by weighting the coefficient of the created linear model, the odor data of the part that contributes to the output of regression analysis or discriminant analysis can be emphasized.
  • the coefficient w i of the linear model is used as the weight, for example, a linear conversion matrix shown in Expression 12 is used. At this time, the odor data may or may not be standardized.
  • (C) smoothing may be performed after (D) offset is removed.
  • the correction coefficient calculation unit 25 calculates the correction coefficient ⁇ by, for example, minimizing the formula shown in Expression 13. For the minimization, for example, the least squares method or the stochastic gradient descent method may be used.
  • the correction coefficient calculation unit 25 may calculate the correction coefficient ⁇ by applying the above-described linear conversion matrix (pre-processing) and then minimizing it, as shown in Expression 14, for example.
  • the correction coefficient calculation unit 25 may calculate the correction coefficient ⁇ k by minimizing each condition, as shown in Expression 15.
  • the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined.
  • the correction coefficient calculation unit 25 calculates the correction coefficient ⁇ k by applying and minimizing the above-described linear conversion matrix (preprocessing) for each condition as shown in Expression 16. Good.
  • the correction coefficient acquisition unit 26 acquires the correction coefficient calculated by the correction coefficient calculation unit 25. Specifically, the correction coefficient acquisition unit 26 acquires the correction coefficient from the correction coefficient calculation unit 25, then generates the correction coefficient data, and stores the correction coefficient data in a storage unit (not illustrated). The correction coefficient acquisition unit 26 generates correction coefficient data using the correction coefficient ⁇ or ⁇ k , for example, and is provided in the storage unit provided inside the odor sensor data correction device 1 as described above, or provided outside. Stored in the storage unit.
  • FIG. 5 is a diagram showing an example of the data structure of the correction coefficient data.
  • the correction coefficient data 51 shown in FIG. 5 includes “S1” that represents sensor identification information that identifies the odor sensor 21b, “3” and “4” that represent sensitive film identification information that identifies the sensitive films 22c and 22d, and the sensitive film.
  • “Cr3” and “cr4" representing the correction coefficient ⁇ for each of 22c and 22d are stored in association with each other.
  • the correction coefficient data 52 shown in FIG. 5 includes “S1” indicating sensor identification information for identifying the odor sensor 21b, “con1” and “con2” indicating conditions, and a sensitive film identification for identifying the sensitive films 22c and 22d.
  • “3” and “4" representing information and "cr3_1””cr4_1””cr3_2””cr4_2” representing the correction coefficients ⁇ k for the sensitive films 22c and 22d for each condition are stored in association with each other.
  • FIG. 6 is a diagram showing an example of a system for correcting measured odor data.
  • the system has the odor sensor 21 and the correction unit 3. Further, the system performs odor analysis using the odor analysis unit 61 and the output unit 62, and outputs the analysis result.
  • the correction unit 3 corrects the measured odor data for each of the sensitive films 22c and 22d measured by the odor sensor 21b at the time of measurement, using the correction coefficient ⁇ or ⁇ k corresponding to the sensitive films 22c and 22d. To do. Specifically, the correction unit 3 first acquires the correction coefficient data corresponding to the odor sensor 21b. Further, the correction unit 3 acquires the measured odor data measured by the odor sensor 21b.
  • the correction unit 3 corrects the measured odor data for each of the sensitive films 22c and 22d using the measured odor data obtained by measuring the target odor and the correction coefficient data.
  • the correction unit 3 acquires the correction coefficient data 51 and multiplies the level of the odor data for each of the sensitive films 22c and 22d by the correction coefficient ⁇ .
  • the correction unit 3 refers to the correction coefficient data 52 using the condition, acquires the correction coefficient ⁇ k for each of the sensitive films 22c and 22d associated with the condition, and sets the odor data level to Multiply by the correction coefficient ⁇ k . After that, the correction unit 3 transmits the corrected measured odor data to the odor analysis unit 61 that performs odor analysis.
  • the odor analysis unit 61 analyzes the corrected measured odor data corresponding to the sensitive film 22.
  • the odor analysis unit 61 is an analyzer that performs odor analysis, and may perform regression, discriminant analysis, or the like using a prediction model created in advance, or may perform visualization, or simply You only need to store the data.
  • the output unit 62 acquires output information representing an analysis result (an odor identification result) converted into a format that can be output from the odor analysis unit 61, and outputs an image and a sound generated based on the output information. ..
  • the output unit 62 is, for example, an image display device using a liquid crystal, an organic EL (Electro Luminescence), or a CRT (Cathode Ray Tube). Further, the image display device may include a voice output device such as a speaker.
  • the output unit 62 may be a printing device such as a printer.
  • FIG. 7 is a diagram showing an example of the operation of calculating the correction coefficient of the odor sensor data correction device.
  • FIG. 8 is a diagram showing an example of the operation of the odor sensor data correction device for correcting odor data.
  • FIGS. 1 to 6 will be referred to as appropriate.
  • the odor sensor data correction method is implemented by operating the odor sensor data correction device 1. Therefore, the description of the odor sensor data correction method in the present embodiment will be replaced with the following description of the operation of the odor sensor data correction device 1.
  • the acquisition unit 23 acquires reference odor data for each sensitive film 22 from the reference odor sensor 21a (step A1). Specifically, in step A1, the acquisition unit 23 acquires reference odor data in which the sensitive film identification information for identifying each of the sensitive films 22 and the odor data output by each of the sensitive films 22 are associated with each other, and is stored in the storage unit.
  • the reference odor data may be data obtained from one reference odor sensor, or may be a plurality of measurement results obtained by measuring the reference odors from a plurality of reference odor sensors.
  • the standard odor data may be obtained by using statistical processing such as average and median.
  • the calculation unit 2 acquires the measured odor data obtained by measuring the reference odor for each of the sensitive films 22 from the odor sensor 21b for which the correction coefficient is set (step A2). Specifically, in step A2, the calculation unit 2 associates the sensitive film identification information for identifying each of the sensitive films 22 with the odor data output by each of the sensitive films 22, and outputs the measured odor data obtained by measuring the reference odor. get.
  • the preprocessing unit 24 of the calculation unit 2 performs preprocessing on the standard odor data and the measured odor data obtained by measuring the standard odor (step A3). Specifically, in step A3, the preprocessing unit 24 preprocesses the reference odor data and the measured odor data by using a linear conversion matrix or the like, as shown in Formula 1. However, the pre-processing of step A3 may be omitted.
  • the preprocessing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. Processing.
  • the correction coefficient calculation unit 25 of the calculation unit 2 calculates the correction coefficient for each sensitive film 22 using the reference odor data and the measured odor data (step A4). Specifically, in step A4, when the sensitive film “1” (22a) and the sensitive film “3” (22c) are the corresponding sensitive films, the correction coefficient calculation unit 25 determines that the odor of the sensitive film “1” is bad. The correction coefficient is calculated using the data “data1” and the odor data “data3” of the sensitive film “3”. Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The correction coefficient is calculated using the odor data “data4” of “”.
  • the correction coefficient calculation unit 25 calculates the correction coefficient ⁇ by minimizing, for example, the formula shown in Expression 13.
  • the correction coefficient calculation unit 25 may calculate the correction coefficient ⁇ by applying the above-described linear conversion matrix (preprocessing) and then minimizing it, as shown in Expression 14, for example.
  • the correction coefficient calculation unit 25 may calculate the correction coefficient ⁇ k by minimizing it for each condition, as shown in Expression 15.
  • the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined.
  • the correction coefficient calculation unit 25 may calculate the correction coefficient ⁇ k by performing the above-described linear conversion matrix (preprocessing) for each condition and minimizing it, as shown in Expression 16.
  • the correction coefficient acquisition unit 26 of the calculation unit 2 acquires the correction coefficient calculated by the correction coefficient calculation unit 25 and stores it in the storage unit (step A5). Specifically, in step A5, the correction coefficient acquisition unit 26 acquires the correction coefficient ⁇ or ⁇ k from the correction coefficient calculation unit 25 and then generates the correction coefficient data to be stored in the odor sensor data correction device 1. The data is stored in a storage unit provided or an external storage unit. See the correction coefficient data 51 and 52 in FIG.
  • the correction unit 3 acquires the measured odor data measured by the odor sensor 21b from the odor sensor 21b (step B1).
  • the correction unit 3 acquires the correction coefficient data corresponding to the odor sensor 21b from the storage unit (step B2).
  • the correction unit 3 corrects the measured odor data obtained by measuring the target odor for each of the sensitive films 22c and 22d using the measured odor data obtained by measuring the target odor and the correction coefficient data (step B3). Specifically, in step B3, the correction unit 3 corrects the measured odor data obtained by measuring the target odor by multiplying the level of the odor data for each of the sensitive films 22c and 22d by the correction coefficient ⁇ or ⁇ k .
  • the correction unit 3 acquires the correction coefficient data 51 and multiplies the level of the odor data for each of the sensitive films 22c and 22d by the correction coefficient ⁇ .
  • the correction unit 3 refers to the correction coefficient data 52 using the condition, acquires the correction coefficient ⁇ k for each of the sensitive films 22c and 22d associated with the condition, and sets the odor data level to Multiply by the correction coefficient ⁇ k .
  • the odor analysis unit 61 analyzes the corrected measured odor data corresponding to the sensitive film 22 (step B4). Specifically, in step B4, the odor analysis unit 61 acquires the odor data measured by the sensitive films 22c and 22d of the odor sensor 21b, and analyzes the odor using an analyzer.
  • the output unit 62 acquires output information representing an analysis result (an odor identification result) converted into a format that can be output from the odor analysis unit 61, and outputs an image and a sound generated based on the output information. (Step B5).
  • the measured odor data is corrected using the calculated correction coefficient, so that the measurement error due to the individual difference between the odor sensors can be suppressed.
  • the measured odor data is corrected for each sensitive film using the correction coefficient calculated for each sensitive film, the measurement error due to the individual difference between the odor sensors can be further suppressed.
  • the odor analysis cannot be performed accurately, so the accuracy of measuring the odor decreases, but according to the present embodiment, Since the measured odor data is corrected using the calculated correction coefficient, the accuracy of measuring the odor can be improved.
  • the program in the embodiment of the present invention may be a program which causes a computer to execute steps A1 to A5 shown in FIG. 7 or a program which causes steps B1 to B5 shown in FIG. 8 to be executed.
  • the odor sensor data correction device and the odor sensor data correction method according to the present embodiment can be realized by installing and executing this program on a computer.
  • the processor of the computer functions as the acquisition unit 23, the calculation unit 2 (the preprocessing unit 24, the correction coefficient calculation unit 25, the correction coefficient acquisition unit 26), the correction unit 3, the odor analysis unit 61, and the output unit 62, Perform processing.
