WO2020089505A1 - Nanopartículas biomiméticas mediadas por mamc - Google Patents
Nanopartículas biomiméticas mediadas por mamc Download PDFInfo
- Publication number
- WO2020089505A1 WO2020089505A1 PCT/ES2019/070747 ES2019070747W WO2020089505A1 WO 2020089505 A1 WO2020089505 A1 WO 2020089505A1 ES 2019070747 W ES2019070747 W ES 2019070747W WO 2020089505 A1 WO2020089505 A1 WO 2020089505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- nanoparticles
- mamc
- bmnps
- magnetite
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 105
- 230000003592 biomimetic effect Effects 0.000 title claims abstract description 39
- 230000001404 mediated effect Effects 0.000 title claims description 14
- 239000000203 mixture Substances 0.000 claims abstract description 89
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 62
- 238000011282 treatment Methods 0.000 claims abstract description 46
- 239000002122 magnetic nanoparticle Substances 0.000 claims abstract description 38
- 239000003814 drug Substances 0.000 claims abstract description 30
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 239000003937 drug carrier Substances 0.000 claims abstract description 8
- 239000002502 liposome Substances 0.000 claims abstract description 8
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 148
- 108090000623 proteins and genes Proteins 0.000 claims description 88
- 102000004169 proteins and genes Human genes 0.000 claims description 81
- 229960004679 doxorubicin Drugs 0.000 claims description 74
- 206010028980 Neoplasm Diseases 0.000 claims description 60
- 239000002245 particle Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 38
- 238000009472 formulation Methods 0.000 claims description 28
- 201000011510 cancer Diseases 0.000 claims description 25
- 239000008194 pharmaceutical composition Substances 0.000 claims description 23
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 18
- 239000011707 mineral Substances 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 230000000903 blocking effect Effects 0.000 claims description 14
- 239000002246 antineoplastic agent Substances 0.000 claims description 11
- 229940127089 cytotoxic agent Drugs 0.000 claims description 11
- 206010006187 Breast cancer Diseases 0.000 claims description 10
- 208000026310 Breast neoplasm Diseases 0.000 claims description 10
- 230000011664 signaling Effects 0.000 claims description 10
- 238000000746 purification Methods 0.000 claims description 9
- 229910021646 siderite Inorganic materials 0.000 claims description 9
- 229940124597 therapeutic agent Drugs 0.000 claims description 9
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 8
- 206010017758 gastric cancer Diseases 0.000 claims description 8
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 7
- 102000039446 nucleic acids Human genes 0.000 claims description 7
- 150000007523 nucleic acids Chemical class 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- 201000011549 stomach cancer Diseases 0.000 claims description 7
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 6
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 6
- 206010005003 Bladder cancer Diseases 0.000 claims description 6
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims description 6
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 6
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 6
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 6
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 5
- 208000017604 Hodgkin disease Diseases 0.000 claims description 5
- 208000021519 Hodgkin lymphoma Diseases 0.000 claims description 5
- 208000010747 Hodgkins lymphoma Diseases 0.000 claims description 5
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 5
- 208000034578 Multiple myelomas Diseases 0.000 claims description 5
- 206010029260 Neuroblastoma Diseases 0.000 claims description 5
- 206010033128 Ovarian cancer Diseases 0.000 claims description 5
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 5
- 206010038389 Renal cancer Diseases 0.000 claims description 5
- 208000021712 Soft tissue sarcoma Diseases 0.000 claims description 5
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 5
- 201000010982 kidney cancer Diseases 0.000 claims description 5
- 201000007270 liver cancer Diseases 0.000 claims description 5
- 208000014018 liver neoplasm Diseases 0.000 claims description 5
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 5
- 208000008732 thymoma Diseases 0.000 claims description 5
- 201000002510 thyroid cancer Diseases 0.000 claims description 5
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 5
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 4
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 claims description 4
- 210000004556 brain Anatomy 0.000 claims description 4
- 239000003085 diluting agent Substances 0.000 claims description 4
- 206010005949 Bone cancer Diseases 0.000 claims description 3
- 208000018084 Bone neoplasm Diseases 0.000 claims description 3
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 3
- 208000008383 Wilms tumor Diseases 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- 201000010881 cervical cancer Diseases 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 201000008026 nephroblastoma Diseases 0.000 claims description 3
- 208000016025 Waldenstroem macroglobulinemia Diseases 0.000 claims description 2
- 238000012307 MRI technique Methods 0.000 claims 1
- 208000025440 neoplasm of neck Diseases 0.000 claims 1
- 229940079593 drug Drugs 0.000 abstract description 15
- 206010020843 Hyperthermia Diseases 0.000 abstract description 12
- 230000036031 hyperthermia Effects 0.000 abstract description 12
- 239000002872 contrast media Substances 0.000 abstract description 5
- 230000008685 targeting Effects 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 210000001185 bone marrow Anatomy 0.000 abstract 1
- 238000010926 purge Methods 0.000 abstract 1
- 238000010963 scalable process Methods 0.000 abstract 1
- 230000005291 magnetic effect Effects 0.000 description 133
- 235000018102 proteins Nutrition 0.000 description 80
- 239000002069 magnetite nanoparticle Substances 0.000 description 79
- 210000004027 cell Anatomy 0.000 description 75
- 238000002474 experimental method Methods 0.000 description 51
- 239000013078 crystal Substances 0.000 description 48
- 239000000243 solution Substances 0.000 description 48
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- 241000699670 Mus sp. Species 0.000 description 22
- 210000002244 magnetosome Anatomy 0.000 description 20
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 18
- 239000002953 phosphate buffered saline Substances 0.000 description 18
- 241000894006 Bacteria Species 0.000 description 17
- 239000000872 buffer Substances 0.000 description 16
- 230000005415 magnetization Effects 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 15
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 15
- 238000011534 incubation Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 229960003351 prussian blue Drugs 0.000 description 14
- 239000013225 prussian blue Substances 0.000 description 14
- 230000033558 biomineral tissue development Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000003993 interaction Effects 0.000 description 11
- 230000001988 toxicity Effects 0.000 description 11
- 231100000419 toxicity Toxicity 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 10
- 231100000135 cytotoxicity Toxicity 0.000 description 10
- 230000003013 cytotoxicity Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- 231100000002 MTT assay Toxicity 0.000 description 9
- 238000000134 MTT assay Methods 0.000 description 9
- 210000000887 face Anatomy 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 8
- 206010039491 Sarcoma Diseases 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 239000003642 reactive oxygen metabolite Substances 0.000 description 8
- 238000010186 staining Methods 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 7
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 206010025323 Lymphomas Diseases 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 238000004627 transmission electron microscopy Methods 0.000 description 7
- 206010003571 Astrocytoma Diseases 0.000 description 6
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 208000009956 adenocarcinoma Diseases 0.000 description 6
- 230000000259 anti-tumor effect Effects 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000007306 functionalization reaction Methods 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 210000004940 nucleus Anatomy 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 201000011096 spinal cancer Diseases 0.000 description 6
- 208000014618 spinal cord cancer Diseases 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 206010018338 Glioma Diseases 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 239000012901 Milli-Q water Substances 0.000 description 5
- 239000004202 carbamide Substances 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 208000006990 cholangiocarcinoma Diseases 0.000 description 5
- -1 crafty Chemical compound 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 101150006831 mamC gene Proteins 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 230000035899 viability Effects 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 108091033409 CRISPR Proteins 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 208000005243 Chondrosarcoma Diseases 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- 206010014733 Endometrial cancer Diseases 0.000 description 4
- 206010014759 Endometrial neoplasm Diseases 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- 101000600434 Homo sapiens Putative uncharacterized protein encoded by MIR7-3HG Proteins 0.000 description 4
- 208000005016 Intestinal Neoplasms Diseases 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 208000003445 Mouth Neoplasms Diseases 0.000 description 4
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- 102100037401 Putative uncharacterized protein encoded by MIR7-3HG Human genes 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 206010006007 bone sarcoma Diseases 0.000 description 4
- 208000002458 carcinoid tumor Diseases 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000003436 cytoskeletal effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 208000024519 eye neoplasm Diseases 0.000 description 4
- 239000012894 fetal calf serum Substances 0.000 description 4
- 208000014829 head and neck neoplasm Diseases 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 4
- 201000002313 intestinal cancer Diseases 0.000 description 4
- 208000030776 invasive breast carcinoma Diseases 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 230000005381 magnetic domain Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 101150044311 mms6 gene Proteins 0.000 description 4
- 239000002159 nanocrystal Substances 0.000 description 4
- 201000008106 ocular cancer Diseases 0.000 description 4
- 230000036542 oxidative stress Effects 0.000 description 4
- 229920002866 paraformaldehyde Polymers 0.000 description 4
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 239000012064 sodium phosphate buffer Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 206010046766 uterine cancer Diseases 0.000 description 4
- 208000037965 uterine sarcoma Diseases 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108091023037 Aptamer Proteins 0.000 description 3
- 201000001342 Fallopian tube cancer Diseases 0.000 description 3
- 208000032612 Glial tumor Diseases 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108020005004 Guide RNA Proteins 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 241000024021 Magnetococcus marinus MC-1 Species 0.000 description 3
- 241000543670 Magnetospirillum gryphiswaldense Species 0.000 description 3
- 206010061336 Pelvic neoplasm Diseases 0.000 description 3
- 206010041067 Small cell lung cancer Diseases 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000004624 confocal microscopy Methods 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- 201000010536 head and neck cancer Diseases 0.000 description 3
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 238000011275 oncology therapy Methods 0.000 description 3
- 201000008968 osteosarcoma Diseases 0.000 description 3
- 230000002611 ovarian Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000012460 protein solution Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 208000000649 small cell carcinoma Diseases 0.000 description 3
- 208000000587 small cell lung carcinoma Diseases 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 235000012711 vitamin K3 Nutrition 0.000 description 3
- 239000011652 vitamin K3 Substances 0.000 description 3
- 229940041603 vitamin k 3 Drugs 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 2
- ASJSXUWOFZATJM-UHFFFAOYSA-N 2-(3,5-diphenyl-1h-tetrazol-2-yl)-4,5-dimethyl-1,3-thiazole Chemical compound S1C(C)=C(C)N=C1N1N(C=2C=CC=CC=2)NC(C=2C=CC=CC=2)=N1 ASJSXUWOFZATJM-UHFFFAOYSA-N 0.000 description 2
- 201000003076 Angiosarcoma Diseases 0.000 description 2
- 206010073360 Appendix cancer Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 206010004146 Basal cell carcinoma Diseases 0.000 description 2
- 206010055113 Breast cancer metastatic Diseases 0.000 description 2
- 238000010354 CRISPR gene editing Methods 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 208000009798 Craniopharyngioma Diseases 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 208000021994 Diffuse astrocytoma Diseases 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 206010014967 Ependymoma Diseases 0.000 description 2
- 201000005231 Epithelioid sarcoma Diseases 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 description 2
- 208000013452 Fallopian tube neoplasm Diseases 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- 201000008808 Fibrosarcoma Diseases 0.000 description 2
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 2
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 description 2
- 208000021309 Germ cell tumor Diseases 0.000 description 2
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 208000002125 Hemangioendothelioma Diseases 0.000 description 2
- 208000001258 Hemangiosarcoma Diseases 0.000 description 2
- 208000005726 Inflammatory Breast Neoplasms Diseases 0.000 description 2
- 206010021980 Inflammatory carcinoma of the breast Diseases 0.000 description 2
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 2
- 206010073094 Intraductal proliferative breast lesion Diseases 0.000 description 2
- 208000009147 Jaw Neoplasms Diseases 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 206010023825 Laryngeal cancer Diseases 0.000 description 2
- 208000018142 Leiomyosarcoma Diseases 0.000 description 2
- 206010061523 Lip and/or oral cavity cancer Diseases 0.000 description 2
- 206010062038 Lip neoplasm Diseases 0.000 description 2
- 206010073099 Lobular breast carcinoma in situ Diseases 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 101100344397 Magnetococcus marinus (strain ATCC BAA-1437 / JCM 17883 / MC-1) mamC gene Proteins 0.000 description 2
- 101100344402 Magnetospirillum magneticum (strain AMB-1 / ATCC 700264) mamD gene Proteins 0.000 description 2
- 208000004059 Male Breast Neoplasms Diseases 0.000 description 2
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 2
- 208000033724 Malignant tumor of fallopian tubes Diseases 0.000 description 2
- 208000032271 Malignant tumor of penis Diseases 0.000 description 2
- 208000007054 Medullary Carcinoma Diseases 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 206010051696 Metastases to meninges Diseases 0.000 description 2
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 2
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 2
- 206010028767 Nasal sinus cancer Diseases 0.000 description 2
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 2
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 2
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 2
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 201000010133 Oligodendroglioma Diseases 0.000 description 2
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 2
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 2
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 2
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 208000003937 Paranasal Sinus Neoplasms Diseases 0.000 description 2
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 208000002471 Penile Neoplasms Diseases 0.000 description 2
- 206010034299 Penile cancer Diseases 0.000 description 2
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 2
- 206010034811 Pharyngeal cancer Diseases 0.000 description 2
- 201000007286 Pilocytic astrocytoma Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 208000015634 Rectal Neoplasms Diseases 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 2
- 206010061934 Salivary gland cancer Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 206010042971 T-cell lymphoma Diseases 0.000 description 2
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 206010043515 Throat cancer Diseases 0.000 description 2
- 201000009365 Thymic carcinoma Diseases 0.000 description 2
- QHNORJFCVHUPNH-UHFFFAOYSA-L To-Pro-3 Chemical compound [I-].[I-].S1C2=CC=CC=C2[N+](C)=C1C=CC=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 QHNORJFCVHUPNH-UHFFFAOYSA-L 0.000 description 2
- 206010062129 Tongue neoplasm Diseases 0.000 description 2
- 206010044002 Tonsil cancer Diseases 0.000 description 2
- 208000006842 Tonsillar Neoplasms Diseases 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 206010046431 Urethral cancer Diseases 0.000 description 2
- 206010046458 Urethral neoplasms Diseases 0.000 description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 description 2
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 2
- XLLNINGEDIOQGQ-UHFFFAOYSA-N [acetyloxy(hydroxy)phosphoryl] acetate Chemical compound CC(=O)OP(O)(=O)OC(C)=O XLLNINGEDIOQGQ-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 201000005188 adrenal gland cancer Diseases 0.000 description 2
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 206010002224 anaplastic astrocytoma Diseases 0.000 description 2
- 208000021780 appendiceal neoplasm Diseases 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 208000026900 bile duct neoplasm Diseases 0.000 description 2
- 239000001055 blue pigment Substances 0.000 description 2
- 201000006491 bone marrow cancer Diseases 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 201000005389 breast carcinoma in situ Diseases 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 238000007398 colorimetric assay Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 208000030381 cutaneous melanoma Diseases 0.000 description 2
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000005546 dideoxynucleotide Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 description 2
- 201000007273 ductal carcinoma in situ Diseases 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910001447 ferric ion Inorganic materials 0.000 description 2
- 239000011554 ferrofluid Substances 0.000 description 2
- 201000001169 fibrillary astrocytoma Diseases 0.000 description 2
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 229910052598 goethite Inorganic materials 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- 201000004653 inflammatory breast carcinoma Diseases 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 208000014899 intrahepatic bile duct cancer Diseases 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 2
- 201000001837 jaw cancer Diseases 0.000 description 2
- 206010023841 laryngeal neoplasm Diseases 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 2
- 201000006721 lip cancer Diseases 0.000 description 2
- 206010024627 liposarcoma Diseases 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 201000011059 lobular neoplasia Diseases 0.000 description 2
- 208000022080 low-grade astrocytoma Diseases 0.000 description 2
- 201000010453 lymph node cancer Diseases 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 201000003175 male breast cancer Diseases 0.000 description 2
- 208000010907 male breast carcinoma Diseases 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 206010027191 meningioma Diseases 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 208000021039 metastatic melanoma Diseases 0.000 description 2
- 208000037970 metastatic squamous neck cancer Diseases 0.000 description 2
- 238000004452 microanalysis Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 201000004058 mixed glioma Diseases 0.000 description 2
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 2
- 201000010879 mucinous adenocarcinoma Diseases 0.000 description 2
- 201000003731 mucosal melanoma Diseases 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 201000011519 neuroendocrine tumor Diseases 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 201000002575 ocular melanoma Diseases 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 201000005443 oral cavity cancer Diseases 0.000 description 2
- 201000006958 oropharynx cancer Diseases 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 201000002530 pancreatic endocrine carcinoma Diseases 0.000 description 2
- 201000010198 papillary carcinoma Diseases 0.000 description 2
- 201000007052 paranasal sinus cancer Diseases 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 201000002524 peritoneal carcinoma Diseases 0.000 description 2
- 201000002628 peritoneum cancer Diseases 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 208000028591 pheochromocytoma Diseases 0.000 description 2
- 208000024724 pineal body neoplasm Diseases 0.000 description 2
- 201000002511 pituitary cancer Diseases 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 206010038038 rectal cancer Diseases 0.000 description 2
- 201000001275 rectum cancer Diseases 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 201000003708 skin melanoma Diseases 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 208000037959 spinal tumor Diseases 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 208000017572 squamous cell neoplasm Diseases 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 206010042863 synovial sarcoma Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 201000006134 tongue cancer Diseases 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 201000007423 tubular adenocarcinoma Diseases 0.000 description 2
- 206010046885 vaginal cancer Diseases 0.000 description 2
- 208000013139 vaginal neoplasm Diseases 0.000 description 2
- 201000005102 vulva cancer Diseases 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 description 1
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- BIABMEZBCHDPBV-MPQUPPDSSA-N 1,2-palmitoyl-sn-glycero-3-phospho-(1'-sn-glycerol) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCCCC BIABMEZBCHDPBV-MPQUPPDSSA-N 0.000 description 1
- VOEFELLSAAJCHJ-UHFFFAOYSA-N 1-(3-chlorophenyl)-2-(methylamino)propan-1-one Chemical compound CNC(C)C(=O)C1=CC=CC(Cl)=C1 VOEFELLSAAJCHJ-UHFFFAOYSA-N 0.000 description 1
- MUPYMRJBEZFVMT-UHFFFAOYSA-N 1-chloro-4-dimethoxyphosphorylsulfanylbenzene Chemical compound COP(=O)(OC)SC1=CC=C(Cl)C=C1 MUPYMRJBEZFVMT-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- HTCSFFGLRQDZDE-UHFFFAOYSA-N 2-azaniumyl-2-phenylpropanoate Chemical compound OC(=O)C(N)(C)C1=CC=CC=C1 HTCSFFGLRQDZDE-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 102000005369 Aldehyde Dehydrogenase Human genes 0.000 description 1
- 108020002663 Aldehyde Dehydrogenase Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 190000008236 Carboplatin Chemical compound 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229910002483 Cu Ka Inorganic materials 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 108091008603 HGF receptors Proteins 0.000 description 1
- 102100022623 Hepatocyte growth factor receptor Human genes 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241000408529 Libra Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101710114285 Magnetite biomineralization protein Mms6 Proteins 0.000 description 1
- 241000721720 Magnetospirillum Species 0.000 description 1
- 206010061269 Malignant peritoneal neoplasm Diseases 0.000 description 1
- 201000009574 Mesenchymal Chondrosarcoma Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Natural products N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 1
- 108010009711 Phalloidine Proteins 0.000 description 1
- 241000238425 Polyplacophora Species 0.000 description 1
- 208000026149 Primary peritoneal carcinoma Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000190967 Rhodospirillum Species 0.000 description 1
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241001223867 Shewanella oneidensis Species 0.000 description 1
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 210000005221 acidic domain Anatomy 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-N alpha-Lipoic acid Natural products OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000007978 cacodylate buffer Substances 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- 238000011210 chromatographic step Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013211 curve analysis Methods 0.000 description 1
- 150000003999 cyclitols Chemical class 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000007402 cytotoxic response Effects 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 231100000294 dose-dependent toxicity Toxicity 0.000 description 1
- BJAJDJDODCWPNS-UHFFFAOYSA-N dotp Chemical compound O=C1N2CCOC2=NC2=C1SC=C2 BJAJDJDODCWPNS-UHFFFAOYSA-N 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 210000002603 extrahepatic bile duct Anatomy 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 201000001343 fallopian tube carcinoma Diseases 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 201000007487 gallbladder carcinoma Diseases 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 108091008053 gene clusters Proteins 0.000 description 1
- 235000021306 genetically modified maize Nutrition 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002977 hyperthermial effect Effects 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910021506 iron(II) hydroxide Inorganic materials 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000020984 malignant renal pelvis neoplasm Diseases 0.000 description 1
- 208000022012 malignant tumor of extrahepatic bile duct Diseases 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 101150069587 mamD gene Proteins 0.000 description 1
- 101150075272 mamF gene Proteins 0.000 description 1
- 101150018703 mamG gene Proteins 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 231100000324 minimal toxicity Toxicity 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 239000002103 nanocoating Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 230000004942 nuclear accumulation Effects 0.000 description 1
- 239000002405 nuclear magnetic resonance imaging agent Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 208000021284 ovarian germ cell tumor Diseases 0.000 description 1
- 201000006842 ovarian sex-cord stromal tumor Diseases 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NTGBUUXKGAZMSE-UHFFFAOYSA-N phenyl n-[4-[4-(4-methoxyphenyl)piperazin-1-yl]phenyl]carbamate Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(NC(=O)OC=3C=CC=CC=3)=CC=2)CC1 NTGBUUXKGAZMSE-UHFFFAOYSA-N 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000276 potassium ferrocyanide Substances 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 230000004845 protein aggregation Effects 0.000 description 1
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- HHJUWIANJFBDHT-ZVTSDNJWSA-N rsa8ko39wh Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 HHJUWIANJFBDHT-ZVTSDNJWSA-N 0.000 description 1
- 108700004121 sarkosyl Proteins 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004098 selected area electron diffraction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 229940045885 sodium lauroyl sarcosinate Drugs 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- GNBVPFITFYNRCN-UHFFFAOYSA-M sodium thioglycolate Chemical compound [Na+].[O-]C(=O)CS GNBVPFITFYNRCN-UHFFFAOYSA-M 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- UQZIYBXSHAGNOE-XNSRJBNMSA-N stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- GZCRRIHWUXGPOV-OUBTZVSYSA-N terbium-160 Chemical class [160Tb] GZCRRIHWUXGPOV-OUBTZVSYSA-N 0.000 description 1
- 108700004921 tetramethylrhodaminylphalloidine Proteins 0.000 description 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 229940035024 thioglycerol Drugs 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000003106 tissue adhesive Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229940045136 urea Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/08—Ferroso-ferric oxide [Fe3O4]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/0515—Magnetic particle imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/26—Iron; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
- H01F1/0054—Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Definitions
- the present invention deals with compositions that integrate biomimetic magnetic nanoparticles.
- the magnetic nanoparticles can be used as a medicine, in particular as a medicine for treatment of diseases with an associated marker that can be recognized, such as cancer.
- Nanotechnology and in particular the production of magnetic nanoparticles, generates millions of dollars every year in the United States. Nanotechnology application is based on the fact that these can be easily manipulated by applying an external magnetic field and, therefore, can be directed towards the target site by means of an external controller (Arakaki et al., 2014; Prozorov et al ., 2013).
- these particles are used in numerous applications ranging from ferrofluids and magnetic storage to the clinical / scientific area such as the detection of nucleotide polymorphism (Maruyama et al., 2004, 2007; Matsunaga et al., 2007), separation cell (Matsunaga et al., 2007), DNA isolation and purification (Ota et al., 2006), magnetic resonance imaging contrast agent (Lisy et al., 2007), early diagnosis, drug transporter for chemotherapy Targeted (Sun et al., 2008) and hyperthermic treatments against cancer, understanding therefore the thermal damage that induces the rotation of the localized nanoparticles (Alphandéry et al., 201 1).
- the MNPs used as nanotransporters respond as efficiently as possible to the external magnetic field that is applied to guide said nanotransporter to the target site (Prozorov et al., 2013) .
- This response depends on the magnetic moment per particle, which, for superparamagnetic and crystalline stoichiometric magnetic magnetic nanoparticles, actually depends on the size of the MNP.
- the ideal size of the nanoparticle to integrate a single magnetic domain is between 30 and 120 nm.
- Most of the superparamagnetic nanoparticles already on the market are small ( ⁇ 30nm) and therefore their magnetic moment could be increased if larger MNPs were used.
- the magnetic nanoparticles are multidomains and their magnetic moment is not stable and depends on how these nanoparticles are oriented. Size is also important when hyperthermia treatments come into play. In fact, the heating power generated per unit mass of particle caused by the application of an external alternating magnetic field is directly related to the amount of iron in the MNP, and this must be the highest possible to keep the applied magnetic field within clinically accepted ranges and a low dose of MNPs. Furthermore, the magnetic nanoparticles to be used in the clinic must also be biocompatible and do not carry any risk associated with the doses that need to be applied. Another important requirement of MNPs is that they expose functional groups on their surface that allow drug functionalization / release based on external stimuli such as changes in the pH of the environment.
- MNPs are coated with compounds such as polyethylene glycol and organic acids. This procedure not only introduces additional steps in the process of producing the MNPs (obviously increasing the preparation time and total costs), but also this coating can shield the magnetic heart and interfere with the magnetic response of the nanoparticle against a applied external magnetic field (response that is already suboptimal due to its small size). Therefore, most commercial MNPs have problems that need to be addressed in order for these MNPs to be efficient nanotransporters.
- Magnetite Fe 2+ and Fe 3+ oxide, FesCL
- FesCL Magnetite
- magnetite can be formed as a primary phase from a solution containing Fe 2+ and / or Fe 3+ (coprecipitation and oxide-reduction method) to which the pH is raised by adding chemical compounds ( Arató et al., 2005; Perez-Gonzalez et al., 2010; Prozorov et al., 2007; Schwertmann and Cornell, 2000).
- This is the most widely used method of producing magnetic nanoparticles. It is relatively easy to make, nanoparticles are produced at room temperature, and large amounts of material can be obtained per batch.
- the main disadvantage is that these nanoparticles are usually small ( ⁇ 30 nm) and therefore have a small magnetic moment per particle, which increases the doses to be used, which can pose a risk.
