WO2020090018A1 - Odor-sensor inspection device, odor-sensor inspection method, and computer-readable recording medium - Google Patents
Odor-sensor inspection device, odor-sensor inspection method, and computer-readable recording medium Download PDFInfo
- Publication number
- WO2020090018A1 WO2020090018A1 PCT/JP2018/040417 JP2018040417W WO2020090018A1 WO 2020090018 A1 WO2020090018 A1 WO 2020090018A1 JP 2018040417 W JP2018040417 W JP 2018040417W WO 2020090018 A1 WO2020090018 A1 WO 2020090018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- odor
- coefficient
- data
- odor sensor
- sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N5/00—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
- G01N5/02—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
Definitions
- the present invention relates to an odor sensor inspection device and an odor sensor inspection method for inspecting an odor sensor, and further to a computer-readable recording medium recording a program for realizing these.
- Non-Patent Document 1 discloses an odor sensor provided with a plurality of sensor elements. Specifically, these sensor elements are provided with a sensitive film having different characteristics for each sensor element. In addition, the sensor element is configured to have a unique reaction with respect to the molecule adsorbed on the sensitive film.
- the state of the sensitive film is, for example, the shape, size, thickness, etc. of the sensitive film.
- the cause of manufacturing variations is, for example, how the coating is applied to a support member that supports the coating liquid when the coating liquid is used for manufacturing the sensitive film.
- One example of an object of the present invention is to provide an odor sensor inspection device, an odor sensor inspection method, and a computer-readable recording medium that detect a defect of an odor sensor with high accuracy.
- the odor sensor inspection device Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a coefficient is calculated, and a calculating unit, An inspection unit for inspecting the odor sensor based on the coefficient, It is characterized by having.
- the odor sensor inspection method (A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor; (B) inspecting the odor sensor based on the coefficient; It is characterized by having.
- a computer-readable recording medium recording the program according to one aspect of the present invention, On the computer, (A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor; (B) inspecting the odor sensor based on the coefficient; It is characterized in that a program including an instruction to execute is recorded.
- FIG. 1 is a diagram showing an example of an odor sensor inspection device.
- FIG. 2 is a diagram showing an example of a system having an odor sensor inspection device.
- FIG. 3 is a diagram illustrating an example of the data structure of the reference odor data and the reference target odor data.
- FIG. 4 is a diagram showing an example of a waveform of odor data.
- FIG. 5 is a diagram showing an example of the data structure of coefficient data.
- FIG. 6 is a diagram showing an example of the data structure of the defect degree data.
- FIG. 7: is a figure which shows an example of operation
- FIG. 8 is a diagram illustrating an example of a computer that realizes the odor sensor inspection device.
- FIG. 1 is a diagram showing an example of an odor sensor inspection device.
- the odor sensor inspection device 1 shown in FIG. 1 is a device that accurately detects a defect in the odor sensor. Further, as shown in FIG. 1, the odor sensor inspection device 1 includes a calculation unit 2 and an inspection unit 3.
- the calculation unit 2 uses the reference odor data (first odor data) indicating the reference odor (first odor) and the measured odor data obtained by the odor sensor measuring the reference odor (second odor data).
- the odor data) and the coefficient are calculated.
- the inspection unit 3 inspects the odor sensor based on the coefficient.
- the coefficient is, for example, a correction coefficient for correcting the measured odor data measured by the target odor sensor, or the reference odor data and the correlation between the measured odor data obtained by measuring the reference odor by the target odor sensor. For example, it is a correlation coefficient.
- the odor sensor is inspected using the calculated coefficient, it is possible to accurately detect the defect of the odor sensor.
- FIG. 2 is a diagram showing an example of a system having an odor sensor inspection device.
- the system according to the present embodiment includes a reference odor sensor 21a, an odor sensor 21b, an acquisition unit 23, and an output unit 24 in addition to the calculation unit 2 and the inspection unit 3.
- the reference odor sensor 21a has a sensitive film 22a and a sensitive film 22b.
- the odor sensor 21b has a sensitive film 22c and a sensitive film 22d.
- the calculation unit 2 has a preprocessing unit 25 and a coefficient calculation unit 26.
- the acquisition unit 23 first acquires the measurement result (reference odor data) obtained by the reference odor sensor 21a, which is the reference odor sensor, measuring the reference odor (reference gas).
- the reference odor data may be data obtained from one reference odor sensor, or a plurality of measurement results obtained by measuring the reference odors from the plurality of reference odor sensors 21a may be used.
- the standard odor data may be obtained by using statistical processing such as average and median.
- the calculation unit 2 acquires the measurement result (measured odor data) obtained by measuring the reference odor by the odor sensor 21b for which the correction coefficient is set. After that, the calculation unit 2 uses the reference odor data and the measured odor data obtained by measuring the reference odor, and at the time of measurement, calculates a correction coefficient for correcting the target odor of the measured odor data measured by the odor sensor 21b. calculate. Alternatively, the calculation unit 2 calculates the correlation coefficient using the reference odor data and the measured odor data obtained by measuring the reference odor. Alternatively, the calculation unit 2 calculates the correction coefficient and the correlation coefficient.
- the inspection unit 3 acquires a coefficient (correction coefficient, correlation coefficient, or both), and based on the correction coefficient, the correlation coefficient, or both, the odor sensor 21b Determine the degree of failure.
- the inspector inspects the odor sensor 21b according to the degree of the defect.
- the reference odor sensor 21a is a reference odor sensor used when calculating the coefficient, and has one or more sensitive films 22.
- the reference odor sensor 21a has sensitive films 22a and 22b. Specifically, the reference odor sensor 21a performs measurement using the reference odor, and outputs the reference odor data for each of the sensitive films 22a and 22b to the acquisition unit 23.
- the odor sensor 21b is an odor sensor for which a coefficient is set, and has one or more sensitive films 22.
- the odor sensor 21b has sensitive films 22c and 22d. Specifically, the odor sensor 21b measures the reference odor and outputs the measured odor data to the calculation unit 2 for each of the sensitive films 22c and 22d.
- the odor sensor 21 is a sensor that detects a chemical substance in the air by using an element that detects a chemical substance.
- an odor sensor is a cantilever if it utilizes changes in physical quantities related to device viscoelasticity and dynamic characteristics (mass, moment of inertia, etc.) due to adsorption and desorption of molecules on a sensitive film.
- Formula, film type, optical type, piezo, vibration response may be used.
- a membrane surface stress sensor MMSS: Membrane-type Surface Stress Sensor
- MSS is an odor sensor that has multiple MSS elements.
- the MSS element has a sensitive film, a support member that supports the sensitive film, a wiring substrate that surrounds the support member, and a plurality of bridges that connect the support member and the wiring substrate.
- the bridge also has a piezoresistive element.
- the support member is a member that supports the sensitive film, and has a mechanism of distorting according to the strain of the sensitive film.
- the bridge is connected to the support member, and when stress is applied to the bridge due to the strain described above, the electrical resistance of the piezoresistive element embedded in the bridge changes. That is, the MSS measures this electrical resistance and outputs odor data representing the measurement result via the wiring board.
- the material of the sensitive film of the MSS element differs for each MSS element, but the type of substance detected by the MSS element is not fixed to one. Therefore, the material of the sensitive film differs depending on the set of substances that make up the odor.
- the sensitive film is formed by depositing a chemical substance on the substrate for constructing the sensitive film.
- a method such as liquid application by an inkjet method, a dip method, or vapor deposition is used.
- the acquisition unit 23 acquires reference odor data representing the measurement result for each sensitive film 22 from the reference odor sensor 21a. Specifically, the acquisition unit 23 stores the reference odor data acquired from the reference odor sensor 21a in a storage unit (not shown) in advance. For example, the acquisition unit 23 acquires reference odor data in which the sensitized film identification information for identifying each of the sensitized films 22 and the odor data output by each of the responsive films 22 are associated and stored in the storage unit.
- the storage unit described above may be provided inside the odor sensor inspection device 1 or may be provided outside the odor sensor inspection device 1. When provided externally, the odor sensor inspection device 1 communicates with a storage unit provided externally to acquire reference odor data.
- FIG. 3 is a diagram showing an example of the data structure of the standard odor data and the standard target odor data.
- the reference odor data 31 in FIG. 3 is “1” and “2” that represent the sensitive film identification information that identifies the sensitive films 22a and 22b, and “data1” and “data2” that represent the odor data output by each of the sensitive films 22a and 22b. And are associated and stored.
- the calculation unit 2 calculates a coefficient (correction coefficient, correlation coefficient, or both) for each sensitive film 22.
- the calculation unit 2 also includes a preprocessing unit 25 and a coefficient calculation unit 26.
- the preprocessing unit 25 may not be provided in the calculation unit 2.
- the calculation unit 2 first acquires the measured odor data obtained by measuring the reference odor from the target odor sensor 21b.
- the measured odor data 32 in FIG. 3 represents "3" and "4" representing the sensitive film identification information for identifying the sensitive films 22c and 22d, and the odor data obtained by measuring the reference odors output by the sensitive films 22c and 22d. "data3" and “data4" are associated with each other.
- the calculation unit 2 calculates a coefficient (correction coefficient, correlation coefficient, or both) for each sensitive film 22 using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, when the sensitive film “1” (22a) and the sensitive film “3” (22c) are the sensitive films corresponding to each other, the calculation unit 2 responds to the odor data “data1” of the sensitive film “1” and the sensitive film. The coefficient is calculated using the odor data “data3” of the film “3”. Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The coefficient is calculated by using the odor data “data4” of “.
- the pre-processing unit 25 performs pre-processing on the standard odor data and the measured odor data obtained by measuring the standard odor. Specifically, as shown in Formula 1, the standard odor data and the measured odor data obtained by measuring the standard odor are preprocessed using a linear conversion matrix or the like. However, the linear conversion matrix does not necessarily have to be used for the preprocessing.
- the pre-processing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. is there.
- FIG. 4 is a diagram showing an example of a waveform of odor data.
- the vertical axis shows the level L of the odor data
- the horizontal axis shows the time t.
- the acquisition of the statistical amount is, for example, a process of calculating an amplitude and an average.
- the process of calculating the amplitude in the example of FIG. 4, the level L0 at the time t0 and the level Lm at the time tm are acquired, and the difference (Lm ⁇ L0) between the level Lm and the level L0 is set as the amplitude.
- the amplitude is related to the magnitude of the reaction of the sensitive membrane 22.
- the process of calculating the amplitude from the level of the odor data can be expressed using, for example, a linear conversion matrix shown in Formula 2.
- the average of some or all of the levels of odor data is calculated.
- the process of calculating the average is such that, when calculating the average of the levels from time t0 to time tn in FIG. 4, when the number of odor data sampled during the time from time t0 to time tn is N, the odor data N Calculate the average of the individual levels. By calculating the average in this way, it is expected to reduce noise based on the odor data.
- the downsampling is, for example, a process (thinning process) of acquiring odor data at predetermined intervals.
- the downsampling By using downsampling, the amount of data can be suppressed, so that the processing speed can be improved.
- the downsampling process can be expressed using, for example, a linear transformation matrix as shown in Equation 4.
- the linear transformation matrix of the example of Expression 4 thins out the odor data to 1/3.
- the smoothing is a process of applying a moving average filter, a Gaussian filter, a median filter, or the like to the odor data. By using the smoothing, it is possible to reduce the noise on the level of the odor data.
- the smoothing process uses, for example, a moving average filter or a Gaussian filter.
- the kernels of the equations 5 and 6 are used, respectively.
- the kernel of the moving average filter is expressed by Equation 5.
- the kernel is expressed as (1/3/1/3 1/3).
- the odor data can be smoothed by the moving average filter by multiplying the kernel and the odor data while shifting them and further adding them.
- the processing of the moving average filter can be expressed by using, for example, a linear conversion matrix shown in Expression 7.
- the odor data can be smoothed by Gaussian by performing the same calculation after determining the kernel by setting the size of the kernel to (1 ⁇ 3) and the magnitude of the variance to 1, for example.
- the median filter if the kernel size is (1 ⁇ 3), the data is selected while shifting the odor data by three, and if the median of each is taken, it is smoothed by the median filter. Can be converted.
- the moving average filter, Gaussian filter, and median filter are examples, and smoothing may be performed using another filter such as a Gabor filter.
- the presented numerical value is an example, and another numerical value may be used to determine the kernel.
- the removal of offset is, for example, a process of subtracting an average value of a part or all of the levels from each level of the odor data, or a process of subtracting the level of the odor data at a predetermined time from each level of the odor data.
- the process of subtracting the average value of the levels from the level of the odor data is expressed using, for example, a linear conversion matrix shown in Expression 8.
- the extraction of the feature amount of the rate constant contribution will be described.
- the odor data may be converted such that the magnitude of the contribution of the speed of adsorption / desorption of molecules to the sensitive film (rate constant) is used as the characteristic amount.
- a linear transformation matrix as shown in Expression 10 may be used.
- Weighting is a process of assigning weight by designating the odor data of a place to be emphasized. By weighting, any important part of the odor data can be emphasized.
- a linear transformation matrix as shown in Expression 11 may be used.
- the linear conversion matrix shown in Expression 11 is a linear conversion matrix for making the levels L0 and Lm notice in the odor data acquired from the time immediately before the rising time t0 of the waveform in FIG. 4 to the time immediately after the falling time tm. Is. That is, the values 0.1, 0.3, and 0.1 of Expression 11 make the levels L1 and Lm and the level L in the vicinity thereof large.
- a linear model such as Expression 12 is used as it is or as a part of an equation.
- this linear model its output is determined based on the total value obtained by adding the weights w i and x i together. That is, it is considered that the larger the absolute values of w i and x i are, the more they contribute to the output. Therefore, by weighting the coefficient of the created linear model, the odor data of the part that contributes to the output of regression analysis or discriminant analysis can be emphasized.
- the coefficient w i of the linear model is used as the weight, for example, a linear conversion matrix shown in Expression 12 is used. At this time, the odor data may or may not be standardized.
- (C) smoothing may be performed after (D) offset is removed.
- the coefficient calculation unit 26 calculates the correction coefficient ⁇ by, for example, minimizing the equation shown in Expression 13. For the minimization, for example, the least squares method or the stochastic gradient descent method may be used.
- the coefficient calculation unit 26 may calculate the correction coefficient ⁇ by applying the above-described linear conversion matrix (pre-processing) and then minimizing the coefficient, as shown in Expression 14, for example.
- the coefficient calculation unit 26 may calculate the correction coefficient ⁇ k by minimizing the condition for each condition, as shown in Expression 15.
- the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined.
- the coefficient calculation unit 26 may calculate the correction coefficient ⁇ k by applying and minimizing the above-described linear conversion matrix (preprocessing) for each condition, as shown in Expression 16. ..
- the coefficient calculation unit 26 calculates the correlation coefficient r using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, the coefficient calculation unit 26 divides the covariance of the reference odor data and the measured odor data obtained by measuring the reference odor by the respective standard deviations to obtain a correlation coefficient indicating the strength of the linear relationship. Calculate r.