  • each computer serves as any one of the calculation unit 2 (preprocessing unit 24, correction coefficient calculation unit 25, correction coefficient acquisition unit 26), correction unit 3, odor analysis unit 61, and output unit 62. May function.
  • FIG. 9 is a block diagram showing an example of a computer that realizes the odor sensor data correction device.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to perform data communication with each other.
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to or instead of the CPU 111.
  • the CPU 111 expands the program (code) according to the present embodiment stored in the storage device 113 into the main memory 112 and executes these in a predetermined order to perform various calculations.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the present embodiment is provided in a state of being stored in computer-readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via communication interface 117.
  • the storage device 113 a semiconductor storage device such as a flash memory can be cited in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads a program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
  • CF Compact Flash
  • SD Secure Digital
  • magnetic recording media such as a flexible disk
  • CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
  • the odor sensor data correction device 1 in the present embodiment can be realized not by using a computer in which a program is installed but by using hardware corresponding to each unit. Further, part of the odor sensor data correction device 1 may be realized by a program, and the remaining part may be realized by hardware.
  • An odor sensor data correction device comprising:
  • the odor sensor data correction method according to attachment 6 The odor sensor has one or more sensitive films, In the step (b), the correction coefficient is calculated for each of the sensitive films, and the odor sensor data correction method is characterized.
  • the computer-readable recording medium according to attachment 11 The odor sensor has a plurality of sensitive films, A computer-readable recording medium characterized in that, in the step (b), the correction coefficient is calculated for each of the sensitive films.
  • the present invention it is possible to suppress measurement errors due to individual differences between odor sensors.
  • INDUSTRIAL APPLICABILITY The present invention is useful in fields where odor sensors require improved measurement accuracy.
  • Odor Sensor Data Correction Device 2 Calculation Unit 3 Correction Unit 21, 21a, 21b Odor Sensor 22, 22a, 22b, 22c, 22d Sensitive Membrane 23 Acquisition Unit 24 Pre-Processing Unit 25 Correction Coefficient Calculation Unit 26 Correction Coefficient Acquisition Unit 31 Standard Odor Data 32 Measured odor data 51 Correction coefficient data 61 Odor analysis unit 62 Output unit 110 Computer 111 CPU 112 Main Memory 113 Storage Device 114 Input Interface 115 Display Controller 116 Data Reader / Writer 117 Communication Interface 118 Input Equipment 119 Display Device 120 Recording Medium 121 Bus

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

An odor-sensor-data correcting device 1 for suppressing a measurement error due to the individual difference among odor sensors includes: a calculation unit 2 that calculates a correction coefficient on the basis of first odor data indicating a first odor and second odor data obtained as a result of an odor sensor measuring the first odor; and a correcting unit 3 that corrects, on the basis of the correction coefficient, third odor data obtained as a result of the odor sensor measuring a target odor.

Description

臭気センサデータ補正装置、臭気センサデータ補正方法、及びコンピュータ読み取り可能な記録媒体Odor sensor data correction device, odor sensor data correction method, and computer-readable recording medium
 本発明は、臭気センサが出力する臭気データを補正する臭気センサデータ補正装置、臭気センサデータ補正方法に関し、更には、これらを実現するためのプログラムを記録しているコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to an odor sensor data correction device and an odor sensor data correction method for correcting odor data output by an odor sensor, and further relates to a computer-readable recording medium recording a program for realizing these.
 非特許文献1には、複数のセンサ素子が設けられた臭気センサについて開示がされている。具体的には、それらのセンサ素子には、センサ素子ごとに異なる特性を有する感応膜が設けられている。また、センサ素子は、感応膜に吸着する分子に対して、特異な反応をするように構成されている。 Non-Patent Document 1 discloses an odor sensor provided with a plurality of sensor elements. Specifically, these sensor elements are provided with a sensitive film having different characteristics for each sensor element. In addition, the sensor element is configured to have a unique reaction with respect to the molecule adsorbed on the sensitive film.
 しかしながら、上述した感応膜を有する臭気センサは、感応膜の製造後の状態により、臭気センサ間に個体差が生じるため、異なる臭気センサを用いて臭気を計測した場合、臭気センサ間で計測誤差が生じる。 However, in the odor sensor having the above-mentioned sensitive film, there are individual differences between the odor sensors depending on the state after the production of the sensitive film, so when measuring odors using different odor sensors, a measurement error occurs between the odor sensors. Occurs.
 本発明の目的の一例は、臭気センサ間の個体差による計測誤差を抑制する、臭気センサデータ補正装置、臭気センサデータ補正方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。 One example of an object of the present invention is to provide an odor sensor data correction device, an odor sensor data correction method, and a computer-readable recording medium that suppress measurement errors due to individual differences between odor sensors.
 上記目的を達成するため、本発明の一側面における臭気センサデータ補正装置は、
 第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、算出部と、
 前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、補正部と、
 を有することを特徴とする。
In order to achieve the above object, an odor sensor data correction device according to one aspect of the present invention,
Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a calculation unit, a calculation unit,
A correction unit that corrects the third odor data obtained by measuring the target odor with the odor sensor based on the correction coefficient,
It is characterized by having.
 また、上記目的を達成するため、本発明の一側面における臭気センサデータ補正方法は、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、ステップと、
(b)前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、ステップと、
 を有することを特徴とする。
Further, in order to achieve the above object, an odor sensor data correction method according to one aspect of the present invention,
(A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient,
It is characterized by having.
 更に、上記目的を達成するため、本発明の一側面におけるプログラムを記録したコンピュータ読み取り可能な記録媒体は、
 コンピュータに、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、ステップと、
(b)前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、ステップと、
 を実行させる命令を含むプログラムを記録していることを特徴とする。
Further, in order to achieve the above object, a computer-readable recording medium recording the program according to one aspect of the present invention,
On the computer,
(A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient,
It is characterized in that a program including an instruction to execute is recorded.
 以上のように本発明によれば、臭気センサ間の個体差による計測誤差を抑制することができる。 As described above, according to the present invention, it is possible to suppress measurement errors due to individual differences between odor sensors.
図1は、臭気センサデータ補正装置の一例を示す図である。FIG. 1 is a diagram showing an example of an odor sensor data correction device. 図2は、補正係数を算出するフェーズのシステムの一例を示す図である。FIG. 2 is a diagram illustrating an example of a system in a phase for calculating the correction coefficient. 図3は、基準臭気データ及び計測臭気データのデータ構造の一例を示す図である。FIG. 3 is a diagram showing an example of the data structure of the standard odor data and the measured odor data. 図4は、臭気データの波形の一例を示す図である。FIG. 4 is a diagram showing an example of a waveform of odor data. 図5は、補正係数データのデータ構造の一例を示す図である。FIG. 5 is a diagram showing an example of the data structure of the correction coefficient data. 図6は、計測臭気データを補正するシステムの一例を示す図である。FIG. 6 is a diagram showing an example of a system for correcting measured odor data. 図7は、臭気センサデータ補正装置の補正係数を算出する動作の一例を示す図である。FIG. 7 is a diagram showing an example of the operation of calculating the correction coefficient of the odor sensor data correction device. 図8は、臭気センサデータ補正装置が臭気データを補正する動作の一例を示す図である。FIG. 8 is a diagram showing an example of the operation of the odor sensor data correction device for correcting odor data. 図9は、臭気センサデータ補正装置を実現するコンピュータの一例を示す図である。FIG. 9 is a diagram illustrating an example of a computer that realizes the odor sensor data correction device.
(実施の形態)
 以下、本発明の実施の形態について、図1から図9を参照しながら説明する。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9.
[装置構成]
 最初に、図1を用いて、本実施の形態における臭気センサデータ補正装置1の構成について説明する。図1は、臭気センサデータ補正装置の一例を示す図である。
[Device configuration]
First, the configuration of the odor sensor data correction device 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of an odor sensor data correction device.
 図1に示す臭気センサデータ補正装置1は、臭気センサ間の個体差による計測誤差を抑制する装置である。また、図1に示すように、臭気センサデータ補正装置1は、算出部2と、補正部3とを有する。 The odor sensor data correction device 1 shown in FIG. 1 is a device that suppresses measurement errors due to individual differences between odor sensors. Further, as shown in FIG. 1, the odor sensor data correction device 1 includes a calculation unit 2 and a correction unit 3.
 このうち、算出部2は、基準となる基準臭気(第一の臭気)を示す基準臭気データ(第一の臭気データ)と、基準臭気を臭気センサが計測して得た計測臭気データ(第二の臭気データ)とに基づいて、補正係数を算出する。補正部3は、補正係数に基づいて、対象の臭気を臭気センサが計測して得た計測臭気データ(第三の臭気データ)を補正する。 Of these, the calculation unit 2 uses the reference odor data (first odor data) indicating the reference odor (first odor) and the measured odor data obtained by the odor sensor measuring the reference odor (second odor data). The correction coefficient is calculated based on the odor data). The correction unit 3 corrects the measured odor data (third odor data) obtained by the odor sensor measuring the target odor based on the correction coefficient.
 このように、本実施の形態においては、算出した補正係数を用いて、臭気センサが対象の臭気を計測して得た計測臭気データを補正するので、臭気センサ間の個体差による計測誤差を抑制できる。 As described above, in the present embodiment, the calculated correction coefficient is used to correct the measured odor data obtained by the odor sensor measuring the target odor, so that the measurement error due to the individual difference between the odor sensors is suppressed. it can.
 また、上述した臭気センサデータ補正装置1は、算出部2と補正部3とを有する構成であれば、算出部2と補正部3とを別々の装置に分けた構成としてもよい。 Further, the odor sensor data correction device 1 described above may have a configuration in which the calculation unit 2 and the correction unit 3 are divided into separate devices as long as the calculation unit 2 and the correction unit 3 are included.
 なお、算出部2と補正部3とを別の装置にした場合、例えば、算出部2を検査装置に設け、補正部3を臭気解析装置に設けることなどが考えられる。検査装置は、例えば、工場出荷時に上述した補正係数などを設定する装置などである。臭気解析装置は、例えば、臭気センサと直接接続される端末装置、又は、臭気センサとネットワークを介して接続されるサーバコンピュータなどである。 If the calculation unit 2 and the correction unit 3 are separate devices, for example, the calculation unit 2 may be provided in the inspection device and the correction unit 3 may be provided in the odor analysis device. The inspection device is, for example, a device that sets the above-described correction coefficient and the like at the time of factory shipment. The odor analysis device is, for example, a terminal device directly connected to the odor sensor or a server computer connected to the odor sensor via a network.
[システム構成]
 続いて、図2を用いて、本実施の形態における補正係数の算出についてより具体的に説明する。図2は、補正係数を算出するフェーズのシステムの一例を示す図である。
[System configuration]
Next, the calculation of the correction coefficient according to the present embodiment will be described more specifically with reference to FIG. FIG. 2 is a diagram illustrating an example of a system in a phase for calculating the correction coefficient.