- Magnetites can also be formed by transforming precursors, usually at high temperatures (Jimenez-Lopez et al., 2012).
- An advantage is that well crystallized cubic magnetites can be formed.
- this protocol is very expensive and it is difficult to control the size of the nanoparticles.
- the magnetite nanoparticles obtained by this process are usually either very small ( ⁇ 30nm) or multi-domain (> 120nm).
- Magnetite can also be formed biologically, either through an induced biomineralization (BIM) or controlled biomineralization (BCM) process (Bazylinski and Frankel, 2004). BIM magnetite formation is the result of the metabolic activity of organisms and the subsequent chemical reactions that occur mediated by metabolic products. Minerals originating from BIM are indistinguishable from those formed inorganically under these conditions (Perez-Gonzalez et al., 2000). These BIM nanoparticles are not commonly used in nanotechnology applications.
- BIM induced biomineralization
- BCM controlled biomineralization
- magnetite nanoparticles made up of magnetotactic bacteria are the result of an extraordinarly genetically controlled biomineralization (BCM) process, making these particles the ideal magnetic nanoparticle. They are ideal because they have very specific characteristics such as perfect crystal structures, high chemical purity, non-equilibrium morphologies and a narrow size distribution (Bazylinski and Frankel, 2004), which makes these crystals a unique magnetic domain and have predictable and stable magnetic properties (Amemiya et al., 2007; Prozorov et al., 2013). Furthermore, another advantage is that they are biocompatible. Therefore, there is a great demand for these nanoparticles, especially in the clinic.
- BCM biomineralization
- the second alternative is to use recombinant DNA technology to silence or overexpress genes of interest in specific strains.
- recombinant DNA technology to silence or overexpress genes of interest in specific strains.
- patent US2010 / 0292495 A1 aims to obtain recombinant magnetite nanoparticles by controlling the expression of mamG, mamF, mamD, and mamC genes in magnetotactic bacteria.
- MmsF protein of Magnetospirilum magneticum AMB-1 is another potential candidate to mediate in vitro formation of biomimetic magnetite nanoparticles of sizes between 80-90 nm (Rawlings et al., 2014). These nanoparticles could be magnetic single domain, but the magnetic properties of these nanoparticles have not been studied and have not been characterized enough to determine if these nanoparticles could be useful in nanotechnology.
- all these experiments have been done using a single recombinant protein in the aqueous solution in which the magnetite is formed.
- Biomimetic nanoparticles have also been produced using chimeras constructed with synthetic peptides from magnetosome proteins bound to fusion proteins (Nudelman et al., 2016 and 2018). Some of these peptides have already been patented (WO 2017153996). When using MamC loop peptides, nanoparticles larger than those produced in the presence of other peptides or in the absence of peptides are obtained. However, the size distribution of the nanoparticles, and therefore their heterogeneity, was greater than that of the nanoparticles produced in the presence of the entire MamC protein expressed as recombinant.
- compositions that integrates a substantially pure mineral phase of magnetite nanoparticles (> 95%) where the resulting nanoparticles are superparamagnetic, magnetic single domain and have surface properties that allow functionalization with different molecules without the need for treatment. after the production processes.
- Nanoparticles can be seen as efficient drug nanotransporters especially when they are functionalized with molecules (antibodies, ligands, cellular surface receptor aptamers) capable of recognizing certain markers linked to a disease. This makes it possible to reach large local amounts of medicine and low systemic exposure, therefore reducing the toxicity of the treatment increasing its efficacy (Brigger et al., 2001; De Jong and Borm, 2008; Singh and Lillard, 2009).
- molecules antibodies, ligands, cellular surface receptor aptamers
- FIG. 1 CLUSTAL O (1.2.1) multiple alignment of Mms6 sequences in different magnetotactic bacteria.
- Figure 2 SDS-PAGE gel from purified MamC (lane 3) and Mms6 (lane 5). Lysates of E. coli TOP10 before the Purification of MamC (lane 2) and Mms6 (lane 4). Lane 1, molecular weight marker (KDa).
- FIG. 3 Magnetite crystals synthesized in the presence of MamC (10 pg / mL) (BMNPs): (A) TEM images, (B) Crystal size distribution. Detail: Modeling of BMNPs from HRTEM data using SHAPE v7.3 Magnetite crystals synthesized in the absence of protein (inorganic magnetite: MNPs): (C) TEM images, (D) Crystal size distribution.
- Figure 4 HRTEM images of inorganic magnetite nanoparticles (A and B) and magnetic nanoparticles produced in the presence of MamC (C, D and E). Dotted lines represent crystal faces and lines represent crystallographic directions.
- Figure 5 HRTEM images of magnetic nanoparticles produced in the presence of Mms6 (A and B) and magnetite nanoparticles produced in the presence of MamC and Mms6 (C and D). Dotted lines represent crystal faces and lines represent crystallographic directions.
- Figure 6 (A) Z potential of MNPs and BMNPs, (B) Thermograviometric analysis of MNPs and BMNPs, (C) Hysteresis cycle of BMNPs and MNPs at 300 K, (D) ZFC-W and FC-C of MNPs and BMNPs. Blocking temperature (TB) and irreversibility temperature (T rr ) are indicated in the figure for each sample.
- Figure 7 Doxorubicin (DOXO) adsorption isotherm (A: kinetics; B: dose-dependent adsorption. Saturation is reached at 1 mmol DOXO per gram of nanoparticles) and monoclonal antibody DO-24 (C) in nanoparticles magnetite.
- DOXO Doxorubicin
- Figure 9 Effect of non-functionalized biomimetic nanoparticles and ternary nanoparticles (functionalized with Doxorubicin [DOXO] and with monoclonal antibody DO-24) on the viability of human tumor cells expressing the Met, Met / HGF-R + receptor GTL-16, and which do not express the met receptor, Met / HGF-R-Huh7.
- Non-functionalized nanoparticles reduce cell viability only up to 0-95%.
- Doxo [pg / ml] indicates the DOXO concentration in each sample and the data expresses cell viability compared to a (untreated) control at the same time interval.
- the ternary nanoparticles were significantly much more toxic to GTL-16 than to Huh7 compared to the non-functional nanoparticles.
- Cell viability was measured by MTT test after three days of treatment.
- Figure 10 Real-time toxicity of non-functional biomimetic nanoparticles, binary nanoparticles MNPs (DOXO-MNPs, -) and ternary nanoparticles (——) on Met / HGF-R + GTL-16 and Met / HGF-R-Huh7 cells.
- DO-24 mAbs significantly increases the toxicity of ternary nanoparticles compared to that of binary nanoparticles in GTL-16 cells, while no differences were observed in those that did not express the Met receptor (Huh7).
- FIG 11 Histological analysis of different organs of female BALB / c mice that had been injected intravenously with biomimetic nanoparticles (10 pg / g mouse). Mice were sacrificed at different times after injection (1 hr, 4 hr, 1d, 7d, and 60d) and organs were processed by Prussian blue and Hematoxylin-Eosin staining. Small amounts of iron were detected in the lungs, which decreased after 60 days. In the spleen, which normally contains iron, iron levels were increased at the time of the injection, which then decreased during the following days, then recovered to normal levels at 60 d. In the other organs (brain, heart, liver and kidneys) a slight increase in iron was detected during the first day, which decreased later. Biomimetic nanoparticles are highly biocompatible in vivo.
- FIG. 13 (a, b) Cytocompatibility analyzed by MTT assay of the BMNPs (0.1, 1, 10 and 10 pg / mL) on 4T1 cells in the absence / presence of a gradient magnetic field after 72 h. (c) Analysis of potential ROS production in the presence of different concentrations (0.1, 1, 10 and 10 pg / mL) of the BMNPs on 4T1 cells, in the absence / presence of a gradient magnetic field, by confocal microscopy. The release of ROS (green). Menadione (100 mM) was used as a positive control. Fixed and permeabilized cells were stained for cytoskeletal actin with TRITC- phalloidin (red) and nuclei with TO-PR03 (blue).
- Figure 14 (a) Qualitative (Prussian blue) and (b) quantitative (potassium thiocyanide) analyzes of the interaction of BMNPs (100 pg / mL) with 4T1 cells at different times (5 and 30 seconds, 1, 2.5 and 5 minutes ) in absence (- GMF) and presence (+ GMF) of a gradient magnetic field. Untreated cells were used as negative control (CTRL-).
- FIG. 15 (a) TEM micrographs and (b) microanalysis by energy dispersive X-ray (EDX) spectroscopy of 4T1 cells incubated with the 100 pg / mL of BMNPs in the absence / presence of a gradient magnetic field for 30 seconds, 1 and 24 h.
- the micrographs are represented ve of altérnate serial cuts of the cell pellets of each sample.
- Figure 17 Analysis of the interaction of DOXO-BMNPs with 4T1 cells at different times (0.5, 5 and 30 seconds, 1, 2.5 and 5 minutes) in the absence (- GMF) and presence (+ GMF) of a gradient magnetic field by confocal microscopy. Soluble DOXO was used as a positive control. Fixed and permeabilized cells were stained for cytoskeletal actin with FITC-phalloidin (green), nuclei with TO-PR03 (blue) and DOXO emits fluorescence by itself (red).
- the present invention describes a method of producing a composition that is substantially a pure mineral phase of superparamagnetic biomimetic magnetite (BMNPs,> 95% of total solid) that encompasses the following steps: (a) preparing a solution of carbonate, (b) add FeCh to the carbonate solution, (c) add MamC and, optionally, Mms6 to the solution obtained in step (b), (d) incubate the solution obtained in step (c) during, at least 30 minutes, (e) adding Fe (CI0 4 ) 2 to the solution obtained in step (d), and (f) adjusting the pH of the solution obtained in step (e) to 9 using a base; This method is carried out at 25 ° C and 1 pressure atmosphere and all the solutions are previously deoxygenated. In this aforementioned method, the concentrations of the protein reservoirs must be in the following range: [MamC] 2-5 mg / ml_, [Mms6] and [Mms7]> 1 mg / ml_.
- the present invention describes a composition encompassing: (i) a substantially pure mineral phase of superparamagnetic magnetite, (ii) MamC, and (iii) optionally, Mms6; where, at least components (i) and (ii) form superparamagnetic magnetic nanoparticles containing up to 5 wt% MamC, with an average particle size between 30-120 nm.
- the present invention provides a formulation for making magnetoliposomes that encompasses: (i) the composition of the present invention, (ii) a liposome-forming agent, and (iii) optionally superparamagnetic inorganic magnetites.
- the present invention also provides a pharmaceutical composition that encompasses the composition of the present invention or the formulation of the magnetoliposomes of the present invention and a pharmaceutically acceptable carrier and / or diluent.
- the composition of the present invention, the formulation of the magnetoliposomes, or the pharmaceutical composition can be used as a medicine.
- the composition of the present invention, the formulation of the magnetoliposomes, or the pharmaceutical composition can be used in cancer treatments.
- the present invention also provides the use of the composition of the present invention, the formulation of the magnetoliposomes, or the pharmaceutical composition of the present invention for the preparation of contrast agents for image-based clinical techniques.
- the present invention also provides the use of the composition of the present invention for (i) nucleic acid isolation; (ii) as a molecular separator; (iii) as biosensors.
- treatment and “therapy” used herein refer to a set of hygienic, pharmacological, surgical and / or physical protocols that are used with the intention of curing and / or alleviating disease and / or symptoms with the objective of improving the state of health.
- treatment and “therapy” include preventive and curative methods, since both are intended to maintain or restore the health of an individual or an animal. Regardless of the origin of the symptoms, illness or disability, the Medically appropriate administration to alleviate or cure a health problem should be interpreted as a form of therapy treatment in the context of this specification.
- an effective therapeutic amount refers to the amount of compound in a composition or formulation that has a therapeutic effect that is capable of treating the disease.
- pharmaceutically acceptable carrier or “pharmaceutically acceptable diluent” refers to any and all solvents, dispersed media, coatings, antibacterial and antifungal agents, isotonic agents, and absorption retarders compatible with pharmaceutical administration. The use of these media and agents as pharmacologically active substances is well known.
- Acceptable carriers, excipients, or stabilizers are not toxic to the subject at the dose and concentration employed and, without limiting the scope of the present invention, include: buffering agents; preservatives; co-solvents; antioxidants, including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (eg, Zn-protein complexes); biodegradable polymers such as polyesters; salt-forming counterions such as sodium, polyhydric sugar alcohols, amino acids such as alanine, glycine, glutamine, asparagine, histidine, arginine, lysine, ornithine, leucine, 2-phenylalanine, glutamic acid and threonine; organic sugars or alcoholic sugars such as lactitol, stachyose, crafty, sorbose, xylose, ribose, ribitol, myoinisitose, myoinisitol, galactos
- compositions described herein may also be included in the pharmaceutical composition described herein, provided that they do not adversely affect the characteristics of the composition. pharmaceutical.
- therapeutic agent refers to any substance that can be used to treat and / or prevent disease when used in therapeutically effective amounts.
- the therapeutic agent can be a small chemical molecule (such as, for example, doxorubicin, antihistamine, etc. .), or biological (eg, therapeutic protein) and / or nucleic acid (eg, siRNA, gRNA for CRISPR / Cas9, etc.).
- chemotherapeutic agent refers to any drug that can be used to treat or prevent cancer.
- Non-limiting examples include: Actinomycin. All-trans retinoic acid, Azacitidine, Azathioprine, Bleomycin, Bortezomib, Carboplatin, Capecitabine, Cisplatin, Chlorambucil, Cyclophosphamide, Cytarabine, Daunorubicin, Docetaxel, Doxifluridine, Doxorubicin, Epirubicin, Epozilone, Etoposide, Fluorouracil, Gemcitabine, Hydroxyurea, Idarubicin, Imatinib, Irinotecan, Mercaptopurine, Vinhotipretin, Mitoxantrone, Oxaliplatin, Pax Vindesina and Vinorelbina.
- cancer 1 refers to a group of diseases that can be defined as abnormal, benign or malignant new growth of tissue that does not have a physiological function and that results in uncontrolled and usually rapid cell proliferation that has the potential to invade or spread to other parts of the body.
- the magnetoliposome composition and formulation of the present invention can specifically recognize cancer cells through functionalization with a signaling substance and can lead antiproliferative agents to solid tumors or hematological cancers.
- Some non-limiting examples include: acute granulocytic leukemia, acute lymphocytic leukemia, acute myelogenous leukemia, adenocarcinoma, adrenal cancer, anaplastic astrocytoma, angiosarcoma, cancer of the appendix, astrocytoma, basal cell carcinoma, B-cell lymphoma, cancer of the bile ducts, bladder cancer, bone cancer, bone marrow cancer, intestinal cancer, brain cancer, brain stem glioma, brain tumor, breast cancer, carcinoid tumors, cervical cancer, cholangiocarcinoma, chondrosarcoma, chronic lymphocytic leukemia, myelogenous leukemia chronic, colon cancer, colorectal cancer, craniopharyngioma, cutaneous lymphoma, cutaneous melanoma, diffuse astrocytoma, ductal carcinoma in situ, endometrial cancer, ependymoma, epithelioid
- substantially pure mineral phase refers to a mineral phase consisting of mostly one type of mineral (> 95%).
- a substantially pure magnetite mineral phase means that the magnetite crystals do not contain siderite.
- Substantially pure mineral phase of magnetite may contain small amounts of goetite ( ⁇ 5%) if the pH rises above 9 during the production process.
- superparamagnetism refers to a form of magnetism that appears in small ferromagnetic or ferrimagnetic nanoparticles. Below a certain size, the magnetic nanoparticles cannot maintain the static walls of the different magnetic domains, behaving like a giant spin of magnetic momentum. A superparamagnetic particle can be free (thermally balanced) or blocked (unbalanced).
- the blocking temperature (TB) was determined as that at which occurs the maximum magnetization curves ZFC, while the temperature of irreversibility (Tj rr) is that just below blocking superparamagnetic nanoparticles are no longer thermally balanced.
- signaling substance refers to any molecule that can specifically bind to another given substance.
- Non-limiting examples include antibodies, antibodies, aptamers, etc. In a preferential situation the signaling substance is a monoclonal antibody.
- inorganic magnetite nanoparticles or MNPs refers to any magnetite nanoparticle that is obtained or can be obtained by chemical synthesis methods in the absence of any biological agent and / or product.
- MamC refers to a complete protein that is derived from the mamC gene (NCBI Database, accession number AE3K44766.1, protein accession Mmc1_2265).
- the term “MamC” also includes functional fragments and variants of the protein derived from the mamC gene that could be expressed in biological systems or synthesized. MamC functional fragments are previously described in (Nudelman et al., 2016; Nudelman et al., 2018; patent WO 2017153996). In particular, the functional fragments that contain the region of the MamM-region of interaction (MamC-MIL) (Nudelman et al., 2016). The functional fragments can be linked to another protein like MBP.
- Mms6 refers to a complete protein that is derived from the mms6 gene (NCBI Database, accession number ABK44766.1, protein accession Mmc1_2275).
- Mms6 also includes functional fragments and variants of the protein derived from the mms6 gene that could be expressed in biological systems or synthesized.
- MmsT refers to a complete protein that is derived from the mms7 gene (UniProtKB reference number Q2W8R9).
- MmsT also includes functional fragments and variants of the protein derived from the mms7 gene that could be expressed in biological systems or synthesized.
- working variant refers to any variant or mutant that has a certain percentage (degree) of homology with the protein and that maintains the function of the protein.
- a functional variant has a degree of homology with the protein greater than 75%.
- degrees of homology 80, 85, 90, 95, 98 or 99% with the original protein. More preferably a degree of homology of 95% with the original protein.
- the degree of identity between protein sequences can be determined by conventional methods. For example, using standard algorithms for sequence alignment, known in the area as BLAST (Altschul et al. 1990 J Mol Biol. 215 (3): 403-10) or CLUSTAL O (1.2.1). In a preferential situation the degree of homology is determined using BLAST or CLUSTAL O.
- the present invention provides a method of producing a substantially pure superparamagnetic magnetite mineral phase composition comprising the following steps: (a) preparing a carbonate solution, (b) adding FeCh to the carbonate solution, ( c) add MamC and, optionally, Mms6 to the solution obtained in step (b), (d) incubate the solution obtained in step (c) for at least 30 minutes, (e) add Fe (CI0 4 ) 2 to the solution obtained in step (d), and (f) adjust the pH of the solution obtained in step (e) to pH 9 using a base; the method is performed at 25 ° C and 1 pressure atmosphere. All the solutions used are previously deoxygenated. For a better result, the method of the present invention is carried out under anoxic conditions, that is, less than 40 ppb of oxygen in the solution.
- the present invention provides a sequence of steps, which are essential to produce a composition that is free of any detectable level of siderite.
- the sequence of steps provided allows the MamC protein, which is highly hydrophobic, to remain folded and functional while maintaining the solution supersaturated for the magnetite such that the precipitation of the magnetite is kinetically enhanced relative to that of the siderite. Therefore, obtaining the correct sequence requires a careful balance of these three aspects.
- Mms7 is also added to the solution obtained in step (b) in step (c) of the method.
- the concentration of the protein (s) added in step (c) should be at least 2 mg / ml.
- the concentration of the MamC solution that is added to the solution in step (c) is 2-5 mg / mL. Higher concentrations can induce aggregation and thus prevent or reduce the efficacy of MamC mediation in magnetite biomineralization. Lower concentrations will result in very small ( ⁇ 5nm) magnetite crystals due to the prevalence of the effect of the TRIS buffer in the biomineralization process.
- This embodiment does not refer to the final concentration of the protein solution (s).
- This condition refers to the concentration of the stock solution that is added to the solution obtained after step (b).
- the carbonate solution comprises NaHCC> 3 and / or Na 2 C03 and, optionally, the base is NaOH.
- the final concentration of the solution obtained in step (f) is 3.5 mM NaHCC> 3. 3.5 mM Na 2 CC> 3. 2.78 mM Fe (CIC> 4) 2.56 mM FeCh and a variable amount of MamC and, optionally, Mms6.
- the final concentration of MamC is 10 pg / ml and, if Mms6 is included, the final concentration of MamC is at least 5 pg / ml and the final concentration of Mms6 is 10 pg / ml.
- the present invention provides a composition obtained or obtainable through the methods of the present invention.
- the present invention provides a composition comprising: (i) a substantially pure mineral phase of superparamagnetic magnetite, (ii) the MamC protein and (iii) optionally, the Mms6 protein; wherein, at least components (i) and (ii) form superparamagnetic magnetic nanoparticles containing up to 5 wt% MamC, with an average particle size between 30-120 nm
- the MamMP-mediated BNMPs are composed of -95 wt% magnetite and -5 wt% MamC), isoelectric point of ⁇ 4.4, surface area of ⁇ 90 m 2 / g, blocking temperature of -145 K and temperature of irreversibility of -292 K.
- the average particle size of the magnetic nanoparticles is 30-50 nm.
- the average particle size of the magnetic nanoparticles is 30-40 nm.
- the average particle size is determined by Transmission Electron Microscopy. In the examples of the present invention, sizes were obtained by measuring the size of more than 1000 crystals in each Transmission Electron Microscopy image.
- the wt% of MamC in the BMNPs is 2-20 wt%.
- the wt% of MamC in the BMNPs is 2-10 wt%.
- the wt% of MamC in the BMNPs are determined by thermogravimetric analysis. In the examples of the present invention, the wt% of MamC in the BMNPs is 5 wt%.
- the composition may further comprise other proteins involved in magnetite formation in bacterial magnetosomes and / or other proteins with acidic domains capable of binding iron and / or those with a structure such that they could function as a template for nucleation and growth of magnetite .
- Non-limiting examples of such proteins include Mms6, Mms7, MmsF / MamF and their homologous proteins in different magnetotactic bacteria.
- the composition further comprises Mms7.
- the isoelectric point of the BMNPs is 3-7.
- the isoelectric point of the BMNPs is 3-5.
- the isoelectric point of the BMNPs is calculated from measurements of electrophoretic mobility. In the examples of the present invention, the isoelectric point of the BMNPs is 4.4.
- the specific surface area of the BMNPs is 30-120 m 2 / g.
- the specific surface area of the BMNPs is 50-100 m 2 / g.
- the specific surface area of the BMNPs is determined from BET. In the examples of the present invention, the specific surface area of the BMNPs is 97 m 2 / g.
- the nanoparticles formed using the MamC protein exhibit high magnetization per particle at room temperature that is equal to or greater than that of the nanoparticles obtained by inorganic methods or by the unique use of the Mms6 protein.
- the magnetization of the BMNPs is 40-70 emu / g at 300 K when an external magnetic field of 500 Oe is applied.
- the magnetization of the BMNPs is 55-65 emu / g at 300 K when an external magnetic field of 500 Oe is applied.
- the magnetization of the BMNPs is 55 emu / g (61 emu / g when the amount of MamC in the crystal is taken into account) at 300 K when an external magnetic field of 500 Oe is applied.
- the blocking temperature of the BMNPs is at least 100 K when an external magnetic field of 500 Oe is applied.
- the blocking temperature is at least 120 K when an external magnetic field of 500 Oe is applied.
- the blocking temperature is at least 130 K when an external magnetic field of 500 Oe is applied.
- the irreversibility temperature of the BMNPs is at least 200 K when an external magnetic field of 500 Oe is applied.
- the irreversibility temperature is at least 250 K when an external magnetic field of 500 Oe is applied.
- the irreversibility temperature is at least 280 K when an external magnetic field of 500 Oe is applied.
- An advantage of biomimetic nanoparticles compared to inorganic nanoparticles is the fact that proteins change surface properties due to MamC adsorbing and / or incorporating up to 5 wt% on the crystal surface (Figure 6B).
- acidic pH values such as those that exist in the tumor microenvironment or within the cell lysosome
- inorganic magnetite nanoparticles are uncharged at a pH of about 7.4 and are therefore neutral or lightly charged at physiological pH. Therefore, low adsorption and high drug release are expected at physiological pH values.
- the nanoparticle must be covered by a molecular coating that allows stable functionalization. This step is not necessary in the biomimetic nanoparticles that are the subject of this patent.
- the magnetic nanoparticles are functionalized with a therapeutic agent.
- the therapeutic agent can be any agent that has a therapeutic effect when administered in a therapeutically effective amount.
- the agent therapeutic is a chemotherapeutic agent or a nucleic acid molecule.
- Nucleic acid molecules include both RNA and DNA.
- the RNA can be a siRNA, miRNA or gRNA (gRNA for use in CRISPR / Cas9 gene editing approaches).
- the magnetic nanoparticles were functionalized with a chemotherapeutic agent.
- the chemotherapeutic agent is polar.
- the chemotherapeutic agent is doxorubicin.
- the magnetic nanoparticles are functionalized with a signaling substance.
- the signaling substance is a ligand for a growth factor receptor (such as a growth factor), an antibody, or an aptamer. More preferably, the signaling substance is a monoclonal antibody.
- the magnetic nanoparticles are functionalized with a chemotherapeutic agent and a signaling substance.
- a chemotherapeutic agent is doxorubicin and the signaling substance is a monoclonal antibody.
- the composition consists of: (i) a substantially pure mineral phase of superparamagnetic magnetite, (ii) MamC and (iii) optionally, Mms6 and / or Mms7; wherein, at least components (i) and (ii) form superparamagnetic magnetic nanoparticles containing up to 5 wt% MamC (MamC-mediated BMNPs are then composed of -95 wt% magnetite and -5 wt% MamC), with an average particle size between 30-120 nm, isoelectric point of ⁇ 4.4, surface area of ⁇ 90 m 2 / g, blocking temperature of -145 K and irreversibility temperature of -292 K.
- the composition does not derive, is neither obtained nor can be obtained from a magnetosome. More preferably, the composition is not obtained from a magnetosome.
- BMNPs are obtained using the in vitro precipitation approach described in the present invention.
- superparamagnetic magnetic nanoparticles are superparamagnetic biomimetic magnetic nanoparticles (BMNPs).
- superparamagnetic magnetic nanoparticles are superparamagnetic biomimetic magnetic nanoparticles.