- the coefficient calculating unit 26 uses the reference odor data and the measured odor data obtained by measuring the reference odor for each condition, and the correlation coefficient r for each condition. You may calculate k .
- the inspection unit 3 determines the degree of failure of the odor sensor 21b based on the coefficient. Specifically, the inspection unit 3 first acquires the coefficient (correction coefficient, correlation coefficient, or both) calculated by the coefficient calculation unit 26. Subsequently, the inspection unit 3 generates coefficient data and stores it in a storage unit (not shown). Inspecting unit 3 is, for example, the correction coefficient alpha, alpha k, and generates coefficient data by using a correlation coefficient r, r k, the storage unit provided within the odor sensor inspection apparatus 1 as described above, or , Is stored in an external storage unit.
- calculation unit 2 may generate the coefficient data and store the coefficient data in the storage unit provided inside the odor sensor inspection device 1 or the storage unit provided outside as described above.
- FIG. 5 is a diagram showing an example of the data structure of coefficient data.
- the coefficient data 51 shown in FIG. 5 includes "S1" that represents sensor identification information that identifies the odor sensor 21b, "3” and “4" that represents sensitive film identification information that identifies the sensitive films 22c and 22d, and the sensitive film 22c. , 22d are stored in association with “cr3” and “cr4”, which represent the correction coefficient ⁇ , and “rr3” and “rr4”, which represent the correlation coefficient r.
- the coefficient data 52 shown in FIG. 5 is “S1” indicating sensor identification information for identifying the odor sensor 21b, “con1” and “con2” indicating conditions, and sensitive film identification information for identifying the sensitive films 22c and 22d. “3” and “4”, “cr3_1”, “cr4_1”, “cr3_2”, and “cr4_2” that represent the correction coefficients ⁇ k for the sensitive films 22c and 22d for each condition, and “rr3_1” that represents the correlation coefficient r k. "Rr4_1”, “rr3_2”, and “rr4_2" are stored in association with each other.
- the inspection unit 3 selects any one of the correction coefficients ⁇ , ⁇ k and the correlation coefficients r, r k corresponding to each of the sensitive films 22 of the odor sensor 21b, or the correction coefficient ⁇ and the correlation coefficient r, or The inspection is performed using the correction coefficient ⁇ k and the correlation coefficient r k , the correction coefficient ⁇ and the correlation coefficient r k , or the correction coefficient ⁇ k and the correlation coefficient r.
- the inspection unit 3 selects one of the correction coefficients ⁇ , ⁇ k and the correlation coefficients r, r k corresponding to the obtained sensitive films 22c, 22d, or the correction coefficient ⁇ and the correlation coefficient r, Alternatively, using the correction coefficient ⁇ k and the correlation coefficient r k , or the correction coefficient ⁇ and the correlation coefficient r k , or the correction coefficient ⁇ k and the correlation coefficient r, the preset defect degree data described later is referred to. The degree of failure of the odor sensor 21b is determined.
- the test unit 3 when using the correction coefficient alpha or alpha k, based on the magnitude of the correction coefficient alpha or alpha k, determines defective degree. For example, when the correction coefficient ⁇ or ⁇ k is less than or equal to the predetermined threshold value th1, the inspection unit 3 passes the odor sensor 21b. In addition, the inspection unit 3 rejects the odor sensor 21b when it is larger than the predetermined threshold value th1.
- the predetermined threshold th1 is set, for example, by experiment or simulation.
- the correction coefficient ⁇ or ⁇ k is a coefficient used for correcting the measured odor data to match the reference odor data, the measured odor data is multiplied. Therefore, when the correction coefficient ⁇ or ⁇ k is large, the noise itself included in the measured odor data also becomes large, and the odor may not be accurately measured. Therefore, by rejecting a sensor having a large correction coefficient ⁇ or ⁇ k, the odor sensor 21 that outputs a large amount of noise can be excluded.
- the inspection unit 3 determines failure of the original case, its size using the correlation coefficient r or r k. Inspecting unit 3, if the correlation coefficient r or r k is the predetermined threshold th2 or more, the odor sensor 21b as acceptable. In addition, the inspection unit 3 fails the odor sensor 21b when it is smaller than the predetermined threshold value th2.
- the predetermined threshold th2 is set by, for example, an experiment or a simulation.
- the correlation coefficient r or r k are the indicator of the strength of the linear relationship of two data, if there is some problem, the reference odor data and measurement odor data measured with the reference odor
- the odor sensor 21b is excluded because it is considered to have a weak relationship with.
- the inspection unit 3 may make the determination using only one of the above-described correction coefficient and correlation coefficient, or may use the correction coefficient ⁇ and the correlation coefficient r or the correction coefficient ⁇ k and the correlation coefficient r k. Alternatively, the inspection may be performed using the correction coefficient ⁇ and the correlation coefficient r k , or the correction coefficient ⁇ k and the correlation coefficient r.
- the inspection unit 3 may pass the odor sensor 21b when passing either one of the inspection using the correction coefficient and the inspection using the correlation coefficient.
- the inspection unit 3 may pass the odor sensor 21b when both the inspection using the correction coefficient and the inspection using the correlation coefficient have passed.
- the inspection unit 3 sets a degree of failure such as “reinspection”, “recoating”, or “disposal” according to the values of the correction coefficient, the correlation coefficient, etc.
- the treatment after the inspection may be determined.
- FIG. 6 is a diagram showing an example of the data structure of the defect degree data.
- the defect levels “level1”, “level2”, “level3”, and “level4” are associated with “pass”, “re-inspection”, “re-application”, and “disposal” representing the inspection result of the odor sensor 21 and stored. It is stored in the department.
- the degree of failure is determined by experiments and simulations.
- the output unit 24 acquires the output information indicating the inspection result (defective degree) converted into the format that can be output from the inspection unit 3, and outputs the image and the sound generated based on the output information.
- the output unit 24 is, for example, an image display device using a liquid crystal, an organic EL (Electro Luminescence), or a CRT (Cathode Ray Tube). Further, the image display device may have an audio output device such as a speaker.
- the output unit 24 may be a printing device such as a printer.
- FIG. 7 is a flowchart showing an example of the operation of the odor sensor inspection device.
- FIGS. 1 to 6 will be referred to as appropriate.
- the odor sensor inspection method is implemented by operating the odor sensor inspection apparatus 1. Therefore, the description of the odor sensor inspection method according to the present embodiment will replace the operation description of the odor sensor inspection device 1 below.
- the acquisition unit 23 acquires reference odor data for each sensitive film 22 from the reference odor sensor 21a (step A1). Specifically, in step A1, the acquisition unit 23 acquires reference odor data in which the sensitive film identification information for identifying each of the sensitive films 22 and the odor data output by each of the sensitive films 22 are associated with each other, and is stored in the storage unit.
- the reference odor data 31 in FIG. If the standard odor data is already stored in the storage unit, the process of step A1 is unnecessary.
- the calculation unit 2 acquires the measured odor data measured using the reference odor for each of the sensitive films 22 from the odor sensor 21b for which the correction coefficient is set (step A2). Specifically, in step A2, the calculation unit 2 measures the odor measured using the reference odor in which the sensitive film identification information for identifying each sensitive film 22 and the odor data output by each sensitive film 22 are associated with each other. Get the data.
- the preprocessing unit 25 of the calculation unit 2 performs preprocessing on the standard odor data and the measured odor data (step A3). Specifically, in step A3, the preprocessing unit 25 preprocesses the reference odor data and the measured odor data by using a linear conversion matrix or the like, as shown in Formula 1. However, the pre-processing of step A3 may be omitted.
- the preprocessing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. Processing.
- the coefficient calculation unit 26 of the calculation unit 2 calculates a coefficient (correction coefficient, correlation coefficient, or both) for each sensitive film 22 by using the reference odor data and the measured odor data (step). A4).
- step A4 when the sensitive film “1” (22a) and the sensitive film “3” (22c) are corresponding sensitive films, the coefficient calculation unit 26 determines that the odor data of the sensitive film “1”. The coefficient is calculated using "data1” and the odor data "data3" of the sensitive film “3”. Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The coefficient is calculated by using the odor data “data4” of “.
- the coefficient calculating unit 26 calculates the correction coefficient ⁇ by minimizing it as shown in Expression 13, for example.
- the coefficient calculation unit 26 may calculate the correction coefficient ⁇ by applying the above-described linear conversion matrix (pre-processing) and then minimizing it, as shown in Expression 14, for example.
- the coefficient calculation unit 26 may calculate the correction coefficient ⁇ k by minimizing each condition, as shown in Expression 15.
- the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined.
- the coefficient calculation unit 26 may calculate the correction coefficient ⁇ k by applying the above-described linear conversion matrix (preprocessing) for each condition and then minimizing the coefficient, as shown in Expression 16, for example.
- the coefficient calculation unit 26 may calculate the correlation coefficient r using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, the coefficient calculation unit 26 divides the covariance of the reference odor data and the measured odor data obtained by measuring the reference odor by the respective standard deviations to obtain a correlation coefficient indicating the strength of the linear relationship. Calculate r.
- the coefficient calculating unit 26 calculates when calculating a correlation coefficient for each condition mentioned above, the reference odor data, by using the measurement odor data reference odor was measured, the correlation coefficient r k for each condition You may.
- the inspection unit 3 inspects the odor sensor 21b using the coefficient (step A5). Specifically, in step A5, the inspection unit 3 first acquires the coefficient calculated by the coefficient calculation unit 26. Subsequently, the inspection unit 3 generates coefficient data and stores it in a storage unit (not shown).
- Inspecting unit 3 is, for example, the correction coefficient alpha, alpha k, and generates coefficient data by using a correlation coefficient r, r k, the storage unit provided within the odor sensor inspection apparatus 1 as described above, or , Is stored in an external storage unit. See coefficient data 51 and 52 in FIG.
- calculation unit 2 may generate the coefficient data and store the coefficient data in the storage unit provided inside the odor sensor inspection device 1 or the storage unit provided outside as described above.
- the inspection unit 3 selects any one of the correction coefficients ⁇ , ⁇ k and the correlation coefficients r, r k corresponding to each of the sensitive films 22 of the odor sensor 21b, or the correction coefficient ⁇ and the correlation coefficient r, or The inspection is performed using the correction coefficient ⁇ k and the correlation coefficient r k , the correction coefficient ⁇ and the correlation coefficient r k , or the correction coefficient ⁇ k and the correlation coefficient r.
- the inspection unit 3 selects one of the correction coefficients ⁇ , ⁇ k and the correlation coefficients r, r k corresponding to the obtained sensitive films 22c, 22d, or the correction coefficient ⁇ and the correlation coefficient r, Alternatively, the correction coefficient ⁇ k and the correlation coefficient r k , the correction coefficient ⁇ and the correlation coefficient r k , or the correction coefficient ⁇ k and the correlation coefficient r are used to refer to pre-stored defect degree data described later. The degree of failure of the odor sensor 21b is determined. See the defect degree data 61 in FIG.
- the test unit 3 when using the correction coefficient alpha or alpha k, based on the magnitude of the correction coefficient alpha or alpha k, determines defective degree. For example, when the correction coefficient ⁇ or ⁇ k is less than or equal to the predetermined threshold value th1, the inspection unit 3 passes the odor sensor 21b. In addition, the inspection unit 3 rejects the odor sensor 21b when it is larger than the predetermined threshold value th1.
- the noise itself included in the measured odor data also becomes large, and the odor may not be accurately measured. Therefore, by rejecting the odor sensor 21b having a large correction coefficient ⁇ or ⁇ k , the odor sensor 21b having a large noise can be excluded.
- the inspection unit 3 determines failure of the original case, its size using the correlation coefficient r or r k. Inspecting unit 3, if the correlation coefficient r or r k is the predetermined threshold th2 or more, the odor sensor 21b as acceptable. In addition, the inspection unit 3 fails the odor sensor 21b when it is smaller than the predetermined threshold value th2.
- the predetermined threshold th2 is set by, for example, an experiment or a simulation.
- the correlation coefficient r or r k are the indicator of the strength of the linear relationship of two data, if there is some problem, and the reference odor data, measured odor data reference odor was measured
- the odor sensor 21b is excluded because it is considered to have a weak relationship with.
- the inspection unit 3 may make the determination using only one of the above-described correction coefficient and correlation coefficient, or may use the correction coefficient ⁇ and the correlation coefficient r or the correction coefficient ⁇ k and the correlation coefficient r k. Alternatively, the inspection may be performed using the correction coefficient ⁇ and the correlation coefficient r k , or the correction coefficient ⁇ k and the correlation coefficient r.
- the inspection unit 3 may pass the odor sensor 21b when either the inspection using the correction coefficient or the inspection using the correlation coefficient has passed.
- the inspection unit 3 may pass the odor sensor 21b when both the inspection using the correction coefficient and the inspection using the correlation coefficient have passed.
- the output unit 62 acquires the output information indicating the determination result (defective degree) converted into the format that can be output from the inspection unit 3, and outputs the image and the sound generated based on the output information ( Step A6).
- the program according to the embodiment of the present invention may be a program that causes a computer to execute steps A1 to A6 shown in FIG.
- the odor sensor inspection device and the odor sensor inspection method according to the present embodiment can be realized by installing and executing this program on a computer.
- the processor of the computer functions as the acquisition unit 23, the calculation unit 2 (the preprocessing unit 25, the coefficient calculation unit 26), and the inspection unit 3, and performs the processing.
- each computer may function as either the calculation unit 2 (preprocessing unit 25, coefficient calculation unit 26) or the inspection unit 3.
- FIG. 8 is a block diagram showing an example of a computer that realizes the odor sensor inspection device.
- the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to perform data communication with each other.
- the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to or instead of the CPU 111.
- the CPU 111 expands the program (code) according to the present embodiment stored in the storage device 113 into the main memory 112 and executes these in a predetermined order to perform various calculations.
- the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
- the program in the present embodiment is provided in a state of being stored in computer-readable recording medium 120.
- the program in the present embodiment may be distributed on the Internet connected via communication interface 117.
- the storage device 113 a semiconductor storage device such as a flash memory can be cited in addition to a hard disk drive.
- the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
- the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
- the data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads a program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
- the communication interface 117 mediates data transmission between the CPU 111 and another computer.
- the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
- CF Compact Flash
- SD Secure Digital
- magnetic recording media such as a flexible disk
- CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
- the odor sensor inspection device 1 can be realized by using hardware corresponding to each unit instead of using a computer in which a program is installed. Further, the odor sensor inspection device 1 may be partially implemented by a program and the rest may be implemented by hardware.
- An odor sensor inspection device comprising:
- the odor sensor inspection method according to attachment 5 The odor sensor has a plurality of sensitive films, In the step (a), the odor sensor inspection method is characterized in that the coefficient is calculated for each of the sensitive films.
- the odor sensor inspection method is characterized by inspecting each of the sensitive films based on the coefficient calculated for each of the sensitive films.
- the computer-readable recording medium according to attachment 9 The odor sensor has a plurality of sensitive films, In the step (a), the computer-readable recording medium, wherein the coefficient is calculated for each of the sensitive films.
- the present invention as described above, it is possible to accurately detect a defect in the odor sensor.