 図2に示すように、本実施の形態における、補正係数を算出するフェーズにおいて、システムは算出部2に加えて、基準臭気センサ21a、臭気センサ21b、取得部23を用いて補正係数を算出する。基準臭気センサ21aは、感応膜22a、感応膜22bを有する。臭気センサ21bは、感応膜22c、感応膜22dを有する。更に、算出部2は、前処理部24、補正係数算出部25、補正係数取得部26を有する。 As shown in FIG. 2, in the phase of calculating the correction coefficient in the present embodiment, the system calculates the correction coefficient using the reference odor sensor 21a, the odor sensor 21b, and the acquisition unit 23 in addition to the calculation unit 2. .. The reference odor sensor 21a has a sensitive film 22a and a sensitive film 22b. The odor sensor 21b has a sensitive film 22c and a sensitive film 22d. Furthermore, the calculation unit 2 includes a preprocessing unit 24, a correction coefficient calculation unit 25, and a correction coefficient acquisition unit 26.
 補正係数の算出について説明する。補正係数を算出する場合、まず、取得部23は、基準となる臭気センサである基準臭気センサ21aが、基準となる基準臭気(リファレンスガス)を計測した計測結果(基準臭気データ)を取得する。 Explain the calculation of the correction coefficient. When calculating the correction coefficient, first, the acquisition unit 23 acquires a measurement result (reference odor data) obtained by the reference odor sensor 21a, which is the reference odor sensor, measuring the reference odor (reference gas).
 なお、基準臭気データは、一つの基準臭気センサから得られたデータでもよいし、複数の基準臭気センサから基準臭気をそれぞれ計測することで得られた複数の計測結果を用いてもよい。例えば、平均、中央値などの統計処理を用いて、基準臭気データとしてもよい。 Note that the reference odor data may be data obtained from one reference odor sensor, or may be a plurality of measurement results obtained by measuring the reference odors from a plurality of reference odor sensors. For example, the standard odor data may be obtained by using statistical processing such as average and median.
 続いて、算出部2は、補正係数を設定する対象となる臭気センサ21bが、基準臭気を計測した計測結果(計測臭気データ)を取得する。その後、算出部2は、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、計測時において、対象の臭気を臭気センサ21bが計測した計測臭気データを補正するための補正係数を算出する。 Subsequently, the calculation unit 2 acquires the measurement result (measured odor data) obtained by measuring the reference odor by the odor sensor 21b for which the correction coefficient is set. After that, the calculation unit 2 uses the reference odor data and the measured odor data obtained by measuring the reference odor to calculate a correction coefficient for correcting the measured odor data obtained by the odor sensor 21b when measuring the target odor. calculate.
 基準臭気センサ21aは、補正係数を算出する場合に用いられる、基準となる臭気センサで、一つ以上の感応膜22を有する。図2の例では、基準臭気センサ21aは、感応膜22a、22bを有する。具体的には、基準臭気センサ21aは、基準臭気を計測し、感応膜22a、22bごとの基準となる臭気データを、取得部23へ出力する。 The reference odor sensor 21a is a reference odor sensor used when calculating the correction coefficient, and has one or more sensitive films 22. In the example of FIG. 2, the reference odor sensor 21a has sensitive films 22a and 22b. Specifically, the reference odor sensor 21a measures the reference odor and outputs the reference odor data for each of the sensitive films 22a and 22b to the acquisition unit 23.
 臭気センサ21bは、補正係数を設定する対象となる臭気センサで、一つ以上の感応膜22を有する。図2の例では、臭気センサ21bは、感応膜22c、22dを有する。具体的には、臭気センサ21bは、補正係数を設定する場合、基準臭気を計測し、感応膜22c、22dごとに基準臭気データを、算出部2へ出力する。また、計測時において、対象の臭気を計測し、感応膜22c、22dごとに対象の臭気を計測した計測臭気データを、算出部2へ出力する。 The odor sensor 21b is an odor sensor for which a correction coefficient is set, and has one or more sensitive films 22. In the example of FIG. 2, the odor sensor 21b has sensitive films 22c and 22d. Specifically, when setting the correction coefficient, the odor sensor 21b measures the reference odor and outputs the reference odor data to the calculation unit 2 for each of the sensitive films 22c and 22d. Further, at the time of measurement, the odor of the target is measured, and the measured odor data obtained by measuring the odor of the target for each of the sensitive films 22c and 22d is output to the calculation unit 2.
 臭気センサ21(21a、21b)について説明をする。臭気センサは、化学物質を検出する素子を用いて、空気中の化学物質を検出するセンサである。具体的には、臭気センサは、感応膜に分子が吸着、離脱したことによるデバイスの粘弾性、動力学特性(質量、慣性モーメントなど)に関連する物理量の変化を利用するものであれば、カンチレバー式、膜型、光学式、ピエゾ、振動応答によるものでもよい。例えば、臭気センサは、膜型表面応力センサ(MSS:Membrane-type Surface stress Sensor)などが考えられる。 Explain the odor sensor 21 (21a, 21b). The odor sensor is a sensor that detects a chemical substance in the air by using an element that detects a chemical substance. Specifically, an odor sensor is a cantilever if it utilizes changes in physical quantities related to device viscoelasticity and dynamic characteristics (mass, moment of inertia, etc.) due to adsorption and desorption of molecules on a sensitive film. Formula, film type, optical type, piezo, vibration response may be used. For example, as the odor sensor, a membrane surface stress sensor (MSS: Membrane-type Surface Stress Sensor) or the like can be considered.
 MSSは、複数のMSS素子を有する臭気センサである。MSS素子は、感応膜と、感応膜を支持する支持部材と、支持部材を囲む配線基板と、支持部材と配線基板とを連結する複数のブリッジとを有する。また、ブリッジはピエゾ抵抗素子を有する。 MSS is an odor sensor that has multiple MSS elements. The MSS element has a sensitive film, a support member that supports the sensitive film, a wiring substrate that surrounds the support member, and a plurality of bridges that connect the support member and the wiring substrate. The bridge also has a piezoresistive element.
 感応膜は、物質が吸着した場合、感応膜に歪が発生する。支持部材は、感応膜を支持する部材で、感応膜の歪に応じて歪む仕組みを有する。ブリッジは、支持部材に連結され、上述した歪によりブリッジに応力がかかると、ブリッジに埋め込まれたピエゾ抵抗素子の電気抵抗が変化する。すなわち、MSSは、この電気抵抗を計測し、配線基板を介し、計測結果を表す臭気データを出力する。 ㆍ In the sensitive film, when a substance is adsorbed, distortion occurs in the sensitive film. The support member is a member that supports the sensitive film, and has a mechanism of distorting according to the strain of the sensitive film. The bridge is connected to the support member, and when stress is applied to the bridge due to the strain described above, the electrical resistance of the piezoresistive element embedded in the bridge changes. That is, the MSS measures this electrical resistance and outputs odor data representing the measurement result via the wiring board.
 また、MSS素子の感応膜の材質は、MSS素子ごとに異なるが、MSS素子が検出する物質の種類は一つに固定されない。そのため、感応膜の材質は、臭気を構成する物質の集合に応じて異なる。なお、感応膜は、感応膜を構築するための基板上に、化学物質を付着させて形成される。付着方法は、例えば、インクジェット方式、ディップ方式などによる液体の塗布、蒸着などの方法を用いる。 Also, the material of the sensitive film of the MSS element differs for each MSS element, but the type of substance detected by the MSS element is not fixed to one. Therefore, the material of the sensitive film differs depending on the set of substances that make up the odor. The sensitive film is formed by depositing a chemical substance on the substrate for constructing the sensitive film. As the attachment method, for example, a method such as liquid application by an inkjet method, a dip method, or vapor deposition is used.
 取得部23は、基準臭気センサ21aから感応膜22ごとの計測結果を表す基準臭気データを取得する。具体的には、取得部23は、基準臭気センサ21aから取得した基準臭気データを、あらかじめ不図示の記憶部に記憶する。例えば、取得部23は、感応膜22それぞれを識別する感応膜識別情報と、感応膜22それぞれが出力した臭気データとを関連付けた基準臭気データを取得し、記憶部に記憶する。 The acquisition unit 23 acquires reference odor data representing the measurement result for each sensitive film 22 from the reference odor sensor 21a. Specifically, the acquisition unit 23 stores the reference odor data acquired from the reference odor sensor 21a in a storage unit (not shown) in advance. For example, the acquisition unit 23 acquires reference odor data in which the sensitized film identification information for identifying each of the sensitized films 22 and the odor data output by each of the responsive films 22 are associated and stored in the storage unit.
 なお、上述した記憶部は、臭気センサデータ補正装置1の内部に設けてもよいし、臭気センサデータ補正装置1の外部に設けてもよい。外部に設けた場合、臭気センサデータ補正装置1は、外部に設けられた記憶部と通信をして、基準臭気データを取得する。 The storage unit described above may be provided inside the odor sensor data correction device 1 or may be provided outside the odor sensor data correction device 1. When provided externally, the odor sensor data correction apparatus 1 communicates with the externally provided storage unit to acquire the reference odor data.
 図3は、基準臭気データ及び計測臭気データのデータ構造の一例を示す図である。図3の基準臭気データ31は、感応膜22a、22bを識別する感応膜識別情報を表す「1」「2」と、感応膜22a、22bそれぞれが出力した臭気データを表す「data1」「data2」とが関連付けられて記憶されている。 FIG. 3 is a diagram showing an example of the data structure of the standard odor data and the measured odor data. The reference odor data 31 in FIG. 3 is “1” and “2” that represent the sensitive film identification information that identifies the sensitive films 22a and 22b, and “data1” and “data2” that represent the odor data output by each of the sensitive films 22a and 22b. And are associated and stored.
 算出部2は、感応膜22ごとに補正係数を算出する。また、算出部2は、前処理部24、補正係数算出部25、補正係数取得部26を有する。ただし、前処理部24は、算出部2に設けなくてもよい。 The calculation unit 2 calculates a correction coefficient for each sensitive film 22. The calculation unit 2 also includes a preprocessing unit 24, a correction coefficient calculation unit 25, and a correction coefficient acquisition unit 26. However, the preprocessing unit 24 may not be provided in the calculation unit 2.
 具体的には、算出部2は、まず、対象となる臭気センサ21bから、基準臭気を計測した計測臭気データを取得する。図3の計測臭気データ32は、感応膜22c、22dを識別する感応膜識別情報を表す「3」「4」と、感応膜22c、22dそれぞれが出力した基準臭気を計測した臭気データを表す「data3」「data4」とが関連付けられている。 Specifically, the calculation unit 2 first acquires the measured odor data obtained by measuring the reference odor from the target odor sensor 21b. The measured odor data 32 in FIG. 3 represents "3" and "4" representing the sensitive film identification information for identifying the sensitive films 22c and 22d, and the odor data obtained by measuring the reference odors output by the sensitive films 22c and 22d. "data3" and "data4" are associated with each other.