- magnetosome refers to both natural magnetosomes present in magnetotactic bacteria and recombinant magnetosomes or magnetosome-like structures that are produced by a host that does not normally contain magnetosomes or magnetosome-like structures.
- the present invention provides a magnetoliposome formulation which comprises: (i) the composition of the present invention, (ii) a liposome-forming agent; and (iii) optionally, superparamagnetic magnetite inorganic nanoparticles (MNPs).
- MNPs superparamagnetic magnetite inorganic nanoparticles
- the forming agent involved in the formulation of magnetoliposomes is preferably a hydrogenated, partially hydrogenated, or non-hydrogenated phospholipid.
- the phospholipid used can be or comprise, for example: phosphatidylcholine, phosphatidylserine and phosphatidyl-inositol.
- the most typical phospholipid is phosphatidylcholine, which can be synthesized or isolated from a wide variety of natural sources.
- phosphatidylcholine there are other phospholipids that can also be used in the formulation, either as forming agents or as additional components.
- phospholipids are: Diacetyl Phosphate (DCP), Dimiritoylphosphatidylcholine (DMCP), Dimiristoyl Phosphatidylglycerol (DMPG), Dioleoyl Phosphatidylcholine (DOPc), Dipalmitoyl Phosphatidylcholine (DPPC), Dipalmitoyl Phosphatidylglycerin (DPPC), Dipalmitoyl Phosphatidylglycolin (DPPC), Dipalmitoyl Phosphatidylglycerol (DPPC), Dipalmitoyl Phosphatidylglycerin (DPPC), Dipalmitoyl Phosphatidylglycerin (DPPC), Dipalmitoyl Phosphatidylglycerin (DPPC), Dipalmitoyl Phosphatidylglycerin (DPPC), Dipal
- Magnetoliposomes can be formed using conventional auxiliary lipids by techniques known to the person skilled in the art, such as those described in patent application ES2231037-A1. Although liposomes have been used for coating inorganic magnetite nanoparticles, encapsulation of biomimetic nanoparticles in liposomes has not previously been performed. Because the surface properties of the two particles are very different, the stabilization process of both types of particles prior to encapsulation in the liposome is very different. Encapsulating the nanoparticles without prior stabilization could result in the agglomeration of said particles. Agglomerated nanoparticles would not be useful for use in nanotechnology applications. Therefore, the process for obtaining magnetoliposomes that involves the use of biomimetic magnetite nanoparticles is not obvious or simple.
- Superparamagnetic nanoparticles such as inorganic magnetite nanoparticles (MNPs) can be especially useful for use as contrast agents in magnetic resonance imaging, as well as for use in hyperthermia treatments resulting from increased temperature caused by rotation of magnetic nanoparticles, which is induced by an alternating magnetic field or by radiation. Therefore, a magnetoliposome presenting larger and smaller MNPs can take advantage of both types of nanoparticles.
- the magnetoliposome formulation further exhibits MNPs.
- the magnetoliposomes of the magnetoliposome formulation are functionalized with therapeutic agents and / or with a substance of addressing.
- Magnetoliposomes can be functionalized by any common method known in the art.
- magnetoliposomes can be functionalized by the methods described by Torchilin et al., 2001.
- the therapeutic agent can be any agent that exhibits a therapeutic effect when administered in a therapeutically effective amount.
- the therapeutic agent is a chemotherapeutic agent and the targeting substance is an antibody. More preferably, the antibody is a monoclonal antibody.
- the present invention provides a pharmaceutical composition which comprises the composition of the present invention or the magnetoliposome formulation of the present invention and a pharmaceutically acceptable carrier and / or solvent.
- the pharmaceutical composition may comprise one or more solutions, which are suitable for intravenous, intra-arterial, intramuscular and / or subcutaneous administration.
- the pharmaceutical composition may comprise one or more solutions, which are suitable for sublingual, buccal and / or inhalation routes of administration.
- the pharmaceutical composition may comprise one or more aerosols, which are suitable for administration by inhalation.
- the pharmaceutical composition may comprise one or more creams and / or ointments, which are suitable for topical administration.
- the pharmaceutical composition may comprise one or more suppositories which are suitable for rectal or vaginal administration.
- the composition can be used with the aim of achieving a loco-regional effect.
- the present invention provides the composition of the present invention, the magnetoliposome formulation of the present invention, or the pharmaceutical composition of the present invention for use as a medicament.
- the present invention provides the composition of the present invention, the magnetoliposome formulation of the present invention, or the pharmaceutical composition of the present invention for use in the treatment of cancer.
- the cancer is selected from the group consisting of acute granulocytic leukemia, acute lymphocytic leukemia, acute myelogenous leukemia, adenocarcinoma, adrenal cancer, anaplastic astrocytoma, angiosarcoma, appendix cancer, astrocytoma, basal cell carcinoma, cell lymphoma B, bile duct cancer, bladder cancer, bone cancer, bone marrow cancer, intestinal cancer, brain cancer, glioma brain stem, brain tumor, breast cancer, carcinoid tumors, cervical cancer, cholangiocarcinoma, chondrosarcoma, chronic lymphocytic leukemia, chronic myelogenous leukemia, colon cancer, colorectal cancer, craniopharyngioma, cutaneous lymphoma, cutaneous melanoma, diffuse astrocytoma, ductal carcinoma in situ, endometrial cancer, ependymoma, epithelioi
- the cancer is selected from the group consisting of acute lymphoblastic leukemia, acute myeloblastic leukemia, bone sarcoma, breast cancer, endometrial cancer, gastric cancer, head and neck cancer, Hodgkin lymphoma, non-Hodgkin lymphoma, liver cancer , kidney cancer, multiple myeloma, neuroblastoma, ovarian cancer, small cell lung cancer, soft tissue sarcoma, thyomas, thyroid cancer, transitional cell bladder cancer, uterine sarcoma, Wilms tumor, and Waldenstrom macroglobulinemia.
- the present invention provides a composition
- a composition comprising: (i) a substantially pure mineral phase of superparamagnetic biomimetic magnetite, (ii) MamC, and (iii) optionally, Mms6; where at least components (i) and (ii) form superparamagnetic magnetic nanoparticles containing up to 5 wt% MamC (the MamC-mediated biomimetic nanoparticles are then composed of ⁇ 95 wt% magnetite and -5 wt% MamC) , with an average particle size between 30-120 nm, isoelectric point of ⁇ 4.4, surface area of ⁇ 90 m 2 / g, blocking temperature of -145 K and irreversibility temperature of -292 K and where the magnetic nanoparticles are they function with a chemotherapeutic agent; and a pharmaceutically acceptable carrier and / or diluent.
- the chemotherapeutic agent is doxorubicin and the cancer is selected from the group consisting of acute lymphoblastic leukemia, acute myeloblastic leukemia, bone sarcoma, breast cancer, endometrial cancer, gastric cancer, head and neck cancer, Hodgkin lymphoma, non-lymphoma.
- Hodgkin liver cancer, kidney cancer, multiple myeloma, neuroblastoma, ovarian cancer, small cell lung cancer, soft tissue sarcoma, thyomas, thyroid cancer, transitional cell bladder cancer, uterine sarcoma, Wlms tumor, and macroglobulinemia of Waldenstrom.
- the treatment of cancer involves the use of a hyperthermia treatment.
- a hyperthermia treatment an alternating magnetic field or radiation is used to rotate the magnetic nanoparticles. Then the magnetic nanoparticles increase the ambient temperature in response to the energy generated through the rotations. If magnetite nanoparticles are located in cancer cells, they can cause cancer cells to die due to increased heat.
- the present invention provides the use of the composition of the present invention, the magnetoliposome formulation of the present invention, or the Pharmaceutical composition of the present invention for the preparation of a contrast agent for use in clinical imaging techniques such as magnetic resonance imaging.
- the present invention provides the use of the composition of the present invention for the isolation and / or purification of nucleic acids.
- composition of the present invention of the magnetoliposome formulation of the present invention or of the pharmaceutical composition of the present invention are also envisaged, which also form part of the invention.
- uses include the use of the composition of the present invention, of the magnetoliposome formulation of the present invention, or of the pharmaceutical composition of the present invention as a molecular separator (for example, by functionalizing the nanoparticles with antibodies to capture a specific molecule and then separate said molecule by using a magnetic force) and using the composition of the present invention, the magnetoliposome formulation of the present invention, or the pharmaceutical composition of the present invention as a biosensor.
- the biosensor can be used for use in a clinical or environmental setting.
- MamC cloning, expression and purification was carried out as described in Valverde-Tercedor et al. 2015.
- the mamC gene (NCBI Database, gene accession AE3K44766.1, protein accession Mmc1_2265) was amplified by polymerase chain reaction and cloned into a pTrcHis-TOPO vector (Life Technologies: Invitrogen, Grand Island, NY ) for the recombinant MamC protein to be expressed with an N-terminal hexahistidine tail.
- the recombinant vector was transformed into a TOP10 strain of Escherichia coli (Life Technologies: Invitrogen) and verified by dideoxynucleotide sequencing using an ABI model 3100 sequencer (Life Technologies: Applied Biosystems).
- the soluble fraction was separated by centrifugation and loaded onto a HiTrap chelating HP column (GE Healthcare) previously equilibrated with buffer B (20mM sodium phosphate buffer, 500mM NaCI, 8M urea, pH 8.0), using an ⁇ KTA Prime Plus FPLC system ( GE Healthcare). The column was then washed with buffer B, followed by buffer B adjusted to pH 6. Finally, the protein was eluted with buffer B adjusted to pH 4. The eluate was dialyzed overnight at 4 ° C against buffer C (Tris 50 buffer). mM, 150 mM NaCl, 6M urea, pH 8.5).
- the dialysis buffer was diluted step-by-step 1: 2 (four times) with fresh, non-urea buffer C (called buffer D) and dialyzed for another 2-4 h after each dilution step except in the last dialyzed step during the night.
- the mms6 gene (NCBI Database, gene accession ABK44776.1, protein accession Mmc1_2275) was amplified by polymerase chain reaction using the specific primers: f6 (SEQ ID NO: 1, 5'-ATGCCT GTT GCT GT ACCAAAT AAAGC-3 ') and r6 (SEQ ID NO: 2, 5'- TCAGCTAATGGCCTCTTCCAATTC-3').
- f6 SEQ ID NO: 1, 5'-ATGCCT GTT GCT GT ACCAAAT AAAGC-3 '
- r6 SEQ ID NO: 2, 5'- TCAGCTAATGGCCTCTTCCAATTC-3'
- the amplified mms6 gene was cloned into a pTrcHis-TOPO vector.
- the recombinant vector was also used to transform a TOP10 strain of Escherichia coli and was verified by dideoxynucleotide sequencing.
- Mms6 protein was carried out following the same protocol as described above for the purification of MamC, but using 1mM IPTG instead.
- Cells were harvested by centrifugation (4508 g, 10 min, 4 ° C), resuspended in 20 mM sodium phosphate buffer (pH 7.4) supplemented with 0.5 mg / ml lysozyme and 5% sodium lauroyl sarcosinate. % (sarcosil) and were broken by sonication.
- the soluble fraction was separated by centrifugation (15151 g, 40 min, 4 ° C) and loaded onto a HiTrap chelating HP column (GE Healthcare) using an ⁇ KTA Prime Plus FPLC system (GE Healthcare).
- the column was pre-equilibrated with 20mM Sodium Phosphate Buffer (pH 7.4) supplemented with 20mM Imidazole and TRITON X-100 at 1.3x Critical Micellar Concentration (CMC) to reduce protein aggregation and improve the protein stability. Elution of Mms6 (2 ml / min) was performed by applying a continuous imidazole gradient of 20 to 500 mM. Fractions were collected and analyzed by 12% SDS-PAGE electrophoresis.
- CMC Critical Micellar Concentration
- Fractions containing Mms6 protein were subjected to an additional chromatographic step on a C4 hydrophobicity column (Jupiter® 5 pm C4 300A, LC 150 x 4.6 mm column) using an HPLC system (Agilent 1 100) to remove minor contaminants , E. coli proteins and nucleic acids.
- the elution of the Mms6 protein (0.5 ml / min) was produced by applying a gradient of continuous organic solvent (trifluoroacetic acid and acetonitrile) in water due to the high hydrophobicity of Mms6.
- the purity of the Mms6 protein was tested by 12% Coomassie stained SDS-PAGE.
- Protein concentration was determined using a Bradford protein assay (Bradford, 1976) and using a NanoDrop 2000 UV-Vis spectrophotometer (Thermo Scientific), using the corresponding molar extinction coefficient of 280 nm (17085 M-1 cm-1).
- Mms6 was followed up with these transformed bacteria and their corresponding elution fractions were used for magnetite precipitation experiments (control).
- Figure 1 shows an SDS-PAGE gel of the purified MamC and Mms6 proteins.
- the COY chamber was filled with 4% H2 in N2 to avoid possible oxidation.
- Magnetite precipitation was carried out in experiments in uncontrolled conditions and maintained at 25 0 C and 1 atm total pressure following the protocol described by the authors within the anaerobic chamber.
- MamC and / or Mms6 were added to this reaction mixture at concentrations ranging from 0 to 10 pg / ml.
- the dust samples from the precipitates were analyzed with an Xpert Pro X-ray diffractometer (PANalytical, The Netherlands), using Cu Ka radiation, with the adjusted scanning range of 20 to 60 ° in 2Q (0.01 0 / step; 3 s per step).
- the identification of the precipitates was carried out using the XPowder software (Mart ⁇ n Ramos, 2004).
- the solids formed in all the biomineralization experiments (with and without the proteins) were identified as magnetite using X-ray powder diffraction (XRD). The solids did not contain detectable levels of siderite.
- Example 5 Size and morphology of the particles
- the morphology and size of the magnetite nanoparticles collected in these experiments were studied by transmission electron microscopy (TEM) using a Cari Zeiss SMT LIBRA 120 PLUS microscope. Magnetic nanoparticles were embedded in Embed 812 resin. Ultrathin sections (50-70nm) were prepared using a Reichert Ultracut S microtome (Leica Microsystems GmbH, Wetzlar, Germany) after which the sections were deposited on copper grids. The size of the crystals was measured using the ImageJ 1.47 program, and the size distribution curves were determined from those measurements using Origin pro 9. To ensure the reproducibility of the results, the particle sizes were measured in multiple micrographs with an excess of 1000 nanoparticles measured in each experiment.
- HRTEM High resolution TEM
- SAED selected area electron diffraction patterns
- TEM images of Mms6-mediated magnetites show differences in size and shape with respect to inorganic control experiments as a function of Mms6 concentration in solution.
- Mms6 concentration 2.5 pg / mL
- non-faceted crystals 17 ⁇ 7 nm were formed.
- magnetite crystals had more uniform polyhedral morphologies with well-faceted faces and were slightly larger (23 ⁇ 9 and 22 ⁇ 8 nm, respectively) compared to magnetites.
- MNPs inorganic control
- the size and shape of the MamC-mediated magnetite particles (BMNPs) also depended on protein concentration.
- BMNPs crystals formed in the presence of 2.5 pg / ml and 5 pg / ml MamC's were rounded and had sizes of 20 ⁇ 6 nm and 22 ⁇ 7 nm, respectively.
- the magnetite crystals showed well-developed crystal faces with two-dimensional rhombic, rectangular and square morphologies and sizes of 37 ⁇ 12 nm ( Figure 3).
- the HRTEM images show that the crystals obtained from the inorganic control experiments have a square and some rhombiodal 2-D shapes delimited by the faces (11) ( Figure 4). In addition, some crystals showed rounded corners corresponding to the face (1 10) of the crystal ( Figure 4). MamC-mediated nanoparticles expressed the glass face (11) with the rounded corners corresponding to the nascent glass faces (110) and (311) ( Figure 4). In this case, the crystals seemed elongated along the direction [11]. The crystals obtained in the presence of the Mms6 protein showed rhomboidal, rectangular and hexagonal shapes delimited by the face (1 1 1) of the crystal and corresponding rounded corners. to the faces (311), (1 10) and (400) of the glass ( Figure 5).
- Magnetization measurements were performed using a Quantum Design Superconducting Quantum Interference Device (SQUID) 5T Magnetic Property Measurement System (MPMS). Under gentle argon flow, 1.6 mg of MNPs and 1.01 mg of BMNPs were placed in a double-walled polycarbonate capsule. Hysteresis cycles were determined for each type of nanoparticles at 5 K and 300 K.
- SQUID Quantum Design Superconducting Quantum Interference Device
- MPMS Magnetic Property Measurement System
- Zero-field cooling (ZFC-W) and field cooling (FC-C) measurements were performed using a 5T superconducting quantum interference (SQUID) magnetometer (Quantum Design MPMS XL, USA). Under a smooth flow of argon, a different amount of each sample powder was placed in a double-walled polycarbonate capsule. The samples were immediately cooled in an applied field from zero to 5 K to maintain randomized magnetization of the nanocrystals, after which a 500 Oe magnetic field was applied. To allow comparison between nanoparticles synthesized differently, the M (T) curves were normalized by the quantity of each sample analyzed and by the magnetization value at 300 K.
- SQUID superconducting quantum interference
- the nanoparticles synthesized in the inorganic control experiment exhibit the lowest blocking temperature (TB ⁇ 50K) that is characteristic of small, poorly crystalline nanoparticles ( Figure 6).
- Mms6-mediated nanoparticles show similar magnetization curves ( Figure 6) while MamC-mediated nanoparticles exhibit higher TB ( ⁇ 140K), consistent with their larger size.
- the nanoparticles obtained at 5 pg / mi of MamC and 10 pg / mi of Mms6 show the highest TB (TB ⁇ 300 K) with the slowest increase in magnetization, characteristic of particles with high crystallinity and a great magnetic moment per particle.
- MNPs and BMNPS show remaining magnetization at 5 K in the absence of an external field, but not at 300 K ( Figure 6C), confirming that both particles are superparamagnetic and have a blocking temperature ⁇ 300 K.
- the magnetization saturation value (Ms) for BMNPs is 55 emu / g, while for MNPs it is 66 emu / g ( Figure 6C).
- the difference in magnetization saturation between BMNPs and MNPs is not so high, taking into account the dilution effect due to the coating, so the reduction in the Ms value for the BMNPs could be due to the incorporation of MamC.
- the blocking temperatures (TB) and the irreversibility temperatures (Tirr) of biomimetic particles and MNPs are also different.
- the lowest TB (103 K) and the Tirr (274 K) correspond to the MNPs ( Figure 6D), followed by Mms6-E3MNPs and MamC-BMNPs ( Figure 6D).
- the highest TB (260 K) and Tirr (296 K) correspond to the Mms6-MamC-BMNPs complex.
- the slowest magnetization and the highest TB values correspond to particles with a higher magnetic moment per particle.
- the smaller differences between TB and Tirr indicate less polydispersity.
- Powder samples were analyzed to obtain 77 K nitrogen adsorption isotherms on a TriStar 3000 kit (Micromeritics). About 50 mg of sample were degassed at 100 ° C for 4 h before analysis using a degasser (VacPrep 061, Micrometrics). The specific surface area (SSA) of the samples was determined using the BET method [27] The SSA determined by BET is 97 ⁇ 2 m 2 / g.
- Electrophoretic mobility was measured in inorganic magnetites (MNPs) and BMNPs.
- Suspensions of each type of nanoparticle were prepared in 10 mL of oxygen-free NaCICL (10 mM). 200 pL aliquots from each of the above suspensions were inoculated into eleven tubes containing oxygen-free NaCICL (10mM), with the final volume of each tube being 10 mL.
- the pH of each tube was adjusted by adding oxygen-free HCI (0.1 M) or oxygen-free NaOH (0.1 M) until reaching a pH in the range 2 to 11, depending on the sample. Samples were sonicated for 2 minutes before measurements. Nine replicates were made for each measurement.
- Thermogravimetric analyzes were made in D 10 mg of solid, heating the sample in an aluminum cell under N 2 atmosphere, at a speed of 20 ° C min -1 to a final temperature of 950 ° C.
- Magnetite nanoparticles tend to aggregate due to their magnetic properties and additional treatment is necessary to prevent such aggregation before the production of magnetoliposomes.
- the biomimetic nanoparticles were incubated in 5 ml_ of 100 mM glutamate for 12 hours. The concentration of the nanoparticles was 4.5 mg / mL. The particles were then washed 3 times with water to remove the glutamate. After washing, the particles were concentrated using a magnet and the supernatant was discarded. As mentioned, this procedure was repeated three times. The particles were then re-dispersed in 1.67 mL of water ([Magnetite Nanoparticles] « 24 mg / mL] This suspension was filtered through a filter with a pore size of 0.22 pm.
- Biomimetic magnetoliposomes were synthesized using the film hydration method.
- the solvent was evaporated using a rotavapor (Büchi, Rotavapor-R) under a vacuum stream at 400 rpm and 37 ° C.
- the sample was under a vacuum current for 90 minutes.
- the thin layer of lipid film was hydrated and dispersed with the ferrofluid suspension ([PC] ⁇ 6 mg / mL).
- the mixture was stirred for 2 hours at 180-200 rpm. After this, the magnetoliposome suspension was stored at 4 ° C for 24 hours. Finally, the unilamellar magnetoliposomes were obtained by the extrusion method. Specifically, the magnetoliposome solution was passed 5 times through a 200 and 100 nm polycarbonate membrane (Whatman), respectively, with the aid of an extruder (Avanti Polar Lipids) at 45 ° C.
- Inorganic nanoparticles like biomimetic nanoparticles, tend to add. However, the treatment applied to disaggregate them is different from that followed for biomimetic nanoparticles, due to the different surface properties of both particles. Because of this, the inorganic nanoparticles were incubated in 5 mL of 2M citrate. The rest of the protocol used to obtain inorganic magnetoliposomes was identical to that followed for obtaining biomimetic magnetoliposomes.
- the nanoparticles tested were those obtained using 10 pg / mL of the MamC protein.
- the resulting precipitates were concentrated in tubes with a magnet and the supernatant was discarded.
- the precipitates were then washed sequentially with oxygen-free Milli-Q water three times, with a 0.5% SDS solution and with oxygen-free water again.
- the precipitates were resuspended in HEPES buffer with saline (0.01 M HEPES, pH 7.2, 0.15 M NaCI) and sterilized by autoclaving them at 121 ° C for 21 minutes.
- the magnetite nanoparticles were functionalized with DOXO and with the purified DO-24 monoclonal antibody (mAb), which recognizes the human Met / HGF receptor ectodomain, which is considered a tumor marker, being overexpressed in numerous cancers, as already described with minor modifications (lafisco et al., 2010; lafisco et al., 2013; Oltolina et al., 2015).
- mAb DO-24 monoclonal antibody
- couplings were performed by mixing 2 mg of magnetite nanoparticles with 1 mg / mL DOXO dissolved in water or with the mAb dissolved in the HEPES buffer with saline (binary magnetite nanoparticles) or with the mAb followed by DOXO (nanoparticles ternary magnetite) inside hermetically sealed cans to prevent magnetite oxidation.
- Adsorption kinetics experiments were carried out at 25 ° C with stirring (200 rpm) for different time periods up to 24 hours. At the end of each incubation period, the mixtures were washed 3 times to separate the particles from the supernatants using a magnet.
- the functionalized nanoparticles were resuspended in the HEPES buffered saline and stored at 4 ° C until use.
- Example 11 Cytocompatibility and cytotoxicity of binary and ternary nanoparticles
- the plate was incubated at 37 ° C for 2 h and then the supernatants were carefully aspirated. Then 125 pL of 0.2 N HCI isopropanol was added to dissolve the formed formazan crystals. Then it was taken An aliquot of 100 ml of each well was carefully measured and its optical density was measured in a multiwell reader (2030 Multilabel Reader Victor TM X4, PerkinElmer) at 570 nm. The viability of parallel cultures of untreated cells was taken as 100% viability and the values obtained in the cells subjected to the different treatments referred to this value. Experiments were performed 3-5 times using 3 replicates for each sample. In some experiments, predefined or equimolar amounts of soluble DOXO were used.
- the cells approximately 12 x 10 3 GTL-16 / well or 6 x 10 3 HuH-7 / well, were seeded in appropriate multi-well plates for 24 hr. From this moment on, the impedance was controlled (time 0 of the experiment) and 100 pL of the different functionalized magnetite nanoparticles were added to each microwell. Equimolar amounts of DOXO, either soluble or adsorbed on the nanoparticles, were also used.
- both DOXO transporters When the binary and ternary magnetite nanoparticles, both DOXO transporters, were incubated for 3 days in the cells, they behaved similarly, that is, they exerted the same level of toxicity, with respect to the untreated reference samples or samples treated with soluble DOXO, except in the case where 10 pg / ml DOXO were used in GTL-16 cells ( Figure 9).
- the mAb-functionalized ternary magnetite nanoparticles were significantly more toxic than the binary magnetite nanoparticles that carried only DOXO; no such difference was observed in the case of Huh7, which do not express the target receptor of the mAb.
- Example 12 Biocompatibility and distribution of nanoparticles in vivo
- mice Female BALB / c mice were injected into the tail vein with magnetite nanoparticles (10 pg nanoparticles / g mouse weight) diluted in a final volume of 100 ⁇ l of sterile PBS. Animals were monitored every other day for up to 1 month. Mice were subdivided into 5 groups, differentiated at the time point of euthanasia (from 1 hour to 2 months). For each group consisting of 3 mice, an untreated control mouse was also used. His organs were collected, fixed, paraffin-embedded and processed for histological analysis. Serial sections were stained with Prussian blue and hematoxylin-eosin (Sigma Aldrich) and underwent histological evaluation by an independent pathologist not informed of the identity of the samples. All procedures were carried out in accordance with the Directive of the European Community for the Care and the Italian Laws on animal experimentation (Law by Decree 1 16/92).
- mice injected with the magnetite nanoparticles (10 pg / g mouse weight) were observed to be alive and in good shape for at least 60 days.
- the brain, heart, lung, spleen, liver and kidney sections prepared from the animals 1, 4 h, 1, 7, 60 days after the injection do not show any morphological alteration compared to those of the control mice ( Figure eleven).