- INDUSTRIAL APPLICABILITY The present invention is useful in the field where it is necessary to inspect an odor sensor for defects.
- Odor sensor inspection device 2 Calculation unit 3 Inspection unit 21, 21a, 21b Odor sensor 22, 22a, 22b, 22c, 22d Sensitive film 23 Acquisition unit 24 Output unit 25 Preprocessing unit 26 Coefficient calculation unit 31 Standard odor data 32 Measured odor Data 51 Coefficient data 61 Defect degree data 110 Computer 111 CPU 112 Main Memory 113 Storage Device 114 Input Interface 115 Display Controller 116 Data Reader / Writer 117 Communication Interface 118 Input Equipment 119 Display Device 120 Recording Medium 121 Bus
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
An odor-sensor inspection device 1 for precisely detecting a defect in an odor sensor includes: a calculation unit 2 that calculates a coefficient on the basis of first odor data indicating a first odor and second odor data obtained as a result of the odor sensor measuring the first odor; and an inspection unit 3 that inspects an odor sensor 21b on the basis of the coefficient.
Description
本発明は、臭気センサを検査する臭気センサ検査装置、臭気センサ検査方法に関し、更には、これらを実現するためのプログラムを記録しているコンピュータ読み取り可能な記録媒体に関する。
The present invention relates to an odor sensor inspection device and an odor sensor inspection method for inspecting an odor sensor, and further to a computer-readable recording medium recording a program for realizing these.
非特許文献1には、複数のセンサ素子が設けられた臭気センサについて開示がされている。具体的には、それらのセンサ素子には、センサ素子ごとに異なる特性を有する感応膜が設けられている。また、センサ素子は、感応膜に吸着する分子に対して、特異な反応をするように構成されている。
Non-Patent Document 1 discloses an odor sensor provided with a plurality of sensor elements. Specifically, these sensor elements are provided with a sensitive film having different characteristics for each sensor element. In addition, the sensor element is configured to have a unique reaction with respect to the molecule adsorbed on the sensitive film.
しかしながら、上述した感応膜を有する臭気センサは、製造後の感応膜の状態により、臭気センサ間に個体差が生じるため、異なる臭気センサを用いて臭気を計測した場合、臭気センサ間で計測誤差が生じる。
However, in the odor sensor having the above-described sensitive film, there are individual differences among the odor sensors depending on the state of the sensitive film after manufacturing, so when measuring odors using different odor sensors, a measurement error occurs between the odor sensors. Occurs.
感応膜の状態とは、例えば、感応膜の形状、大きさ、厚さなどの状態である。製造バラツキの原因は、例えば、感応膜の製造に塗布液を用いる場合、塗布液を支持する支持部材への塗布のされ方などが原因となる。
The state of the sensitive film is, for example, the shape, size, thickness, etc. of the sensitive film. The cause of manufacturing variations is, for example, how the coating is applied to a support member that supports the coating liquid when the coating liquid is used for manufacturing the sensitive film.
感応膜に製造不良がある場合、臭気解析が精度よくできないので、臭気を特定する精度、臭気強度を計測する精度が低下する。そのため、臭気センサを破棄、再塗布、再検査を行う必要があるので、感応膜が製造不良であることを精度よく検出する検査方法の開発が望まれている。
If there is a manufacturing defect in the sensitive film, odor analysis cannot be performed accurately, so the accuracy of identifying odor and the accuracy of measuring odor intensity will decrease. Therefore, it is necessary to discard, re-apply, and re-inspect the odor sensor, and therefore it is desired to develop an inspection method that accurately detects that the sensitive film is defective in manufacturing.
本発明の目的の一例は、臭気センサの不良を精度よく検出する、臭気センサ検査装置、臭気センサ検査方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。
One example of an object of the present invention is to provide an odor sensor inspection device, an odor sensor inspection method, and a computer-readable recording medium that detect a defect of an odor sensor with high accuracy.
上記目的を達成するため、本発明の一側面における臭気センサ検査装置は、
第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、算出部と、
前記係数に基づいて、前記臭気センサを検査する、検査部と、
を有することを特徴とする。 In order to achieve the above object, the odor sensor inspection device according to one aspect of the present invention,
Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a coefficient is calculated, and a calculating unit,
An inspection unit for inspecting the odor sensor based on the coefficient,
It is characterized by having.
第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、算出部と、
前記係数に基づいて、前記臭気センサを検査する、検査部と、
を有することを特徴とする。 In order to achieve the above object, the odor sensor inspection device according to one aspect of the present invention,
Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a coefficient is calculated, and a calculating unit,
An inspection unit for inspecting the odor sensor based on the coefficient,
It is characterized by having.
また、上記目的を達成するため、本発明の一側面における臭気センサ検査方法は、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を有することを特徴とする。 Further, in order to achieve the above object, the odor sensor inspection method according to one aspect of the present invention,
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
It is characterized by having.
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を有することを特徴とする。 Further, in order to achieve the above object, the odor sensor inspection method according to one aspect of the present invention,
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
It is characterized by having.
更に、上記目的を達成するため、本発明の一側面におけるプログラムを記録したコンピュータ読み取り可能な記録媒体は、
コンピュータに、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を実行させる命令を含むプログラムを記録していることを特徴とする。 Further, in order to achieve the above object, a computer-readable recording medium recording the program according to one aspect of the present invention,
On the computer,
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
It is characterized in that a program including an instruction to execute is recorded.
コンピュータに、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を実行させる命令を含むプログラムを記録していることを特徴とする。 Further, in order to achieve the above object, a computer-readable recording medium recording the program according to one aspect of the present invention,
On the computer,
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
It is characterized in that a program including an instruction to execute is recorded.
以上のように本発明によれば、臭気センサの不良を精度よく検出することができる。
According to the present invention as described above, it is possible to accurately detect a defect in the odor sensor.
(実施の形態)
以下、本発明の実施の形態について、図1から図8を参照しながら説明する。 (Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8.
以下、本発明の実施の形態について、図1から図8を参照しながら説明する。 (Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8.
[装置構成]
最初に、図1を用いて、本実施の形態における臭気センサ検査装置1の構成について説明する。図1は、臭気センサ検査装置の一例を示す図である。 [Device configuration]
First, the configuration of the odorsensor inspection device 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of an odor sensor inspection device.
最初に、図1を用いて、本実施の形態における臭気センサ検査装置1の構成について説明する。図1は、臭気センサ検査装置の一例を示す図である。 [Device configuration]
First, the configuration of the odor
図1に示す臭気センサ検査装置1は、臭気センサの不良を精度よく検出する装置である。また、図1に示すように、臭気センサ検査装置1は、算出部2と、検査部3とを有する。
The odor sensor inspection device 1 shown in FIG. 1 is a device that accurately detects a defect in the odor sensor. Further, as shown in FIG. 1, the odor sensor inspection device 1 includes a calculation unit 2 and an inspection unit 3.
このうち、算出部2は、基準となる基準臭気(第一の臭気)を示す基準臭気データ(第一の臭気データ)と、基準臭気を臭気センサが計測して得た計測臭気データ(第二の臭気データ)とに基づいて、係数を算出する。検査部3は、係数に基づいて、臭気センサを検査する。係数は、例えば、対象の臭気センサが計測した計測臭気データを補正するための補正係数、又は、基準臭気データと、基準臭気を対象の臭気センサが計測して得た計測臭気データとの相関を表す相関係数などである。
Of these, the calculation unit 2 uses the reference odor data (first odor data) indicating the reference odor (first odor) and the measured odor data obtained by the odor sensor measuring the reference odor (second odor data). The odor data) and the coefficient are calculated. The inspection unit 3 inspects the odor sensor based on the coefficient. The coefficient is, for example, a correction coefficient for correcting the measured odor data measured by the target odor sensor, or the reference odor data and the correlation between the measured odor data obtained by measuring the reference odor by the target odor sensor. For example, it is a correlation coefficient.
このように、本実施の形態においては、算出した係数を用いて、臭気センサを検査するので、臭気センサの不良を精度よく検出できる。
As described above, in the present embodiment, since the odor sensor is inspected using the calculated coefficient, it is possible to accurately detect the defect of the odor sensor.
[システム構成]
続いて、図2を用いて、本実施の形態における臭気センサの検査についてより具体的に説明する。図2は、臭気センサ検査装置を有するシステムの一例を示す図である。 [System configuration]
Subsequently, the inspection of the odor sensor according to the present embodiment will be described more specifically with reference to FIG. FIG. 2 is a diagram showing an example of a system having an odor sensor inspection device.
続いて、図2を用いて、本実施の形態における臭気センサの検査についてより具体的に説明する。図2は、臭気センサ検査装置を有するシステムの一例を示す図である。 [System configuration]
Subsequently, the inspection of the odor sensor according to the present embodiment will be described more specifically with reference to FIG. FIG. 2 is a diagram showing an example of a system having an odor sensor inspection device.
図2に示すように、本実施の形態における、システムは算出部2、検査部3に加えて、基準臭気センサ21a、臭気センサ21b、取得部23、出力部24を有する。基準臭気センサ21aは、感応膜22a、感応膜22bを有する。臭気センサ21bは、感応膜22c、感応膜22dを有する。更に、算出部2は、前処理部25、係数算出部26を有する。
As shown in FIG. 2, the system according to the present embodiment includes a reference odor sensor 21a, an odor sensor 21b, an acquisition unit 23, and an output unit 24 in addition to the calculation unit 2 and the inspection unit 3. The reference odor sensor 21a has a sensitive film 22a and a sensitive film 22b. The odor sensor 21b has a sensitive film 22c and a sensitive film 22d. Further, the calculation unit 2 has a preprocessing unit 25 and a coefficient calculation unit 26.
係数の算出について説明する。取得部23は、係数を算出する場合、まず、基準となる臭気センサである基準臭気センサ21aが、基準となる基準臭気(リファレンスガス)を計測した計測結果(基準臭気データ)を取得する。
Explain the calculation of the coefficient. When calculating the coefficient, the acquisition unit 23 first acquires the measurement result (reference odor data) obtained by the reference odor sensor 21a, which is the reference odor sensor, measuring the reference odor (reference gas).
なお、基準臭気データは、一つの基準臭気センサから得られたデータでもよいし、複数の基準臭気センサ21aから基準臭気をそれぞれ計測することで得られた複数の計測結果を用いてもよい。例えば、平均、中央値などの統計処理を用いて、基準臭気データとしてもよい。
Note that the reference odor data may be data obtained from one reference odor sensor, or a plurality of measurement results obtained by measuring the reference odors from the plurality of reference odor sensors 21a may be used. For example, the standard odor data may be obtained by using statistical processing such as average and median.
続いて、算出部2は、補正係数を設定する対象となる臭気センサ21bが、基準臭気を計測した計測結果(計測臭気データ)を取得する。その後、算出部2は、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、計測時に、対象の臭気を、臭気センサ21bが計測した計測臭気データを補正するための補正係数を算出する。又は、算出部2は、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、相関係数を算出する。又は、算出部2は、補正係数と相関係数とを算出する。
Subsequently, the calculation unit 2 acquires the measurement result (measured odor data) obtained by measuring the reference odor by the odor sensor 21b for which the correction coefficient is set. After that, the calculation unit 2 uses the reference odor data and the measured odor data obtained by measuring the reference odor, and at the time of measurement, calculates a correction coefficient for correcting the target odor of the measured odor data measured by the odor sensor 21b. calculate. Alternatively, the calculation unit 2 calculates the correlation coefficient using the reference odor data and the measured odor data obtained by measuring the reference odor. Alternatively, the calculation unit 2 calculates the correction coefficient and the correlation coefficient.
検査について説明する。検査をする場合、まず、検査部3は、係数(補正係数、又は相関係数、又はそれら両方)を取得して、補正係数、又は相関係数、又はそれら両方に基づいて、臭気センサ21bの不良度を判定する。なお、検査者は、その不良度に応じて、臭気センサ21bを検査する。
Explain the inspection. When performing the inspection, first, the inspection unit 3 acquires a coefficient (correction coefficient, correlation coefficient, or both), and based on the correction coefficient, the correlation coefficient, or both, the odor sensor 21b Determine the degree of failure. The inspector inspects the odor sensor 21b according to the degree of the defect.
基準臭気センサ21aは、係数を算出する場合に用いられる、基準となる臭気センサで、一つ以上の感応膜22を有する。図2の例では、基準臭気センサ21aは、感応膜22a、22bを有する。具体的には、基準臭気センサ21aは、基準臭気を用いて計測をし、感応膜22a、22bごとの基準となる臭気データを、取得部23へ出力する。
The reference odor sensor 21a is a reference odor sensor used when calculating the coefficient, and has one or more sensitive films 22. In the example of FIG. 2, the reference odor sensor 21a has sensitive films 22a and 22b. Specifically, the reference odor sensor 21a performs measurement using the reference odor, and outputs the reference odor data for each of the sensitive films 22a and 22b to the acquisition unit 23.
臭気センサ21bは、係数を設定する対象となる臭気センサで、一つ以上の感応膜22を有する。図2の例では、臭気センサ21bは、感応膜22c、22dを有する。具体的には、臭気センサ21bは、基準臭気を計測し、感応膜22c、22dごとに計測臭気データを、算出部2へ出力する。
The odor sensor 21b is an odor sensor for which a coefficient is set, and has one or more sensitive films 22. In the example of FIG. 2, the odor sensor 21b has sensitive films 22c and 22d. Specifically, the odor sensor 21b measures the reference odor and outputs the measured odor data to the calculation unit 2 for each of the sensitive films 22c and 22d.
臭気センサ21(21a、21b)について説明をする。臭気センサは、化学物質を検出する素子を用いて、空気中の化学物質を検出するセンサである。具体的には、臭気センサは、感応膜に分子が吸着、離脱したことによるデバイスの粘弾性、動力学特性(質量、慣性モーメントなど)に関連する物理量の変化を利用するものであれば、カンチレバー式、膜型、光学式、ピエゾ、振動応答によるものでもよい。例えば、臭気センサは、膜型表面応力センサ(MSS:Membrane-type Surface stress Sensor)などが考えられる。
Explain the odor sensor 21 (21a, 21b). The odor sensor is a sensor that detects a chemical substance in the air by using an element that detects a chemical substance. Specifically, an odor sensor is a cantilever if it utilizes changes in physical quantities related to device viscoelasticity and dynamic characteristics (mass, moment of inertia, etc.) due to adsorption and desorption of molecules on a sensitive film. Formula, film type, optical type, piezo, vibration response may be used. For example, as the odor sensor, a membrane surface stress sensor (MSS: Membrane-type Surface Stress Sensor) or the like can be considered.
MSSは、複数のMSS素子を有する臭気センサである。MSS素子は、感応膜と、感応膜を支持する支持部材と、支持部材を囲む配線基板と、支持部材と配線基板とを連結する複数のブリッジとを有する。また、ブリッジはピエゾ抵抗素子を有する。
MSS is an odor sensor that has multiple MSS elements. The MSS element has a sensitive film, a support member that supports the sensitive film, a wiring substrate that surrounds the support member, and a plurality of bridges that connect the support member and the wiring substrate. The bridge also has a piezoresistive element.