 続いて、算出部2は、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、感応膜22ごとに補正係数を算出する。具体的には、算出部2は、感応膜「1」(22a)と感応膜「3」(22c)とが対応する感応膜である場合、感応膜「1」の臭気データ「data1」と感応膜「3」の臭気データ「data3」とを用いて、補正係数を算出する。また、算出部2は、感応膜「2」(22b)と感応膜「4」(22d)とが対応する感応膜である場合、感応膜「2」の臭気データ「data2」と感応膜「4」の臭気データ「data4」とを用いて、補正係数を算出する。 Subsequently, the calculation unit 2 calculates the correction coefficient for each sensitive film 22 using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, when the sensitive film “1” (22a) and the sensitive film “3” (22c) are the sensitive films corresponding to each other, the calculation unit 2 responds to the odor data “data1” of the sensitive film “1” and the sensitive film. The correction coefficient is calculated using the odor data “data3” of the film “3”. Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The correction coefficient is calculated using the odor data “data4” of “”.
 算出部について詳細に説明をする。
 前処理部24は、基準臭気データ、基準臭気を計測した計測臭気データに対して前処理をする。具体的には、数1に示すように、基準臭気データと基準臭気を計測した計測臭気データとを、線形変換行列を用いて前処理する。ただし、前処理に必ずしも線形変換行列を用いなくてもよい。
The calculation unit will be described in detail.
The pre-processing unit 24 performs pre-processing on the standard odor data and the measured odor data obtained by measuring the standard odor. Specifically, as shown in Equation 1, the standard odor data and the measured odor data obtained by measuring the standard odor are preprocessed using a linear conversion matrix. However, the linear conversion matrix does not necessarily have to be used for the preprocessing.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 前処理は、例えば、(A)統計量の取得、(B)ダウンサンプリング、(C)平滑化、(D)オフセットの除去、(E)特徴量の抽出、(F)重み付などの処理である。 The pre-processing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. is there.
 図4を用いて前処理について説明する。図4は、臭気データの波形の一例を示す図である。図4は、縦軸に臭気データのレベルLを示し、横軸に時間tを示している。 Preprocessing will be explained using FIG. FIG. 4 is a diagram showing an example of a waveform of odor data. In FIG. 4, the vertical axis shows the level L of the odor data, and the horizontal axis shows the time t.
(A)統計量の取得について説明する。
 統計量の取得は、例えば、振幅、平均を算出する処理などである。振幅を算出する処理は、図4の例では、時刻t0におけるレベルL0と、時刻tmにおけるレベルLmとを取得して、レベルLmとレベルL0との差(Lm-L0)を振幅とする。振幅は、感応膜22の反応の大きさに関係する。この臭気データのレベルから振幅を算出する処理は、図4の例においては、例えば数2に示すような線形変換行列を用いて表すことができる。
(A) Acquisition of statistics will be described.
The acquisition of the statistical amount is, for example, a process of calculating an amplitude and an average. In the process of calculating the amplitude, in the example of FIG. 4, the level L0 at the time t0 and the level Lm at the time tm are acquired, and the difference (Lm−L0) between the level Lm and the level L0 is set as the amplitude. The amplitude is related to the magnitude of the reaction of the sensitive membrane 22. In the example of FIG. 4, the process of calculating the amplitude from the level of the odor data can be expressed using, for example, a linear conversion matrix shown in Formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 平均を算出する処理は、例えば、臭気データのレベルの一部又は全体の平均を算出する。平均を算出する処理は、図4の時刻t0から時刻tnの間のレベルの平均を算出する場合、時刻t0から時刻tnの時間にサンプリングした臭気データの数がN個である場合、臭気データN個のレベルの平均を算出する。このように、平均を算出することにより、臭気データにのったノイズの低減などが期待できる。 In the process of calculating the average, for example, the average of some or all of the levels of odor data is calculated. The process of calculating the average is such that, when calculating the average of the levels from time t0 to time tn in FIG. 4, when the number of odor data sampled during the time from time t0 to time tn is N, the odor data N Calculate the average of the individual levels. By calculating the average in this way, it is expected to reduce noise based on the odor data.
 なお、臭気データのレベルから平均を算出する処理は、例えば数3に示すような線形変換行列を用いて表すことができる。 Note that the process of calculating the average from the level of the odor data can be expressed by using a linear conversion matrix as shown in Formula 3, for example.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
(B)ダウンサンプリングについて説明する。
 ダウンサンプリングは、例えば、所定周期ごとに臭気データを取得する処理(間引き処理)などである。なお、ダウンサンプリングを用いることで、データ量を抑制できるので、処理速度を向上させることができる。
(B) Down sampling will be described.
The downsampling is, for example, a process (thinning process) of acquiring odor data at predetermined intervals. By using downsampling, the amount of data can be suppressed, so that the processing speed can be improved.
 ダウンサンプリングの処理は、例えば、数4に示すような線形変換行列を用いて表すことができる。数4の例の線形変換行列は、臭気データを1/3に間引きをする。 The downsampling process can be expressed using, for example, a linear transformation matrix as shown in Equation 4. The linear transformation matrix of the example of Expression 4 thins out the odor data to 1/3.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
(C)平滑化について説明する。
 平滑化は、例えば、臭気データに移動平均フィルタ、ガウシアンフィルタ、中央値フィルタ、などを適用する処理である。平滑化を用いることで、臭気データのレベルに乗ったノイズを低減できる。平滑化の処理は、線形変換の場合、例えば、移動平均フィルタ、ガウシアンフィルタなどを用いる。例えば、それぞれ数5、数6のカーネルが用いられる。
(C) Smoothing will be described.
The smoothing is a process of applying a moving average filter, a Gaussian filter, a median filter, or the like to the odor data. By using the smoothing, it is possible to reduce the noise on the level of the odor data. In the case of linear conversion, the smoothing process uses, for example, a moving average filter or a Gaussian filter. For example, the kernels of the equations 5 and 6 are used, respectively.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 具体的なカーネルの使用方法を、移動平均フィルタの例を用いて説明する。移動平均フィルタのカーネルは数5で表される。ここで、カーネルのサイズを(1×3)とすると、カーネルは(1/3 1/3 1/3)と表される。このカーネルと、臭気データとを、ずらしながら掛け、さらに足し合わせることで、臭気データを移動平均フィルタで平滑化できる。 Explain how to use a specific kernel by using an example of moving average filter. The kernel of the moving average filter is expressed by Equation 5. Here, if the size of the kernel is (1 × 3), the kernel is expressed as (1/3/1/3 1/3). The odor data can be smoothed by the moving average filter by multiplying the kernel and the odor data while shifting them and further adding them.
 すなわち、移動平均フィルタの処理は、例えば、数7に示すような線形変換行列を用いて表すことができる。ガウシアンフィルタにおいても、例えばカーネルのサイズを(1×3)、分散の大きさを1と決めてカーネルを決定した後、同様の計算を行うことで、臭気データをガウシアンで平滑化できる。 That is, the processing of the moving average filter can be expressed by using, for example, a linear conversion matrix shown in Expression 7. Also in the Gaussian filter, the odor data can be smoothed by Gaussian by performing the same calculation after determining the kernel by setting the size of the kernel to (1 × 3) and the magnitude of the variance to 1, for example.
 非線形変換の場合、例えば中央値フィルタでは、カーネルのサイズが(1×3)とすると、臭気データに対して、三つずつずらしながらデータを選択し、それぞれ中央値をとれば中央値フィルタで平滑化できる。なお、移動平均フィルタ、ガウシアンフィルタ、中央値フィルタは一例であって、ガボールフィルタなど、他のフィルタを用いて平滑化を行ってもよい。また、提示した数値は一例であって、別の数値を用いてカーネルを決定してもよい。 In the case of non-linear conversion, for example, in the case of the median filter, if the kernel size is (1 × 3), the data is selected while shifting the odor data by three, and if the median of each is taken, it is smoothed by the median filter. Can be converted. Note that the moving average filter, Gaussian filter, and median filter are examples, and smoothing may be performed using another filter such as a Gabor filter. The presented numerical value is an example, and another numerical value may be used to determine the kernel.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
(D)オフセットの除去について説明する。
 オフセットの除去は、例えば、臭気データのレベルそれぞれから、レベルの一部又は全部の平均値を差し引く処理、又は、臭気データのレベルそれぞれから、所定時刻における臭気データのレベルを差し引く処理である。このようなオフセットの除去をすることで、バイアスが除去できる。なお、臭気データのレベルから、レベルの平均値を差し引く処理は、例えば、数8に示すような線形変換行列を用いて表される。
(D) The removal of offset will be described.
The removal of the offset is, for example, a process of subtracting an average value of a part or all of the levels from each level of the odor data, or a process of subtracting the level of the odor data at a predetermined time from each level of the odor data. By removing such an offset, the bias can be removed. Note that the process of subtracting the average value of the levels from the level of the odor data is expressed using, for example, a linear conversion matrix shown in Expression 8.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、臭気データのレベルLそれぞれから、図4の時刻t0における臭気データのレベルL0を差し引く処理は、例えば、数9に示すような線形変換行列で表される。 Further, the process of subtracting the level L0 of the odor data at time t0 in FIG. 4 from each level L of the odor data is expressed by, for example, a linear conversion matrix shown in Expression 9.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
(E)速度定数の寄与度の特徴量の抽出について説明する。
 臭気データから、感応膜への分子の吸脱着の速さ(速度定数)の寄与の大きさを特徴量とするような変換をしてもよい。例えば、数10に示すような線形変換行列を用いてもよい。
(E) The extraction of the feature amount of the rate constant contribution will be described.
The odor data may be converted such that the magnitude of the contribution of the speed of adsorption / desorption of molecules to the sensitive film (rate constant) is used as the characteristic amount. For example, a linear transformation matrix as shown in Expression 10 may be used.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
(F)重み付について説明する。
 重み付は、重視したい箇所の臭気データを指定して重み付をする処理である。重み付をすることで、臭気データの任意の重要な箇所を重視できる。重み付は、数11に示すような線形変換行列を用いてもよい。数11に示す線形変換行列は、図4の波形の立ち上がり時刻t0の直前の時刻から、立ち下り時刻tmの直後の時刻に取得した臭気データにおいて、レベルL0、Lmを注目させるための線形変換行列である。すなわち、数11の値0.1、0.3、0.1は、レベルL1、Lm及びその近辺のレベルLを大きな値とする。
(F) Weighting will be described.