- Few magnetite nanoparticles were detected, mainly as aggregates in the lungs.
- the spleen which in the untreated control animals was already positive for Prussian blue staining, this staining was undetectable 4 h and 1 day after the injection of the magnetite nanoparticles, but was detectable at least 1 week later, if not earlier.
- these data confirm the minimal / low toxicity of magnetite nanoparticles up to 10 pg / g mouse weight.
- the 4T1 cells are a murine breast carcinoma cell line derived from BALB / c mice, which presented a tumor growth and metastatic spread very closely mimicking the stage IV of human breast cancer. These cells were maintained in Dulbecco's Modified Eagle Medium (DMEM), supplemented with 10% fetal calf serum (FCS), 50 U / ml penicillin, and 50 pg streptomycin. Cells were transplanted twice a week, when they were at 90-95% confluence.
- DMEM Dulbecco's Modified Eagle Medium
- FCS fetal calf serum
- FCS fetal calf serum
- streptomycin 50 U / ml penicillin
- Example 13 In vitro cytocompatibility of BMNPs in the absence / presence of mechanical fields
- the BMNPs did not display significant toxicity (viabil ⁇ ty always over 80%) in an MTT assay up to 100 pg / mL concentrations in 4T1 cells (Fig. 12a) Moreover, the same level of cell viabil ⁇ ty was observed when an external! gradient magnetic fie! d was appued by using a neodymium magnet (1.8 Kg pul ⁇ ) for 72 h ( Figures 12b), confirming its safe use.
- BMNPs The interaction of the BMNPs with ceüs in the presence / absence of a gradient magnetic fieid is shown in Fig. 14.
- Ce s piated on coverslips were incubated for different periods of time with BMNPs in the presenee or absence of a magnetic fieid, fixed, washed and stained with Prussian blue (Fig. 14a).
- BMNPs are detectabie only and at a very low ieve!
- BMNPs The interaction of BMNPs with cells was also analyzed by TEM at different times and energy dispersive X-ray (EDX) (Fig. 15). In agreement with the data of optical microscopy at 30 seconds, few BMNPs are around the ceü surface when ceils are not subjected to the magnetic fieid. Otherwise, some BMNPs appear to interact vvith the eeli e brane and even be interna! Ized if ce! Ls underwent the treat ent with the magnetic fieid (Fig. 15a). In contrast, Prijic et al. (2010) did not observe statisticaily differences up to 30 seconds.
- EDX energy dispersive X-ray
- the NPs used in that study have a sizes of 8-9 nm, which have a lower magnetic response than single magnetic domain enes, coated with a 2-nm-th ⁇ ck yesterday of si! Ica that also affects the magnetic behavior .
- the cytotoxicity exerted by the DOXO-B NPs is exactly the same as the one induced by the soluble DOXO, while in the absence of the magnetic fieid DOXO-BMNPs exert a lower toxicity compared to soluble DOXO at the first two times (Fig. 16c,).
- the treatment with the magnetic fieid concentrated the BMNPs at cióse contact with the cells or even internalize, as already checked by Prussian blue (Fig. 14) and TEM (Fig. 15) analyzes, so that DOXO was readily available for toxicity.
- mice were sacrificed, their tumors excised, fixed and their histological sections were stained with Prussian blue to analyze and quan ⁇ ify their ron conten!
- expec ⁇ ed sections from tumors in animais which underwen ⁇ magnetic field treatment, displayed a higher content of the blue pigment revealing iron, which was similar in the two cases of naked or DOXO-coupled BMNPs (Fig. 18b, c)
- Prussian blue solution (1: 1 of 2% potassium ferrocyanide in H2O and 2% HCI both in H2O) was added to the coverslips. In that way any ferric ion (+3) present in the samples combines with the ferrocyanide and results in the formation of bright blue pigments called Prussian blue or ferric ferrocyanide.
- Nuclear Fast Red was added for staining cell nuclei.
- coverslips were washed with H2O and mounted on slides by using one drop of Eukitt quick-hardening mounting medium for each sample. The interaction of the stained BMNPs with cells was analyzed by optical microscopy at 100X.
- Cells (approximately 22 c 10 4 4T 1 / well) were seeded in 6-well piafes and, after 24 h incubation at 37 ° C and 5% CO2, 100 pg / mL BMNPs suspensions in DMEM medium were added. After their incubation for 5, 30, 60, 150, and 300 seconds in the presence and absence of a gradient magnetic field, the supernatant was removed, cells were washed with fresh PBS, trypsinized, transfered to 0.5 ml_ tubes and centrifuged at 1000 for 5 min. Then, the cell pellets formed were dissolved in 37% HCI, mixed with 10% H2O2 , and incubated for 20 min at room temperature.
- the samples were colorized with 1 ml_ of 1% potassium thiocyanide in MilliQ water, and their absorbance was measured at 490 nm.
- concentration of ferric ions, ie the BMNPs was calculated referencing the absorbance obtained to a standard curve performed with the BMNPs alone.
- the endogenous iron of the cells was substracted from the treated samples normalizing by the untreated control cells.
- coverslips were washed with Tris-Buffered Saline (TBS) containing 5% Bovine Serum Albumin (BSA), 0.1% Triton X-100 and 5% got serum and then stained.
- TBS Tris-Buffered Saline
- BSA Bovine Serum Albumin
- cytoskeletal actin microfilaments were stained with FITC- phalloidin (Sigma-Aldrich, excitation at 488 nm; emission at 500-535 nm) and nuclei with TO-PRO-3 (1/70, Life Technologies; excitation at 633 nm; emission at 650-750 nm).
- DOXO was detected after excitation at 476 nm and emission at 575-630 nm. Fluorescence was detected using a Leica TCS SP2 AOBS Spectral Confocal Scanner microscope. Images were taken at 400X magnification. ImageJ software was used for analysis.
- Cells (approximately 10 c 10 5 4T1 / well) were incubated at 37 ° C and 5% CO2 for 24 h. Afterwards, 100 pg / mL of BMNPs were added and were incubated in the absence and presence a magnetic gradient field for 30 seconds, 1 and 24 h. After these treatments, cells were washed three times with PBS prior to fixation with 2.5% glutaraldehyde and 2% paraformaldehyde in PBS for 1 h. Then samples were washed again three times with sodium cacodylate buffer and embedded in epon.
- Ultrathin sections (50-70 nm) were cut using a Reichert Ultracut S microtome (Leica Microsystems GmbH, Wetzlar, Germany), mounted on copper grids, and stained with lead citrate and uranyl acOUSe for transmission electron microscopy (TEM) analysis.
- TEM transmission electron microscopy
- microanalysis by energy dispersive X-ray (EDX) spectroscopy was performed to confirm the BMNPs imagining by ron detection.
- the cells were incubated with 100 pg / mL BMNPs for shorter time points (5, 30, 60, 150, and 300 seconds) in the presence and absence of the gradient magnetic field. ln the case of the alternating magnetic field treatment, approximately 95 x 10 4 4T1 cells were placed in a 0.5 mL tube. Then suspensions of 100, 300, and 500 pg of BMNPs in DMEM medium were added and exposed or not to an alternating magnetic field (130 kHz and 16 kArrr 1 ) for 20 minutes.
- an alternating magnetic field 130 kHz and 16 kArrr 1
- the cells were counted by using trypan blue, seeded in 96-well plates (approximately 10 x 10 3 4T1 / well) and incubated at 37 ° C and 5% CO2 for 24 h.
- cell viability was evaluated by the MTT colorimetric assay. Briefly, 20 pl_ of MTT solution (5 mg mL 1 in PBS solution) was added to each well. The p ⁇ ate was then incubated at 37 ° C for 2 h and, then, supernatants were carefully aspirated. Afterwards, 125 pL of 0.2 N HCI in isopropanol was added to dissolve the formazan crystals formed.
- ROS reactive oxygen species
- CelIROX® Green Reagent (ThermoFisher) was used following the protocol recommended by the manufacturer. Briefly, cells (approximately 20 x 10 3 4T1 / well) were seeded on glass coverslips in 24-well plates. After their exposure to different concentration (0.1, 1, 10, 100 pg / mL), in the presence and absence of a gradient magnetic field, of BMNPs for 4 hours, the cells were washed with PBS and CelIROX® Green Reagent was added to a final concentration of 5 mM in 300 mI of DMEM medium without serum.
- the p ⁇ ate was incubated in the dark at 37 ° C for 30 minutes. Menadione (100 mM) was used as a positive control. After the incubation time, the coverslips were washed with PBS pH 7.2, fixed with 4% paraformaldehyde in PBS, washed again and permeabilized with 0.1% Triton-X100 for 10 minutes. Finally, the coverslips were stained and mounted on specimen slides (Biosigma).
- the cytoskeletal actin was stained with TRITC-phalloidine (1/200, Sigma-Aldrich, excitation at 543 nm; emission at 560-620 nm) and the nuclei with TO-PRO-3 (1/50, Life Technologies, excitation at 642 nm, emission at 650-750 nm).
- the CelIROX® Green Reagent is only fluorescent in the oxidized State (as a consequence of ROS production). Therefore, the emission of green fluorescence (at 485/520 nm) is stable and is produced after the DNA binding and therefore its signal is mainly located in the nucleus and in the mitochondria. Fluorescence was detected using a Spectral Confocal Leica TCS SP2 AOBS microscope. The images were taken at 400X magnification. The ImageJ software was used for the analysis. in vivo magnetic targeting and antitumor activity
- mice Female BALB / c mice were inoculated with 10 s 4T 1 cells into fat pad of mammary gland When the tumors became palpable (10 days after ceil inoculation), mice were divided into 6 different groups with comparable tumor volumes among the groups The 8 groups were intravenous injected and treated as follows: i) PBS (control), ii-iii) DOXO-BMNPs +/- gradient magnetic field, iv-v) BMNPs +/- gradient magnetic field, and vi) soluble DOXO.
- mice were injected 5 times with a dose of 2 mg / kg DOXO soluble or adsorbed to the BMNPs or comparable doses of unfunctionalized BMNPs, each time 3-4 days apart and, in case of magnetic treatment, after each injection they received a magnetic field treatment for 1 h
- the magnetic field was applied by attaching a 10 in diamefer x 3 m fhick N42 neodymium magnet (1.8 kg pul ⁇ , Magnet Expert Ltd) with 3MTM Ve ⁇ bondTM tissue adhesive on the tumor site and keeping it attached for 1 hour after the injection .
- This neodynium magnet with a magnetic anisotropy normal to the pla ⁇ e and a saturation magnetization of 800 emu / cc, could generate a direct current (dc) magnetic field of the order of 100 Oe a few milliimeters from the surface. Therefore, the effect of the magnet is equivalent to application of a local 100-Oe external dc magnetic field immediately after the administration of the nanoparticles.
- body weight and tumor volumes were recorded every 3-4 days.
- mice were euthanized, their weights, as well as, tumor weights were recorded and, then, tumors, hearts, iivers, spleens, brains, lungs, and kidneys were coliected for histology. Histoiogicai sections of the tumors were prepared for hematoxylin-eosin and Prussian blue staining to anaiyze particles biodistribution.
- mice 36 female BALB / c ice were inoculated with 10 s 4T1 celis into fat pad of a mary gland. After -15 days after celi inoculation, when the tumor dimensions were -100 mm 3 , mice were divided into 8 different groups with comparable tumor volumes among the groups. The 6 groups were intratumor injected and treated as follows: i) PBS (control), ii-iii) DOXO-BMNPs +/- alternating magnetic field, iv-v) BMNPs +/- aiternating magnetic field, and vi) soluble DOXO.
- mice were injected only once at beginning of the treatment (day 0) with a dose of 3 mg BMNPs / mouse, equivalent to 80 pg DOXO for the soluble DOXO and DOXO-B NPs groups. After each injection, the so e groups were exposed to an alternating magnetic field (130 kHz and 16 kAnr 1 ) for 20 minutes immediately after the administration of the nanoparticles. Throughout the study, tumor volumes were measured with caliper every ⁇ wo days. Finally, five days post treatment, mice were euthanized and their tumor weights recorded.
- aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic partiols based on dissociation curve analysis. Biotechnol. Bioeng. 87, 687-694.
- Torchilin VP et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta. 2001; 1511: 397-411.
- Valverde-Tercedor C., Montalbán-López, M., Perez-Gonzalez, T., Sanchez-Quesada, MS, Prozorov, T., Pineda-Molina, E., Fernandez-Vivas, MA, Rodr ⁇ guez-Navarro, AB, Trubitsyn, D., Bazylinski, DA, Jimenez-Lopez, C., 2015. Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcusmarinus strain MC-1. Appl. Microbiol. Biotechnol. 99, 5109-5121.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Gastroenterology & Hepatology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medical Informatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Surgery (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Heart & Thoracic Surgery (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- High Energy & Nuclear Physics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
La presente invención proporciona nanopartículas biomiméticas superparamagéticas que comprenden magnetita, las cuales se pueden fabricar mediante un proceso escaladle. Además, estas nanopartículas presentan unas prometedoras propiedades, ya que, si se funcionalizan, pueden convertirse en transportadores de fármacos o agentes de contraste para la obtención de imágenes clínicas. Se pueden usar en entornos clínicos también para purgar médula ósea, así como separadores de moléculas y/o en aplicaciones medioambientales como biosensores. Estas nanopartículas, acopladas con un fármaco, se pueden encapsular en liposomas, obteniendo magnetoliposomas, los cuales pueden funcionalizarse para su uso en la administración/liberación dirigida de fármacos. Además, las mezclas de magnetoliposomas (tanto funcionalizados como sin funcionalizar con un agente de direccionamiento) y nanopartículas magnéticas biomiméticas funcionalizadas o liposomas que contengan mezclas de BMNPs funcionalizadas y MNPs pueden usarse parar combinar diferentes tratamientos como, por ejemplo, la administración/liberación dirigida de fármacos y la hipertermia.
Description
NANOPARTÍCULAS BIOMIMÉTICAS MEDIADAS POR MAMC
SECTOR DE LA TÉCNICA
La presente invención trata de composiciones que integran nanopartículas magnéticas biomiméticas. Las nanopartículas magnéticas pueden usarse como medicamento, en particular como un medicamento para tratamientos de enfermedades con un marcador asociado que puede ser reconocido, como por ejemplo, cáncer.
ESTADO DE LA TÉCNICA
La Nanotecnología, y en particular la producción de nanopartículas magnéticas genera millones de dólares cada año en EEUU. La aplicación nanotecnológica se basa en el hecho de que estas se pueden manipular fácilmente mediante la aplicación de un campo magnético externo y, por tanto, se pueden dirigir hacia el sitio diana mediante un controlador externo (Arakaki et al., 2014; Prozorov et al., 2013). Hasta la fecha, estas partículas se usan en numerosas aplicaciones que van desde ferrofluidos y almacenamiento magnético hasta el área clínica/científica como la detección de polimorfismo de nucleótidos (Maruyama et al., 2004, 2007; Matsunaga et al., 2007), separación celular (Matsunaga et al., 2007), aislamiento y purificación de ADN (Ota et al., 2006), agente de contraste de imagen en resonancia magnética (Lisy et al., 2007), diagnóstico temprano, transportador de drogas para una quimioterapia dirigida (Sun et al., 2008) y tratamientos hipertérmicos contra el cáncer, entendiendo por eso el daño térmico que induce la rotación de las nanopartículas localizadas (Alphandéry et al., 201 1).
Para estas aplicaciones, especialmente en clínica, uno de los requerimientos más importantes es que las MNPs usadas como nanotransportadores respondan lo más eficientemente posible, al campo magnético externo que se aplica para guiar a dicho nanotransportador al sitio diana (Prozorov et al., 2013). Esta respuesta depende del momento magnético por partícula, el cual, para nanopartículas magnéticas de magnética estequiométrica superparamagnéticas y cristalinas, en realidad depende del tamaño de la MNP. Para magnetita, el tamaño ideal de la nanopartícula para integrar un solo dominio magnético está entre 30 y 120 nm. La mayoría de las nanopartículas superparamagnéticas ya comercializadas son pequeñas (< 30 nm) y, por tanto su momento magnético se podría incrementar si se usaran MNPs más grandes. Por encima de 120 nm las nanopartículas magnéticas son multidominios y su momento magnético no es estable y depende de cómo se orienten estas nanopartículas. El tamaño es también importante cuando entran en juego los tratamientos de hipertermia. De hecho, el poder de calentamiento generado por unidad de masa de partícula ocasionado por la aplicación de un campo magnético alterno externo está relacionado directamente con la cantidad de hierro en la MNP, y éste debe ser lo más alto
posible para mantener el campo magnético aplicado dentro de los rangos aceptados en clínica y una dosis baja de MNPs. Más aún, las nanopartículas magnéticas que se van a usar en clínica deben ser también biocompatibles y no conllevar ningún riesgo asociado a las dosis que se necesitan aplicar. Otro requerimiento importante de las MNPs es que éstas expongan grupos funcionales en su superficie que permitan funcionalización /liberación de droga basados en estímulos externos tales como cambios en el pH del ambiente. Con este objetivo, la mayoría de las MNPs comerciales se recubren de compuestos tales como polietilenglicol y ácidos orgánicos. Este procedimiento no sólo introduce pasos adicionales en el proceso de producción de las MNPs (obviamente incrementando el tiempo de preparación y los costes totales), sino que también dicho recubrimiento puede apantallar el corazón magnético e interferir con la respuesta magnética de la nanopartícula frente a un campo magnético externo aplicado (respuesta que ya es subóptima por su pequeño tamaño). Por tanto, la mayoría de las MNPs comerciales tienen problemas que son necesarios solucionar para que estas MNPs puedan ser nanotransportadores eficientes.
La magnetita (óxido de Fe2+ y Fe3+, FesCL) es un mineral que se encuentra en numerosos ambientes, desde rocas ígneas y metamórficas, a toda clase de sedimentos, tanto terrestres como extraterrestres (Thomas-Keprta et al., 2000). También se ha encontrado en organismos superiores, como aquellos que presentan un comportamiento migratorio y los quitones. Inorgánicamente, la magnetita se puede formar como una fase primaria a partir de una solución que contiene Fe2+ y/o Fe3+ (método de coprecipitación y óxido-reducción) a la que se le sube el pH por adición de compuestos químicos (Arató et al., 2005; Perez-Gonzalez et al., 2010; Prozorov et al., 2007;Schwertmann and Cornell, 2000). Éste es el método más empleado para producir nanopartículas magnéticas. Es relativamente fácil de hacer, las nanopartículas se producen a temperatura ambiente y se pueden obtener grandes cantidades de material por lote. La principal desventaja es que estas nanopartículas son habitualmente pequeñas (<30 nm) y, por tanto, tienen un momento magnético por partícula pequeño, lo que incrementa las dosis a usar, lo que puede suponer un riesgo.
Las magnetitas también se pueden formar mediante la transformación de precursores, normalmente a altas temperaturas (Jimenez-Lopez et al., 2012). Una ventaja es que se pueden formar magnetitas cúbicas y bien cristalizadas. Sin embargo, una desventaja importante es que este protocolo es muy caro y es difícil controlar el tamaño de las nanopartículas, Las nanopartículas de magnetita obtenidas por este proceso son normalmente o muy pequeñas (< 30 nm) o multidominios (> 120 nm).
También la magnetita se puede formar biológicamente, bien mediante un proceso de biomineralización inducida (BIM) o de biomineralización controlada (BCM) (Bazylinski and Frankel, 2004). La formación de magnetita BIM es el resultado de la actividad metabólica de
los organismos y de las subsecuentes reacciones químicas que se producen mediadas por los productos metabólicos. Los minerales originados mediante BIM son indistinguibles de los formados inorgánicamente en esas condiciones (Perez-Gonzalez et al., 2000). Estas nanopartículas BIM no se usan habitualmente en aplicaciones nanotecnológicas.
Por el contrario, las nanopartículas de magnetita formadas por bacterias magnetotácticas son resultado de un proceso de biomineralización exquisitamente controlado a nivel genético (BCM), lo que hace que estas partículas sean la nanopartícula magnética ideal. Son ideales porque presentan unas características muy específicas como son estructuras cristalinas perfectas, alta pureza química, morfologías de no equilibrio y una distribución estrecha de tamaños (Bazylinski y Frankel, 2004), lo que hace que estos cristales sean un dominio único magnético y tengan unas propiedades magnéticas previsibles y estables (Amemiya et al., 2007; Prozorov et al., 2013). Además, otra ventaja es que son biocompatibles. Por lo tanto, existe una gran demanda de estas nanopartículas, especialmente en clínica.
Sin embargo, estas nanopartículas no se pueden comercializar porque el cultivo de las bacterias magnetotácticas no puede escalarse debido a que crecen muy lentamente y a que tienen unos requerimientos nutricionales muy exigentes. Para solucionar este problema se están explorando diferentes alternativas con el objetico de mejorar los rendimientos de producción de nanopartículas parecidas a los magnetosomas. Básicamente se siguen tres estrategias. La primera es intentar transformar microorganismos poco fastidiosos no magnetotácticos en bacterias magnetotácticas. En este sentido cabe destacar el trabajo de Kolinko et al. (2014). Estos autores demostraron, por primera vez, que la inserción de genes específicos de Magnetospirillum gryphiswaldense en Rhodospirilllum rubrum hizo que esta última produjera magnetosomas heterólogos. También demostraron que cuando se silenciaban en Rhodospirillum genes implicados en la producción de estos magnetosomas heterólogos, las alteraciones que se producían eran comparables a las que se producían en M. gryphiswaldense. Con este trabajo tan importante, estos autores abrieron la puerta al escalado de magnetosomas heterólogos en microorganismos más fáciles de cultivar. Sin embargo, aunque prometedor, la estabilidad del muíante y la viabilidad del escalado de estos magnetosomas heterólogos aún no se ha demostrado y los autores no exploraron estos aspectos.
La segunda alternativa es usar tecnología de ADN recombinante para silenciar o sobreexpresar genes de interés en cepas determinadas. En este sentido ya existe una patente US2010/0292495 A1 que pretende obtener nanopartículas recombinantes de magnetita controlando la expresión de mamG, mamF, mamD , and mamC genes en bacterias magnetotácticas.
Finalmente la tercera alternativa es la aproximación biomimética, es decir, aprender de la naturaleza, la cual puede inspirar nuevas estrategias para producir materiales funcionales
avanzados. Así, con el objetivo de producir químicamente cristales parecidos a los magnetosomas cuya producción pueda ser escalada, algunas proteínas del magnetosoma, tanto proteínas completas expresadas como recombinantes como péptidos sintéticos, se han probado en experimentos de producción de magnetita in vitro. Gracias a la mediación de estas proteínas se han obtenido nanopartículas de magnetita con diferentes propiedades magnéticas a las de precipitación química inorgánica. En este sentido, la mayor parte del trabajo realizado hasta el momento ha sido la obtención in vitro de nanopartículas de magnetita usando la proteína entera Mms6 de diversas especies de Magnetospirillum (Arakaki et al., 2010, 2014; Amemiya et al., .2007; Prozorov et al., 2007; Galloway et al., 2012; Bird et al., 2016). La mayoría de las nanopartículas magnéticas obtenidas por mediación de esta proteínas son superparamagnéticas de un tamaño de alrededor de 20 nm. Por tanto, no mejoran demasiado las nanopartículas comerciales que ya existen en el mercado. Mediante la técnica del biomolde (biotemplating) se consiguen nanopartículas más grandes con Mms6 (Galloway et al., 2012b; Bird et al., 2016), pero las propiedades magnéticas de estas nanopartículas no se han estudiado y su escalado tampoco se ha abordado, pero es muy probablemente difícil y bastante caro. La proteína MmsF de Magnetospirilum magneticum AMB-1 es otra potencial candidata a mediar la formación in vitro de nanopartículas biomiméticas de magnetita de tamaños entre 80-90 nm (Rawlings et al., 2014). Estas nanopartículas podrían ser de dominio único magnético, pero las propiedades magnéticas de estas nanopartículas no se han estudiado y no se han caracterizado lo suficiente como para determinar si estas nanopartículas podrían ser útiles en nanotecnología. De todas formas, todos estos experimentos se han hecho usando una sola proteína recombinante en la solución acuosa en la que se forma la magnetita.
También se han producido nanopartículas biomiméticas usando quimeras construidas con péptidos sintéticos de proteínas del magnetosoma unidas a proteínas de fusión (Nudelman et al., 2016 y 2018). Algunos de éstos péptidos se han patentado ya (WO 2017153996). Cuando se usan péptidos del loop de MamC se obtienen nanopartículas más grandes que aquellas que se producen en presencia de otros péptidos o en ausencia de péptidos. Sin embargo, la distribución de tamaños de las nanopartículas, y, por tanto, su heterogeneidad, era mayor que la de las nanopartículas producidas en presencia de la proteína entera MamC expresada como recombinante.
El equipo de investigación de la Prof. Jimenez-Lopez ha hecho importantes avances en la producción de nanopartículas biomiméticas. De hecho, es el único grupo que trabaja con MamC de Magnetococcus marinus MC-1 , que es la proteína más abundante del magnetosoma en la mayoría de ñas bacterias magnetotácticas. Además, este grupo es el único que ha expresado y purificado como proteínas recombinantes las tres proteínas que
controlan el tamaño y la morfología de los magnetosomas de MC-1 (MamC, Mms6 y Mms7). MamC de Magnetococcus marinus MC-1 ha resultado ser una candidata fuerte para producir nuevas nanopartículas biomiméticas (BMNPs). Éstas son mayores (~40 nm) que la mayoría de las MNPs comerciales (£ 30 nm) y presentan (1) mayor temperatura de bloqueo, mientras que son superparamagnéticas a temperatura ambiente, (2) un incremento más lento de la magnetización con la temperatura y (3) temperatura de transición de Verwey. Todas estas características son compatibles con nanopartículas con mayor estructura y con un mayor momento magnético por partícula comparadas con otras nanopartículas inorgánicas y/o con la mayoría de nanopartículas mediadas por Mms6. Estas características las hacen comportarse como si fueran no magnéticas a temperatura ambiente en ausencia de un campo magnético externo, lo cual previene aglomeración, mientras que responden eficientemente cuando se aplica un campo magnético externo, por lo tanto aumentando la eficacia de la guía magnética. Más aún, resultados previos del grupo mostraron que MamC confiere nuevas propiedades superficiales a las BMNPs, en partículas, un punto isoeléctrico (iep) a un pH de 4.4. Esto es importante porque las BMNPs están negativamente cargadas a pH fisiológico y se pueden funcionalizar con moléculas, como la doxorubicina (DOXO), que están positivamente cargadas a ese pH, mediante interacciones electrostáticas. Más aún, cuando el pH decrece (algo que ocurre de manera natural en el microambiente tumoral), esa interacción electrostática se debilita y la molécula se libera de la BMNP. Estas BMNPs son citocompatibles y biocompatibles. Las propiedades de las nanopartículas resultantes dependen del tipo de proteína introducida en la solución antes de la formación de dicha nanopartícula y/o la concentración relativa de las diferentes proteína(s) usad(s).