感応膜は、物質が吸着した場合、感応膜に歪が発生する。支持部材は、感応膜を支持する部材で、感応膜の歪に応じて歪む仕組みを有する。ブリッジは、支持部材に連結され、上述した歪によりブリッジに応力がかかると、ブリッジに埋め込まれたピエゾ抵抗素子の電気抵抗が変化する。すなわち、MSSは、この電気抵抗を計測し、配線基板を介し、計測結果を表す臭気データを出力する。
ㆍ In the sensitive film, when a substance is adsorbed, distortion occurs in the sensitive film. The support member is a member that supports the sensitive film, and has a mechanism of distorting according to the strain of the sensitive film. The bridge is connected to the support member, and when stress is applied to the bridge due to the strain described above, the electrical resistance of the piezoresistive element embedded in the bridge changes. That is, the MSS measures this electrical resistance and outputs odor data representing the measurement result via the wiring board.
また、MSS素子の感応膜の材質は、MSS素子ごとに異なるが、MSS素子が検出する物質の種類は一つに固定されない。そのため、感応膜の材質は、臭気を構成する物質の集合に応じて異なる。なお、感応膜は、感応膜を構築するための基板上に、化学物質を付着させて形成される。付着方法は、例えば、インクジェット方式、ディップ方式などによる液体の塗布、蒸着などの方法を用いる。
Also, the material of the sensitive film of the MSS element differs for each MSS element, but the type of substance detected by the MSS element is not fixed to one. Therefore, the material of the sensitive film differs depending on the set of substances that make up the odor. The sensitive film is formed by depositing a chemical substance on the substrate for constructing the sensitive film. As the attachment method, for example, a method such as liquid application by an inkjet method, a dip method, or vapor deposition is used.
取得部23は、基準臭気センサ21aから感応膜22ごとの計測結果を表す基準臭気データを取得する。具体的には、取得部23は、基準臭気センサ21aから取得した基準臭気データを、あらかじめ不図示の記憶部に記憶する。例えば、取得部23は、感応膜22それぞれを識別する感応膜識別情報と、感応膜22それぞれが出力した臭気データとを関連付けた基準臭気データを取得し、記憶部に記憶する。
The acquisition unit 23 acquires reference odor data representing the measurement result for each sensitive film 22 from the reference odor sensor 21a. Specifically, the acquisition unit 23 stores the reference odor data acquired from the reference odor sensor 21a in a storage unit (not shown) in advance. For example, the acquisition unit 23 acquires reference odor data in which the sensitized film identification information for identifying each of the sensitized films 22 and the odor data output by each of the responsive films 22 are associated and stored in the storage unit.
なお、上述した記憶部は、臭気センサ検査装置1の内部に設けてもよいし、臭気センサ検査装置1の外部に設けてもよい。外部に設けた場合、臭気センサ検査装置1は、外部に設けられた記憶部と通信をして、基準臭気データを取得する。
The storage unit described above may be provided inside the odor sensor inspection device 1 or may be provided outside the odor sensor inspection device 1. When provided externally, the odor sensor inspection device 1 communicates with a storage unit provided externally to acquire reference odor data.
図3は、基準臭気データ及び基準対象臭気データのデータ構造の一例を示す図である。図3の基準臭気データ31は、感応膜22a、22bを識別する感応膜識別情報を表す「1」「2」と、感応膜22a、22bそれぞれが出力した臭気データを表す「data1」「data2」とが関連付けられて記憶されている。
FIG. 3 is a diagram showing an example of the data structure of the standard odor data and the standard target odor data. The reference odor data 31 in FIG. 3 is “1” and “2” that represent the sensitive film identification information that identifies the sensitive films 22a and 22b, and “data1” and “data2” that represent the odor data output by each of the sensitive films 22a and 22b. And are associated and stored.
算出部2は、感応膜22ごとに係数(補正係数、又は相関係数、又はそれら両方)を算出する。また、算出部2は、前処理部25、係数算出部26を有する。ただし、前処理部25は、算出部2に設けなくてもよい。
The calculation unit 2 calculates a coefficient (correction coefficient, correlation coefficient, or both) for each sensitive film 22. The calculation unit 2 also includes a preprocessing unit 25 and a coefficient calculation unit 26. However, the preprocessing unit 25 may not be provided in the calculation unit 2.
具体的には、算出部2は、まず、対象となる臭気センサ21bから、基準臭気を計測した計測臭気データを取得する。図3の計測臭気データ32は、感応膜22c、22dを識別する感応膜識別情報を表す「3」「4」と、感応膜22c、22dそれぞれが出力した基準臭気を計測した臭気データを表す「data3」「data4」とが関連付けられている。
Specifically, the calculation unit 2 first acquires the measured odor data obtained by measuring the reference odor from the target odor sensor 21b. The measured odor data 32 in FIG. 3 represents "3" and "4" representing the sensitive film identification information for identifying the sensitive films 22c and 22d, and the odor data obtained by measuring the reference odors output by the sensitive films 22c and 22d. "data3" and "data4" are associated with each other.
続いて、算出部2は、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、感応膜22ごとに係数(補正係数、又は相関係数、又はそれら両方)を算出する。具体的には、算出部2は、感応膜「1」(22a)と感応膜「3」(22c)とが対応する感応膜である場合、感応膜「1」の臭気データ「data1」と感応膜「3」の臭気データ「data3」とを用いて、係数を算出する。また、算出部2は、感応膜「2」(22b)と感応膜「4」(22d)とが対応する感応膜である場合、感応膜「2」の臭気データ「data2」と感応膜「4」の臭気データ「data4」とを用いて、係数を算出する。
Subsequently, the calculation unit 2 calculates a coefficient (correction coefficient, correlation coefficient, or both) for each sensitive film 22 using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, when the sensitive film “1” (22a) and the sensitive film “3” (22c) are the sensitive films corresponding to each other, the calculation unit 2 responds to the odor data “data1” of the sensitive film “1” and the sensitive film. The coefficient is calculated using the odor data “data3” of the film “3”. Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The coefficient is calculated by using the odor data “data4” of “.
算出部について詳細に説明をする。
前処理部25は、基準臭気データ、基準臭気を計測した計測臭気データに対して前処理をする。具体的には、数1に示すように、基準臭気データと基準臭気を計測した計測臭気データとを、線形変換行列などを用いて前処理する。ただし、前処理に必ずしも線形変換行列を用いなくてもよい。 The calculation unit will be described in detail.
Thepre-processing unit 25 performs pre-processing on the standard odor data and the measured odor data obtained by measuring the standard odor. Specifically, as shown in Formula 1, the standard odor data and the measured odor data obtained by measuring the standard odor are preprocessed using a linear conversion matrix or the like. However, the linear conversion matrix does not necessarily have to be used for the preprocessing.
前処理部25は、基準臭気データ、基準臭気を計測した計測臭気データに対して前処理をする。具体的には、数1に示すように、基準臭気データと基準臭気を計測した計測臭気データとを、線形変換行列などを用いて前処理する。ただし、前処理に必ずしも線形変換行列を用いなくてもよい。 The calculation unit will be described in detail.
The
前処理は、例えば、(A)統計量の取得、(B)ダウンサンプリング、(C)平滑化、(D)オフセットの除去、(E)特徴量の抽出、(F)重み付などの処理である。
The pre-processing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. is there.
図4を用いて前処理について説明する。図4は、臭気データの波形の一例を示す図である。図4は、縦軸に臭気データのレベルLを示し、横軸に時間tを示している。
Preprocessing will be explained using FIG. FIG. 4 is a diagram showing an example of a waveform of odor data. In FIG. 4, the vertical axis shows the level L of the odor data, and the horizontal axis shows the time t.
(A)統計量の取得について説明する。
統計量の取得は、例えば、振幅、平均を算出する処理などである。振幅を算出する処理は、図4の例では、時刻t0におけるレベルL0と、時刻tmにおけるレベルLmとを取得して、レベルLmとレベルL0との差(Lm-L0)を振幅とする。振幅は、感応膜22の反応の大きさに関係する。この臭気データのレベルから振幅を算出する処理は、図4の例においては、例えば数2に示すような線形変換行列を用いて表すことができる。 (A) Acquisition of statistics will be described.
The acquisition of the statistical amount is, for example, a process of calculating an amplitude and an average. In the process of calculating the amplitude, in the example of FIG. 4, the level L0 at the time t0 and the level Lm at the time tm are acquired, and the difference (Lm−L0) between the level Lm and the level L0 is set as the amplitude. The amplitude is related to the magnitude of the reaction of the sensitive membrane 22. In the example of FIG. 4, the process of calculating the amplitude from the level of the odor data can be expressed using, for example, a linear conversion matrix shown inFormula 2.
統計量の取得は、例えば、振幅、平均を算出する処理などである。振幅を算出する処理は、図4の例では、時刻t0におけるレベルL0と、時刻tmにおけるレベルLmとを取得して、レベルLmとレベルL0との差(Lm-L0)を振幅とする。振幅は、感応膜22の反応の大きさに関係する。この臭気データのレベルから振幅を算出する処理は、図4の例においては、例えば数2に示すような線形変換行列を用いて表すことができる。 (A) Acquisition of statistics will be described.
The acquisition of the statistical amount is, for example, a process of calculating an amplitude and an average. In the process of calculating the amplitude, in the example of FIG. 4, the level L0 at the time t0 and the level Lm at the time tm are acquired, and the difference (Lm−L0) between the level Lm and the level L0 is set as the amplitude. The amplitude is related to the magnitude of the reaction of the sensitive membrane 22. In the example of FIG. 4, the process of calculating the amplitude from the level of the odor data can be expressed using, for example, a linear conversion matrix shown in
平均を算出する処理は、例えば、臭気データのレベルの一部又は全体の平均を算出する。平均を算出する処理は、図4の時刻t0から時刻tnの間のレベルの平均を算出する場合、時刻t0から時刻tnの時間にサンプリングした臭気データの数がN個である場合、臭気データN個のレベルの平均を算出する。このように、平均を算出することにより、臭気データにのったノイズの低減などが期待できる。
In the process of calculating the average, for example, the average of some or all of the levels of odor data is calculated. The process of calculating the average is such that, when calculating the average of the levels from time t0 to time tn in FIG. 4, when the number of odor data sampled during the time from time t0 to time tn is N, the odor data N Calculate the average of the individual levels. By calculating the average in this way, it is expected to reduce noise based on the odor data.
なお、臭気データのレベルから平均を算出する処理は、例えば数3に示すような線形変換行列を用いて表すことができる。
Note that the process of calculating the average from the level of the odor data can be expressed by using a linear conversion matrix as shown in Formula 3, for example.
(B)ダウンサンプリングについて説明する。
ダウンサンプリングは、例えば、所定周期ごとに臭気データを取得する処理(間引き処理)などである。なお、ダウンサンプリングを用いることで、データ量を抑制できるので、処理速度を向上させることができる。 (B) Down sampling will be described.
The downsampling is, for example, a process (thinning process) of acquiring odor data at predetermined intervals. By using downsampling, the amount of data can be suppressed, so that the processing speed can be improved.
ダウンサンプリングは、例えば、所定周期ごとに臭気データを取得する処理(間引き処理)などである。なお、ダウンサンプリングを用いることで、データ量を抑制できるので、処理速度を向上させることができる。 (B) Down sampling will be described.
The downsampling is, for example, a process (thinning process) of acquiring odor data at predetermined intervals. By using downsampling, the amount of data can be suppressed, so that the processing speed can be improved.
ダウンサンプリングの処理は、例えば、数4に示すような線形変換行列を用いて表すことができる。数4の例の線形変換行列は、臭気データを1/3に間引きをする。
The downsampling process can be expressed using, for example, a linear transformation matrix as shown in Equation 4. The linear transformation matrix of the example of Expression 4 thins out the odor data to 1/3.
(C)平滑化について説明する。
平滑化は、例えば、臭気データに移動平均フィルタ、ガウシアンフィルタ、中央値フィルタ、などを適用する処理である。平滑化を用いることで、臭気データのレベルに乗ったノイズを低減できる。平滑化の処理は、線形変換の場合、例えば、移動平均フィルタ、ガウシアンフィルタなどを用いる。例えば、それぞれ数5、数6のカーネルが用いられる。 (C) Smoothing will be described.
The smoothing is a process of applying a moving average filter, a Gaussian filter, a median filter, or the like to the odor data. By using the smoothing, it is possible to reduce the noise on the level of the odor data. In the case of linear conversion, the smoothing process uses, for example, a moving average filter or a Gaussian filter. For example, the kernels of the equations 5 and 6 are used, respectively.
平滑化は、例えば、臭気データに移動平均フィルタ、ガウシアンフィルタ、中央値フィルタ、などを適用する処理である。平滑化を用いることで、臭気データのレベルに乗ったノイズを低減できる。平滑化の処理は、線形変換の場合、例えば、移動平均フィルタ、ガウシアンフィルタなどを用いる。例えば、それぞれ数5、数6のカーネルが用いられる。 (C) Smoothing will be described.
The smoothing is a process of applying a moving average filter, a Gaussian filter, a median filter, or the like to the odor data. By using the smoothing, it is possible to reduce the noise on the level of the odor data. In the case of linear conversion, the smoothing process uses, for example, a moving average filter or a Gaussian filter. For example, the kernels of the equations 5 and 6 are used, respectively.
具体的なカーネルの使用方法を、移動平均フィルタの例を用いて説明する。移動平均フィルタのカーネルは数5で表される。ここで、カーネルのサイズを(1×3)とすると、カーネルは(1/3 1/3 1/3)と表される。このカーネルと、臭気データとを、ずらしながら掛け、さらに足し合わせることで、臭気データを移動平均フィルタで平滑化できる。
Explain how to use a specific kernel by using an example of moving average filter. The kernel of the moving average filter is expressed by Equation 5. Here, if the size of the kernel is (1 × 3), the kernel is expressed as (1/3/1/3 1/3). The odor data can be smoothed by the moving average filter by multiplying the kernel and the odor data while shifting them and further adding them.
すなわち、移動平均フィルタの処理は、例えば、数7に示すような線形変換行列を用いて表すことができる。ガウシアンフィルタにおいても、例えばカーネルのサイズを(1×3)、分散の大きさを1と決めてカーネルを決定した後、同様の計算を行うことで、臭気データをガウシアンで平滑化できる。
That is, the processing of the moving average filter can be expressed by using, for example, a linear conversion matrix shown in Expression 7. Also in the Gaussian filter, the odor data can be smoothed by Gaussian by performing the same calculation after determining the kernel by setting the size of the kernel to (1 × 3) and the magnitude of the variance to 1, for example.
非線形変換の場合、例えば中央値フィルタでは、カーネルのサイズが(1×3)とすると、臭気データに対して、三つずつずらしながらデータを選択し、それぞれ中央値をとれば中央値フィルタで平滑化できる。なお、移動平均フィルタ、ガウシアンフィルタ、中央値フィルタは一例であって、ガボールフィルタなど、他のフィルタを用いて平滑化を行ってもよい。また、提示した数値は一例であって、別の数値を用いてカーネルを決定してもよい。
In the case of non-linear conversion, for example, in the case of the median filter, if the kernel size is (1 × 3), the data is selected while shifting the odor data by three, and if the median of each is taken, it is smoothed by the median filter. Can be converted. Note that the moving average filter, Gaussian filter, and median filter are examples, and smoothing may be performed using another filter such as a Gabor filter. The presented numerical value is an example, and another numerical value may be used to determine the kernel.