Weighting is a process of assigning weight by designating the odor data of a place to be emphasized. By weighting, any important part of the odor data can be emphasized. For weighting, a linear transformation matrix as shown in Expression 11 may be used. The linear conversion matrix shown in Expression 11 is a linear conversion matrix for making the levels L0 and Lm notice in the odor data acquired from the time immediately before the rising time t0 of the waveform in FIG. 4 to the time immediately after the falling time tm. Is. That is, the values 0.1, 0.3, and 0.1 of Expression 11 make the levels L1 and Lm and the level L in the vicinity thereof large.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、臭気データを用いて回帰分析や判別分析を行う場合、例えば、数12のような線形モデルがそのまま、あるいは式の一部として用いられる。この線形モデルを用いる場合、その出力は、重みwiとxiの掛け算が足し合わされた合計値をもとに決定される。すなわち、wiとxiの絶対値が大きいほど、その出力に寄与しているものと考えられる。そのため、作成した線形モデルの係数を重みとすることで、回帰分析や判別分析の出力に寄与する部分の臭気データを重視できる。線形モデルの係数wiを重みとする場合、例えば、数12に示すような線形変換行列が用いられる。なお、このとき臭気データは標準化されていてもよいし、されていなくてもよい。 Further, when performing regression analysis or discriminant analysis using odor data, for example, a linear model such as Expression 12 is used as it is or as a part of an equation. When this linear model is used, its output is determined based on the total value obtained by adding the weights w i and x i together. That is, it is considered that the larger the absolute values of w i and x i are, the more they contribute to the output. Therefore, by weighting the coefficient of the created linear model, the odor data of the part that contributes to the output of regression analysis or discriminant analysis can be emphasized. When the coefficient w i of the linear model is used as the weight, for example, a linear conversion matrix shown in Expression 12 is used. At this time, the odor data may or may not be standardized.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 なお、上述した前処理を二つ以上組み合わせて用いてもよい。例えば、(D)オフセットを除去した後、(C)平滑化などの処理を行ってもよい。 Note that two or more of the above-mentioned pretreatments may be combined and used. For example, (C) smoothing may be performed after (D) offset is removed.
 補正係数算出部25は、例えば、数13に示すような式を最小化することで、補正係数αを算出する。最小化には、例えば、最小二乗法や確率的勾配降下法、などを用いてもよい。 The correction coefficient calculation unit 25 calculates the correction coefficient α by, for example, minimizing the formula shown in Expression 13. For the minimization, for example, the least squares method or the stochastic gradient descent method may be used.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 又は、補正係数算出部25は、例えば、数14に示すように、上述した線形変換行列(前処理)を適用した後、最小化することで補正係数αを算出してもよい。 Alternatively, the correction coefficient calculation unit 25 may calculate the correction coefficient α by applying the above-described linear conversion matrix (pre-processing) and then minimizing it, as shown in Expression 14, for example.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 更に、補正係数算出部25は、例えば、数15に示すように、条件ごとに、最小化することで、補正係数αを算出してもよい。ここで、条件とは、温度、湿度、基準となる臭気の種類などを組み合わせた計測条件である。 Further, the correction coefficient calculation unit 25 may calculate the correction coefficient α k by minimizing each condition, as shown in Expression 15. Here, the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 又は、補正係数算出部25は、例えば、数16に示すように、条件ごとに、上述した線形変換行列(前処理)を適用し、最小化することで、補正係数αを算出してもよい。 Alternatively, for example, the correction coefficient calculation unit 25 calculates the correction coefficient α k by applying and minimizing the above-described linear conversion matrix (preprocessing) for each condition as shown in Expression 16. Good.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 補正係数取得部26は、補正係数算出部25において算出した補正係数を取得する。具体的には、補正係数取得部26は、補正係数算出部25から補正係数を取得した後、補正係数データを生成して、不図示の記憶部に記憶する。補正係数取得部26は、例えば、補正係数α又はαを用いて補正係数データを生成し、上述したように臭気センサデータ補正装置1の内部に設けられた記憶部、又は、外部に設けられた記憶部に記憶する。 The correction coefficient acquisition unit 26 acquires the correction coefficient calculated by the correction coefficient calculation unit 25. Specifically, the correction coefficient acquisition unit 26 acquires the correction coefficient from the correction coefficient calculation unit 25, then generates the correction coefficient data, and stores the correction coefficient data in a storage unit (not illustrated). The correction coefficient acquisition unit 26 generates correction coefficient data using the correction coefficient α or α k , for example, and is provided in the storage unit provided inside the odor sensor data correction device 1 as described above, or provided outside. Stored in the storage unit.
 図5は、補正係数データのデータ構造の一例を示す図である。図5に示す補正係数データ51は、臭気センサ21bを識別するセンサ識別情報を表す「S1」と、感応膜22c、22dを識別する感応膜識別情報を表す「3」「4」と、感応膜22c、22dそれぞれに対する補正係数αを表す「cr3」「cr4」とが関連付けられて記憶されている。 FIG. 5 is a diagram showing an example of the data structure of the correction coefficient data. The correction coefficient data 51 shown in FIG. 5 includes “S1” that represents sensor identification information that identifies the odor sensor 21b, “3” and “4” that represent sensitive film identification information that identifies the sensitive films 22c and 22d, and the sensitive film. "Cr3" and "cr4" representing the correction coefficient α for each of 22c and 22d are stored in association with each other.
 また、図5に示す補正係数データ52は、臭気センサ21bを識別するセンサ識別情報を表す「S1」と、条件を表す「con1」「con2」と、感応膜22c、22dを識別する感応膜識別情報を表す「3」「4」と、条件ごとの感応膜22c、22dそれぞれに対する補正係数αを表す「cr3_1」「cr4_1」「cr3_2」「cr4_2」とが関連付けられて記憶されている。 In addition, the correction coefficient data 52 shown in FIG. 5 includes “S1” indicating sensor identification information for identifying the odor sensor 21b, “con1” and “con2” indicating conditions, and a sensitive film identification for identifying the sensitive films 22c and 22d. "3" and "4" representing information and "cr3_1""cr4_1""cr3_2""cr4_2" representing the correction coefficients α k for the sensitive films 22c and 22d for each condition are stored in association with each other.
 続いて、図6を用いて、本実施の形態における臭気センサデータの補正についてより具体的に説明する。図6は、計測臭気データを補正するシステムの一例を示す図である。 Next, the correction of the odor sensor data according to the present embodiment will be described more specifically with reference to FIG. FIG. 6 is a diagram showing an example of a system for correcting measured odor data.
 図6に示すように、本実施の形態における、計測した臭気データを補正するフェーズにおいて、システムは、臭気センサ21と補正部3とを有する。更に、システムは、臭気解析部61、出力部62を用いて臭気解析をし、その解析結果を出力する。 As shown in FIG. 6, in the phase of correcting the measured odor data in the present embodiment, the system has the odor sensor 21 and the correction unit 3. Further, the system performs odor analysis using the odor analysis unit 61 and the output unit 62, and outputs the analysis result.
 補正部3は、計測時において、対象となる臭気を臭気センサ21bが計測した感応膜22c、22dごとの計測臭気データを、感応膜22c、22dに対応する補正係数α又はαを用いて補正する。具体的には、補正部3は、まず、臭気センサ21bに対応する補正係数データを取得する。また、補正部3は、臭気センサ21bが計測した計測臭気データを取得する。 The correction unit 3 corrects the measured odor data for each of the sensitive films 22c and 22d measured by the odor sensor 21b at the time of measurement, using the correction coefficient α or α k corresponding to the sensitive films 22c and 22d. To do. Specifically, the correction unit 3 first acquires the correction coefficient data corresponding to the odor sensor 21b. Further, the correction unit 3 acquires the measured odor data measured by the odor sensor 21b.
 次に、補正部3は、対象となる臭気を計測した計測臭気データと補正係数データとを用いて、感応膜22c、22dごとの計測臭気データを補正する。補正部3は、条件がない場合、補正係数データ51を取得し、感応膜22c、22dごとの臭気データのレベルに、補正係数αを乗算する。 Next, the correction unit 3 corrects the measured odor data for each of the sensitive films 22c and 22d using the measured odor data obtained by measuring the target odor and the correction coefficient data. When there is no condition, the correction unit 3 acquires the correction coefficient data 51 and multiplies the level of the odor data for each of the sensitive films 22c and 22d by the correction coefficient α.
 また、補正部3は、条件がある場合、条件を用いて補正係数データ52を参照し、条件に関連付けられた感応膜22c、22dごとの補正係数αを取得し、臭気データのレベルに、補正係数αを乗算する。その後、補正部3は、臭気解析をする臭気解析部61に、補正した計測臭気データを送信する。 Further, if there is a condition, the correction unit 3 refers to the correction coefficient data 52 using the condition, acquires the correction coefficient α k for each of the sensitive films 22c and 22d associated with the condition, and sets the odor data level to Multiply by the correction coefficient α k . After that, the correction unit 3 transmits the corrected measured odor data to the odor analysis unit 61 that performs odor analysis.
 臭気解析部61は、感応膜22に対応する補正した計測臭気データを解析する。具体的には、臭気解析部61は、臭気解析をする解析器で、事前に作成した予測モデルなどで、回帰、判別分析などを行ってもよいし、可視化を行ってもよいし、あるいは単にデータを記憶しておくだけでもよい。 The odor analysis unit 61 analyzes the corrected measured odor data corresponding to the sensitive film 22. Specifically, the odor analysis unit 61 is an analyzer that performs odor analysis, and may perform regression, discriminant analysis, or the like using a prediction model created in advance, or may perform visualization, or simply You only need to store the data.
 出力部62は、臭気解析部61から出力可能な形式に変換された、解析結果(臭気の特定結果)を表す出力情報を取得し、その出力情報に基づいて生成した画像及び音声などを出力する。出力部62は、例えば、液晶、有機EL(Electro Luminescence)、CRT(Cathode Ray Tube)を用いた画像表示装置などである。更に、画像表示装置は、スピーカなどの音声出力装置などを有してもよい。なお、出力部62は、プリンタなどの印刷装置でもよい。 The output unit 62 acquires output information representing an analysis result (an odor identification result) converted into a format that can be output from the odor analysis unit 61, and outputs an image and a sound generated based on the output information. .. The output unit 62 is, for example, an image display device using a liquid crystal, an organic EL (Electro Luminescence), or a CRT (Cathode Ray Tube). Further, the image display device may include a voice output device such as a speaker. The output unit 62 may be a printing device such as a printer.