Sin embargo, el proceso de formación de nanopartículas biomiméticas de magnetita usando MamC deriva en la formación de siderita [Valverde-Tercedor et al., 2015 (magnetita >90% + siderita <10%)] o goethita [Lopez-Moreno et al., 2017 (magnetita 85% + goethita 15%)] como producto no deseado. Una vez que se producen y debido a su tamaño nanométrico, estas fases minerales (siderita y/o goetita) son muy difíciles, si no imposible, de eliminar de la mezcla. Por lo tanto, es necesario un método para producir únicamente magnetita y no otras fases. Además, es necesario desarrollar una composición que integre una fase mineral sustancialmente pura de nanopartículas de magnetita ( > 95%) donde las nanopartículas resultantes sean superparamagnéticas, de dominio único magnético y tengan propiedades superficiales que permitan funcionalización con moléculas diferentes sin la necesidad de un tratamiento posterior a los procesos de producción.
Las nanopartículas pueden verse como eficientes nanotransportadores de medicamentos especialmente cuando se funcionalizan con moléculas (anticuerpos, aptámeros ligandos de receptores celulares superficiales) capaces de reconocer determinados marcadores ligados a una enfermedad. Esto posibilita el alcanzar grandes cantidades locales de medicamento y
baja exposición sistémica, por lo tanto se reduce la toxicidad del tratamiento aumentando su eficacia (Brigger et al., 2001 ; De Jong and Borm, 2008; Singh and Lillard, 2009).
DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : CLUSTAL O (1.2.1) alineamiento múltiple de secuencias de Mms6 en diferentes bacterias magnetotácticas.
Figura 2: SDS-PAGE gel de MamC purificada (carril 3) y Mms6 (carril 5). Lisados de E. coli TOP10 antes de la Purificación de MamC (carril 2) y Mms6 (carril 4). Carril 1 , marcador de pesos moleculares (KDa).
Figura 3: Cristales de magnetita sintetizados en presencia de MamC (10 pg/mL) (BMNPs): (A) Imágenes TEM, (B) Distribución del tamaño del cristal. Detalle: Modelización de BMNPs a partir de datos de HRTEM usando SHAPE v7.3 Cristales de magnetita sintetizados en ausencia de proteína (magnetita inorgánica: MNPs): (C) Imágenes TEM, (D) Distribución del tamaño del cristal.
Figura 4: HRTEM imágenes de nanopartículas inorgánicas de magnetita (A y B) y nanopartículas magnéticas producidas en presencia de MamC (C, D y E). Las líneas de puntos representan las caras cristalinas y las líneas representan las direcciones cristalográficas. Figura 5: HRTEM imágenes de nanopartículas magnéticas producidas en presencia de Mms6 (A y B) y nanopartículas magnetitas producidas en presencia de MamC y Mms6 (C y D). Las líneas de puntos representan las caras cristalinas y las líneas representan las direcciones cristalográficas.
Figura 6: (A) Potencial z de las MNPs y BMNPs, (B) Análisis termogravi métricos de MNPs y BMNPs, (C) Ciclo de histéresis de BMNPs y MNPs a 300 K, (D) ZFC-W y FC-C de MNPs y BMNPs. Temperatura de bloqueo (TB) y temperatura de irreversibilidad (T¡rr) se indican en la figura para cada muestra.
Figura 7: Isoterma de adsorción de Doxorubicina (DOXO) (A: cinética; B: adsorción en función de la dosis. Se alcanza la saturación a 1 mmol DOXO por gramo de nanopartículas) y de anticuerpo monoclonal DO-24 (C) en nanopartículas de magnetita.
Figura 8: Perfil de desorción de DOXO.
Figura 9: Efecto de las nanopartículas biomiméticas no funcionalizadas y de las nanopartículas ternarias (funcionalizadas con Doxorubicina [DOXO] y con el anticuerpo monoclonal DO-24) sobre la viabilidad de las células tumorales humanas que expresan el receptor Met, Met/HGF-R+ GTL-16, y que no expresan el receptor met, Met/HGF-R- Huh7. Las nanopartículas no funcionalizadas reducen la viabilidad celular sólo hasta un 0-95%. Doxo [pg/ml] indica la concentración de DOXO en cada muestra y los datos expresan la viabilidad celular comparada con un control (no tratado) en el mismo intervalo de tiempo. A
concentraciones de DOXO de 10 pg/ml, las nanopartículas ternarias eran significativamente mucho más tóxicas para GTL-16 que para Huh7 comparadas con las nanopartículas sin funcionalizar. La viabilidad celular se midió mediante un test MTT después de tres días de tratamiento.
Figura 10: Toxicidad a tiempo real de las nanopartículas biomiméticas sin funcionalizar, nanopartículas binarias MNPs (DOXO-MNPs,— ) y nanopartículas ternarias (—— ) sobre células Met/HGF-R+ GTL-16 y Met/HGF-R- Huh7. La presencia de DO-24 mAbs incrementa significativamente la toxicidad de las nanopartículas ternarias comparadas con la de las binarias en células GTL-16, mientras que no se observaron diferencias en aquellas que no expresaban el receptor Met (Huh7). Estos ensayos se hicieron con XCELLIGENCE.
Figura 11 : Análisis histológico de diferentes órganos de ratones BALB/c hembras a las que se les habían inyectado de manera intravenosa nanopartículas biomiméticas (10 pg/ g ratón). Los ratones se sacrificaron a tiempos diferentes tras la inyección (1 h, 4h, 1d, 7d y 60d) y se procesaron los órganos mediante tinción de azul de Prusia y Hematoxilina-Eosina. Se detectaron cantidades pequeñas de hierro en los pulmones que disminuyó a los 60 días. En el bazo, que normalmente contiene hierro, se incrementaron los niveles de hierro a la hora de la inyección, que después disminuyó durante los días siguientes, para después recuperarse a niveles normales a los 60 d. En los otros órganos (cerebro, corazón, hígado y riñones) se detectó un ligero aumento de hierro durante el primer día que disminuyó posteriormente. Las nanopartículas biomiméticas son muy biocompatibles in vivo.
Figure 13. (a,b) Cytocompatibility analyzed by MTT assay of the BMNPs (0.1, 1, 10 and 10 pg/mL) on 4T1 cells in the absence/presence of a gradient magnetic field after 72 h. (c) Analysis of potential ROS production in the presence of different concentrations (0.1, 1, 10 and 10 pg/mL) of the BMNPs on 4T1 cells, in the absence/presence of a gradient magnetic field, by confocal microscopy. The release of ROS (green). Menadione (100 mM) was used as a positive control. Fixed and permeabilized cells were stained for cytoskeletal actin with TRITC- phalloidin (red) and nuclei with TO-PR03 (blue).
Figure 2. Cytocompatibility/cytotoxicity of BMNPs (100, 300, 500 pg) on 4T1 cells in the absence/presence of an alternating magnetic field after 20 min.
Figure 14. (a) Qualitative (Prussian blue) and (b) quantitative (potassium thiocyanide) analyses of the interaction of BMNPs (100 pg/mL) with 4T1 cells at different times (5 and 30 seconds, 1, 2.5 and 5 minutes) in absence (- GMF) and presence (+ GMF) of a gradient magnetic field. Untreated cells were used as negative control (CTRL-).
Figure 15. (a) TEM micrographs and (b) microanalysis by energy dispersive X-ray (EDX) spectroscopy of 4T1 cells incubated with the 100 pg/mL of BMNPs in the absence/presence of
a gradient magnetic field for 30 seconds, 1 and 24 h. The micrographs are representad ve of altérnate serial cuts of the cell pellets of each sample.
Figure 16. Cytotoxic activity analyzed by MTT assay of DOXO-BMNPs and soluble DOXO (as a positive control) on 4T1 cells in the absence/presence of a gradient magnetic field. The cytotoxicity was analyzed (a,b) as a function of the DOXO concentration (0.1, 1, 10, and 100 pg/mL), and (c,d) as a function of the time (5, 30, 60, 150 and 300 seconds). In all the experiments untreated cells (CTRL-), receiving médium without nanoparticles, were taken as reference valué (100%) of viable cells to which refer the valúes of treated cells. Data are the average of 3 experiments performed in triplicates.
Figure 17. Analysis of the interaction of DOXO-BMNPs with 4T1 cells at different times (0.5, 5 and 30 seconds, 1, 2.5 and 5 minutes) in the absence (- GMF) and presence (+ GMF) of a gradient magnetic field by confocal microscopy. Soluble DOXO was used as a positive control. Fixed and permeabilized cells were stained for cytoskeletal actin with FITC-phalloidin (green), nuclei with TO-PR03 (blue) and DOXO emits fluorescence by itself (red).
Figure 18. (a) Antitumor effect of DOXO-BMNPs or unfunctionalized BMNPs +/- gradient magnetic field application on the growth of 4T1 tumors in female BALB/c mice (n = X). Each treatment was administered intravenously 5 times, every 3-4 days, at a dose of 2 mg DOXO/kg mouse body weight or comparable amounts of BMNPs (300 pg BMNPs/g body weight). The total dose of DOXO in the treated groups was 10 mg/kg. (b) Tumor biodistribution profiles (Prussian blue staining) and (b) particles quantification in the tumor site performed for the different treatments at the end (day 15) of the experiment.
Figure 19. In vivo hyperthermia under an alternating magnetic field. Images taken with a thermic camera of (a) the untreated and (b) the treated with the alternating magnetic field groups. (b,d) Antitumor effect of DOXO-BMNPs or unfunctionalized BMNPs +/- alternating magnetic field (hyperthermia) application on the growth of 4T1 tumors in female BALB/c mice (n = 6). Each group received one intratumor injection of 3 mg BMNPs/mouse the first day of the treatment. For the groups injected with soluble DOXO or DOXO-BMNPs, the dose of DOXO (either soluble or adsorbed on the BMNPs) was 80 pg/mouse.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe un método para producir una composición que es substancialmente una fase mineral pura de magnetita biomimética superparamagnética (BMNPs, > 95% del sólido total) que engloba los siguientes pasos: (a) preparar una solución
de carbonato, (b) añadir FeCh a la solución de carbonato, (c) añadir MamC y, opcionalmente, Mms6 a la solución obtenida en el paso (b), (d) incubar la solución obtenida en el paso (c) durante, al menos, 30 minutos, (e) añadir Fe(CI04)2 a la solución obtenida en el paso (d), y (f) ajustar el pH de la solución obtenida en el paso (e) a 9 usando una base; este método se lleva a cabo a 25 °C y 1 atmósfera de presión y todas las soluciones de desoxigenan previamente. En este método antes mencionado, las concentraciones de los reservónos de proteínas deben estar en el siguiente rango: [MamC] 2-5 mg/ml_, [Mms6] y [Mms7] > 1 mg/ml_.
Además, la presente invención describe una composición que engloba: (i) una fase mineral substancialmente pura de magnetita superparamagnética, (ii) MamC, y (iii) opcionalmente, Mms6; donde, al menos los componentes (i) y (ii) forman nanopartículas magnéticas superparamagnéticas que contienen hasta 5 wt% de MamC, con un tamaño medio de partícula entre 30-120 nm.
Además, la presente invención proporciona una formulación para hacer magnetoliposomas que engloba: (i) la composición de la presente invención, (ii) un agente que forma liposomas, y (iii) opcionalmente magnetitas inorgánicas superparamagnéticas.
Por otro lado, la presente invención también proporciona una composición farmacéutica que engloba la composición de la presente invención o la formulación de los magnetoliposomas de la presente invención y un transportador farmacéuticamente aceptable y/o diluente. La composición de la presente invención, la formulación de los magnetoliposomas o la composición farmacéutica se pueden usar como medicamento. En particular, la composición de la presente invención, la formulación de los magnetoliposomas o la composición farmacéutica se pueden usar en tratamientos contra el cáncer.
Para terminar, la presente invención también aporta el uso de la composición de la presente invención, la formulación de los magnetoliposomas o la composición farmacéutica de la presente invención para la preparación de agentes de contraste para técnicas clínicas basadas en imagen. La presente invención también aporta el uso de la composición de la presente invención para el (i) aislamiento de ácidos nucleicos; (ii) como separador molecular; (iii) como biosensores.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Definiciones
Los términos“ tratamiento” y“terapia", usados en esta memoria se refieren a un conjunto de protocolos higiénicos, farmacológicos, quirúrgicos y/o físicos que se usan con la intención de curar y/o aliviar una enfermedad y/o los síntomas con el objetivo de mejorar el estado de salud. Los términos“ tratamiento” y“terapia" incluyen métodos preventivos y curativos, ya que ambos están destinados al mantenimiento o restablecimiento de la salud de un individuo o de un animal. Independientemente del origen de los síntomas, enfermedad o minusvalía, la
administración de un médicamente apropiado para aliviar o curar un problema de salud se debe interpretar como una forma de tratamiento terapia en el contexto de esta memoria.
El término “cantidad terapéutica efectiva” se refiere a la cantidad de compuesto en una composición o formulación que tiene un efecto terapéutico que es capaz de tratar la enfermedad.
Tal y como está usado aquí, " transportador farmacéuticamente aceptable " o “diluente farmacéuticamente aceptable” se refiere a cualquiera y todos los solventes, medios dispersos, recubrimientos, agentes antibacterianos y antifúngicos, agentes isotónicos y retardadores de absorción compatibles con administración farmacéutica. El uso de estos medios y agentes como sustancias farmacológicamente activas es bien conocido. Los transportadores, excipientes o estabilizantes aceptados no son tóxicos para el sujeto a la dosis y concentración empleadas y, sin que limite el ámbito de la presente invención, incluyen: agentes tamponadores; preservantes; co-solventes; antioxidantes, incluyendo ácido ascórbico y metionina; agentes quelantes como EDTA; complejos metálicos (por ejemplo, complejos Zn- proteína); polímeros biodegradables como poliésteres; counteriones formadores de sales como sodio, alcoholes-azúcares polihídricos, aminoácidos como alanina, glicina, glutamina, asparagina, histidina, arginina, lisina, ornitina, leucina, 2-phenylalanina, ácido glutámico y treonina; azúcares orgánicos o azúcares alcohólicos como lactitol, estaquiosa, mañosa, sorbosa, xilosa, ribosa, ribitol, mioinisitosa, mioinisitol, galactosa, galactitol, glicerol, ciclitoles (por ejemplo, inositol), polietilenglicol; agentes reductores que contienen azufre como urea, glutation, ácido tioctico, tioglicolato sódico, tioglicerol, [alfaj-monotioglicerol, y tiosulfato sódico; proteínas de bajo peso molecular como serum albúmina humana, serum albúmina bovina, gelatina, u otras immunoglobulinas; y polímeros hidrofílicos como polivinilpirrolidone. Otros transportadores farmacéuticamente aceptables, excipientes o estabilizantes como los descritos en Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) pueden también estar incluidos en la composición farmacéutica descrita aquí, contando con que no afecten negativamente a las características de la composición farmacéutica.
El término“agente terapéutico" se refiere a cualquier sustancia que puede usarse para tratar y/o prevenir una enfermedad cuando se usa en cantidades terapéuticamente efectivas. El agente terapéutico puede ser una molécula química pequeña (como, por ejemplo, doxorubicina, antihistamina, etc.), o biológica (por ejemplo, proteína terapéutica) y/o ácido nucleico (por ejemplo, siARN, gARN para CRISPR/Cas9, etc.).
El término“agente guimioterapéutico” se refiere a cualquier droga que puede usarse para tratar o prevenir cáncer. Ejemplos no-limitantes incluyen: Actinomicina. Todos-trans ácido retinoico, Azacitidina, Azathioprina, Bleomicina, Bortezomib, Carboplatino, Capecitabina, Cisplatino, Chlorambucil, Cyclophosphamida, Citarabina, Daunorubicina, Docetaxel,
Doxifluridina, Doxorubicina, Epirubicina, Epozilona, Etoposida, Fluorouracilo, Gemcitabina, Hidroxyurea, Idarubicina, Imatinib, Irinotecan, Mecloretamina, Mercaptopurina, Methotrexato, Mitoxantrona, Oxaliplatino, Paclitaxel, Pemetrexed, Teniposida, Tioguanina, Topotecan, Valrubicina, Vemurafenib, Vinblastina, Vincristina, Vindesina y Vinorelbina.
El término“cáncer1’ se refiere a un grupo de enfermedades que pueden definirse como un nuevo crecimiento anormal, benigno o maligno, de tejido que no posee función fisiológica y que surge una proliferación celular incontrolada y habitualmente rápida y que tiene el potencial de invadir o extenderse a otras partes del cuerpo. La composición y la formulación del magnetoliposoma de la presente invención puede reconocer de manera específica células cancerígenas mediante la funcionalización con una sustancia señalizadora y puede llevar agentes antiproliferantes a tumores sólidos o a canceres hematológicos. Algunos ejemplos no limitantes incluyen: leucemia granulocítica aguda, leucemia linfocítica aguda, leucemia mielógena aguda, adenocarcinoma, cáncer suprarrenal, astrocitoma anaplásico, angiosarcoma, cáncer de apéndice, astrocitoma, carcinoma de células básales, linfoma de células B, cáncer de los conductos biliares, cáncer de vejiga, cáncer de hueso, cáncer de médula ósea, cáncer intestinal, cáncer cerebral, glioma del tronco encefálico, tumor cerebral, cáncer de mama, tumores carcinoides, cáncer de cuello de útero, colangiocarcinoma, condrosarcoma, leucemia linfocítica crónica, leucemia mielógena crónica, cáncer de colon , cáncer colorrectal, craneofaringioma, linfoma cutáneo, melanoma cutáneo, astrocitoma difuso, carcinoma ductal in situ, cáncer endometrial, ependimoma, sarcoma epitelioide, cáncer de esófago, sarcoma de Ewing, cáncer de los conductos biliares extrahepáticos, cáncer de ojo, cáncer de las trompas de Falopio, fibrosarcoma, cáncer de vesícula biliar, cáncer gástrico, cáncer gastrointestinal, cáncer carcinoide gastrointestinal, tumores del estroma gastrointestinal, tumor de células germinales, glioblastoma multiforme, glioma, leucemia de células pilosas, cáncer de cabeza y cuello, hemangioendotelioma, linfoma de Hodgkin, cáncer de hipofaringe, carcinoma ductal infiltrante, carcinoma lobulillar infiltrante, cáncer de mama inflamatorio, cáncer intestinal, cáncer de los conductos biliares intrahepáticos, cáncer de mama invasivo/ infiltrante, cáncer de células de islotes, cáncer de mandíbula, sarcoma de Kaposi, cáncer de riñón, cáncer de laringe, leiomiosarcoma, metástasis leptomeníngeas, leucemia, cáncer de labio, liposarcoma, cáncer de hígado, carcinoma lobular in situ, astrocitoma de bajo grado, cáncer de pulmón, cáncer de ganglio linfático, linfoma, cáncer de mama masculino, carcinoma medular, meduloblastoma, melanoma, meningioma, carcinoma de células de Merkel, condrosarcoma mesenquimal, mesenquimatoso, mesotelioma, cáncer de mama metastásico, melanoma metastásico, cáncer de cuello escamoso metastásico, gliomas mixtos, cáncer de boca, carcinoma mucinoso, melanoma de la mucosa, mieloma múltiple, micosis fungoide, síndrome mielodisplásico, cáncer de la cavidad nasal, cáncer de nasofaringe, cáncer de cuello, neuroblastoma, tumores neuroendocrinos, linfoma no Hodgkin,
cáncer de pulmón no microcítico, cáncer de células de avena, cáncer ocular, melanoma ocular, oligodendroglioma, cáncer oral, cáncer de cavidad oral, cáncer de orofaringe, sarcoma osteogénico, osteosarcoma, cáncer ovárico, cáncer epitelial de ovario, tumor de células germinales ováricas, carcinoma peritoneal primario ovárico, tumor estromal de cordón sexual ovárico, cáncer pancreático, carcinoma papilar, cáncer de seno paranasal, cáncer de paratiroides, cáncer pélvico, cáncer de pene, cáncer de nervio periférico, cáncer de peritoneo, cáncer de faringe, feocromocitoma, astrocitoma pilocítico, tumor de la región pineal, cáncer de la glándula pituitaria, linfoma primario del sistema nervioso central, cáncer de próstata, cáncer rectal, carcinoma de células renales, cáncer de pelvis renal, rabdomiosarcoma, cáncer de la glándula salival, sarcoma, sarcoma óseo, sarcoma de tejidos blandos, sarcoma uterino, cáncer de seno, cáncer de piel, cáncer de pulmón microcítico, cáncer de intestino delgado, cáncer de columna, cáncer de columna vertebral, cáncer de la médula espinal, tumor espinal, cáncer de células escamosas, cáncer de estómago, sarcoma sinovial, linfoma de células T, cáncer testicular, cáncer de garganta, timoma/ carcinoma tímico, cáncer de tiroides, cáncer de lengua, cáncer de amígdalas, cáncer de células transicionales, cáncer de mama triple negativo, cáncer tubario, carcinoma tubular, cáncer uretral, adenocarcinoma uterino, cáncer uterino, cáncer vaginal y cáncer de vulva.
El término“fase mineral sustancialmente pura" se refiere a una fase mineral que consiste mayoritariamente en único tipo de mineral (> 95%). En este caso, una fase mineral sustancialmente pura de magnetita significa que los cristales de magnetita no contienen siderita. La fase mineral sustancialmente pura de magnetita puede contener pequeñas cantidades de goetita (< 5%) si el pH se eleva por encima de 9 durante el proceso de producción.
El término“superparamagnetismo” se refiere a una forma de magnetismo que aparece en pequeñas nanopartículas ferromagnéticas o ferrimagnéticas. Por debajo de un determinado tamaño las nanopartículas magnéticas no pueden mantener las paredes estáticas de los distintos dominios magnéticos comportándose como un spin gigante de momento magnético. Una partícula superparamagnética puede estar libre (equilibrada térmicamente) o bloqueada (no equilibrada). La temperatura de bloqueo (TB) se determinó como aquella a la que ocurre el máximo de magnetización en las curvas ZFC, mientras que la temperatura de irreversibilidad (T¡rr) es aquella justo por debajo del bloqueo de las nanopartículas superparamagnéticas que ya no están térmicamente equilibradas.
El término “sustancia señalizadora” se refiere a cualquier molécula que puede unirse de manera específica a otra sustancia dada. Ejemplos no limitantes incluyen anticuerpos, afficuerpos, aptámeros, etc. En situación preferencial la sustancia señalizadora es un anticuerpo monoclonal.
El término “nanopartículas inorgánicas de magnetita" o MNPs se refiere a cualquier nanopartícula de magnetita que se obtiene o puede ser obtenida mediante métodos de síntesis química en ausencia de cualquier agente biológico y/o producto.
El término“MamC” se refiere a una proteína completa que se deriva del gen mamC (NCBI Database, número de accession AE3K44766.1 , protein accession Mmc1_2265). El término “MamC” también incluye fragmentos funcionales y variantes de la proteína derivados del gen mamC que pudieran ser expresados en sistemas biológicos o sintetizados. Fragmentos funcionales de MamC se describen previamente en (Nudelman et al., 2016; Nudelman et al., 2018; patente WO 2017153996). En particular, los fragmentos funcionales que contienen la región del MamM-region de interacción (MamC-MIL) (Nudelman et al., 2016). Los fragmentos funcionales pueden estar ligados a otra proteína como MBP.
El término“Mms6” se refiere a una proteína completa que se deriva del gen mms6 (NCBI Database, número de accession ABK44766.1 , protein accession Mmc1_2275). El término “Mms6” también incluye fragmentos funcionales y variantes de la proteína derivados del gen mms6 que pudieran ser expresados en sistemas biológicos o sintetizados.
El término“MmsT se refiere a una proteína completa que se deriva del gen mms7 (UniProtKB número de referencia Q2W8R9). El término“MmsT’ también incluye fragmentos funcionales y variantes de la proteína derivados del gen mms7 que pudieran ser expresados en sistemas biológicos o sintetizados.
El término “variante funcionar se refiere a cualquier variante o muíante que tiene un determinado porcentaje (grado) de homología con la proteína y que mantiene la función de la proteína. En situación preferencia, una variante funcional presenta un grado de homología con la proteína superior al 75 %. Preferiblemente grados de homología del 80, 85, 90, 95, 98 o 99 % con la proteína original. Más preferentemente un grado de homología del 95 % con la proteína original.
El grado de identidad entre secuencias de proteínas se puede determinar por métodos convencionales. Por ejemplo, usando algoritmos estándar para el alineamiento de secuencias, conocidos en el área como BLAST (Altschul et al. 1990 J Mol Biol. 215 (3): 403-10) o CLUSTAL O (1.2.1). En situación preferencial el grado de homología se determina usando BLAST o CLUSTAL O.