(D)オフセットの除去について説明する。
オフセットの除去は、例えば、臭気データのレベルそれぞれから、レベルの一部又は全部の平均値を差し引く処理、又は、臭気データのレベルそれぞれから、所定時刻における臭気データのレベルを差し引く処理である。このようなオフセットの除去をすることで、バイアスが除去できる。なお、臭気データのレベルから、レベルの平均値を差し引く処理は、例えば、数8に示すような線形変換行列を用いて表される。 (D) The removal of offset will be described.
The removal of the offset is, for example, a process of subtracting an average value of a part or all of the levels from each level of the odor data, or a process of subtracting the level of the odor data at a predetermined time from each level of the odor data. By removing such an offset, the bias can be removed. Note that the process of subtracting the average value of the levels from the level of the odor data is expressed using, for example, a linear conversion matrix shown in Expression 8.
オフセットの除去は、例えば、臭気データのレベルそれぞれから、レベルの一部又は全部の平均値を差し引く処理、又は、臭気データのレベルそれぞれから、所定時刻における臭気データのレベルを差し引く処理である。このようなオフセットの除去をすることで、バイアスが除去できる。なお、臭気データのレベルから、レベルの平均値を差し引く処理は、例えば、数8に示すような線形変換行列を用いて表される。 (D) The removal of offset will be described.
The removal of the offset is, for example, a process of subtracting an average value of a part or all of the levels from each level of the odor data, or a process of subtracting the level of the odor data at a predetermined time from each level of the odor data. By removing such an offset, the bias can be removed. Note that the process of subtracting the average value of the levels from the level of the odor data is expressed using, for example, a linear conversion matrix shown in Expression 8.
また、臭気データのレベルLそれぞれから、図4の時刻t0における臭気データのレベルL0を差し引く処理は、例えば、数9に示すような線形変換行列で表される。
Further, the process of subtracting the level L0 of the odor data at time t0 in FIG. 4 from each level L of the odor data is expressed by, for example, a linear conversion matrix shown in Expression 9.
(E)速度定数の寄与度の特徴量の抽出について説明する。
臭気データから、感応膜への分子の吸脱着の速さ(速度定数)の寄与の大きさを特徴量とするような変換をしてもよい。例えば、数10に示すような線形変換行列を用いてもよい。 (E) The extraction of the feature amount of the rate constant contribution will be described.
The odor data may be converted such that the magnitude of the contribution of the speed of adsorption / desorption of molecules to the sensitive film (rate constant) is used as the characteristic amount. For example, a linear transformation matrix as shown in Expression 10 may be used.
臭気データから、感応膜への分子の吸脱着の速さ(速度定数)の寄与の大きさを特徴量とするような変換をしてもよい。例えば、数10に示すような線形変換行列を用いてもよい。 (E) The extraction of the feature amount of the rate constant contribution will be described.
The odor data may be converted such that the magnitude of the contribution of the speed of adsorption / desorption of molecules to the sensitive film (rate constant) is used as the characteristic amount. For example, a linear transformation matrix as shown in Expression 10 may be used.
(F)重み付について説明する。
重み付は、重視したい箇所の臭気データを指定して重み付をする処理である。重み付をすることで、臭気データの任意の重要な箇所を重視できる。重み付は、数11に示すような線形変換行列を用いてもよい。数11に示す線形変換行列は、図4の波形の立ち上がり時刻t0の直前の時刻から、立ち下り時刻tmの直後の時刻に取得した臭気データにおいて、レベルL0、Lmを注目させるための線形変換行列である。すなわち、数11の値0.1、0.3、0.1は、レベルL1、Lm及びその近辺のレベルLを大きな値にする。 (F) Weighting will be described.
Weighting is a process of assigning weight by designating the odor data of a place to be emphasized. By weighting, any important part of the odor data can be emphasized. For weighting, a linear transformation matrix as shown in Expression 11 may be used. The linear conversion matrix shown in Expression 11 is a linear conversion matrix for making the levels L0 and Lm notice in the odor data acquired from the time immediately before the rising time t0 of the waveform in FIG. 4 to the time immediately after the falling time tm. Is. That is, the values 0.1, 0.3, and 0.1 of Expression 11 make the levels L1 and Lm and the level L in the vicinity thereof large.
重み付は、重視したい箇所の臭気データを指定して重み付をする処理である。重み付をすることで、臭気データの任意の重要な箇所を重視できる。重み付は、数11に示すような線形変換行列を用いてもよい。数11に示す線形変換行列は、図4の波形の立ち上がり時刻t0の直前の時刻から、立ち下り時刻tmの直後の時刻に取得した臭気データにおいて、レベルL0、Lmを注目させるための線形変換行列である。すなわち、数11の値0.1、0.3、0.1は、レベルL1、Lm及びその近辺のレベルLを大きな値にする。 (F) Weighting will be described.
Weighting is a process of assigning weight by designating the odor data of a place to be emphasized. By weighting, any important part of the odor data can be emphasized. For weighting, a linear transformation matrix as shown in Expression 11 may be used. The linear conversion matrix shown in Expression 11 is a linear conversion matrix for making the levels L0 and Lm notice in the odor data acquired from the time immediately before the rising time t0 of the waveform in FIG. 4 to the time immediately after the falling time tm. Is. That is, the values 0.1, 0.3, and 0.1 of Expression 11 make the levels L1 and Lm and the level L in the vicinity thereof large.
また、臭気データを用いて回帰分析や判別分析を行う場合、例えば、数12のような線形モデルがそのまま、あるいは式の一部として用いられる。この線形モデルを用いる場合、その出力は、重みwiとxiの掛け算が足し合わされた合計値をもとに決定される。すなわち、wiとxiの絶対値が大きいほど、その出力に寄与しているものと考えられる。そのため、作成した線形モデルの係数を重みとすることで、回帰分析や判別分析の出力に寄与する部分の臭気データを重視できる。線形モデルの係数wiを重みとする場合、例えば、数12に示すような線形変換行列が用いられる。なお、このとき臭気データは標準化されていてもよいし、されていなくてもよい。
Further, when performing regression analysis or discriminant analysis using odor data, for example, a linear model such as Expression 12 is used as it is or as a part of an equation. When this linear model is used, its output is determined based on the total value obtained by adding the weights w i and x i together. That is, it is considered that the larger the absolute values of w i and x i are, the more they contribute to the output. Therefore, by weighting the coefficient of the created linear model, the odor data of the part that contributes to the output of regression analysis or discriminant analysis can be emphasized. When the coefficient w i of the linear model is used as the weight, for example, a linear conversion matrix shown in Expression 12 is used. At this time, the odor data may or may not be standardized.
なお、上述した前処理を二つ以上組み合わせて用いてもよい。例えば、(D)オフセットを除去した後、(C)平滑化などの処理を行ってもよい。
Note that two or more of the above-mentioned pretreatments may be combined and used. For example, (C) smoothing may be performed after (D) offset is removed.
補正係数の算出について説明する。
係数算出部26は、例えば、数13に示すような式を最小化することで、補正係数αを算出する。最小化には、例えば、最小二乗法や確率的勾配降下法、などを用いてもよい。 The calculation of the correction coefficient will be described.
Thecoefficient calculation unit 26 calculates the correction coefficient α by, for example, minimizing the equation shown in Expression 13. For the minimization, for example, the least squares method or the stochastic gradient descent method may be used.
係数算出部26は、例えば、数13に示すような式を最小化することで、補正係数αを算出する。最小化には、例えば、最小二乗法や確率的勾配降下法、などを用いてもよい。 The calculation of the correction coefficient will be described.
The
又は、係数算出部26は、例えば、数14に示すように、上述した線形変換行列(前処理)を適用した後、最小化することで補正係数αを算出してもよい。
Alternatively, the coefficient calculation unit 26 may calculate the correction coefficient α by applying the above-described linear conversion matrix (pre-processing) and then minimizing the coefficient, as shown in Expression 14, for example.
更に、係数算出部26は、例えば、数15に示すように、条件ごとに、最小化することで、補正係数αkを算出してもよい。ここで、条件とは、温度、湿度、基準となる臭気の種類などを組み合わせた計測条件である。
Furthermore, the coefficient calculation unit 26 may calculate the correction coefficient α k by minimizing the condition for each condition, as shown in Expression 15. Here, the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined.
又は、係数算出部26は、例えば、数16に示すように、条件ごとに、上述した線形変換行列(前処理)を適用し、最小化することで、補正係数αkを算出してもよい。
Alternatively, the coefficient calculation unit 26 may calculate the correction coefficient α k by applying and minimizing the above-described linear conversion matrix (preprocessing) for each condition, as shown in Expression 16. ..
相関係数の算出について説明する。
係数算出部26は、相関係数を算出する場合、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、相関係数rを算出する。具体的には、係数算出部26は、基準臭気データと、基準臭気を計測した計測臭気データとの共分散を、それぞれの標準偏差で割り、直線的な関係性の強さを表す相関係数rを算出する。 The calculation of the correlation coefficient will be described.
When calculating the correlation coefficient, thecoefficient calculation unit 26 calculates the correlation coefficient r using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, the coefficient calculation unit 26 divides the covariance of the reference odor data and the measured odor data obtained by measuring the reference odor by the respective standard deviations to obtain a correlation coefficient indicating the strength of the linear relationship. Calculate r.
係数算出部26は、相関係数を算出する場合、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、相関係数rを算出する。具体的には、係数算出部26は、基準臭気データと、基準臭気を計測した計測臭気データとの共分散を、それぞれの標準偏差で割り、直線的な関係性の強さを表す相関係数rを算出する。 The calculation of the correlation coefficient will be described.
When calculating the correlation coefficient, the
又は、係数算出部26は、上述した条件ごとに相関係数を算出する場合、条件ごとに、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、条件ごとに相関係数rkを算出してもよい。
Alternatively, when calculating the correlation coefficient for each of the above-described conditions, the coefficient calculating unit 26 uses the reference odor data and the measured odor data obtained by measuring the reference odor for each condition, and the correlation coefficient r for each condition. You may calculate k .
検査部3は、係数に基づいて、臭気センサ21bの不良度を判定する。具体的には、検査部3は、まず、係数算出部26において算出した係数(補正係数、又は相関係数、又はそれら両方)を取得する。続いて、検査部3は、係数データを生成して、不図示の記憶部に記憶する。検査部3は、例えば、補正係数α、αk、相関係数r、rkなどを用いて係数データを生成し、上述したように臭気センサ検査装置1の内部に設けられた記憶部、又は、外部に設けられた記憶部に記憶する。
The inspection unit 3 determines the degree of failure of the odor sensor 21b based on the coefficient. Specifically, the inspection unit 3 first acquires the coefficient (correction coefficient, correlation coefficient, or both) calculated by the coefficient calculation unit 26. Subsequently, the inspection unit 3 generates coefficient data and stores it in a storage unit (not shown). Inspecting unit 3 is, for example, the correction coefficient alpha, alpha k, and generates coefficient data by using a correlation coefficient r, r k, the storage unit provided within the odor sensor inspection apparatus 1 as described above, or , Is stored in an external storage unit.
なお、算出部2が、係数データを生成し、上述したように臭気センサ検査装置1の内部に設けられた記憶部、又は、外部に設けられた記憶部に記憶してもよい。
Note that the calculation unit 2 may generate the coefficient data and store the coefficient data in the storage unit provided inside the odor sensor inspection device 1 or the storage unit provided outside as described above.
図5は、係数データのデータ構造の一例を示す図である。図5に示す係数データ51は、臭気センサ21bを識別するセンサ識別情報を表す「S1」と、感応膜22c、22dを識別する感応膜識別情報を表す「3」「4」と、感応膜22c、22dそれぞれに対する補正係数αを表す「cr3」「cr4」と、相関係数rを表す「rr3」「rr4」とが関連付けられて記憶されている。
FIG. 5 is a diagram showing an example of the data structure of coefficient data. The coefficient data 51 shown in FIG. 5 includes "S1" that represents sensor identification information that identifies the odor sensor 21b, "3" and "4" that represents sensitive film identification information that identifies the sensitive films 22c and 22d, and the sensitive film 22c. , 22d are stored in association with “cr3” and “cr4”, which represent the correction coefficient α, and “rr3” and “rr4”, which represent the correlation coefficient r.
また、図5に示す係数データ52は、臭気センサ21bを識別するセンサ識別情報を表す「S1」と、条件を表す「con1」「con2」と、感応膜22c、22dを識別する感応膜識別情報を表す「3」「4」と、条件ごとの感応膜22c、22dそれぞれに対する補正係数αkを表す「cr3_1」「cr4_1」「cr3_2」「cr4_2」と、相関係数rkを表す「rr3_1」「rr4_1」「rr3_2」「rr4_2」とが関連付けられて記憶されている。
The coefficient data 52 shown in FIG. 5 is “S1” indicating sensor identification information for identifying the odor sensor 21b, “con1” and “con2” indicating conditions, and sensitive film identification information for identifying the sensitive films 22c and 22d. “3” and “4”, “cr3_1”, “cr4_1”, “cr3_2”, and “cr4_2” that represent the correction coefficients α k for the sensitive films 22c and 22d for each condition, and “rr3_1” that represents the correlation coefficient r k. "Rr4_1", "rr3_2", and "rr4_2" are stored in association with each other.
続いて、検査部3は、臭気センサ21bの感応膜22それぞれに対応する補正係数α、αk、相関係数r、rkのいずれか一つ、又は補正係数αと相関係数r、又は補正係数αkと相関係数rk、又は補正係数αと相関係数rk、又は補正係数αkと相関係数rを用いて検査をする。具体的には、検査部3は、取得した感応膜22c、22dに対応する補正係数α、αk、相関係数r、rkのいずれか一つ、又は補正係数αと相関係数r、又は補正係数αkと相関係数rk、又は補正係数αと相関係数rk、又は補正係数αkと相関係数rを用いて、あらかじめ設定されている後述する不良度データを参照し、臭気センサ21bの不良度を判定する。
Subsequently, the inspection unit 3 selects any one of the correction coefficients α, α k and the correlation coefficients r, r k corresponding to each of the sensitive films 22 of the odor sensor 21b, or the correction coefficient α and the correlation coefficient r, or The inspection is performed using the correction coefficient α k and the correlation coefficient r k , the correction coefficient α and the correlation coefficient r k , or the correction coefficient α k and the correlation coefficient r. Specifically, the inspection unit 3 selects one of the correction coefficients α, α k and the correlation coefficients r, r k corresponding to the obtained sensitive films 22c, 22d, or the correction coefficient α and the correlation coefficient r, Alternatively, using the correction coefficient α k and the correlation coefficient r k , or the correction coefficient α and the correlation coefficient r k , or the correction coefficient α k and the correlation coefficient r, the preset defect degree data described later is referred to. The degree of failure of the odor sensor 21b is determined.