[装置動作]
 次に、本発明の実施の形態における臭気センサデータ補正装置1の動作について図7、図8を用いて説明する。図7は、臭気センサデータ補正装置の補正係数を算出する動作の一例を示す図である。図8は、臭気センサデータ補正装置が臭気データを補正する動作の一例を示す図である。以下の説明においては、適宜図1から図6を参酌する。また、本実施の形態では、臭気センサデータ補正装置1を動作させることによって、臭気センサデータ補正方法が実施される。よって、本実施の形態における臭気センサデータ補正方法の説明は、以下の臭気センサデータ補正装置1の動作説明に代える。
[Device operation]
Next, the operation of the odor sensor data correction device 1 according to the embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram showing an example of the operation of calculating the correction coefficient of the odor sensor data correction device. FIG. 8 is a diagram showing an example of the operation of the odor sensor data correction device for correcting odor data. In the following description, FIGS. 1 to 6 will be referred to as appropriate. Further, in the present embodiment, the odor sensor data correction method is implemented by operating the odor sensor data correction device 1. Therefore, the description of the odor sensor data correction method in the present embodiment will be replaced with the following description of the operation of the odor sensor data correction device 1.
 図7を用いて、本実施の形態における補正係数を算出について説明する。
 図7に示すように、最初に、取得部23は、基準臭気センサ21aから感応膜22ごとの基準臭気データを取得する(ステップA1)。具体的には、ステップA1において、取得部23は、感応膜22それぞれを識別する感応膜識別情報と、感応膜22それぞれが出力した臭気データとを関連付けた基準臭気データを取得し、記憶部に記憶する。図3の基準臭気データ31を参照。
Calculation of the correction coefficient according to the present embodiment will be described with reference to FIG. 7.
As shown in FIG. 7, first, the acquisition unit 23 acquires reference odor data for each sensitive film 22 from the reference odor sensor 21a (step A1). Specifically, in step A1, the acquisition unit 23 acquires reference odor data in which the sensitive film identification information for identifying each of the sensitive films 22 and the odor data output by each of the sensitive films 22 are associated with each other, and is stored in the storage unit. Remember. See the reference odor data 31 in FIG.
 なお、基準臭気データは、一つの基準臭気センサから得られたデータでもよいし、複数の基準臭気センサから基準臭気をそれぞれ計測することで得られた複数の計測結果を用いてもよい。例えば、平均、中央値などの統計処理を用いて、基準臭気データとしてもよい。 Note that the reference odor data may be data obtained from one reference odor sensor, or may be a plurality of measurement results obtained by measuring the reference odors from a plurality of reference odor sensors. For example, the standard odor data may be obtained by using statistical processing such as average and median.
 続いて、算出部2は、補正係数を設定する対象となる臭気センサ21bから感応膜22ごとに、基準臭気を計測した計測臭気データを取得する(ステップA2)。具体的には、ステップA2において、算出部2は、感応膜22それぞれを識別する感応膜識別情報と、感応膜22それぞれが出力した臭気データとを関連付けた、基準臭気を計測した計測臭気データを取得する。 Subsequently, the calculation unit 2 acquires the measured odor data obtained by measuring the reference odor for each of the sensitive films 22 from the odor sensor 21b for which the correction coefficient is set (step A2). Specifically, in step A2, the calculation unit 2 associates the sensitive film identification information for identifying each of the sensitive films 22 with the odor data output by each of the sensitive films 22, and outputs the measured odor data obtained by measuring the reference odor. get.
 続いて、算出部2の前処理部24は、基準臭気データ、基準臭気を計測した計測臭気データに対して前処理をする(ステップA3)。具体的には、ステップA3において、前処理部24は、数1に示すように、基準臭気データと計測臭気データとを、線形変換行列などを用いて前処理する。ただし、ステップA3の前処理はなくてもよい。 Subsequently, the preprocessing unit 24 of the calculation unit 2 performs preprocessing on the standard odor data and the measured odor data obtained by measuring the standard odor (step A3). Specifically, in step A3, the preprocessing unit 24 preprocesses the reference odor data and the measured odor data by using a linear conversion matrix or the like, as shown in Formula 1. However, the pre-processing of step A3 may be omitted.
 前処理は、例えば、上述した(A)統計量の取得、(B)ダウンサンプリング、(C)平滑化、(D)オフセットの除去、(E)特徴量の抽出、(F)重み付などの処理である。 The preprocessing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. Processing.
 続いて、算出部2の補正係数算出部25は、基準臭気データと、計測臭気データとを用いて、感応膜22ごとに補正係数を算出する(ステップA4)。具体的には、ステップA4において、補正係数算出部25は、感応膜「1」(22a)と感応膜「3」(22c)とが対応する感応膜である場合、感応膜「1」の臭気データ「data1」と感応膜「3」の臭気データ「data3」とを用いて、補正係数を算出する。また、算出部2は、感応膜「2」(22b)と感応膜「4」(22d)とが対応する感応膜である場合、感応膜「2」の臭気データ「data2」と感応膜「4」の臭気データ「data4」とを用いて、補正係数を算出する。 Subsequently, the correction coefficient calculation unit 25 of the calculation unit 2 calculates the correction coefficient for each sensitive film 22 using the reference odor data and the measured odor data (step A4). Specifically, in step A4, when the sensitive film “1” (22a) and the sensitive film “3” (22c) are the corresponding sensitive films, the correction coefficient calculation unit 25 determines that the odor of the sensitive film “1” is bad. The correction coefficient is calculated using the data “data1” and the odor data “data3” of the sensitive film “3”. Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The correction coefficient is calculated using the odor data “data4” of “”.
 補正係数算出部25は、例えば、数13に示すような式を最小化して、補正係数αを算出する。又は、補正係数算出部25は、例えば、数14に示すように、上述した線形変換行列(前処理)を適用した後、最小化して、補正係数αを算出してもよい。 The correction coefficient calculation unit 25 calculates the correction coefficient α by minimizing, for example, the formula shown in Expression 13. Alternatively, the correction coefficient calculation unit 25 may calculate the correction coefficient α by applying the above-described linear conversion matrix (preprocessing) and then minimizing it, as shown in Expression 14, for example.
 更に、補正係数算出部25は、例えば、数15に示すように、条件ごとに、最小化して、補正係数αを算出してもよい。ここで、条件とは、温度、湿度、基準となる臭気の種類などを組み合わせた計測条件である。又は、補正係数算出部25は、例えば、数16に示すように、条件ごとに、上述した線形変換行列(前処理)をし、最小化して、補正係数αを算出してもよい。 Furthermore, the correction coefficient calculation unit 25 may calculate the correction coefficient α k by minimizing it for each condition, as shown in Expression 15. Here, the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined. Alternatively, the correction coefficient calculation unit 25 may calculate the correction coefficient α k by performing the above-described linear conversion matrix (preprocessing) for each condition and minimizing it, as shown in Expression 16.
 続いて、算出部2の補正係数取得部26は、補正係数算出部25において算出した補正係数を取得し、記憶部に記憶する(ステップA5)。具体的には、ステップA5において、補正係数取得部26は、補正係数算出部25から補正係数α又はαを取得した後、補正係数データを生成して、臭気センサデータ補正装置1の内部に設けられた記憶部、又は、外部に設けられた記憶部に記憶する。図5の補正係数データ51、52を参照。 Subsequently, the correction coefficient acquisition unit 26 of the calculation unit 2 acquires the correction coefficient calculated by the correction coefficient calculation unit 25 and stores it in the storage unit (step A5). Specifically, in step A5, the correction coefficient acquisition unit 26 acquires the correction coefficient α or α k from the correction coefficient calculation unit 25 and then generates the correction coefficient data to be stored in the odor sensor data correction device 1. The data is stored in a storage unit provided or an external storage unit. See the correction coefficient data 51 and 52 in FIG.
 図8を用いて、本実施の形態における臭気センサデータの補正について説明する。
 図8に示すように、最初に、補正部3は、臭気センサ21bから、臭気センサ21bが計測した計測臭気データを取得する(ステップB1)。補正部3は、記憶部から、臭気センサ21bに対応する補正係数データを取得する(ステップB2)。
Correction of odor sensor data according to the present embodiment will be described with reference to FIG.
As shown in FIG. 8, first, the correction unit 3 acquires the measured odor data measured by the odor sensor 21b from the odor sensor 21b (step B1). The correction unit 3 acquires the correction coefficient data corresponding to the odor sensor 21b from the storage unit (step B2).
 補正部3は、対象の臭気を計測した計測臭気データと補正係数データとを用いて、感応膜22c、22dごとに、対象の臭気を計測した計測臭気データを補正する(ステップB3)。具体的には、ステップB3において、補正部3は、感応膜22c、22dごとの臭気データのレベルに補正係数α又はαを乗算して、対象の臭気を計測した計測臭気データを補正する。 The correction unit 3 corrects the measured odor data obtained by measuring the target odor for each of the sensitive films 22c and 22d using the measured odor data obtained by measuring the target odor and the correction coefficient data (step B3). Specifically, in step B3, the correction unit 3 corrects the measured odor data obtained by measuring the target odor by multiplying the level of the odor data for each of the sensitive films 22c and 22d by the correction coefficient α or α k .
 補正部3は、条件がない場合、補正係数データ51を取得し、感応膜22c、22dごとの臭気データのレベルに、補正係数αを乗算する。 When there is no condition, the correction unit 3 acquires the correction coefficient data 51 and multiplies the level of the odor data for each of the sensitive films 22c and 22d by the correction coefficient α.
 また、補正部3は、条件がある場合、条件を用いて補正係数データ52を参照し、条件に関連付けられた感応膜22c、22dごとの補正係数αを取得し、臭気データのレベルに、補正係数αを乗算する。 Further, if there is a condition, the correction unit 3 refers to the correction coefficient data 52 using the condition, acquires the correction coefficient α k for each of the sensitive films 22c and 22d associated with the condition, and sets the odor data level to Multiply by the correction coefficient α k .
 臭気解析部61は、感応膜22に対応する補正した計測臭気データを解析する(ステップB4)。具体的には、ステップB4において、臭気解析部61は、臭気センサ21bの感応膜22c、22dが計測した臭気データを取得して、解析器を用いて、臭気を解析する。 The odor analysis unit 61 analyzes the corrected measured odor data corresponding to the sensitive film 22 (step B4). Specifically, in step B4, the odor analysis unit 61 acquires the odor data measured by the sensitive films 22c and 22d of the odor sensor 21b, and analyzes the odor using an analyzer.
 出力部62は、臭気解析部61から出力可能な形式に変換された、解析結果(臭気の特定結果)を表す出力情報を取得し、その出力情報に基づいて生成した画像及び音声などを出力する(ステップB5)。 The output unit 62 acquires output information representing an analysis result (an odor identification result) converted into a format that can be output from the odor analysis unit 61, and outputs an image and a sound generated based on the output information. (Step B5).
[本実施の形態の効果]
 以上のように、本実施の形態によれば、算出した補正係数を用いて、計測臭気データを補正するので、臭気センサ間の個体差による計測誤差を抑制できる。
[Effects of this Embodiment]
As described above, according to the present embodiment, the measured odor data is corrected using the calculated correction coefficient, so that the measurement error due to the individual difference between the odor sensors can be suppressed.