Método de la invención
En primer lugar, la presente invención proporciona un método para producir una composición de una fase mineral sustancialmente pura de magnetita superparamagnética que comprende los siguientes pasos: (a) preparar una solución de carbonato, (b) añadir FeCh a la solución de carbonato, (c) agregar MamC y, opcionalmente, Mms6 a la solución obtenida en el paso (b), (d) incubar la solución obtenida en el paso (c) durante al menos 30 minutos, (e) añadir
Fe(CI04)2 a la solución obtenida en el paso (d), y (f) ajustar el pH de la solución obtenida en el paso (e) a pH 9 usando una base; el método se realiza a 25 ° C y 1 atmósfera de presión. Todas las soluciones utilizadas son previamente desoxigenadas. Para un mejor resultado, el método de la presente invención se realiza en condiciones anóxicas, es decir, menos de 40 ppb de oxígeno en la solución.
La presente invención proporciona una secuencia de etapas, que son esenciales para producir una composición que esté libre de cualquier nivel detectable de siderita. La secuencia de pasos proporcionados permite que la proteína MamC, que es altamente hidrófoba, permanezca plegada y funcional mientras se mantiene la solución sobresaturada para la magnetita de tal manera que la precipitación de la magnetita se favorece cinéticamente con respecto a la de la siderita. Por lo tanto, obtener la secuencia correcta requiere un cuidadoso equilibrio de estos tres aspectos.
En las mejores condiciones, también se agrega Mms7 a la solución obtenida en el paso (b) en el paso (c) del método.
En las mejores condiciones, la concentración de la proteína(s) añadida (s) en el paso (c) debe ser al menos 2 mg / mi. En las mejores condiciones, la concentración de la solución de MamC que se añade a la solución en el paso (c) es de 2-5 mg/mL. Concentraciones mayores pueden inducir agregación y, por tanto, prevenir o reducir la eficacia de la mediación de MamC en la biomineralización de magnetita. Menores concentraciones resultarán en cristales de magnetita de tamaño muy pequeño (< 5 nm) debido a la prevalencia del efecto del tampón TRIS en el proceso de biomineralización. Esta realización no se refiere a la concentración final de la solución de proteína (s). Esta condición se refiere a la concentración de la solución madre que se añade a la solución obtenida después del paso (b).
En las mejores condiciones, la solución se incuba durante al menos 1 hora en el paso (d).
En las mejores condiciones, la solución de carbonato comprende NaHCC>3 y/o Na2C03 y, opcionalmente, la base es NaOH.
En las mejores condiciones, la concentración final de la solución obtenida en el paso (f) es 3,5 mM de NaHCC>3, 3,5 mM de Na2CC>3, 2,78 mM de Fe(CIC>4)2, 5,56 mM de FeCh y una cantidad variable de MamC y, opcionalmente, Mms6. Preferiblemente, la concentración final de MamC es de 10 pg/ml y, si se incluye Mms6, la concentración final de MamC es de al menos 5 pg/ml y la concentración final de Mms6 es de 10 pg/ml.
Composición de la invención
En segundo lugar, la presente invención proporciona una composición obtenida u obtenible a través de los métodos de la presente invención. En tercer lugar, la presente invención proporciona una composición que comprende: (i) una fase mineral sustancialmente pura de magnetita superparamagnética, (ii) la proteína MamC y (iii) opcionalmente, la proteína Mms6;
en donde, al menos los componentes (i) y (ii) forman nanopartículas magnéticas superparamagnéticas que contienen hasta 5 wt% de MamC, con un tamaño medio de partícula entre 30-120 nm
Preferentemente las BNMP MamC-mediadas se componen de -95 wt% de magnetita y -5 wt% de MamC), punto isoeléctrico de ~4.4, área superficial de ~ 90 m2/g, temperatura de bloqueo de -145 K y temperatura de irreversibilidad de -292 K.
En las mejores condiciones, todos los siguientes aspectos de la presente invención son aplicables al segundo y al tercer aspecto de la presente invención. Es evidente que el segundo y el tercer aspecto de la presente invención pueden referirse a la misma composición.
En las mejores condiciones, no hay niveles detectables de siderita en la composición. De forma aún más preferente, los niveles de goetita son < 5% del sólido total.
En las mejores condiciones, el tamaño medio de partícula de las nanopartículas magnéticas es de 30-50 nm. Preferiblemente, el tamaño medio de partícula de las nanopartículas magnéticas es de 30-40 nm. En las mejores condiciones, el tamaño medio de partícula se determina mediante Microscopía Electrónica de Transmisión. En los ejemplos de la presente invención, los tamaños se obtuvieron midiendo el tamaño de más de 1000 cristales en cada imagen de Microscopía Electrónica de Transmisión.
En las mejores condiciones, el wt% de MamC en las BMNPs es 2-20 wt%. Preferiblemente, el wt% de MamC en las BMNPs es 2-10 wt%. En las mejores condiciones, el wt% de MamC en las BMNPs se determinan mediante análisis termogravimétrica. En los ejemplos de la presente invención, el wt% de MamC en las BMNPs es 5 wt%.
La composición puede comprender además otras proteínas implicadas en la formación de magnetita en los magnetosomas de bacterias y/u otras proteínas con dominios ácidos capaces de unir hierro y/o aquellos con una estructura tal que pudieran funcionar como una plantilla para nucleación y crecimiento de magnetita. Los ejemplos no limitantes de tales proteínas incluyen Mms6, Mms7, MmsF / MamF y sus proteínas homologas en diferentes bacterias magnetotácticas. En las mejores condiciones, la composición comprende además Mms7.
En las mejores condiciones, el punto isoeléctrico de las BMNPs es 3-7. Preferentemente, el punto isoeléctrico de las BMNPs es 3-5. En las mejores condiciones, el punto isoeléctrico de las BMNPs se calcula a partir de medidas de movilidad electroforética. En los ejemplos de la presente invención, el punto isoeléctrico de las BMNPs es 4.4.
En las mejores condiciones, el área superficial específica de las BMNPs es 30-120 m2/g. Preferentemente, el área superficial específica de las BMNPs es 50-100 m2/g. En las mejores condiciones, el área superficial específica de las BMNPs se determina a partir de BET. En los ejemplos de la presente invención, el área superficial específica de las BMNPs es 97 m2/g.
Las nanopartículas formadas usando la proteína MamC exhiben una alta magnetización por partícula a temperatura ambiente que es igual o mayor que aquella de las nanopartículas obtenidas mediante métodos inorgánicos o mediante el uso único de la proteína Mms6. Por lo tanto, en las mejores condiciones, la magnetización de las BMNPs es de 40-70 emu/g a 300 K cuando se aplica un campo magnético externo de 500 Oe. Preferentemente, la magnetización de las BMNPs es de 55-65 emu/g a 300 K cuando se aplica un campo magnético externo de 500 Oe. En condiciones óptimas, la magnetización de las BMNPs es de 55 emu/g (61 emu/g cuando se tiene en cuenta la cantidad de MamC en el cristal) a 300 K cuando se aplica un campo magnético externo de 500 Oe.
En las mejores condiciones, la temperatura de bloqueo de las BMNPs es de al menos 100 K cuando se aplica un campo magnético externo de 500 Oe. Preferiblemente, la temperatura de bloqueo es de al menos 120 K cuando se aplica un campo magnético externo de 500 Oe. En condiciones óptimas, la temperatura de bloqueo es de al menos 130 K cuando se aplica un campo magnético externo de 500 Oe.
En las mejores condiciones, la temperatura de irreversibilidad de las BMNPs es de al menos 200 K cuando se aplica un campo magnético externo de 500 Oe. Preferiblemente, la temperatura de irreversibilidad es de al menos 250 K cuando se aplica un campo magnético externo de 500 Oe. En condiciones óptimas, la temperatura de irreversibilidad es de al menos 280 K cuando se aplica un campo magnético externo de 500 Oe.
Una ventaja de las nanopartículas biomiméticas en comparación con las inorgánicas es el hecho de que las proteínas cambian las propiedades de la superficie debido a que MamC se adsorbe y/o incorpora a la superficie del cristal hasta en un 5 wt% (Figura 6B). En particular, por ejemplo, las MamC-magnetitas no están cargadas a un pH de aproximadamente 4 (Figura 6A). Por lo tanto, están fuertemente cargadas a un pH fisiológico (pH = 7,4) y pueden adsorber altas cantidades de drogas polares. Dicha adsorción es estable a pH fisiológico y se produce una liberación insignificante de fármaco a este pH. Sin embargo, cuando la nanopartícula funcionalizada está expuesta a valores de pH ácido (como los que existen en el microambiente tumoral o dentro del lisosoma celular), la partícula se descarga y libera el fármaco. Por el contrario, las nanopartículas de magnetita inorgánica (MNPs) no presentan carga a un pH de aproximadamente 7,4 y, por lo tanto, son neutras o ligeramente cargadas a pH fisiológico. Por lo tanto, se espera baja adsorción y alta liberación de fármaco a valores de pH fisiológicos. Para evitar esto, la nanopartícula debe estar cubierta por un recubrimiento molecular que permita una funcionalización estable. Este paso no es necesario en las nanopartículas biomiméticas que son el objeto de esta patente.
En las mejores condiciones, las nanopartículas magnéticas se funcionalizan con un agente terapéutico. El agente terapéutico puede ser cualquier agente que tenga un efecto terapéutico cuando se administra en una cantidad terapéuticamente eficaz. Preferiblemente, el agente
terapéutico es un agente quimioterapéutico o una molécula de ácido nucleico. Las moléculas de ácido nucleico incluyen tanto ARN como ADN. El ARN puede ser un siARN, miARN o gARN (gARN para su uso en los enfoques de edición de genes CRISPR / Cas9).
En las mejores condiciones, las nanopartículas magnéticas se funcionalizaban con un agente quimioterapéutico. En las mejores condiciones, el agente quimioterapéutico es polar. Preferiblemente, el agente quimioterapéutico es doxorrubicina.
En las mejores condiciones, las nanopartículas magnéticas se funcionalizan con una sustancia señalizadora. Preferiblemente, la sustancia señalizadora es un ligando para un receptor del factor de crecimiento (tal como un factor de crecimiento), un anticuerpo o un aptámero. Más preferiblemente, la sustancia señalizadora es un anticuerpo monoclonal.
En las mejores condiciones, las nanopartículas magnéticas se funcionalizan con un agente quimioterapéutico y una sustancia señalizadora. Preferiblemente, el agente quimioterapéutico es doxorrubicina y la sustancia señalizadora es un anticuerpo monoclonal.
En las mejores condiciones, la composición consiste en: (i) una fase mineral sustancialmente pura de magnetita superparamagnética, (ii) MamC y (iii) opcionalmente, Mms6 y/o Mms7; en donde, al menos los componentes (i) y (ii) forman nanopartículas magnéticas superparamagnéticas que contienen hasta 5 wt% de MamC (MamC-mediadas BMNPs se componen entonces de -95 wt% de magnetita y -5 wt% de MamC), con un tamaño medio de partícula entre 30-120 nm, punto isoeléctrico de ~4.4, área superficial de ~ 90 m2/g, temperatura de bloqueo de -145 K y temperatura de irreversibilidad de -292 K.
En las mejores condiciones, la composición no deriva, no se obtiene ni se puede obtener a partir de un magnetosoma. Más preferiblemente, la composición no se obtiene de un magnetosoma. Para aclarar, en esta condición, aunque las proteínas usadas en la composición pueden derivarse de un magnetosoma, las BMNPs se obtienen usando el enfoque de precipitación in vitro descrito en la presente invención. En otras palabras, las nanopartículas magnéticas superparamagnéticas son nanopartículas magnéticas biomiméticas superparamagnéticas (BMNPs).
En las mejores condiciones, las nanopartículas magnéticas superparamagnéticas son nanopartículas magnéticas biomiméticas superparamagnéticas.
El término "magnetosoma" se refiere tanto a magnetosomas naturales presentes en bacterias magnetotácticas como a magnetosomas recombinantes o estructuras similares a magnetosomas que son producidas por un huésped que normalmente no contiene magnetosomas o estructuras similares a magnetosomas.
Formulación de magnetoliposomas
En un cuarto aspecto, la presente invención proporciona una formulación de magnetoliposomas la cual comprende: (i) la composición de la presente invención, (ii) un agente formador de liposomas; y (iii) opcionalmente, nanopartículas inorgánicas de magnetita superparamagnéticas (MNPs).
El agente formador implicado en la formulación de magnetoliposomas es, preferiblemente, un fosfolípido hidrogenado, parcialmente hidrogenado o no hidrogenado. El fosfolípido usado puede ser o comprender, por ejemplo: fosfatidilcolina, fosfatidilserina y fosfatidil-inositol. El fosfolípido más típico es la fosfatidilcolina, la cual puede ser sintetizada o aislada de una gran variedad de fuentes naturales. Además de la fosfatidilcolina, existen otros fosfolípidos que también pueden ser utilizados en la formulación, ya sea como agentes formadores o como componentes adicionales. Estos fosfolípidos son: diacetil fosfato (DCP), dimiritoilfosfatidilcolina (DMCP), dimiristoil fosfatidilglicerol (DMPG), dioleoil fosfatidilcolina (DOPc), dipalmitoil fosfatidilcolina (DPPC), dipalmitoil fosfatidilglicerol (DPPG), fosfatidilcolina (PC) y/o fosfatidilserina (PS), por lo que el lípido implicado en la formulación puede estar hidrogenado, parcialmente hidrogenado o no hidrogenado. Los magnetoliposomas se pueden formar usando los lípidos auxiliares convencionales mediante técnicas conocidas por la persona experta en el arte, tales como las descritas en la solicitud de patente ES2231037-A1. Aunque los liposomas se han utilizado para el recubrimiento de nanopartículas de magnetita inorgánicas, no se ha realizado previamente la encapsulación de nanopartículas biomiméticas en liposomas. Debido a que las propiedades superficiales de ambas partículas son muy diferentes, el proceso de estabilización de sendos tipos de partículas previo al encapsulamiento en el liposoma es muy diferente. Encapsular las nanopartículas sin una estabilización previa podría resultar en la aglomeración de dichas partículas. Las nanopartículas aglomeradas no serían útiles para su uso en aplicaciones nanotecnológicas. Por lo tanto, el proceso para la obtención de magnetoliposomas que comprende el uso de nanopartículas de magnetita biomiméticas no es obvio o sencillo.
Nanopartículas superparamagnéticas como las nanopartículas de magnetita inorgánicas (MNPs) pueden ser especialmente útiles para su uso como agentes de contraste en la obtención de imágenes de resonancia magnética, así como para su uso en tratamientos de hipertermia consecuentes del incremento de temperatura provocado por la rotación de las nanopartículas magnéticas, la cual es inducida por un campo magnético alterno o por radiación. Por lo tanto, un magnetoliposoma que presente MNPs de mayor y menor tamaño puede aprovechar las ventajas de ambos tipos de nanopartículas. En este aspecto, en una realización preferida de la invención, la formulación del magnetoliposoma presenta además MNPs.
En una realización preferida de la invención, los magnetoliposomas de la formulación del magnetoliposoma son funcionalizados con agentes terapéuticos y/o con una sustancia de
direccionamiento. Los magnetoliposomas se pueden funcionalizar a través de cualquier método común conocido en la técnica. Por ejemplo, los magnetoliposomas se pueden funcionalizar mediante los métodos descritos por Torchilin et al., 2001. El agente terapéutico puede ser cualquier agente que presente un efecto terapéutico cuando se administre en una cantidad efectiva terapéuticamente. En una realización preferida de la invención, el agente terapéutico es un agente quimioterápico y la sustancia de direccionamiento es un anticuerpo. Más preferiblemente, el anticuerpo es un anticuerpo monoclonal.
Composición farmacéutica
En un quinto aspecto, la presente invención proporciona una composición farmacéutica la cual comprende la composición de la presente invención o la formulación de magnetoliposoma de la presente invención y un vehículo y/o disolvente farmacéuticamente aceptable.
En una realización preferida de la invención, la composición farmacéutica puede comprender una o más soluciones, las cuales son adecuadas para la administración intravenosa, intra- arterial, intramuscular y/o subcutánea. En otra realización, la composición farmacéutica puede comprender una o más soluciones, las cuales son adecuadas para rutas de administración sublingual, bucal y/o mediante inhalación. En una realización alternativa, la composición farmacéutica puede comprender uno o más aerosoles, los cuales son adecuados para la administración mediante inhalación.
En una realización preferida de la invención, la composición farmacéutica puede comprender una o más cremas y/o ungüentos, los cuales son adecuados para la administración tópica. En una realización preferida de la invención, la composición farmacéutica puede comprender uno o más supositorios los cuales son adecuados para la administración rectal o vaginal. En esta realización, la composición se puede usar con el objetivo de lograr un efecto loco-regional.
Tratamiento de enfermedades
En un sexto aspecto, la presente invención proporciona la composición de la presente invención, la formulación de magnetoliposomas de la presente invención o la composición farmacéutica de la presente invención para su uso como medicamento.
En un séptimo aspecto, la presente invención proporciona la composición de la presente invención, la formulación de magnetoliposomas de la presente invención o la composición farmacéutica de la presente invención para su uso en el tratamiento de cáncer.
En una realización preferida, el cáncer se selecciona del grupo que consiste en leucemia granulocítica aguda, leucemia linfocítica aguda, leucemia mielógena aguda, adenocarcinoma, cáncer suprarrenal, astrocitoma anaplásico, angiosarcoma, cáncer de apéndice, astrocitoma, carcinoma de células básales, linfoma de células B, cáncer de los conductos biliares, cáncer de vejiga, cáncer de hueso, cáncer de médula ósea, cáncer intestinal, cáncer cerebral, glioma
del tronco encefálico, tumor cerebral, cáncer de mama, tumores carcinoides, cáncer de cuello de útero, colangiocarcinoma, condrosarcoma, leucemia linfocítica crónica, leucemia mielógena crónica, cáncer de colon, cáncer colorrectal, craneofaringioma, linfoma cutáneo, melanoma cutáneo, astrocitoma difuso, carcinoma ductal in situ, cáncer endometrial, ependimoma, sarcoma epitelioide, cáncer de esófago, sarcoma de Ewing, cáncer de los conductos biliares extrahepáticos, cáncer de ojo, cáncer de las trompas de Falopio, fibrosarcoma, cáncer de vesícula biliar, cáncer gástrico, cáncer gastrointestinal, cáncer carcinoide gastrointestinal, tumores del estroma gastrointestinal, tumor de células germinales, glioblastoma multiforme, glioma, leucemia de células pilosas, cáncer de cabeza y cuello, hemangioendotelioma, linfoma de Hodgkin, cáncer de hipofaringe, carcinoma ductal infiltrante, carcinoma lobulillar infiltrante, cáncer de mama inflamatorio, cáncer intestinal, cáncer de los conductos biliares intrahepáticos, cáncer de mama invasivo/ infiltrante, cáncer de células de islotes, cáncer de mandíbula, sarcoma de Kaposi, cáncer de riñón, cáncer de laringe, leiomiosarcoma, metástasis leptomeníngeas, leucemia, cáncer de labio, liposarcoma, cáncer de hígado, carcinoma lobular in situ, astrocitoma de bajo grado, cáncer de pulmón, cáncer de ganglio linfático, linfoma, cáncer de mama masculino, carcinoma medular, meduloblastoma, melanoma, meningioma, carcinoma de células de Merkel, condrosarcoma mesenquimal, mesenquimatoso, mesotelioma, cáncer de mama metastásico, melanoma metastásico, cáncer de cuello escamoso metastásico, gliomas mixtos, cáncer de boca, carcinoma mucinoso, melanoma de la mucosa, mieloma múltiple, micosis fungoide, síndrome mielodisplásico, cáncer de la cavidad nasal, cáncer de nasofaringe, cáncer de cuello, neuroblastoma, tumores neuroendocrinos, linfoma no Hodgkin, cáncer de pulmón no microcítico, cáncer de células de avena, cáncer ocular, melanoma ocular, oligodendroglioma, cáncer oral, cáncer de cavidad oral, cáncer de orofaringe, sarcoma osteogénico, osteosarcoma, cáncer ovárico, cáncer epitelial de ovario, tumor de células germinales ováricas, carcinoma peritoneal primario ovárico, tumor estromal de cordón sexual ovárico, cáncer pancreático, carcinoma papilar, cáncer de seno paranasal, cáncer de paratiroides, cáncer pélvico, cáncer de pene, cáncer de nervio periférico, cáncer de peritoneo, cáncer de faringe, feocromocitoma, astrocitoma pilocítico, tumor de la región pineal, cáncer de la glándula pituitaria, linfoma primario del sistema nervioso central, cáncer de próstata, cáncer rectal, carcinoma de células renales, cáncer de pelvis renal, rabdomiosarcoma, cáncer de la glándula salival, sarcoma, sarcoma óseo, sarcoma de tejidos blandos, sarcoma uterino, cáncer de seno, cáncer de piel, cáncer de pulmón microcítico, cáncer de intestino delgado, cáncer de columna, cáncer de columna vertebral, cáncer de la médula espinal, tumor espinal, cáncer de células escamosas, cáncer de estómago, sarcoma sinovial, linfoma de células T, cáncer testicular, cáncer de garganta, timoma/ carcinma tímico, cáncer de tiroides, cáncer de lengua, cáncer de amígdalas, cáncer de células transicionales, cáncer de mama triple
negativo, cáncer tubario, carcinoma tubular, cáncer uretral, adenocarcinoma uterino, cáncer uterino, cáncer vaginal, leucemia linfoblástica aguda, leucemia mieloblástica aguda, thyomas, cáncer de vejiga de células transicionales, tumor de Wilms, macroglobulinemia de Waldenstróm y cáncer de vulva. Preferiblemente, el cáncer se selecciona del grupo que consiste en leucemia linfoblástica aguda, leucemia mieloblástica aguda, sarcoma óseo, cáncer de mama, cáncer de endometrio, cáncer gástrico, cáncer de cabeza y cuello, linfoma de Hodgkin, linfoma no Hodgkin, cáncer de hígado, cáncer de riñón, mieloma múltiple, neuroblastoma, cáncer ovárico, cáncer de pulmón de microcítico, sarcoma de tejidos blandos, thyomas, cáncer de tiroides, cáncer de vejiga de células transicionales, sarcoma uterino, tumor de Wilms y macroglobulinemia de Waldenstróm.
En una realización preferida, la presente invención proporciona una composición que comprende: (i) una fase mineral sustancialmente pura de magnetita biomimética superparamagnética, (ii) MamC, y (iii) opcionalmente, Mms6; donde, al menos los componentes (i) y (ii) forman nanopartículas magnéticas superparamagnéticas que contienen hasta 5 wt% de MamC (las nanopartículas biomiméticas MamC-mediadas se componen entonces de ~95 wt% de magnetita y -5 wt% de MamC), con un tamaño medio de partícula entre 30-120 nm, punto isoeléctrico de ~4.4, área superficial de ~ 90 m2/g, temperatura de bloqueo de -145 K y temperatura de irreversibilidad de -292 K y donde las nanopartículas magnéticas se funcionalizan con un agente quimioterapéutico; y un transportador farmacéuticamente aceptable y/o un diluente.
Preferiblemente, el agente quimioterapéutico es doxorrubicina y el cáncer se selecciona del grupo que consiste en leucemia linfoblástica aguda, leucemia mieloblástica aguda, sarcoma óseo, cáncer de mama, cáncer endometrial, cáncer gástrico, cáncer de cabeza y cuello, linfoma de Hodgkin, linfoma no Hodgkin, cáncer de hígado, cáncer de riñón, mieloma múltiple, neuroblastoma, cáncer ovárico, cáncer de pulmón microcítico, sarcoma de tejidos blandos, thyomas, cáncer de tiroides, cáncer de vejiga de células transicionales, sarcoma uterino, tumor de Wlms y macroglobulinemia de Waldenstróm.
En una realización preferida, el tratamiento del cáncer implica el uso de un tratamiento de hipertermia. En tal tratamiento, se usa un campo magnético alterno o radiación para hacer rotar a las nanopartículas magnéticas. Entonces las nanopartículas magnéticas aumentan la temperatura ambiente en respuesta a la energía generada a través de las rotaciones. Si las nanopartículas de magnetita se localizan en las células cancerosas, pueden provocar la muerte de las células cancerosas debido al aumento de calor.
Usos
En un octavo aspecto, la presente invención proporciona el uso de la composición de la presente invención, de la formulación de magnetoliposoma de la presente invención o de la
composición farmacéutica de la presente invención para la preparación de un agente de contraste para su uso en técnicas clínicas de imagen tales como la imagen por resonancia magnética. En un noveno aspecto, la presente invención proporciona el uso de la composición de la presente invención para el aislamiento y/o purificación de ácidos nucleicos.
También se prevén otros usos de la composición de la presente invención, de la formulación de magnetoliposoma de la presente invención o de la composición farmacéutica de la presente invención, los cuales también forman parte de la invención. Estos usos incluyen el uso de la composición de la presente invención, de la formulación de magnetoliposoma de la presente invención o de la composición farmacéutica de la presente invención como un separador molecular (por ejemplo, mediante la funcionalización de las nanopartículas con anticuerpos para capturar una molécula específica y luego separar dicha molécula mediante el uso de una fuerza magnética) y el uso de la composición de la presente invención, de la formulación de magnetoliposoma de la presente invención o la composición farmacéutica de la presente invención como biosensor. El biosensor se puede utilizar para su uso en un entorno clínico o ambiental.
MODOS DE REALIZACION
Ejemplo 1 : Alineamiento múltiple de las secuencias de MamC y Mms6
Un alineamiento múltiple de las secuencias de MamC y Mms6 de MC-1 con otras proteínas homologas de otras bacterias magnetotácticas mostró algunas similitudes en su dominio C- terminal y también en el bucle dentro de los dos dominios transmembrana. Este bucle es rico en aminoácidos ácidos (aspartato y glutamato) y en aminoácidos que contienen grupos hidroxilo (tirosina, treonina y serina) que pueden unir cationes metálicos. (Figuras 1 y 2). Ejemplo 2: Clonación y expresión de MamC y Mms6
La clonación, expresión y purificación de MamC se llevó a cabo como se describe en Valverde- Tercedor et al. 2015. En resumen, el gen mamC (NCBI Database, gen accession AE3K44766.1 , protein accession Mmc1_2265) se amplificó mediante reacción en cadena de la polimerasa y se clonó en un vector pTrcHis-TOPO (Life Technologies: Invitrogen, Grand Island, NY) para que la proteína recombinante MamC se expresara con una cola de hexahistidina N-terminal. El vector recombinante se transformó en una cepa TOP10 de Escheríchia coli (Life Technologies: Invitrogen) y se verificó por secuenciación de didesoxinucleótidos usando un secuenciador ABI modelo 3100 (Life Technologies: Applied Biosystems).