例えば、検査部3は、補正係数α又はαkを用いる場合、補正係数α又はαkの大きさに基づいて、不良度を判定する。検査部3は、例えば、補正係数α又はαkが所定閾値th1以下である場合、臭気センサ21bを合格とする。また、検査部3は、所定閾値th1より大きい場合、臭気センサ21bを不合格とする。所定閾値th1は、例えば、実験又はシミュレーションにより設定する。
For example, the test unit 3, when using the correction coefficient alpha or alpha k, based on the magnitude of the correction coefficient alpha or alpha k, determines defective degree. For example, when the correction coefficient α or α k is less than or equal to the predetermined threshold value th1, the inspection unit 3 passes the odor sensor 21b. In addition, the inspection unit 3 rejects the odor sensor 21b when it is larger than the predetermined threshold value th1. The predetermined threshold th1 is set, for example, by experiment or simulation.
ここで、補正係数α又はαkは、基準臭気データに計測臭気データを合わせる補正に用いる係数なので、計測臭気データに乗算する。そのため、補正係数α又はαkが大きい場合、計測臭気データに含まれるノイズ自体も大きくなり、臭気を精度よく計測できない恐れがある。従って、補正係数α又はαkが大きいものを不合格とすることで、ノイズを大きく出力する臭気センサ21を除外することができる。
Here, since the correction coefficient α or α k is a coefficient used for correcting the measured odor data to match the reference odor data, the measured odor data is multiplied. Therefore, when the correction coefficient α or α k is large, the noise itself included in the measured odor data also becomes large, and the odor may not be accurately measured. Therefore, by rejecting a sensor having a large correction coefficient α or α k, the odor sensor 21 that outputs a large amount of noise can be excluded.
又は、検査部3は、相関係数r又はrkを用いる場合、その大きさをもとに不良度を判定する。検査部3は、相関係数r又はrkが所定閾値th2以上である場合、臭気センサ21bを合格とする。また、検査部3は、所定閾値th2より小さい場合、臭気センサ21bを不合格とする。所定閾値th2は、例えば、実験又はシミュレーションにより設定する。
Or, the inspection unit 3 determines failure of the original case, its size using the correlation coefficient r or r k. Inspecting unit 3, if the correlation coefficient r or r k is the predetermined threshold th2 or more, the odor sensor 21b as acceptable. In addition, the inspection unit 3 fails the odor sensor 21b when it is smaller than the predetermined threshold value th2. The predetermined threshold th2 is set by, for example, an experiment or a simulation.
ここで、相関係数はr又はrkは、二つのデータの線形な関係の強さを表す指標であるため、何らかの不具合がある場合、基準臭気データと、その基準臭気を計測した計測臭気データとの関係が弱いと考えられるので、臭気センサ21bを除外する。
Here, the correlation coefficient r or r k are the indicator of the strength of the linear relationship of two data, if there is some problem, the reference odor data and measurement odor data measured with the reference odor The odor sensor 21b is excluded because it is considered to have a weak relationship with.
更に、検査部3は、上述した補正係数、相関係数のどちらか一方のみを用いて判定してもよいし、補正係数αと相関係数r、又は補正係数αkと相関係数rk、又は補正係数αと相関係数rk、又は補正係数αkと相関係数rを用いて検査をしてもよい。
Furthermore, the inspection unit 3 may make the determination using only one of the above-described correction coefficient and correlation coefficient, or may use the correction coefficient α and the correlation coefficient r or the correction coefficient α k and the correlation coefficient r k. Alternatively, the inspection may be performed using the correction coefficient α and the correlation coefficient r k , or the correction coefficient α k and the correlation coefficient r.
具体的には、検査部3は、補正係数による検査又は相関係数による検査のいずれか一つに合格をしている場合、臭気センサ21bを合格としてもよい。又は、検査部3は、補正係数による検査と相関係数による検査の両方に合格している場合、臭気センサ21bを合格としてもよい。
Specifically, the inspection unit 3 may pass the odor sensor 21b when passing either one of the inspection using the correction coefficient and the inspection using the correlation coefficient. Alternatively, the inspection unit 3 may pass the odor sensor 21b when both the inspection using the correction coefficient and the inspection using the correlation coefficient have passed.
また、検査部3は、不合格の場合、補正係数、相関係数などの値に応じて、「再検査」「再塗布」「廃棄」などの不良度を設定し、臭気センサ21bに対して検査後の処理を決定してもよい。図6は、不良度データのデータ構造の一例を示す図である。図6の例では、不良度「level1」「level2」「level3」「level4」と、臭気センサ21の検査結果を表す「合格」「再検査」「再塗布」「廃棄」とが関連付けられて記憶部に記憶されている。例えば、不良度は、実験、シミュレーションにより決める。
Further, in the case of failure, the inspection unit 3 sets a degree of failure such as “reinspection”, “recoating”, or “disposal” according to the values of the correction coefficient, the correlation coefficient, etc. The treatment after the inspection may be determined. FIG. 6 is a diagram showing an example of the data structure of the defect degree data. In the example of FIG. 6, the defect levels “level1”, “level2”, “level3”, and “level4” are associated with “pass”, “re-inspection”, “re-application”, and “disposal” representing the inspection result of the odor sensor 21 and stored. It is stored in the department. For example, the degree of failure is determined by experiments and simulations.
出力部24は、検査部3から出力可能な形式に変換された、検査結果(不良度)を表す出力情報を取得し、その出力情報に基づいて生成した画像及び音声などを出力する。出力部24は、例えば、液晶、有機EL(Electro Luminescence)、CRT(Cathode Ray Tube)を用いた画像表示装置などである。更に、画像表示装置はスピーカなどの音声出力装置などを有してもよい。なお、出力部24は、プリンタなどの印刷装置でもよい。
The output unit 24 acquires the output information indicating the inspection result (defective degree) converted into the format that can be output from the inspection unit 3, and outputs the image and the sound generated based on the output information. The output unit 24 is, for example, an image display device using a liquid crystal, an organic EL (Electro Luminescence), or a CRT (Cathode Ray Tube). Further, the image display device may have an audio output device such as a speaker. The output unit 24 may be a printing device such as a printer.
[装置動作]
次に、本発明の実施の形態における臭気センサ検査装置1の動作について図7を用いて説明する。図7は、臭気センサ検査装置の動作の一例を示すフロー図である。以下の説明においては、適宜図1から図6を参酌する。また、本実施の形態では、臭気センサ検査装置1を動作させることによって、臭気センサ検査方法が実施される。よって、本実施の形態における臭気センサ検査方法の説明は、以下の臭気センサ検査装置1の動作説明に代える。 [Device operation]
Next, the operation of the odorsensor inspection device 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 7 is a flowchart showing an example of the operation of the odor sensor inspection device. In the following description, FIGS. 1 to 6 will be referred to as appropriate. Moreover, in this Embodiment, the odor sensor inspection method is implemented by operating the odor sensor inspection apparatus 1. Therefore, the description of the odor sensor inspection method according to the present embodiment will replace the operation description of the odor sensor inspection device 1 below.
次に、本発明の実施の形態における臭気センサ検査装置1の動作について図7を用いて説明する。図7は、臭気センサ検査装置の動作の一例を示すフロー図である。以下の説明においては、適宜図1から図6を参酌する。また、本実施の形態では、臭気センサ検査装置1を動作させることによって、臭気センサ検査方法が実施される。よって、本実施の形態における臭気センサ検査方法の説明は、以下の臭気センサ検査装置1の動作説明に代える。 [Device operation]
Next, the operation of the odor
図7に示すように、最初に、取得部23は、基準臭気センサ21aから感応膜22ごとの基準臭気データを取得する(ステップA1)。具体的には、ステップA1において、取得部23は、感応膜22それぞれを識別する感応膜識別情報と、感応膜22それぞれが出力した臭気データとを関連付けた基準臭気データを取得し、記憶部に記憶する。図3の基準臭気データ31を参照。なお、基準臭気データが既に記憶部に記憶されている場合、ステップA1の処理は不要である。
As shown in FIG. 7, first, the acquisition unit 23 acquires reference odor data for each sensitive film 22 from the reference odor sensor 21a (step A1). Specifically, in step A1, the acquisition unit 23 acquires reference odor data in which the sensitive film identification information for identifying each of the sensitive films 22 and the odor data output by each of the sensitive films 22 are associated with each other, and is stored in the storage unit. Remember. See the reference odor data 31 in FIG. If the standard odor data is already stored in the storage unit, the process of step A1 is unnecessary.
続いて、算出部2は、補正係数を設定する対象となる臭気センサ21bから感応膜22ごとに、基準臭気を用いて計測した計測臭気データを取得する(ステップA2)。具体的には、ステップA2において、算出部2は、感応膜22それぞれを識別する感応膜識別情報と、感応膜22それぞれが出力した臭気データとを関連付けた、基準臭気を用いて計測した計測臭気データを取得する。
Subsequently, the calculation unit 2 acquires the measured odor data measured using the reference odor for each of the sensitive films 22 from the odor sensor 21b for which the correction coefficient is set (step A2). Specifically, in step A2, the calculation unit 2 measures the odor measured using the reference odor in which the sensitive film identification information for identifying each sensitive film 22 and the odor data output by each sensitive film 22 are associated with each other. Get the data.
続いて、算出部2の前処理部25は、基準臭気データ、計測臭気データに対して前処理をする(ステップA3)。具体的には、ステップA3において、前処理部25は、数1に示すように、基準臭気データと計測臭気データとを、線形変換行列などを用いて前処理する。ただし、ステップA3の前処理はなくてもよい。
Subsequently, the preprocessing unit 25 of the calculation unit 2 performs preprocessing on the standard odor data and the measured odor data (step A3). Specifically, in step A3, the preprocessing unit 25 preprocesses the reference odor data and the measured odor data by using a linear conversion matrix or the like, as shown in Formula 1. However, the pre-processing of step A3 may be omitted.
前処理は、例えば、上述した(A)統計量の取得、(B)ダウンサンプリング、(C)平滑化、(D)オフセットの除去、(E)特徴量の抽出、(F)重み付などの処理である。
The preprocessing includes, for example, (A) acquisition of statistics, (B) downsampling, (C) smoothing, (D) offset removal, (E) feature extraction, and (F) weighting. Processing.
続いて、算出部2の係数算出部26は、基準臭気データと、計測臭気データとを用いて、感応膜22ごとに係数(補正係数、又は相関係数、又はそれら両方)を算出する(ステップA4)。
Subsequently, the coefficient calculation unit 26 of the calculation unit 2 calculates a coefficient (correction coefficient, correlation coefficient, or both) for each sensitive film 22 by using the reference odor data and the measured odor data (step). A4).
具体的には、ステップA4において、係数算出部26は、感応膜「1」(22a)と感応膜「3」(22c)とが対応する感応膜である場合、感応膜「1」の臭気データ「data1」と感応膜「3」の臭気データ「data3」とを用いて、係数を算出する。また、算出部2は、感応膜「2」(22b)と感応膜「4」(22d)とが対応する感応膜である場合、感応膜「2」の臭気データ「data2」と感応膜「4」の臭気データ「data4」とを用いて、係数を算出する。
Specifically, in step A4, when the sensitive film “1” (22a) and the sensitive film “3” (22c) are corresponding sensitive films, the coefficient calculation unit 26 determines that the odor data of the sensitive film “1”. The coefficient is calculated using "data1" and the odor data "data3" of the sensitive film "3". Further, when the sensitive film “2” (22b) and the sensitive film “4” (22d) are corresponding sensitive films, the calculation unit 2 calculates the odor data “data2” and the sensitive film “4” of the sensitive film “2”. The coefficient is calculated by using the odor data “data4” of “.
係数算出部26は、例えば、数13に示すように最小化して、補正係数αを算出する。又は、係数算出部26は、例えば、数14に示すように、上述した線形変換行列(前処理)を適用した後、最小化して、補正係数αを算出してもよい。
The coefficient calculating unit 26 calculates the correction coefficient α by minimizing it as shown in Expression 13, for example. Alternatively, the coefficient calculation unit 26 may calculate the correction coefficient α by applying the above-described linear conversion matrix (pre-processing) and then minimizing it, as shown in Expression 14, for example.
又は、係数算出部26は、例えば、数15に示すように、条件ごとに、最小化して、補正係数αkを算出してもよい。ここで、条件とは、温度、湿度、基準となる臭気の種類などを組み合わせた計測条件である。又は、係数算出部26は、例えば、数16に示すように、条件ごとに、上述した線形変換行列(前処理)を適用した後、最小化して、補正係数αkを算出してもよい。
Alternatively, the coefficient calculation unit 26 may calculate the correction coefficient α k by minimizing each condition, as shown in Expression 15. Here, the condition is a measurement condition in which the temperature, the humidity, the type of the standard odor, and the like are combined. Alternatively, the coefficient calculation unit 26 may calculate the correction coefficient α k by applying the above-described linear conversion matrix (preprocessing) for each condition and then minimizing the coefficient, as shown in Expression 16, for example.
又は、係数算出部26は、相関係数を算出する場合、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、相関係数rを算出してもよい。具体的には、係数算出部26は、基準臭気データと、基準臭気を計測した計測臭気データとの共分散を、それぞれの標準偏差で割り、直線的な関係性の強さを表す相関係数rを算出する。
Alternatively, when calculating the correlation coefficient, the coefficient calculation unit 26 may calculate the correlation coefficient r using the reference odor data and the measured odor data obtained by measuring the reference odor. Specifically, the coefficient calculation unit 26 divides the covariance of the reference odor data and the measured odor data obtained by measuring the reference odor by the respective standard deviations to obtain a correlation coefficient indicating the strength of the linear relationship. Calculate r.
又は、係数算出部26は、相関係数を算出する場合、上述した条件ごとに、基準臭気データと、基準臭気を計測した計測臭気データとを用いて、条件ごとに相関係数rkを算出してもよい。
Or, the coefficient calculating unit 26 calculates when calculating a correlation coefficient for each condition mentioned above, the reference odor data, by using the measurement odor data reference odor was measured, the correlation coefficient r k for each condition You may.
続いて、検査部3は、係数を用いて臭気センサ21bの検査をする(ステップA5)。具体的には、ステップA5において、検査部3は、まず、係数算出部26において算出した係数を取得する。続いて、検査部3は、係数データを生成して、不図示の記憶部に記憶する。
Subsequently, the inspection unit 3 inspects the odor sensor 21b using the coefficient (step A5). Specifically, in step A5, the inspection unit 3 first acquires the coefficient calculated by the coefficient calculation unit 26. Subsequently, the inspection unit 3 generates coefficient data and stores it in a storage unit (not shown).
検査部3は、例えば、補正係数α、αk、相関係数r、rkなどを用いて係数データを生成し、上述したように臭気センサ検査装置1の内部に設けられた記憶部、又は、外部に設けられた記憶部に記憶する。図5の係数データ51、52を参照。
Inspecting unit 3 is, for example, the correction coefficient alpha, alpha k, and generates coefficient data by using a correlation coefficient r, r k, the storage unit provided within the odor sensor inspection apparatus 1 as described above, or , Is stored in an external storage unit. See coefficient data 51 and 52 in FIG.