 また、感応膜ごとに算出した補正係数を用いて、感応膜ごとに計測臭気データを補正するので、臭気センサ間の個体差による計測誤差を更に抑制できる。 Also, since the measured odor data is corrected for each sensitive film using the correction coefficient calculated for each sensitive film, the measurement error due to the individual difference between the odor sensors can be further suppressed.
 更に、感応膜の形状、大きさ、厚さ、化学的性質などによる製造バラツキがある場合、臭気解析が精度よくできないため、臭気を計測する精度が低下するが、本実施の形態によれば、算出した補正係数を用いて、計測臭気データを補正するので、臭気を計測する精度を向上させることができる。 Further, if there is a manufacturing variation due to the shape, size, thickness, chemical properties, etc. of the sensitive film, the odor analysis cannot be performed accurately, so the accuracy of measuring the odor decreases, but according to the present embodiment, Since the measured odor data is corrected using the calculated correction coefficient, the accuracy of measuring the odor can be improved.
[プログラム]
 本発明の実施の形態におけるプログラムは、コンピュータに、図7に示すステップA1からA5を実行させるプログラム、又は図8に示すステップB1からB5を実行させるプログラムであればよい。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態における臭気センサデータ補正装置と臭気センサデータ補正方法とを実現することができる。この場合、コンピュータのプロセッサは、取得部23、算出部2(前処理部24、補正係数算出部25、補正係数取得部26)、補正部3、臭気解析部61、出力部62として機能し、処理を行なう。
[program]
The program in the embodiment of the present invention may be a program which causes a computer to execute steps A1 to A5 shown in FIG. 7 or a program which causes steps B1 to B5 shown in FIG. 8 to be executed. The odor sensor data correction device and the odor sensor data correction method according to the present embodiment can be realized by installing and executing this program on a computer. In this case, the processor of the computer functions as the acquisition unit 23, the calculation unit 2 (the preprocessing unit 24, the correction coefficient calculation unit 25, the correction coefficient acquisition unit 26), the correction unit 3, the odor analysis unit 61, and the output unit 62, Perform processing.
 また、本実施の形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されてもよい。この場合は、例えば、各コンピュータが、それぞれ、算出部2(前処理部24、補正係数算出部25、補正係数取得部26)、補正部3、臭気解析部61、出力部62のいずれかとして機能してもよい。 Also, the program in the present embodiment may be executed by a computer system constructed by a plurality of computers. In this case, for example, each computer serves as any one of the calculation unit 2 (preprocessing unit 24, correction coefficient calculation unit 25, correction coefficient acquisition unit 26), correction unit 3, odor analysis unit 61, and output unit 62. May function.
[物理構成]
 ここで、実施の形態におけるプログラムを実行することによって、臭気センサデータ補正装置を実現するコンピュータについて図9を用いて説明する。図9は、臭気センサデータ補正装置を実現するコンピュータの一例を示すブロック図である。
[Physical configuration]
Here, a computer that realizes the odor sensor data correction device by executing the program according to the embodiment will be described with reference to FIG. 9. FIG. 9 is a block diagram showing an example of a computer that realizes the odor sensor data correction device.
 図9に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていてもよい。 As shown in FIG. 9, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to perform data communication with each other. The computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to or instead of the CPU 111.
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)などの揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであってもよい。 The CPU 111 expands the program (code) according to the present embodiment stored in the storage device 113 into the main memory 112 and executes these in a predetermined order to perform various calculations. The main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). Further, the program in the present embodiment is provided in a state of being stored in computer-readable recording medium 120. The program in the present embodiment may be distributed on the Internet connected via communication interface 117.
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリなどの半導体記憶装置があげられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。 Further, as a specific example of the storage device 113, a semiconductor storage device such as a flash memory can be cited in addition to a hard disk drive. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads a program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)などの汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)などの磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体があげられる。 Specific examples of the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
 なお、本実施の形態における臭気センサデータ補正装置1は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、臭気センサデータ補正装置1は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 Note that the odor sensor data correction device 1 in the present embodiment can be realized not by using a computer in which a program is installed but by using hardware corresponding to each unit. Further, part of the odor sensor data correction device 1 may be realized by a program, and the remaining part may be realized by hardware.
[付記]
 以上の実施の形態に関し、更に以下の付記を開示する。上述した実施の形態の一部又は全部は、以下に記載する(付記1)から(付記15)により表現することができるが、以下の記載に限定されるものではない。
[Appendix]
Regarding the above-described embodiment, the following supplementary notes will be disclosed. The whole or part of the exemplary embodiments described above can be expressed by (Supplementary Note 1) to (Supplementary Note 15) described below, but the present invention is not limited to the following description.
(付記1)
 第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、算出部と、
 前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、補正部と、
 を有することを特徴とする臭気センサデータ補正装置。
(Appendix 1)
Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a calculation unit, a calculation unit,
A correction unit that corrects the third odor data obtained by measuring the target odor with the odor sensor based on the correction coefficient,
An odor sensor data correction device comprising:
(付記2)
 付記1に記載の臭気センサデータ補正装置であって、
 前記臭気センサは、一つ以上の感応膜を有し、
 前記算出部は、前記感応膜ごとに前記補正係数を算出する
 ことを特徴とする臭気センサデータ補正装置。
(Appendix 2)
The odor sensor data correction device according to attachment 1,
The odor sensor has one or more sensitive films,
The odor sensor data correction device, wherein the calculation unit calculates the correction coefficient for each of the sensitive films.
(付記3)
 付記2に記載の臭気センサデータ補正装置であって、
 前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
 ことを特徴とする臭気センサデータ補正装置。
(Appendix 3)
The odor sensor data correction device according to attachment 2,
The odor sensor data correction device, wherein the first odor data is generated for each of the sensitive films based on the first odor serving as a reference.
(付記4)
 付記3に記載の臭気センサデータ補正装置であって、
 前記補正部は、前記臭気センサが出力した前記感応膜ごとの前記第三の臭気データを、前記感応膜に対応する前記補正係数を用いて補正する
 ことを特徴とする臭気センサデータ補正装置。
(Appendix 4)
The odor sensor data correction device according to attachment 3,
The odor sensor data correction device, wherein the correction unit corrects the third odor data for each of the sensitive films output by the odor sensor using the correction coefficient corresponding to the sensitive film.
(付記5)
 付記1から4のいずれか一つに記載の臭気センサデータ補正装置であって、
 前記算出部は、前記第一の臭気データと前記第二の臭気データとを線形変換する
 ことを特徴とする臭気センサデータ補正装置。
(Appendix 5)
The odor sensor data correction device according to any one of appendices 1 to 4,
The odor sensor data correction device, wherein the calculation unit linearly converts the first odor data and the second odor data.
(付記6)
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、ステップと、
(b)前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、ステップと、
 を有することを特徴とする臭気センサデータ補正方法。
(Appendix 6)
(A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient,
A method for correcting odor sensor data, comprising:
(付記7)
 付記6に記載の臭気センサデータ補正方法であって、
 前記臭気センサは、一つ以上の感応膜を有し、
 前記(b)のステップにおいて、前記感応膜ごとに前記補正係数を算出する
 ことを特徴とする臭気センサデータ補正方法。
(Appendix 7)
The odor sensor data correction method according to attachment 6,
The odor sensor has one or more sensitive films,
In the step (b), the correction coefficient is calculated for each of the sensitive films, and the odor sensor data correction method is characterized.
(付記8)
 付記7に記載の臭気センサデータ補正方法であって、
 前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
 ことを特徴とする臭気センサデータ補正方法。
(Appendix 8)
The odor sensor data correction method according to attachment 7,
The odor sensor data correction method, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
(付記9)
 付記8に記載の臭気センサデータ補正方法であって、
 前記(b)のステップにおいて、前記臭気センサが出力した前記感応膜ごとの前記第三の臭気データを、前記感応膜に対応する前記補正係数を用いて補正する
 ことを特徴とする臭気センサデータ補正方法。
(Appendix 9)
The odor sensor data correction method according to attachment 8,
In the step (b), the third odor data for each of the sensitive films output by the odor sensor is corrected using the correction coefficient corresponding to the sensitive film. Method.
(付記10)
 付記6から9のいずれか一つに記載の臭気センサデータ補正方法であって、
 前記(a)のステップにおいて、前記第一の臭気データと前記第二の臭気データとを線形変換をする
 ことを特徴とする臭気センサデータ補正方法。
(Appendix 10)
The odor sensor data correction method according to any one of appendices 6 to 9,
In the step (a), the odor sensor data correction method is characterized in that the first odor data and the second odor data are linearly converted.
(付記11)
 コンピュータに、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、ステップと、
(b)前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、ステップと、
 を実行させる命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。
(Appendix 11)
On the computer,
(A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient,
A computer-readable recording medium recording a program including an instruction to execute.
(付記12)
 付記11に記載のコンピュータ読み取り可能な記録媒体であって、
 前記臭気センサは、複数の感応膜を有し、
 前記(b)のステップにおいて、前記感応膜ごとに前記補正係数を算出する
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 12)
The computer-readable recording medium according to attachment 11,
The odor sensor has a plurality of sensitive films,
A computer-readable recording medium characterized in that, in the step (b), the correction coefficient is calculated for each of the sensitive films.
(付記13)
 付記12に記載のコンピュータ読み取り可能な記録媒体であって、
 前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 13)
The computer-readable recording medium according to attachment 12,
The computer-readable recording medium, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
(付記14)
 付記13に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(b)のステップにおいて、前記臭気センサが出力した前記感応膜ごとの前記第三の臭気データを、前記感応膜に対応する前記補正係数を用いて補正する
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 14)
The computer-readable recording medium according to attachment 13,
In the step (b), the third odor data for each of the sensitive films output by the odor sensor is corrected using the correction coefficient corresponding to the sensitive film, which is computer-readable. recoding media.
(付記15)
 付記11から14のいずれか一つに記載のコンピュータ読み取り可能な記録媒体であって、
 前記(a)のステップにおいて、前記第一の臭気データと前記第二の臭気データとに対して線形変換をする
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 15)
The computer-readable recording medium according to any one of appendices 11 to 14,
A computer-readable recording medium, wherein in the step (a), the first odor data and the second odor data are linearly converted.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the above exemplary embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 以上のように本発明によれば、臭気センサ間の個体差による計測誤差を抑制することができる。本発明は、臭気センサにおいて計測精度の向上が必要な分野において有用である。 As described above, according to the present invention, it is possible to suppress measurement errors due to individual differences between odor sensors. INDUSTRIAL APPLICABILITY The present invention is useful in fields where odor sensors require improved measurement accuracy.