Para la expresión y purificación de la proteína MamC, se incubaron células TOP10 de E. coli transformadas a 37°C y se indujo la expresión de la proteína con isopropil b-D-l- tiogalactopiranósido (IPTG). Las células se recogieron mediante centrifugación, se resuspendieron en tampón A (tampón de fosfato de sodio 20 mM, NaCI 500 mM, guanidina 6 M, pH 8,0) y se rompieron mediante sonicación. La fracción soluble se separó por
centrifugación y se cargó en una columna HiTrap chelating HP (GE Healthcare) previamente equilibrada con tampón B (tampón de fosfato de sodio 20 mM, NaCI 500 mM, urea 8 M, pH 8,0), utilizando un sistema ÁKTA Prime Plus FPLC (GE Healthcare). La columna se lavó luego con tampón B, seguido de tampón B ajustado a pH 6. Finalmente, la proteína se eluyó con tampón B ajustado a pH 4. El eluído se dializó durante la noche a 4°C contra tampón C (tampón Tris 50 mM, NaCI 150 mM, 6 M de urea, pH 8,5). Para reducir la concentración de urea, el tampón de diálisis se diluyó paso a paso 1 : 2 (cuatro veces) con tampón C nuevo sin urea (denominado tampón D) y se dializó durante otras 2-4 h después de cada paso de dilución excepto en el último paso dializado durante la noche.
El gen mms6 (NCBI Database, gene accession ABK44776.1 , protein accession Mmc1_2275) se amplificó por reacción en cadena de la polimerasa usando los cebadores específicos: f6 (SEQ ID NO: 1 , 5'-ATGCCT GTT GCT GT ACCAAAT AAAGC-3 ') y r6 (SEQ ID NO: 2, 5'- TCAGCTAATGGCCTCTTCCAATTC-3 '). Como en el caso de mamC, el gen mms6 amplificado se clonó en un vector pTrcHis-TOPO. El vector recombinante también se usó para transformar una cepa TOP10 de Escheríchia coli y se verificó por secuenciación de didesoxinucleótidos.
La expresión y purificación de la proteína Mms6 se llevó a cabo siguiendo el mismo protocolo que el descrito anteriormente para la purificación de MamC, pero utilizando en su lugar IPTG 1 mM. Las células se recogieron por centrifugación (4508 g, 10 min, 4 °C), se resuspendieron en tampón de fosfato de sodio 20 mM (pH 7,4) complementado con lisozima 0,5 mg / mi y lauroil sarcosinato de sodio al 5% (sarcosil) y se rompieron por sonicación. La fracción soluble se separó por centrifugación (15151 g, 40 min, 4 °C) y se cargó en una columna HiTrap chelating HP (GE Healthcare) utilizando un sistema ÁKTA Prime Plus FPLC (GE Healthcare). La columna se equilibró previamente con tampón de fosfato de sodio 20 mM (pH 7,4) complementado con imidazol 20 mM y TRITON X-100 a 1 ,3 x la concentración micelar crítica (CMC) para reducir la agregación de proteínas y mejorar la estabilidad de la proteína. La elución de Mms6 (2 mi / min) se realizó aplicando un gradiente de imidazol continuo de 20 a 500 mM. Las fracciones se recogieron y analizaron mediante electroforesis SDS-PAGE al 12%. Las fracciones que contenían proteína Mms6 se sometieron a una etapa cromatográfica adicional en una columna de hidrofobicidad C4 (Júpiter® 5 pm C4 300 Á, columna LC 150 x 4,6 mm) utilizando un sistema HPLC (Agilent 1 100) para eliminar contaminantes menores, proteínas de E. coli y ácidos nucleicos. En este caso, la elución de la proteína Mms6 (0,5 mi / min) se produjo aplicando un gradiente de disolvente orgánico continuo (ácido trifluoroacético y acetonitrilo) en agua debido a la alta hidrofobicidad de Mms6. La pureza de la proteína Mms6 se ensayó mediante SDS-PAGE al 12% teñida con Coomassie. La concentración de proteína se determinó usando un ensayo de proteína Bradford (Bradford, 1976) y usando un
espectrofotómetro UV-Vis NanoDrop 2000 (Thermo Scientific), usando el coeficiente de extinción molar correspondiente a 280 nm (17085 M-1 cm-1).
Como experimento control, las células competentes TOP10 también se transformaron con pTrcHis-TOPO que no contenía los genes de interés. El protocolo de purificación de MamC y
Mms6 se siguió con esas bacterias transformadas y sus fracciones de elución correspondientes se usaron para experimentos de precipitación de magnetita (control).
La figura 1 muestra un gel de SDS-PAGE de las proteínas MamC y Mms6 purificadas.
Ejemplo 3: Biomineralización de magnetita
Se prepararon soluciones desoxigenadas de NaHCOs / Na2CC>3 (0,15 M / 0, 15 M), FeCh (1
M), Fe(CIC>4) 2 (0,5 M) y NaOH (5 M) utilizando agua Milli-Q desoxigenada libre de oxígeno
(ultrapura) o "Tipo 1" tal como lo definen varias autoridades, p. ej. ISO 3696) según el siguiente procedimiento:
(1) Para preparar las soluciones anaeróbicas:
a. Hervir el agua Milli-Q en un matraz Erlenmeyer en presencia de rocas burbujeantes hasta que se formen burbujas grandes y escapen de la solución. b. Una vez hervida, colocar el matraz en un baño de hielo e inmediatamente cubrirlo y dejar que burbujee con N2 libre de 02 durante una hora / L.
c. Una vez burbujeado, colocar el agua dentro de la Cámara Coy anaeróbica y preparar las soluciones en su interior.
(2) Preparar las soluciones de proteína anaeróbica a partir de una solución madre de proteína con una concentración de proteína superior a 2 mg / mi:
a. Cubrir la solución de proteína con un septo de goma y burbujear con N2 libre de 02.
b. Una vez burbujeado, colocar la solución dentro de la Cámara Coy anaeróbica.
(3) Para preparar la mezcla final para la precipitación de magnetita (preferiblemente 60 mi en botellas de vidrio de 100 mi):
a. Agregar el volumen pertinente de las soluciones NaHCOs y Na2CC>3 para asegurar una concentración final en la mezcla de reacción de 3.5 mM cada una,
b. Agregar el volumen total pertinente del agua Milli-Q.
c. Agregar el volumen pertinente de la solución de FeCh para asegurar una concentración final en la mezcla de reacción de 5,56 mM.
d. Agregar la (s) proteína (s) si es necesario.
e. Dejarlo reaccionar por una hora.
f. Agregar el volumen pertinente de la solución de Fe (CI04)2 para garantizar una concentración final en la mezcla de reacción de 2,78 mM.
g. Mientras se agita, agregar gotas de la solución de NaOH para elevar el valor del pH a un pH de 9.
h. Cerrar las botellas con un septo de goma y séllelas y dejarlos reaccionar dentro de la cámara anaerobia Coy durante 30 días.
La cámara COY se llenó con 4% de H2 en N2 para evitar la posible oxidación. La precipitación de magnetita se llevó a cabo en experimentos en condiciones no controladas y mantenidos a 25 0 C y 1 atm de presión total siguiendo el protocolo descrito por los autores en el interior de la cámara anaeróbica. La mezcla de reacción final de la cual precipitó la magnetita contenía NaHCOs 3,5 mM / Na2CC>3 3,5 mM, Fe 2,78 mM (CI04)2 y FeCh 5,56 mM, y tenía un pH = 9. Se añadieron MamC y / o Mms6 a esta mezcla de reacción a concentraciones que variaban de 0 a 10 pg / mi. Específicamente, diecinueve experimentos de coprecipitación de magnetita se llevaron a cabo bajo las siguientes condiciones (tres repeticiones por condición): (1) dieciséis experimentos realizados mediante la adición de MamC y Mms6 a la solución de reacción a concentraciones de proteína de 0, 2.5, 5, 10 pg / mi y MamC / Las relaciones Mms6 y Mms6 / MamC que varían de 0 a 4, aquí se denominan experimentos que llevan MamC, Mms6, MamC-Mms6; (2) un experimento realizado añadiendo a la mezcla de reacción las proteínas "contaminantes" purificadas de las células transformadas con el pTrcHis-TOPO "vacío", aquí denominado experimento de vector vacío; (3) dos experimentos llevados a cabo añadiendo a la mezcla de reacción el tampón en el que se almacena cada una de las proteínas (Tris 50 mM y NaC1 150 mM (aquí denominado experimento MamC-buffer) y 1 ,3 CMC TRITON X100 en agua (aquí denominado experimento de tampón Mms6), (4) un experimento inorgánico en el que no se añadieron proteínas y / o tampón a la mezcla de reacción.
Cada experimento se dejó avanzar dentro de la cámara anaeróbica durante 30 días, después de lo cual se recogió el producto precipitado. Los sólidos se concentraron en tubos con un imán y el sobrenadante (que parecía completamente transparente) se descartó. A continuación, los precipitados se lavaron con agua Milli-Q desoxigenada libre de oxígeno dos veces y se realizó un último lavado con etanol absoluto (5 mi en cada reacción). Entre los lavados, cada matraz de reacción se agitó vigorosamente durante varios segundos, el precipitado se concentró magnéticamente y se eliminó el líquido. Después del último lavado con etanol, el precipitado se concentró en 1-2 mi de etanol, se selló herméticamente y se almacenó a -20 °C hasta que se analizó.
Ejemplo 4: Identificación de los precipitados
Las muestras de polvo de los precipitados se analizaron con un difractómetro de rayos X, Xpert Pro (PANalytical, The Netherlands), utilizando la radiación de Cu Ka, con el rango de exploración ajustado de 20 a 60° en 2Q (0,01 0 /paso; 3 s por paso). La identificación de los precipitados se realizó utilizando el software XPowder (Martín Ramos, 2004).
Los sólidos formados en todos los experimentos de biomineralización (con y sin las proteínas) se identificaron como magnetita usando difracción de rayos X en polvo (XRD). Los sólidos no contenían niveles detectables de siderita.
Ejemplo 5: Tamaño y morfología de las partículas
La morfología y el tamaño de las nanopartículas de magnetita recogidas en esos experimentos se estudiaron mediante microscopía electrónica de transmisión (TEM) utilizando un microscopio Cari Zeiss SMT LIBRA 120 PLUS. Las nanopartículas magnéticas se incluyeron en la resina Embed 812. Se prepararon secciones ultrafinas (50-70 nm) usando un microtomo Reichert Ultracut S (Leica Microsystems GmbH, Wetzlar, Germany) después de lo cual las secciones se depositaron en rejillas de cobre. El tamaño de los cristales se midió utilizando el programa ImageJ 1.47, y las curvas de distribución de tamaño se determinaron a partir de esas medidas utilizando Origin pro 9. Para asegurar la reproducibilidad de los resultados, se midieron los tamaños de partícula en múltiples micrografías con un exceso de 1000 nanopartículas medidas en cada experimento. Además, la significación estadística de los resultados obtenidos se probó usando la prueba de Tukey con un valor fijo de a <0.05. El TEM de alta resolución (HRTEM) también se realizó utilizando un FEI TITAN G2 80-300. Los patrones de difracción de electrones de área seleccionada (SAED) se recogieron usando una abertura de 10 pm. D-espaciamientos se midieron utilizando imágenes HRTEM y la dirección cristalográfica se determinó mediante el uso de datos de magnetita en el sitio web del Proyecto R R U F F ( http : //rruff . i nf o/a m s/a m csd . p h p) .
El análisis de TEM de las partículas de magnetita producidas en el experimento MamC-buffer, el experimento con el buffer Mms6, el experimento de vector vacío y las magnetitas mediadas por Mms6 muestran tamaños de cristal similares (16 ± 6 nm) a los de las magnetitas recogidas del experimento de control inorgánico. Por otra parte, tampoco se observaron diferencias en la morfología, ya que todas las partículas estaban pobremente facetadas. Por lo tanto, el efecto potencial sobre el tamaño y / o la morfología del cristal observado en las magnetitas recogidas de los experimentos restantes debería atribuirse únicamente a las proteínas implicadas.
Las imágenes de TEM de las magnetitas mediadas por Mms6 muestran diferencias en tamaño y forma con respecto a los experimentos de control inorgánico en función de la concentración de Mms6 en solución. A una concentración Mms6 de 2.5 pg / mL, se formaron cristales no facetados de 17 ± 7 nm. Sin embargo, a concentraciones de Mms6 de 5 y 10 pg / mL, los cristales de magnetita tenían morfologías poliédricas más uniformes con caras bien facetadas y eran ligeramente más grandes (23 ± 9 y 22 ± 8 nm, respectivamente) en comparación con las magnetitas obtenidas de el control inorgánico (MNPs, Figura 3). El tamaño y la forma de las partículas de magnetita mediadas por MamC (BMNPs) también dependían de la concentración de proteína. Los cristales BMNPs formados en presencia de 2,5 pg/ml y 5 pg/ml
de MamC se redondearon y tenían tamaños de 20 ± 6 nm y 22 ± 7 nm, respectivamente. A 10 pg / mi de MamC, los cristales de magnetita mostraban caras de cristal bien desarrolladas con morfologías rómbicas, rectangulares y cuadradas bidimensionales y tamaños de 37 ± 12 nm (Figura 3).
Cuando tanto MamC como Mms6 estaban presentes en la solución de reacción, se observaron efectos acumulativos de ambas proteínas, ya que los cristales de magnetita recogidos de estos experimentos mostraron mejores morfologías facetadas y/o tamaños mayores en comparación, no solo con cristales del experimento de control inorgánico, sino también a cristales recogidos de experimentos en los que solo una de las proteínas estaba presente. El efecto de la mezcla de proteínas sobre los cristales de magnetita dependía de la concentración de las dos proteínas y la proporción de proteínas. A bajas concentraciones de Mms6 (2.5 pg / ml_), el tamaño de los cristales aumentó con la concentración de MamC hasta [MamC] = 5 pg / ml_. Esta tendencia es idéntica a la observada en la concentración más alta de Mms6 (10 pg / mi). Sin embargo, a [Mms6] = 5 pg / ml_ no se observó cambio en el tamaño de los cristales independientemente de la concentración de MamC en la solución. El mismo resultado se observa cuando el tamaño de los cristales se representa contra la relación MamC / Mms6, donde el tamaño promedio más grande de los cristales (31 ± 10 nm) se obtiene a una relación MamC / Mms6 igual a 0.64 y una concentración de MamC de 5 pg / ml_ (0.28 pM) y una concentración de Mms6 de 10 pg / ml_ (0.44 pM) (Figura 3). Curiosamente, a mayores relaciones de MamC / Mms6, el tamaño del cristal disminuye y se encontró que esta disminución era estadísticamente significativa.
Las imágenes de HRTEM muestran que los cristales obtenidos a partir de los experimentos de control inorgánico tienen un cuadrado y algunas formas 2-D rombiodales delimitadas por las caras (1 11) (Figura 4). Además, algunos cristales mostraron esquinas redondeadas correspondientes a la cara (1 10) del cristal (Figura 4). Las nanopartículas mediadas por MamC expresaban la cara de cristal (1 11) con las esquinas redondeadas correspondientes a las caras de cristal nacientes (110) y (311) (Figura 4). En este caso, los cristales parecían alargados a lo largo de la dirección [1 11] Los cristales obtenidos en presencia de la proteína Mms6 mostraron formas romboidales, rectangulares y hexagonales delimitadas por la cara (1 1 1) del cristal y esquinas redondeadas que corresponden a las caras (311), (1 10) y (400) del cristal (Figura 5). Estos cristales estaban alargados a lo largo de la dirección [11 1] Las nanopartículas obtenidas a 5 pg / mi de MamC y 10 pg / mi de Mms6 tenían formas y esquinas que eran más definidas que las observadas en las nanopartículas obtenidas cuando solo una de las proteínas estaba presente. En particular, los cristales de este experimento mostraron formas romboidales, rectangulares y hexagonales limitadas por las caras (111) del cristal y se alargaron a lo largo de la dirección [11 1] Las esquinas bien definidas observadas corresponden a las caras (110), (311) y (400) del cristal (Figura 5).
Ejemplo 6: Medidas magnéticas
Las mediciones de magnetización se llevaron a cabo mediante el uso de un dispositivo de interferencia cuántica superconductora de diseño cuántico (SQUID) 5 T sistema de medición de propiedades magnéticas (MPMS). Bajo flujo suave de argón, se colocaron 1.6 mg de MNPs y 1.01 mg de BMNPs en una cápsula de policarbonato de doble pared. Se determinaron los ciclos de histéresis para cada tipo de nanopartículas a 5 K y 300 K.
Las medidas de zero-field cooling (ZFC-W) y field cooling (FC-C) se realizaron usando un magnetómetro superconducting quantum interference (SQUID) 5 T (Quantum Design MPMS XL, USA). Bajo flujo suave de argón, se colocó una cantidad diferente de cada polvo de muestra en una cápsula de policarbonato de doble pared. Las muestras se enfriaron inmediatamente en un campo aplicado de cero a 5 K para mantener la magnetización aleatorizada de los nanocristales, después de lo cual se aplicó un campo magnético de 500 Oe. Para permitir la comparación entre nanopartículas sintetizadas de forma diferente, las curvas M (T) se normalizaron por la cantidad de cada muestra analizada y por el valor de magnetización a 300 K.
Las nanopartículas sintetizadas en el experimento de control inorgánico exhiben la temperatura de bloqueo más baja (TB ~ 50 K) que es característica de nanopartículas pequeñas y poco cristalinas (Figura 6). Las nanopartículas mediadas por Mms6 muestran curvas de magnetización similares (Figura 6) mientras que las nanopartículas mediadas por MamC exhiben una TB más alta (~ 140 K), consistente con su mayor tamaño. Las nanopartículas obtenidas a 5 pg / mi de MamC y 10 pg / mi de Mms6 muestran la mayor TB (TB ~ 300 K) con el aumento más lento de la magnetización, característica de partículas con alta cristalinidad y un gran momento magnético por partícula.
Tanto las MNPs como las BMNPS presentan magnetización remanente a 5 K en ausencia de un campo externo, pero no a 300 K (Figura 6C), lo que confirma que ambas partículas son superparamagnéticas y tienen una temperatura de bloqueo < 300 K. De acuerdo con los datos obtenidos, el valor de saturación de la magnetización (Ms) para las BMNPs es de 55 emu/g, mientras que para las MNPs es de 66 emu/g (Figura 6C). La diferencia en la saturación de la magnetización entre BMNPs y MNPs no es tan alta, teniendo en cuenta el efecto de dilución debido al recubrimiento, por lo que la reducción en el valor Ms para las BMNPs podría deberse a la incorporación de MamC. De hecho, teniendo en cuenta que el porcentaje de MamC incorporado según los datos de TGA (9.4% en BMNPs y 4.5% en MNPs; Figura 6B), los valores corregidos de Ms para BMNPs y MNPs deberían ser respectivamente 55/1-0.094) = 61 emu/g y 66/(1-0.045) = 69 emu/g, lo que indica que son idénticos dentro del rango de error experimental.
Además, las temperaturas de bloqueo (TB) y las temperaturas de irreversibilidad (Tirr) de las partículas biomiméticas y las MNPs son también distintas. Las TB más baja (103 K) y la Tirr
(274 K) se corresponden con las MNPs (Figura 6D), seguidas de Mms6-E3MNPs y MamC- BMNPs (Figura 6D). Mientras que las mayores TB (260 K) y Tirr (296 K) corresponden al complejo Mms6-MamC-BMNPs. La magnetización más lenta y los mayores valores de TB corresponden a partículas con mayor momento magnético por partícula. Además, las menores diferencias entre TB y Tirr indican menor polidispersidad.
Ejemplo 7: Medidas de área superficial específicas
Se analizaron las muestras en polvo para obtener las isotermas de adsorción de nitrógeno a 77 K en un equipo TriStar 3000 (Micromeritics). Unos 50 mg de muestra se desgasificaron a 100 °C durante 4 h antes de los análisis usando un desgasificador (VacPrep 061 , Micrometrics). El área superficial específica (SSA) de las muestras se determinó usando el método BET [27] El SSA determinado mediante BET es 97 ± 2 m2/g.
Ejemplo 8: Medidas de movilidad electroforética y análisis termoqravimétricos
La movilidad electroforética se midió en magnetitas inorgánicas (MNPs) y BMNPs. Suspensiones de cada tipo de nanopartículas se prepararon en 10 mL de NaCICL (10 mM) libre de oxígeno. Alícuotas de 200 pL de cada una de las suspensiones anteriores se inocularon en once tubos que contenía NaCICL (10 mM) libre de oxígeno, siendo el volumen final de cada tubo 10 mL. Se ajustó el pH de cada tubo añadiendo HCI (0.1 M) libre de oxígeno o NaOH (0.1 M) libre de oxígeno hasta conseguir un pH en el rango 2 a 11 , dependiendo de la muestra. Las muestras se sonicaron durante 2 minutos antes de las medidas. Se hicieron nueve replicas para cada medida.
Los análisis termogravimétricos (TGA) se hicieron en D 10 mg de sólido, calentando la muestra en una celdilla de aluminio en atmósfera de N2, a una velocidad de 20°C min-1 hasta una temperatura final de 950°C.
Las gráficas de potencial z versus pH (Figura 6A) revelan diferencias significativas entre los valores medidos para las MNPs y las BMNPs. Ambas están positivamente cargadas a valores bajos de pH bajos y negativamente cargadas a valores altos de pH, pero se diferencian en el punto isoeléctrico (iep). Mientras que este iep es 7.0 para las MNPs, este valor es de 4.4 para las BMNPs. Estos datos sugieren que MamC está fuertemente adherida (o quizá incorporada) en el cristal. Esta observación se confirma con los análisis TGA (Figura 6B). El peso total % (wt%) perdido por las BMNPs es 9.4, mientras que por las MNPs es 4.5, lo que indica que las BMNPs se componen de 95.1 wt% de magnetita y 4.9 wt% de MamC. Así, MamC parece tener un papel importante controlando, no solo la distribución de tamaños de las nanopartículas sino también sus propiedades superficiales.
Ejemplo 9: Maqnetoliposomas
(1) Magnetoliposomas biomiméticos
Las nanopartículas de magnetita tienden a agregar debido a sus propiedades magnéticas y es necesaria la aplicación de un tratamiento adicional para evitar dicha agregación antes de
la producción de los magnetoliposomas. Con este objetico, las nanopartículas biomiméticas se incubaron en 5 ml_ de glutamato 100 mM durante 12 horas. La concentración de las nanopartículas era 4,5 mg/mL. A continuación, las partículas se lavaron 3 veces con agua para remover el glutamato. Después del lavado, las partículas fueron concentradas mediante el uso de un imán y el sobrenadante se descartó. Como se ha comentado, este procedimiento se repitió tres veces. Luego, las partículas fueron re-dispersadas en 1 ,67 mL de agua ([Nanopartículas de magnetita]«24 mg/mL] Esta suspensión se filtró a través de un filtro con un tamaño de poro de 0.22 pm.
Los magnetoliposomas biomiméticos se sintetizaron mediante el método de hidratación del film. Para obtener la fina capa de película lipídica, la fosfatidilcolina (PC) se disolvió en 8 mL de cloroformo ([PC]= 1.25 mg/mL) formando una suspensión homogénea. El solvente se evaporó usando un rotavapor (Büchi, Rotavapor-R) bajo una corriente de vacío a 400 rpm y 37 °C. Además, con el objetivo de eliminar cualquier resto de cloroformo, la muestra estuvo bajo una corriente de vacío durante 90 minutos. Luego, la fina capa de película lipídica se hidrató y dispersó con la suspensión de ferrofluido ([PC]~6 mg/mL). Para asegurar una dispersión completa, la mezcla estuvo en agitación durante 2 horas a 180-200 rpm. Después de esto, la suspensión de magnetoliposomas se conservó a 4°C durante 24 horas. Finalmente, los magnetoliposomas unilaminares se obtuvieron mediante el método de extrusión. Concretamente, la solución de magnetoliposomas se pasó 5 veces a través de una membrana de policarbonato (Whatman) de 200 y 100 nm, respectivamente, con ayuda de un extrusor (Avanti Polar Lipids) a 45 °C.
(2) Magnetoliposomas inorgánicos
Las nanopartículas inorgánicas, al igual que las nanopartículas biomiméticas, tienden a agregar. Sin embargo, el tratamiento aplicado para desagregarlas es diferente de aquel seguido para las nanopartículas biomiméticas, debido a las diferentes propiedades superficiales que presentan ambas partículas. Debido a ello, las nanopartículas inorgánicas se incubaron en 5 mL de citrato 2M. El resto del protocolo utilizado para la obtención de magnetoliposomas inorgánicos fue idéntico a aquel seguido para la obtención de magnetoliposomas biomiméticos.
Ejemplo 10: Funcionalización de partículas con doxorrubicina y DO-24
Las nanopartículas probadas fueron aquellas obtenidas usando 10 pg/mL de la proteína MamC. Los precipitados resultantes se concentraron en tubos con un imán y el sobrenadante se descartó. A continuación, los precipitados se lavaron secuencialmente con agua Milli-Q libre de oxígeno tres veces, con una solución de SDS al 0,5 % y con agua libre de oxígeno de nuevo. Finalmente, los precipitados se resuspendieron en tampón HEPES con solución salina (0.01 M HEPES, pH 7.2, 0.15 M NaCI) y se esterilizaron autoclavándolas a 121 °C durante 21 minutos.