なお、算出部2が、係数データを生成し、上述したように臭気センサ検査装置1の内部に設けられた記憶部、又は、外部に設けられた記憶部に記憶してもよい。
Note that the calculation unit 2 may generate the coefficient data and store the coefficient data in the storage unit provided inside the odor sensor inspection device 1 or the storage unit provided outside as described above.
続いて、検査部3は、臭気センサ21bの感応膜22それぞれに対応する補正係数α、αk、相関係数r、rkのいずれか一つ、又は補正係数αと相関係数r、又は補正係数αkと相関係数rk、又は補正係数αと相関係数rk、又は補正係数αkと相関係数rを用いて検査をする。
Subsequently, the inspection unit 3 selects any one of the correction coefficients α, α k and the correlation coefficients r, r k corresponding to each of the sensitive films 22 of the odor sensor 21b, or the correction coefficient α and the correlation coefficient r, or The inspection is performed using the correction coefficient α k and the correlation coefficient r k , the correction coefficient α and the correlation coefficient r k , or the correction coefficient α k and the correlation coefficient r.
具体的には、検査部3は、取得した感応膜22c、22dに対応する補正係数α、αk、相関係数r、rkのいずれか一つ、又は補正係数αと相関係数r、又は補正係数αkと相関係数rk、又は補正係数αと相関係数rk、又は補正係数αkと相関係数rを用いて、あらかじめ記憶されている後述する不良度データを参照し、臭気センサ21bの不良度を判定する。図6の不良度データ61を参照。
Specifically, the inspection unit 3 selects one of the correction coefficients α, α k and the correlation coefficients r, r k corresponding to the obtained sensitive films 22c, 22d, or the correction coefficient α and the correlation coefficient r, Alternatively, the correction coefficient α k and the correlation coefficient r k , the correction coefficient α and the correlation coefficient r k , or the correction coefficient α k and the correlation coefficient r are used to refer to pre-stored defect degree data described later. The degree of failure of the odor sensor 21b is determined. See the defect degree data 61 in FIG.
例えば、検査部3は、補正係数α又はαkを用いる場合、補正係数α又はαkの大きさに基づいて、不良度を判定する。検査部3は、例えば、補正係数α又はαkが所定閾値th1以下である場合、臭気センサ21bを合格とする。また、検査部3は、所定閾値th1より大きい場合、臭気センサ21bを不合格とする。
For example, the test unit 3, when using the correction coefficient alpha or alpha k, based on the magnitude of the correction coefficient alpha or alpha k, determines defective degree. For example, when the correction coefficient α or α k is less than or equal to the predetermined threshold value th1, the inspection unit 3 passes the odor sensor 21b. In addition, the inspection unit 3 rejects the odor sensor 21b when it is larger than the predetermined threshold value th1.
このように、補正係数α又はαkが大きい場合、計測臭気データに含まれるノイズ自体も大きくなり、臭気を精度よく計測できない恐れがある。従って、補正係数α又はαkが大きい臭気センサ21bを不合格とすることで、ノイズが大きい臭気センサ21bを除外することができる。
As described above, when the correction coefficient α or α k is large, the noise itself included in the measured odor data also becomes large, and the odor may not be accurately measured. Therefore, by rejecting the odor sensor 21b having a large correction coefficient α or α k , the odor sensor 21b having a large noise can be excluded.
又は、検査部3は、相関係数r又はrkを用いる場合、その大きさをもとに不良度を判定する。検査部3は、相関係数r又はrkが所定閾値th2以上である場合、臭気センサ21bを合格とする。また、検査部3は、所定閾値th2より小さい場合、臭気センサ21bを不合格とする。所定閾値th2は、例えば、実験又はシミュレーションにより設定する。
Or, the inspection unit 3 determines failure of the original case, its size using the correlation coefficient r or r k. Inspecting unit 3, if the correlation coefficient r or r k is the predetermined threshold th2 or more, the odor sensor 21b as acceptable. In addition, the inspection unit 3 fails the odor sensor 21b when it is smaller than the predetermined threshold value th2. The predetermined threshold th2 is set by, for example, an experiment or a simulation.
このように、相関係数はr又はrkは、二つのデータの線形な関係の強さを表す指標であるため、何らかの不具合がある場合、基準臭気データと、基準臭気を計測した計測臭気データとの関係が弱いと考えられるので、臭気センサ21bを除外する。
Thus, the correlation coefficient r or r k are the indicator of the strength of the linear relationship of two data, if there is some problem, and the reference odor data, measured odor data reference odor was measured The odor sensor 21b is excluded because it is considered to have a weak relationship with.
更に、検査部3は、上述した補正係数、相関係数のどちらか一方のみを用いて判定してもよいし、補正係数αと相関係数r、又は補正係数αkと相関係数rk、又は補正係数αと相関係数rk、又は補正係数αkと相関係数rを用いて検査をしてもよい。
Furthermore, the inspection unit 3 may make the determination using only one of the above-described correction coefficient and correlation coefficient, or may use the correction coefficient α and the correlation coefficient r or the correction coefficient α k and the correlation coefficient r k. Alternatively, the inspection may be performed using the correction coefficient α and the correlation coefficient r k , or the correction coefficient α k and the correlation coefficient r.
具体的には、検査部3は、補正係数による検査又は相関係数による検査のいずれか一つが合格をしている場合、臭気センサ21bを合格としてもよい。又は、検査部3は、補正係数による検査と相関係数による検査の両方が合格している場合、臭気センサ21bを合格としてもよい。
Specifically, the inspection unit 3 may pass the odor sensor 21b when either the inspection using the correction coefficient or the inspection using the correlation coefficient has passed. Alternatively, the inspection unit 3 may pass the odor sensor 21b when both the inspection using the correction coefficient and the inspection using the correlation coefficient have passed.
続いて出力部62は、検査部3から出力可能な形式に変換された、判定結果(不良度)を表す出力情報を取得し、その出力情報に基づいて生成した画像及び音声などを出力する(ステップA6)。
Subsequently, the output unit 62 acquires the output information indicating the determination result (defective degree) converted into the format that can be output from the inspection unit 3, and outputs the image and the sound generated based on the output information ( Step A6).
[本実施の形態の効果]
以上のように、本実施の形態によれば、算出した係数(補正係数、又は相関係数、又はそれら両方)を用いて、臭気センサを検査するので、臭気センサの不良を精度よく検出できる。 [Effects of this Embodiment]
As described above, according to the present embodiment, since the odor sensor is inspected using the calculated coefficient (correction coefficient, correlation coefficient, or both), it is possible to accurately detect a defect in the odor sensor.
以上のように、本実施の形態によれば、算出した係数(補正係数、又は相関係数、又はそれら両方)を用いて、臭気センサを検査するので、臭気センサの不良を精度よく検出できる。 [Effects of this Embodiment]
As described above, according to the present embodiment, since the odor sensor is inspected using the calculated coefficient (correction coefficient, correlation coefficient, or both), it is possible to accurately detect a defect in the odor sensor.
また、感応膜ごとに形状、大きさ、厚さなどによる製造バラツキがある場合、臭気センサの不良を精度よく検査できない。しかし、本実施の形態によれば、感応膜ごとに算出した係数を用いて、感応膜ごとに検査をするので、臭気センサの不良を精度よく検出できる。
Also, if there are manufacturing variations due to the shape, size, thickness, etc. of each sensitive film, it is not possible to accurately inspect the odor sensor for defects. However, according to the present embodiment, since the coefficient calculated for each sensitive film is used to perform the inspection for each sensitive film, it is possible to accurately detect the defect of the odor sensor.
[プログラム]
本発明の実施の形態におけるプログラムは、コンピュータに、図7に示すステップA1からA6を実行させるプログラムであればよい。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態における臭気センサ検査装置と臭気センサ検査方法とを実現することができる。この場合、コンピュータのプロセッサは、取得部23、算出部2(前処理部25、係数算出部26)、検査部3として機能し、処理を行なう。 [program]
The program according to the embodiment of the present invention may be a program that causes a computer to execute steps A1 to A6 shown in FIG. The odor sensor inspection device and the odor sensor inspection method according to the present embodiment can be realized by installing and executing this program on a computer. In this case, the processor of the computer functions as theacquisition unit 23, the calculation unit 2 (the preprocessing unit 25, the coefficient calculation unit 26), and the inspection unit 3, and performs the processing.
本発明の実施の形態におけるプログラムは、コンピュータに、図7に示すステップA1からA6を実行させるプログラムであればよい。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態における臭気センサ検査装置と臭気センサ検査方法とを実現することができる。この場合、コンピュータのプロセッサは、取得部23、算出部2(前処理部25、係数算出部26)、検査部3として機能し、処理を行なう。 [program]
The program according to the embodiment of the present invention may be a program that causes a computer to execute steps A1 to A6 shown in FIG. The odor sensor inspection device and the odor sensor inspection method according to the present embodiment can be realized by installing and executing this program on a computer. In this case, the processor of the computer functions as the
また、本実施の形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されてもよい。この場合は、例えば、各コンピュータが、それぞれ、算出部2(前処理部25、係数算出部26)、検査部3のいずれかとして機能してもよい。
Also, the program in the present embodiment may be executed by a computer system constructed by a plurality of computers. In this case, for example, each computer may function as either the calculation unit 2 (preprocessing unit 25, coefficient calculation unit 26) or the inspection unit 3.
[物理構成]
ここで、実施の形態におけるプログラムを実行することによって、臭気センサ検査装置を実現するコンピュータについて図8を用いて説明する。図8は、臭気センサ検査装置を実現するコンピュータの一例を示すブロック図である。 [Physical configuration]
Here, a computer that realizes the odor sensor inspection device by executing the program according to the embodiment will be described with reference to FIG. 8. FIG. 8 is a block diagram showing an example of a computer that realizes the odor sensor inspection device.
ここで、実施の形態におけるプログラムを実行することによって、臭気センサ検査装置を実現するコンピュータについて図8を用いて説明する。図8は、臭気センサ検査装置を実現するコンピュータの一例を示すブロック図である。 [Physical configuration]
Here, a computer that realizes the odor sensor inspection device by executing the program according to the embodiment will be described with reference to FIG. 8. FIG. 8 is a block diagram showing an example of a computer that realizes the odor sensor inspection device.
図8に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていてもよい。
As shown in FIG. 8, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to perform data communication with each other. The computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to or instead of the CPU 111.
CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)などの揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであってもよい。
The CPU 111 expands the program (code) according to the present embodiment stored in the storage device 113 into the main memory 112 and executes these in a predetermined order to perform various calculations. The main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). Further, the program in the present embodiment is provided in a state of being stored in computer-readable recording medium 120. The program in the present embodiment may be distributed on the Internet connected via communication interface 117.
また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリなどの半導体記憶装置があげられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
Further, as a specific example of the storage device 113, a semiconductor storage device such as a flash memory can be cited in addition to a hard disk drive. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119.
データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
The data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads a program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)などの汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)などの磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体があげられる。
Specific examples of the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
なお、本実施の形態における臭気センサ検査装置1は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、臭気センサ検査装置1は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。
It should be noted that the odor sensor inspection device 1 according to the present embodiment can be realized by using hardware corresponding to each unit instead of using a computer in which a program is installed. Further, the odor sensor inspection device 1 may be partially implemented by a program and the rest may be implemented by hardware.
[付記]
以上の実施の形態に関し、更に以下の付記を開示する。上述した実施の形態の一部又は全部は、以下に記載する(付記1)から(付記12)により表現することができるが、以下の記載に限定されるものではない。 [Appendix]
Regarding the above-described embodiment, the following supplementary notes will be disclosed. The whole or part of the exemplary embodiments described above can be represented by (Supplementary Note 1) to (Supplementary Note 12) described below, but the present invention is not limited to the following description.
以上の実施の形態に関し、更に以下の付記を開示する。上述した実施の形態の一部又は全部は、以下に記載する(付記1)から(付記12)により表現することができるが、以下の記載に限定されるものではない。 [Appendix]
Regarding the above-described embodiment, the following supplementary notes will be disclosed. The whole or part of the exemplary embodiments described above can be represented by (Supplementary Note 1) to (Supplementary Note 12) described below, but the present invention is not limited to the following description.
(付記1)
第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、算出部と、
前記係数に基づいて、前記臭気センサを検査する、検査部と、
を有することを特徴とする臭気センサ検査装置。 (Appendix 1)
Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a coefficient is calculated, and a calculating unit,
An inspection unit for inspecting the odor sensor based on the coefficient,
An odor sensor inspection device comprising:
第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、算出部と、
前記係数に基づいて、前記臭気センサを検査する、検査部と、
を有することを特徴とする臭気センサ検査装置。 (Appendix 1)
Based on the first odor data indicating the first odor and the second odor data obtained by measuring the first odor by the odor sensor, a coefficient is calculated, and a calculating unit,
An inspection unit for inspecting the odor sensor based on the coefficient,
An odor sensor inspection device comprising:
(付記2)
付記1に記載の臭気センサ検査装置であって、
前記臭気センサは、複数の感応膜を有し、
前記算出部は、前記感応膜ごとに前記係数を算出する
ことを特徴とする臭気センサ検査装置。 (Appendix 2)
The odor sensor inspection device according toattachment 1,
The odor sensor has a plurality of sensitive films,
The said calculation part calculates the said coefficient for every said sensitive film. The odor sensor inspection apparatus characterized by the above-mentioned.
付記1に記載の臭気センサ検査装置であって、
前記臭気センサは、複数の感応膜を有し、
前記算出部は、前記感応膜ごとに前記係数を算出する
ことを特徴とする臭気センサ検査装置。 (Appendix 2)
The odor sensor inspection device according to
The odor sensor has a plurality of sensitive films,
The said calculation part calculates the said coefficient for every said sensitive film. The odor sensor inspection apparatus characterized by the above-mentioned.
(付記3)
付記2に記載の臭気センサ検査装置であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とする臭気センサ検査装置。 (Appendix 3)
The odor sensor inspection device according toattachment 2,
The odor sensor inspection device, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
付記2に記載の臭気センサ検査装置であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とする臭気センサ検査装置。 (Appendix 3)
The odor sensor inspection device according to
The odor sensor inspection device, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
(付記4)
付記2又は3に記載の臭気センサ検査装置であって、
前記検査部は、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とする臭気センサ検査装置。 (Appendix 4)
The odor sensor inspection device according to attachment 2 or 3,
The odor sensor inspection device, wherein the inspection unit inspects each of the sensitive films based on the coefficient calculated for each of the sensitive films.
付記2又は3に記載の臭気センサ検査装置であって、
前記検査部は、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とする臭気センサ検査装置。 (Appendix 4)
The odor sensor inspection device according to
The odor sensor inspection device, wherein the inspection unit inspects each of the sensitive films based on the coefficient calculated for each of the sensitive films.