  1 臭気センサデータ補正装置
  2 算出部
  3 補正部
 21、21a、21b 臭気センサ
 22、22a、22b、22c、22d 感応膜
 23 取得部
 24 前処理部
 25 補正係数算出部
 26 補正係数取得部
 31 基準臭気データ
 32 計測臭気データ
 51 補正係数データ
 61 臭気解析部
 62 出力部
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス
1 Odor Sensor Data Correction Device 2 Calculation Unit 3 Correction Unit 21, 21a, 21b Odor Sensor 22, 22a, 22b, 22c, 22d Sensitive Membrane 23 Acquisition Unit 24 Pre-Processing Unit 25 Correction Coefficient Calculation Unit 26 Correction Coefficient Acquisition Unit 31 Standard Odor Data 32 Measured odor data 51 Correction coefficient data 61 Odor analysis unit 62 Output unit 110 Computer 111 CPU
112 Main Memory 113 Storage Device 114 Input Interface 115 Display Controller 116 Data Reader / Writer 117 Communication Interface 118 Input Equipment 119 Display Device 120 Recording Medium 121 Bus

Claims (15)

  1.  第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、算出手段と、
     前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、補正手段と、
     を有することを特徴とする臭気センサデータ補正装置。
    Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a correction coefficient is calculated, and a calculating unit,
    Based on the correction coefficient, a correction unit that corrects the third odor data obtained by measuring the target odor with the odor sensor,
    An odor sensor data correction device comprising:
  2.  請求項1に記載の臭気センサデータ補正装置であって、
     前記臭気センサは、一つ以上の感応膜を有し、
     前記算出手段は、前記感応膜ごとに前記補正係数を算出する
     ことを特徴とする臭気センサデータ補正装置。
    The odor sensor data correction device according to claim 1,
    The odor sensor has one or more sensitive films,
    The odor sensor data correction device, wherein the calculation means calculates the correction coefficient for each of the sensitive films.
  3.  請求項2に記載の臭気センサデータ補正装置であって、
     前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
     ことを特徴とする臭気センサデータ補正装置。
    The odor sensor data correction device according to claim 2,
    The odor sensor data correction device, wherein the first odor data is generated for each of the sensitive films based on the first odor serving as a reference.
  4.  請求項3に記載の臭気センサデータ補正装置であって、
     前記補正手段は、前記臭気センサが出力した前記感応膜ごとの前記第三の臭気データを、前記感応膜に対応する前記補正係数を用いて補正する
     ことを特徴とする臭気センサデータ補正装置。
    The odor sensor data correction device according to claim 3,
    The odor sensor data correction device, wherein the correction means corrects the third odor data for each of the sensitive films output by the odor sensor using the correction coefficient corresponding to the sensitive film.
  5.  請求項1から4のいずれか一つに記載の臭気センサデータ補正装置であって、
     前記算出手段は、前記第一の臭気データと前記第二の臭気データとに対して線形変換をする
     ことを特徴とする臭気センサデータ補正装置。
    The odor sensor data correction device according to any one of claims 1 to 4,
    The odor sensor data correction device, wherein the calculation means performs a linear conversion on the first odor data and the second odor data.
  6. (a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、ステップと、
    (b)前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、ステップと、
     を有することを特徴とする臭気センサデータ補正方法。
    (A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
    (B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient,
    A method for correcting odor sensor data, comprising:
  7.  請求項6に記載の臭気センサデータ補正方法であって、
     前記臭気センサは、複数の感応膜を有し、
     前記(b)のステップにおいて、前記感応膜ごとに前記補正係数を算出する
     ことを特徴とする臭気センサデータ補正方法。
    The odor sensor data correction method according to claim 6,
    The odor sensor has a plurality of sensitive films,
    In the step (b), the correction coefficient is calculated for each of the sensitive films, and the odor sensor data correction method is characterized.
  8.  請求項7に記載の臭気センサデータ補正方法であって、
     前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
     ことを特徴とする臭気センサデータ補正方法。
    The odor sensor data correction method according to claim 7,
    The odor sensor data correction method, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
  9.  請求項8に記載の臭気センサデータ補正方法であって、
     前記(b)のステップにおいて、前記臭気センサが出力した前記感応膜ごとの前記第三の臭気データを、前記感応膜に対応する前記補正係数を用いて補正する
     ことを特徴とする臭気センサデータ補正方法。
    The odor sensor data correction method according to claim 8,
    In the step (b), the third odor data for each of the sensitive films output by the odor sensor is corrected using the correction coefficient corresponding to the sensitive film. Method.
  10.  請求項6から9のいずれか一つに記載の臭気センサデータ補正方法であって、
     前記(a)のステップにおいて、前記第一の臭気データと前記第二の臭気データとに対して線形変換をする
     ことを特徴とする臭気センサデータ補正方法。
    The odor sensor data correction method according to any one of claims 6 to 9,
    The odor sensor data correction method, wherein in the step (a), the first odor data and the second odor data are linearly converted.
  11.  コンピュータに、
    (a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、補正係数を算出する、ステップと、
    (b)前記補正係数に基づいて、対象の臭気を前記臭気センサが計測して得た第三の臭気データを補正する、ステップと、
     を実行させる命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。
    On the computer,
    (A) calculating a correction coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
    (B) correcting the third odor data obtained by the odor sensor measuring the target odor based on the correction coefficient,
    A computer-readable recording medium recording a program including an instruction to execute.
  12.  請求項11に記載のコンピュータ読み取り可能な記録媒体であって、
     前記臭気センサは、複数の感応膜を有し、
     前記(b)のステップにおいて、前記感応膜ごとに前記補正係数を算出する
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to claim 11,
    The odor sensor has a plurality of sensitive films,
    A computer-readable recording medium characterized in that, in the step (b), the correction coefficient is calculated for each of the sensitive films.
  13.  請求項12に記載のコンピュータ読み取り可能な記録媒体であって、
     前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to claim 12,
    The computer-readable recording medium, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
  14.  請求項13に記載のコンピュータ読み取り可能な記録媒体であって、
     前記(b)のステップにおいて、前記臭気センサが出力した前記感応膜ごとの前記第三の臭気データを、前記感応膜に対応する前記補正係数を用いて補正する
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to claim 13,
    In the step (b), the third odor data for each of the sensitive films output by the odor sensor is corrected using the correction coefficient corresponding to the sensitive film, which is computer-readable. recoding media.
  15.  請求項11から14のいずれか一つに記載のコンピュータ読み取り可能な記録媒体であって、
     前記(a)のステップにおいて、前記第一の臭気データと前記第二の臭気データとに対して線形変換をする
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to any one of claims 11 to 14,
    A computer-readable recording medium, wherein in the step (a), the first odor data and the second odor data are linearly converted.
PCT/JP2018/040418 2018-10-30 2018-10-30 Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium WO2020090019A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020554656A JP7205549B2 (en) 2018-10-30 2018-10-30 Odor sensor data correction device, odor sensor data correction method, and program
PCT/JP2018/040418 WO2020090019A1 (en) 2018-10-30 2018-10-30 Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040418 WO2020090019A1 (en) 2018-10-30 2018-10-30 Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2020090019A1 true WO2020090019A1 (en) 2020-05-07

Family

ID=70462897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040418 WO2020090019A1 (en) 2018-10-30 2018-10-30 Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP7205549B2 (en)
WO (1) WO2020090019A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538670B2 (en) * 1971-10-04 1978-03-30
JP2002096050A (en) * 2000-06-27 2002-04-02 Matsushita Electric Works Ltd Garbage treating device
JP3317157B2 (en) * 1996-09-19 2002-08-26 横河電機株式会社 Gas concentration measurement device
JP4164951B2 (en) * 1999-07-23 2008-10-15 株式会社島津製作所 Odor measuring device
JP4415731B2 (en) * 2004-03-31 2010-02-17 株式会社島津製作所 Odor measuring device
JP4446718B2 (en) * 2003-11-13 2010-04-07 佐 藤 由 紀 Odor measuring device
US20180120277A1 (en) * 2016-10-31 2018-05-03 Electronics And Telecommunications Research Institute Apparatus and method for generation of olfactory information capable of calibration based on pattern recognition model

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460958B2 (en) * 2004-10-07 2008-12-02 E.I. Du Pont De Nemours And Company Computer-implemented system and method for analyzing mixtures of gases

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538670B2 (en) * 1971-10-04 1978-03-30
JP3317157B2 (en) * 1996-09-19 2002-08-26 横河電機株式会社 Gas concentration measurement device
JP4164951B2 (en) * 1999-07-23 2008-10-15 株式会社島津製作所 Odor measuring device
JP2002096050A (en) * 2000-06-27 2002-04-02 Matsushita Electric Works Ltd Garbage treating device
JP4446718B2 (en) * 2003-11-13 2010-04-07 佐 藤 由 紀 Odor measuring device
JP4415731B2 (en) * 2004-03-31 2010-02-17 株式会社島津製作所 Odor measuring device
US20180120277A1 (en) * 2016-10-31 2018-05-03 Electronics And Telecommunications Research Institute Apparatus and method for generation of olfactory information capable of calibration based on pattern recognition model

Also Published As

Publication number Publication date
JPWO2020090019A1 (en) 2021-09-09
JP7205549B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP6940001B2 (en) Learning model creation support device, learning model creation support method, and program
US20210018479A1 (en) Odor sensing apparatus, odor detection method, and computer-readable recording medium
JP7006699B2 (en) Server device, odor sensor data analysis method, and program
US20220036223A1 (en) Processing apparatus, processing method, and non-transitory storage medium
US20230152290A1 (en) Odor detection system, odor detection method, and program
EP3945290A1 (en) Apparatuses, computer-implemented methods, and computer program products for dynamic iterative baseline adjustment
WO2020090019A1 (en) Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium
Elie et al. Estimation of mechanical properties of panels based on modal density and mean mobility measurements
JP7205548B2 (en) Odor sensor inspection device, odor sensor inspection method, and program
US11245764B2 (en) Server apparatus, odor sensor data analysis method, and computer readable recording medium for unfixed odor analysis targets
JP2019531479A (en) System and method for accurately quantifying the composition of a sample to be measured
KR20180045510A (en) Method and apparatus for geomagnetic signal processing
WO2020202338A1 (en) Information processing device, information processing method, and program
JP7173354B2 (en) Detection device, detection method and program
CN115420418B (en) Air pressure measuring method and device, electronic equipment and readable storage medium
WO2020065983A1 (en) Information processing device, control method, and program
CN115577569B (en) Method, device, equipment and medium for constructing logging interpretation reference model
JP7327648B2 (en) DATA GENERATION DEVICE, DATA GENERATION METHOD, AND PROGRAM
EP3708994A1 (en) Plant monitoring apparatus, plant monitoring method, and program
EP4141411A1 (en) Odor detection device, odor detection method, and program
WO2020157810A1 (en) State estimation device, state estimation method, and computer-readable recording medium
CN107407563A (en) It is used for the apparatus and method of surplus value processing in sensor control
JP2016121900A (en) Determination system, determination method, and program therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938356

Country of ref document: EP

Kind code of ref document: A1