(付記5)
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を有することを特徴とする臭気センサ検査方法。 (Appendix 5)
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
An odor sensor inspection method comprising:
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を有することを特徴とする臭気センサ検査方法。 (Appendix 5)
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
An odor sensor inspection method comprising:
(付記6)
付記5に記載の臭気センサ検査方法であって、
前記臭気センサは、複数の感応膜を有し、
前記(a)のステップにおいて、前記感応膜ごとに前記係数を算出する
ことを特徴とする臭気センサ検査方法。 (Appendix 6)
The odor sensor inspection method according to attachment 5,
The odor sensor has a plurality of sensitive films,
In the step (a), the odor sensor inspection method is characterized in that the coefficient is calculated for each of the sensitive films.
付記5に記載の臭気センサ検査方法であって、
前記臭気センサは、複数の感応膜を有し、
前記(a)のステップにおいて、前記感応膜ごとに前記係数を算出する
ことを特徴とする臭気センサ検査方法。 (Appendix 6)
The odor sensor inspection method according to attachment 5,
The odor sensor has a plurality of sensitive films,
In the step (a), the odor sensor inspection method is characterized in that the coefficient is calculated for each of the sensitive films.
(付記7)
付記6に記載の臭気センサ検査方法であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とする臭気センサ検査方法。 (Appendix 7)
The odor sensor inspection method according to attachment 6,
The odor sensor inspection method, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
付記6に記載の臭気センサ検査方法であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とする臭気センサ検査方法。 (Appendix 7)
The odor sensor inspection method according to attachment 6,
The odor sensor inspection method, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
(付記8)
付記6又は7に記載の臭気センサ検査方法であって、
前記(b)のステップにおいて、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とする臭気センサ検査方法。 (Appendix 8)
The odor sensor inspection method according to attachment 6 or 7,
In the step (b), the odor sensor inspection method is characterized by inspecting each of the sensitive films based on the coefficient calculated for each of the sensitive films.
付記6又は7に記載の臭気センサ検査方法であって、
前記(b)のステップにおいて、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とする臭気センサ検査方法。 (Appendix 8)
The odor sensor inspection method according to attachment 6 or 7,
In the step (b), the odor sensor inspection method is characterized by inspecting each of the sensitive films based on the coefficient calculated for each of the sensitive films.
(付記9)
コンピュータに、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を実行させる命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。 (Appendix 9)
On the computer,
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
A computer-readable recording medium recording a program including an instruction to execute.
コンピュータに、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を実行させる命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。 (Appendix 9)
On the computer,
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
A computer-readable recording medium recording a program including an instruction to execute.
(付記10)
付記9に記載のコンピュータ読み取り可能な記録媒体であって、
前記臭気センサは、複数の感応膜を有し、
前記(a)のステップにおいて、前記感応膜ごとに前記係数を算出する
ことを特徴とするコンピュータ読み取り可能な記録媒体。 (Appendix 10)
The computer-readable recording medium according to attachment 9,
The odor sensor has a plurality of sensitive films,
In the step (a), the computer-readable recording medium, wherein the coefficient is calculated for each of the sensitive films.
付記9に記載のコンピュータ読み取り可能な記録媒体であって、
前記臭気センサは、複数の感応膜を有し、
前記(a)のステップにおいて、前記感応膜ごとに前記係数を算出する
ことを特徴とするコンピュータ読み取り可能な記録媒体。 (Appendix 10)
The computer-readable recording medium according to attachment 9,
The odor sensor has a plurality of sensitive films,
In the step (a), the computer-readable recording medium, wherein the coefficient is calculated for each of the sensitive films.
(付記11)
付記10に記載のコンピュータ読み取り可能な記録媒体であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とするコンピュータ読み取り可能な記録媒体。 (Appendix 11)
The computer-readable recording medium according to attachment 10,
The computer-readable recording medium, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
付記10に記載のコンピュータ読み取り可能な記録媒体であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とするコンピュータ読み取り可能な記録媒体。 (Appendix 11)
The computer-readable recording medium according to attachment 10,
The computer-readable recording medium, wherein the first odor data is generated for each of the sensitive films based on the reference first odor.
(付記12)
付記10又は11に記載のコンピュータ読み取り可能な記録媒体であって、
前記(b)のステップにおいて、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とするコンピュータ読み取り可能な記録媒体。 (Appendix 12)
The computer-readable recording medium according to supplementary note 10 or 11,
A computer-readable recording medium, characterized in that, in the step (b), an inspection is performed for each of the sensitive films based on the coefficient calculated for each of the sensitive films.
付記10又は11に記載のコンピュータ読み取り可能な記録媒体であって、
前記(b)のステップにおいて、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とするコンピュータ読み取り可能な記録媒体。 (Appendix 12)
The computer-readable recording medium according to supplementary note 10 or 11,
A computer-readable recording medium, characterized in that, in the step (b), an inspection is performed for each of the sensitive films based on the coefficient calculated for each of the sensitive films.
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
Although the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the above exemplary embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
以上のように本発明によれば、臭気センサの不良を精度よく検出することができる。本発明は、臭気センサの不良を検査する必要がある分野において有用である。
According to the present invention as described above, it is possible to accurately detect a defect in the odor sensor. INDUSTRIAL APPLICABILITY The present invention is useful in the field where it is necessary to inspect an odor sensor for defects.
1 臭気センサ検査装置
2 算出部
3 検査部
21、21a、21b 臭気センサ
22、22a、22b、22c、22d 感応膜
23 取得部
24 出力部
25 前処理部
26 係数算出部
31 基準臭気データ
32 計測臭気データ
51 係数データ
61 不良度データ
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス 1 Odorsensor inspection device 2 Calculation unit 3 Inspection unit 21, 21a, 21b Odor sensor 22, 22a, 22b, 22c, 22d Sensitive film 23 Acquisition unit 24 Output unit 25 Preprocessing unit 26 Coefficient calculation unit 31 Standard odor data 32 Measured odor Data 51 Coefficient data 61 Defect degree data 110 Computer 111 CPU
112Main Memory 113 Storage Device 114 Input Interface 115 Display Controller 116 Data Reader / Writer 117 Communication Interface 118 Input Equipment 119 Display Device 120 Recording Medium 121 Bus
2 算出部
3 検査部
21、21a、21b 臭気センサ
22、22a、22b、22c、22d 感応膜
23 取得部
24 出力部
25 前処理部
26 係数算出部
31 基準臭気データ
32 計測臭気データ
51 係数データ
61 不良度データ
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス 1 Odor
112
Claims (12)
- 第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、算出手段と、
前記係数に基づいて、前記臭気センサを検査する、検査手段と、
を有することを特徴とする臭気センサ検査装置。 Based on the first odor data indicating the first odor, and the second odor data obtained by measuring the first odor by the odor sensor, a coefficient calculating unit,
Inspecting the odor sensor based on the coefficient, an inspection unit,
An odor sensor inspection device comprising: - 請求項1に記載の臭気センサ検査装置であって、
前記臭気センサは、複数の感応膜を有し、
前記算出手段は、前記感応膜ごとに前記係数を算出する
ことを特徴とする臭気センサ検査装置。 The odor sensor inspection device according to claim 1,
The odor sensor has a plurality of sensitive films,
The odor sensor inspection device, wherein the calculating means calculates the coefficient for each of the sensitive films. - 請求項2に記載の臭気センサ検査装置であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とする臭気センサ検査装置。 The odor sensor inspection device according to claim 2, wherein
The odor sensor inspection device, wherein the first odor data is generated for each of the sensitive films based on the reference first odor. - 請求項2又は3に記載の臭気センサ検査装置であって、
前記検査手段は、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とする臭気センサ検査装置。 The odor sensor inspection device according to claim 2 or 3, wherein
The odor sensor inspection device, wherein the inspection means inspects each of the sensitive films based on the coefficient calculated for each of the sensitive films. - (a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を有することを特徴とする臭気センサ検査方法。 (A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
An odor sensor inspection method comprising: - 請求項5に記載の臭気センサ検査方法であって、
前記臭気センサは、複数の感応膜を有し、
前記(a)のステップにおいて、前記感応膜ごとに前記係数を算出する
ことを特徴とする臭気センサ検査方法。 The odor sensor inspection method according to claim 5,
The odor sensor has a plurality of sensitive films,
In the step (a), the odor sensor inspection method is characterized in that the coefficient is calculated for each of the sensitive films. - 請求項6に記載の臭気センサ検査方法であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とする臭気センサ検査方法。 The odor sensor inspection method according to claim 6,
The odor sensor inspection method, wherein the first odor data is generated for each of the sensitive films based on the reference first odor. - 請求項6又は7に記載の臭気センサ検査方法であって、
前記(b)のステップにおいて、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とする臭気センサ検査方法。 The odor sensor inspection method according to claim 6 or 7, wherein
In the step (b), the odor sensor inspection method is characterized by inspecting each of the sensitive films based on the coefficient calculated for each of the sensitive films. - コンピュータに、
(a)第一の臭気を示す第一の臭気データと、前記第一の臭気を臭気センサが計測して得た第二の臭気データとに基づいて、係数を算出する、ステップと、
(b)前記係数に基づいて、前記臭気センサを検査する、ステップと、
を実行させる命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。 On the computer,
(A) calculating a coefficient based on first odor data indicating a first odor and second odor data obtained by measuring the first odor with an odor sensor;
(B) inspecting the odor sensor based on the coefficient;
A computer-readable recording medium recording a program including an instruction to execute. - 請求項9に記載のコンピュータ読み取り可能な記録媒体であって、
前記臭気センサは、複数の感応膜を有し、
前記(a)のステップにおいて、前記感応膜ごとに前記係数を算出する
ことを特徴とするコンピュータ読み取り可能な記録媒体。 The computer-readable recording medium according to claim 9,
The odor sensor has a plurality of sensitive films,
In the step (a), the computer-readable recording medium, wherein the coefficient is calculated for each of the sensitive films. - 請求項10に記載のコンピュータ読み取り可能な記録媒体であって、
前記第一の臭気データは、基準となる前記第一の臭気に基づいて、前記感応膜ごとに生成する
ことを特徴とするコンピュータ読み取り可能な記録媒体。 The computer-readable recording medium according to claim 10,
The computer-readable recording medium, wherein the first odor data is generated for each of the sensitive films based on the reference first odor. - 請求項10又は11に記載のコンピュータ読み取り可能な記録媒体であって、
前記(b)のステップにおいて、前記感応膜ごとに算出した前記係数に基づいて、前記感応膜ごとに検査をする
ことを特徴とするコンピュータ読み取り可能な記録媒体。 The computer-readable recording medium according to claim 10 or 11, wherein
A computer-readable recording medium, characterized in that, in the step (b), an inspection is performed for each of the sensitive films based on the coefficient calculated for each of the sensitive films.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020554655A JP7205548B2 (en) | 2018-10-30 | 2018-10-30 | Odor sensor inspection device, odor sensor inspection method, and program |
PCT/JP2018/040417 WO2020090018A1 (en) | 2018-10-30 | 2018-10-30 | Odor-sensor inspection device, odor-sensor inspection method, and computer-readable recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/040417 WO2020090018A1 (en) | 2018-10-30 | 2018-10-30 | Odor-sensor inspection device, odor-sensor inspection method, and computer-readable recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090018A1 true WO2020090018A1 (en) | 2020-05-07 |
Family
ID=70462593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040417 WO2020090018A1 (en) | 2018-10-30 | 2018-10-30 | Odor-sensor inspection device, odor-sensor inspection method, and computer-readable recording medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7205548B2 (en) |
WO (1) | WO2020090018A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS538670B2 (en) * | 1971-10-04 | 1978-03-30 | ||
JPH08136487A (en) * | 1994-11-07 | 1996-05-31 | Nohmi Bosai Ltd | Odor monitor |
JP4415731B2 (en) * | 2004-03-31 | 2010-02-17 | 株式会社島津製作所 | Odor measuring device |
US20180120277A1 (en) * | 2016-10-31 | 2018-05-03 | Electronics And Telecommunications Research Institute | Apparatus and method for generation of olfactory information capable of calibration based on pattern recognition model |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7460958B2 (en) * | 2004-10-07 | 2008-12-02 | E.I. Du Pont De Nemours And Company | Computer-implemented system and method for analyzing mixtures of gases |
-
2018
- 2018-10-30 WO PCT/JP2018/040417 patent/WO2020090018A1/en active Application Filing
- 2018-10-30 JP JP2020554655A patent/JP7205548B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS538670B2 (en) * | 1971-10-04 | 1978-03-30 | ||
JPH08136487A (en) * | 1994-11-07 | 1996-05-31 | Nohmi Bosai Ltd | Odor monitor |
JP4415731B2 (en) * | 2004-03-31 | 2010-02-17 | 株式会社島津製作所 | Odor measuring device |
US20180120277A1 (en) * | 2016-10-31 | 2018-05-03 | Electronics And Telecommunications Research Institute | Apparatus and method for generation of olfactory information capable of calibration based on pattern recognition model |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020090018A1 (en) | 2021-09-16 |
JP7205548B2 (en) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6940001B2 (en) | Learning model creation support device, learning model creation support method, and program | |
JP2005241642A5 (en) | ||
US20210018479A1 (en) | Odor sensing apparatus, odor detection method, and computer-readable recording medium | |
JP2015527740A5 (en) | ||
US11598740B2 (en) | Server apparatus, odor sensor data analysis method, and computer-readable recording medium | |
US20220036223A1 (en) | Processing apparatus, processing method, and non-transitory storage medium | |
EP3968018B1 (en) | Sensor for identifying a fluid sample and method for applying a qualification test to such a sensor | |
CN114627121B (en) | Structural member stress detection method, device, equipment and medium | |
Nwanoro et al. | Investigating the accuracy of digital image correlation in monitoring strain fields across historical tapestries | |
WO2020090018A1 (en) | Odor-sensor inspection device, odor-sensor inspection method, and computer-readable recording medium | |
US20230152290A1 (en) | Odor detection system, odor detection method, and program | |
JP6695086B2 (en) | System and method for accurately quantifying the composition of a sample to be measured | |
WO2019069958A1 (en) | Server device, odor sensor data analysis method, and computer-readable recordiong medium | |
CN117347646A (en) | Detecting transient errors in a body fluid sample | |
WO2020090019A1 (en) | Odor-sensor-data correcting device, odor-sensor-data correcting method, and computer-readable recording medium | |
US11971701B2 (en) | Information processing apparatus, information processing method, and program | |
US20230110600A1 (en) | Noise removing apparatus, noise removing method, and recording medium | |
WO2020065807A1 (en) | Information processing device, processing device, information processing method, processing method, determination method, and program | |
JP7173354B2 (en) | Detection device, detection method and program | |
JP4415731B2 (en) | Odor measuring device | |
US20230118020A1 (en) | Data generation apparatus, data generation method, and recording medium | |
EP4080202A1 (en) | Gas sensing device and method for determining a calibrated measurement value of a concentration of a target gas | |
EP4141411A1 (en) | Odor detection device, odor detection method, and program | |
WO2020065983A1 (en) | Information processing device, control method, and program | |
WO2020157810A1 (en) | State estimation device, state estimation method, and computer-readable recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18939108 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020554655 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18939108 Country of ref document: EP Kind code of ref document: A1 |