Las nanopartículas de magnetita se funcionalizaron con DOXO y con el anticuerpo monoclonal DO-24 (mAb) purificado, el cual reconoce el ectodominio del receptor humano Met/HGF, que se considera un marcador tumoral, siendo sobreexpresado en numerosos cánceres, como ya se describió con modificaciones menores (lafisco et al. , 2010; lafisco et al., 2013; Oltolina et al., 2015). Brevemente, los acoplamientos se realizaron mezclando 2 mg de nanopartículas de magnetita con 1 mg/mL de DOXO disuelta en agua o con el mAb disuelto en el tampón HEPES con solución salina (nanopartículas de magnetita binarias) o con el mAb seguido de DOXO (nanopartículas de magnetita ternarias) en el interior de botes herméticamente cerrados para evitar la oxidación de la magnetita. Los experimentos de cinética de adsorción se llevaron a cabo a 25 °C con agitación (200 rpm) durante diferentes periodos de tiempo hasta 24 horas. Al final de cada periodo de incubación, las mezclas se lavaron 3 veces para separar las partículas de los sobrenadantes usando un imán. Las cantidades de DOXO y mAb adsorbidas se evaluaron mediante espectroscopia UV-Vis (l = 490 y 280 nm, respectivamente), calculando las diferencias entre las concentraciones de las moléculas en la solución antes y después de la adsorción en las nanopartículas de magnetita (el mencionado sobrenadante). Las nanopartículas funcionalizadas se resuspendieron en la solución salina tamponada con HEPES y se conservaron a 4°C hasta su uso.
En el caso de las nanopartículas de magnetita conjugadas con ambos motivos (DOXO y mAb) (las llamadas nanopartículas ternarias), se aplicaron secuencialmente los mismos protocolos, seguido cada uno por lavados extensivos. DO-24 mAb se acopló primero y la DOXO se acopló en el siguiente paso, en base a experimentos previos (lafisco et al., 2013).
Ejemplo 11 : Citocompatibilidad y citotoxicidad de las nanopartículas binarias y ternarias
Cultivos celulares: la línea celular GTL-16, derivada de carcinoma gástrico humano pobremente diferenciado que expresa Met, y la línea celular Huh-7, derivada de carcinoma hepatocelular bien diferenciado que es negativo para Met, se mantuvieron en medio de Eagle modificado por Dulbecco (DMEM), suplementado con 10% de suero de ternera fetal (FCS), 50 U/ml de penicilina y 50 pg/ml de estreptomicina. Las células se trasplantaron cuando alcanzaron 80-90% de confluencia.
Las células (aproximadamente 12 c 103 GTL-16/pocillo o 6 c 103 Huh-7/pocillo) se incubaron en placas de 96 pocilios durante 24 h; entonces se añadieron 100 pL de las distintas concentraciones de las diferentes nanopartículas de magnetita, funcionalizadas o sin funcionalizar, a cada micropocillo. Después de 3 días de incubación, la viabilidad celular se evaluó por el ensayo colorimétrico del bromuro de 3-(4,5-dimetiltiazol-2-ilo)-2,5-difeniltetrazol (MTT), como se describe en Oltolina et al., 2015. [Brevemente, se añadieron 20 pL de solución de MTT (5 mg mL 1 en solución de PBS) a cada pocilio. La placa se incubó a 37 °C durante 2 h y luego los sobrenadantes se aspiraron cuidadosamente. Después, se añadieron 125 pL de isopropanol 0.2 N HCI para disolver los cristales de formazán formados. Entonces se tomó
cuidadosamente una alícuota de 100 mI_ de cada pocilio y se midió su densidad óptica en un lector de pocilios múltiples (2030 Multilabel Reader Víctor TM X4, PerkinElmer) a 570 nm. La viabilidad de cultivos paralelos de células no tratadas se tomó como el 100% de viabilidad y los valores obtenidos en las células sometidas a los diferentes tratamientos se refirieron a este valor. Los experimentos se realizaron 3-5 veces usando 3 réplicas por cada muestra. En algunos experimentos, se usaron cantidades predefinidas o equimolares de DOXO soluble. Para los experimentos con el instrumento XCELLIGENCE® las células, aproximadamente 12 x 103 GTL-16/pocillo o 6 x 103 HuH-7/pocillo, se sembraron en placas apropiadas de múltiples pocilios durante 24 h. A partir de este momento, se controló la impedancia (tiempo 0 del experimento) y se añadieron 100 pL de las diferentes nanopartículas de magnetita funcionalizadas a cada micropocillo. También se usaron cantidades equimolares de DOXO, ya sea soluble o adsorbida en las nanopartículas.
Cuando las nanopartículas de magnetita binarias y ternarias, ambas transportadoras de DOXO, se incubaron durante 3 días en las células, se comportaron de manera similar, es decir, ejercieron el mismo nivel de toxicidad, con respecto a las muestras de referencia no tratadas o a las muestras tratadas con DOXO soluble, excepto en el caso en el que se usaron 10 pg/ml de DOXO en las células GTL-16 (Figura 9). En este caso, las nanopartículas de magnetita ternarias funcionalizadas con el mAb fueron significativamente más tóxicas que las nanopartículas de magnetita binarias que sólo transportaban DOXO; no se observó tal diferencia en el caso de las Huh7, que no expresan el receptor diana del mAb. En todos los casos, ambos tipos de nanopartículas de magnetita mostraron toxicidad dependiente de la dosis y la toxicidad ejercida por la DOXO de la nanopartículas de magnetita fue menor que la ejercida por la DOXO soluble, de acuerdo con lo que ya reportó el equipo de investigación y otros para otros tipos de nanopartículas funcionalizadas. Por lo tanto, la especificidad de la toxicidad se restringió a una dosis estrecha de nanopartículas de magnetita ternarias. Dado que solo se obtienen datos a tiempo final en los experimentos de MTT, se realizaron experimentos que monitorizan en tiempo real la cinética de la respuesta citotóxica de las nanopartículas de magnetita usando el aparato XCELLIGENCE. En este caso, en los experimentos realizados con células GTL-16 a dosis de 100 pg/ml de DOXO, las nanopartículas de magnetita ternarias funcionalizadas con el mAb fueron significativamente más tóxicas que las nanopartículas de magnetita binarias que sólo transportaban DOXO y tan eficaces como la DOXO soluble hasta las 48 h. Al tercer día, los tres tratamientos con DOXO, ya sea soluble o unida a ambos tipos de nanopartículas de magnetita, indujeron el mismo nivel de toxicidad, en línea con los datos del ensayo MTT. Cuando se realizaron los mismos experimentos en células Huh7, no se observaron diferencias significativas entre los efectos ejercidos por los dos tipos de nanopartículas de magnetita funcionalizadas, que se comportaron de manera similar y fueron solo ligeramente menos tóxicas que la DOXO soluble.
En conjunto, estos datos indican que la funcionalización con el mAb proporciona especificidad a las nanopartículas de magnetita, dándoles la capacidad de dirigirse a las células que expresan el antígeno complementario.
Ejemplo 12: Biocompatibilidad y distribución de las nanopartículas in vivo
Se inyectaron ratones hembra BALB/c en la vena de la cola con nanopartículas de magnetita (10 pg de nanopartículas/g de peso de ratón) diluidas en un volumen final de 100 pl de PBS estéril. Los animales fueron monitoreados cada dos días hasta 1 mes. Los ratones se subdividieron en 5 grupos, diferenciados en el punto de tiempo de la eutanasia (de 1 hora a 2 meses). Para cada grupo compuesto por 3 ratones, también se usó un ratón no tratado de control. Sus órganos fueron recolectados, fijados, embebidos en parafina y procesados para su análisis histológico. Secciones seriadas se tiñeron con azul de Prusia y hematoxilina-eosina (Sigma Aldrich) y se sometieron a evaluación histológica por un patólogo independiente no informado de la identidad de las muestras. Todos los procedimientos se llevaron a cabo de acuerdo con la Directiva de la Comunidad Europea para el Cuidado y las Leyes Italianas sobre experimentación animal (Ley por el Decreto 1 16/92).
Se observó que todos los ratones inyectados con las nanopartículas de magnetita (10 pg/g de peso del ratón) estaban vivos y en buena forma durante al menos 60 días. Las secciones de cerebro, corazón, pulmón, bazo, hígado y riñón preparadas a partir de los animales 1 , 4 h, 1 , 7, 60 días después de la inyección no muestran ninguna alteración morfológica en comparación con las de los ratones control (Figura 11). Se detectaron pocas nanopartículas de magnetita, principalmente como agregados en los pulmones. Además, en el caso del bazo, que en los animales control no tratados ya era positivo para la tinción con azul de Prusia, dicha tinción fue indetectable 4 h y 1 día después de la inyección de las nanopartículas de magnetita, pero fue detectable al menos 1 semana después, si no antes. En conjunto, estos datos confirman la toxicidad mínima/baja de las nanopartículas de magnetita hasta 10 pg/g de peso del ratón.
4T1 Cell cultures preparation
The 4T1 cells (ATCC® CRL-2539™) are a murine breast carcinoma cell line derived from BALB/c mice, which presented a tumor growth and metastatic spread very closely mimicking the stage IV of human breast cáncer. These cells were maintained in Dulbecco's Modified Eagle Médium (DMEM), supplemented with 10% fetal calf serum (FCS), 50 U/ml penicillin, and 50 pg streptomycin. Cells were transplanted twice a week, when they were at 90-95% confluence.
Ejemplo 13. In vitro cytocompatibility of BMNPs in the absence/presence of maqnetic fields
The BMNPs did not display significant toxicity (viabilíty always over 80%) in an MTT assay up to 100 pg/mL concentrations in 4T1 cells (Fig. 12a) Moreover, the same level of cell viabilíty
was observed when an externa! gradient magnetic fie!d was appüed by using a neodymium magnet (1.8 Kg pulí) for 72 h (Figures 12b), confirming its safe use.
We bave a!so measured the !evel of ROS in the ce!ls treated as above, since tbe production of these molecules is a signa! of tbe oxidative stress for the ce!!s. No ROS re!ease was detectab!e in both conditions either with or w!thout tbe exposure to an externa! magnetic f!e!d. Whi!e in tbe positive contro! treated vvith Menadione (100 mM), which induce oxidative stress, a virtua! green co!or (CeliROX® Oreen Reagent) due to the ROS was dear!y visibie at the confoca! microscopy (Fig. 12c). Therefore, we can condude that the BMNPs are cytocompatib!e (Fig. 12) and do no induce oxidative stress in !iving cel!s
The viabiüty of ceüs subjected to an a!ternating magnetic fieid of 130 kHz and 16 kAm-1 was aiso ana!yzed !n this case 4T1 ceüs (1Q6) were resuspended in 0.15 mL tubes together with BMNPs at different concentrations and set inside the coi! of the instrument for 20 min. An aliquot containing 10 000 ceüs was then recovered and piated for an MTT assay which was read the fo!!owing day. Ce s were fu!!y viab!e when incubated with 100 pg of BMNPs, no cytotoxicity was observed, both in presenee or absence of the aiternating magnetic fieid, because that BMNPs concentration was not enough to generate heat by their roíation (Fig. 13). On the other hand, by increasing the amount of BMNPs, in the presenee of the aiternating magnetic fieid, ce!! viabiüty was significantiy reduced in dose-dependent relationshíp, reaching 8 4% at 500 pg in any case this high amount of BMNPs required to dispiay cytotoxicity by hyperther ia induced some toxicity by itseif, aithough the iatter was significant lower (Fig. 13). Example 14. Celiular interaction of BMNPs and DQXO-BMNPs in the absence/presence of a gradient magnetic fieid
The interaction of the BMNPs with ceüs in the presence/absence of a gradient magnetic fieid is shown in Fig. 14. Ce s piated on coverslips were incubated for different periods of time with BMNPs in the presenee or absence of a magnetic fieid, fixed, washed and stained with Prussian blue (Fig. 14a). In the treatment without the magnetic fieid, BMNPs are detectabie only and at a very low ieve! after 1 min incubation, while in the case of the appiication of the magnetic fieid they are cleariy visible already from 5 seconds, the first time analyzed In both cases more BMNPs are detectabie with increasing time of incubation, buí there was always a significant difference between samples treated or not with the magnetic píate and indeed at 5 min without the appiication of the magnetic fieid there were fewer BMNPs than in samples treated for 5 second with the magnet. Iron quantification experiments were carried out by potassium thiocyanide on samples treated as before (Fig. 14b). In the absence of the magnetic píate low amount of iron was detected until 1 min incubation, and then increases up to 46 pg/mL at 5 min. When ceüs were treated with the magnetic píate, a significant amount of iron was associated with the cells from the very first time (36 2 pg/mL at 5 second) and iron
continued to be accumulated in time-dependent way, until stabilization (60 pg/mL) after 150 seconds
The interaction of BMNPs with cells was also analyzed by TEM at different times and energy dispersive X-ray (EDX) (Fig. 15). In agreement with the data of optical microscopy at 30 seconds, few BMNPs are around the ceü surface when ceils are not subjected to the magnetic fieid. Otherwise, some BMNPs appear to interact vvith the eeli e brane and even be interna!ized if ce!ls underwent the treat ent with the magnetic fieid (Fig. 15a). In contrast, Prijic et al. (2010) did not observe statisticaily differences up to 30 seconds. Although superparamagnetic, the NPs used in that study have a sizes of 8-9 nm, which have a lower magnetic response than single magnetic domain enes, coated with a 2-nm-thíck ¡ayer of si!ica that also affects the magnetic behavior.
At 24 h the concentraron of partides internalized was comparable between the samples in the absence and presence of the magnetic fieid (Fig. 15a). This results are in accordance with Prussian blue analysis and iron quantification, in which a higher cell-partides interaction is observed at short periods of time, up to 2.5 in. AH together these data show that BMNPs are highly responsive to a gradient magnetic fieid in vitro, which ailows a faster ceilular interaction (Fig. 14) and uptake (Fig. 15).
Exampie 15 In vitro cytotoxicity of DOXO-BMNPs in the absence/presence of magnetic fields Ceils were incubated vvith different concentrations of DOXO-BMNPs for 72 h in the presence or absence of the magnetic píate and cytotoxicity was measured in an MTT assay. At all the concentrations tested, no differences in cytotoxicity in the presence or in the absence of the magnetic fieid were observed (Fig. 16a, b). This is reasonable since the effect of the magnetic fieid in the interaction with the cells was only observed in short periods of time, as observed after Prussian blue staining. Therefore, to evalúate potentiai differences between the cytotoxicity in the samples treated and not with the magnetic fieid, shorter time points (5, 30, 60, 150, and 300 seconds) and one BMNPs concentration (100 pg/mL) were used (Fig. 16c, d). After magnetic treatment the médium and the BMNPs were removed and incubation with fresh media was continued for 72 h for an MTT assay. In the presence of the magnetic fieid at the time points of 5 and 30 seconds, the cytotoxicity exerted by the DOXO-B NPs is exactly the same as the one induced by the soluble DOXO, while in the absence of the magnetic fieid DOXO-BMNPs exert a lower toxicity compared to soluble DOXO at the first two times (Fig. 16c, ). Thus the treatment with the magnetic fieid concentrated the BMNPs at cióse contact with the cells or even internalize, as already checked by Prussian blue (Fig. 14) and TEM (Fig. 15) analyses, so that DOXO was readily available for toxicity.
When the internalization of soluble DOXO and of DOXO coupled on BMNPs was anaiyzed by confocal microscopy, in all the samples tested, DOXO signal increased over the time (Fig 17). However, inferestingly, the internalization of DOXO in the ceils nuclei was already detected at
0 5 and 5 minutes in the DOXG-BMNPs treated witb the magnetic field, whiie it was detected only after 5 min in the case of soluble DOXO and at neither times when DOXO-BMNPs were incubated in the absence of the magnetic píate (Fig. 17). In this case the DOXO signa! of the functionalized BMNPs was detectabie only after 30 minutes of incubation and its intensity was lower (Fig. 17). Tberefore, the magnetic field treatment accelerates the DOXO uptakes from the BMNPs and their nuclear accumulation. These results are a!so direct!y re!ated to a faster cytotoxic activity of DOXO-BMNPs under the influence of a gradient magnetic field for sbort periods of time, anaiyzed by MTT assay (Fig. 16c, d).
Example 16. Effects of gradient and alternatinq magnetic fields in vivo on tu ors
In the first in vivo experiment the gradient continuous magnetic field was app!ied or not for 1 h to 411 cells-indueed tumors, after the i.v. injection of the different NPs or of soluble DOXO (2 mg/Kg mouse). The treatments were repeated 5 times, every 3 days and every time tumor sizes were evaiuated and compared to control animáis receiving only PBS. Up to day 6 (measured just before the second injection) no differences between the groups receiving the different treatments were observed (Fig. 18a) From day 9 to day 12, the apposition of a direct current magnetic field coin on the tumors of animáis receiving either naked or DOXO-coupled BMNPs inhibited their growth at a higher level when compared to mice not subjected to magnetic field treatment. At the end of the experiment (day 15) tumor volumes were significantiy reduced only in the groups of mice receiving DOXO. In particular, the highest inhibition was observed in mice receiving the combined treatment of DOXO-BMNPs and apposition of the magnetic coin, in comparison to animáis receiving only DOXO-BMNPs or soluble DOXO (Fig. 18a). At iast day of tbe experiment mice were sacrificed, their tumors excised, fixed and their histological sections were stained with Prussian blue to analyze and quaníify their ¡ron conten! As expecíed sections from tumors in animáis, which underwení magnetic field treatment, displayed a higher content of the blue pigment revealing iron, which was similar in the two cases of naked or DOXO-coupled BMNPs (Fig. 18b, c)
On the other hand, this results suggests that the DOXO adsorbed onto the BMNPS did not interfere with the magnetic field. This eans that the magnetic field can direct the BMNPs/DOXO-BMNPs to a specific organ/tumor for drug delivery or hyperthermia treatment (once arrived at the tumor site). This targeted treatment potentiaily reduces the side effect of the drug on the heaithy cells in the rest of the body, thus favouring the accumulation of nanoparticles in the tumor site and of the coupled DOXO, which could exert its toxic effect. In this context, a large number of works have been produced with the aim of achieving a high concentration of drug in the affected area with a rapid response time and minimai side effects through the application of the magnetic field.
When an alternating magnetic field was applied in vivo, hyperthermia production was observed only in the mice injected with the nanoparticles (Fig. 19a, b). Tumor temperatura rose rapidly
and was maintained at 42-45°C for 20 minutes in the presence of the alternating magnetic field This increase of temperature had an effect in reducing the tumor size, when it vvas easured 3 days post injection (Fig. 19c,d). However, when the hyperthermia is co bined to the cytotoxicity of DOXO, i.e. DOXO-BMNPs + alternating magnetic field, a synergistic effect was observed, reducing the tumor at higher levels compared to BMNPs + alternating magnetic field, and at the same levels as soluble DOXO (Fig. 19c) Moreover, 5 days post injection, the only group wifh a sfatistically significant reduction of tumor weight is the one fhaf combined hyperthermia + DOXO (Fig. 19d).
These in vivo data represent the basis for the potential safety and efficient application of the BMNPs as dual antitumor therapy, which combines the magnetic drug targeting with the magnetic hyperthermia treatment to increase the efficiency.
More details about the described examples:
Cellular interaction of the BMNPs and DOXO-BMNPs in the absence/presence of a gradient magnetic field
Prussian blue staining
Cells (approximately 20 c 1034T1/well) were seeded on glass coverslips in 24-well piafes and, after 24 h, 100 pg/mL BMNPs suspensions were added. After the incubation at 37 °C for short (5 and 30 seconds) and longer (1 , 2.5, and 5 minutes) periods of time in the absence (- GMF) and the presence (+ GMF) of a gradient magnetic field, coverslips were washed with fresh Phosphate Buffered Saline (PBS) pH 7.2 and fixed with paraformaldehyde (2 wt% in PBS). Then Prussian blue solution (1 : 1 of 2% potassium ferrocyanide in H2O and 2% HCI both in H2O) was added to the coverslips. In that way any ferric ion (+3) present in the samples combines with the ferrocyanide and results in the formation of bright blue pigments called Prussian blue or ferric ferrocyanide. After two other washes with fresh PBS, Nuclear Fast Red was added for staining cell nuclei. Finally, coverslips were washed with H2O and mounted on slides by using one drop of Eukitt quick-hardening mounting médium for each sample. The interaction of the stained BMNPs with cells was analyzed by optical microscopy at 100X.
Iron guantification by potassium thiocyanide
Cells (approximately 22 c 104 4T 1/well) were seeded in 6-well piafes and, after 24 h incubation at 37 °C and 5% CO2, 100 pg/mL BMNPs suspensions in DMEM médium were added. After their incubation for 5, 30, 60, 150, and 300 seconds in the presence and absence of a gradient magnetic field, the supernatant was removed, cells were washed with fresh PBS, trypsinized, transfered to 0.5 ml_ tubes and centrifuged at 1000 for 5 min. Then, the cell pellets formed were disolved in 37% HCI, mixed with 10% H2O2, and incubated for 20 min at room temperature. After the incubation time, the samples were colorized with 1 ml_ of 1 % potassium thiocyanide in MilliQ water, and their absorbance was measured at 490 nm. The concentration of ferric ions, i.e. the BMNPs, was calculated referencing the absorbance obtained to a
standard curve performed with the BMNPs alone. The endogenous ¡ron of the cells was substracted from the treated samples normalizing by the untreated control cells.
Confocal analysis
Cells (approximately 20* 103 4T1/well) were seeded on glass coverslips in 24-well plates and, after 24 h, soluble DOXO (as a positive control) or DOXO-BMNPs suspensions were added. After incubation at 37 °C for different periods of time (30 seconds, 5 and 30 minutes) in the absence (- GMF) and the presence (+ GMF) of a gradient magnetic field, coverslips were washed with fresh PBS pH 7.2 and fixed with paraformaldehyde (2% wt in PBS). To minimize unspecific interactions and permeabilize cells, coverslips were washed with Tris-Buffered Saline (TBS) containing 5% Bovine Serum Albumin (BSA), 0.1 % Tritón X-100 and 5% got serum and then stained. In particular cytoskeletal actin microfilaments were stained with FITC- phalloidin (Sigma-Aldrich, excitation at 488 nm; emission at 500-535 nm) and nuclei with TO- PRO-3 (1/70, Life Technologies; excitation at 633 nm; emission at 650-750 nm). DOXO was detected after excitation at 476 nm and emission at 575-630 nm. Fluorescence was detected using a Leica TCS SP2 AOBS Spectral Confocal Scanner microscope. Images were taken at 400X magnification. ImageJ software was used for analysis.
Cellular internalization of BMNPs in the absence/presence of a gradient magnetic fieid
Cells (approximately 10 c 105 4T1/well) were incubated at 37 °C and 5% CO2 for 24 h. Afterwards, 100 pg/mL of BMNPs were added and were incubated in the absence and presence a magnetic gradient field for 30 seconds, 1 and 24 h. After these treatments, cells were washed three times with PBS prior to fixation with 2.5% glutaraldehyde and 2% paraformaldehyde in PBS for 1 h. Then samples were washed again three times with sodium cacodylate buffer and embedded in epon. Ultrathin sections (50-70 nm) were cut using a Reichert Ultracut S microtome (Leica Microsystems GmbH, Wetzlar, Germany), mounted on copper grids, and stained with lead citrate and uranyl acétate for transmission electrón microscopy (TEM) analysis. In addition, microanalysis by energy dispersive X-ray (EDX) spectroscopy was performed to confirm the BMNPs imagining by ¡ron detection.
MTT assay in the absence/presence of a gradient or an alternating magnetic field
Cells (approximately 5 x 103 4T 1/well) were incubated in 96-well plates for 24 h. Then different concentrations (0.1 , 1 , 10, and 100 pg/mL) of soluble DOXO, BMNPs, and DOXO-MNPs were added to plated cells in 100 pL. Equimolar amounts of DOXO, either soluble or loaded on nanoparticles, as well as of BMNPs, were used. These samples were incubated at 37 °C and 5% CO2 in the absence or presence of a gradient magnetic field, using a magnetic píate below the 96-well plates, for 72 h. In another set of experiments the cells were incubated with 100 pg/mL BMNPs for shorter time points (5, 30, 60, 150, and 300 seconds) in the presence and absence of the gradient magnetic field.
ln the case of the alternating magnetic field treatment, approximately 95 x 104 4T1 cells were placed in a 0.5 mL tube. Then suspensions of 100, 300, and 500 pg of BMNPs in DMEM médium were added and exposed or not to an alternating magnetic field (130 kHz and 16 kArrr 1) for 20 minutes. After this treatment the cells were counted by using trypan blue, seeded in 96-well plates (approximately 10 x 103 4T1/well) and incubated at 37 °C and 5% CO2 for 24 h. At the end of the incubation time of the different set of experiments, cell viability was evaluated by the MTT colorimetric assay. Briefly, 20 pl_ of MTT solution (5 mg mL 1 in PBS solution) was added to each well. The píate was then incubated at 37 °C for 2 h and, then, supernatants were carefully aspirated. Afterwards, 125 pL of 0.2 N HCI in isopropanol was added to dissolve the formazan crystals formed. 100 pL were then removed carefully and the optical density was measured in a multiwell reader (2030 Multilabel Reader Víctor TM X4, PerkinElmer) at 570 nm. Viability of parallel cultures of untreated cells (CTRL-) was taken as 100% viability and valúes obtained from cells undergoing the different treatments were referred to this valué. Experiments were performed 3 times using 3 replicates for each sample.
Detection of reactive oxygen species (ROS) production
To measure the potential oxidative stress in living cells, as a consequence of the presence of the BMNPs, the CelIROX® Green Reagent (ThermoFisher) was used following the protocol recommended by the manufacturer. Briefly, cells (approximately 20 x 103 4T1/well) were seeded on glass coverslips in 24-well plates. After their exposure to different concentration (0.1 , 1 , 10, 100 pg/mL), in the presence and absence of a gradient magnetic field, of BMNPs for 4 hours, the cells were washed with PBS and CelIROX® Green Reagent was added to a final concentration of 5 mM in 300 mI of DMEM médium without serum. Then, the píate was incubated in the dark at 37 °C for 30 minutes. Menadione (100 mM) was used as a positive control. After the incubation time, the coverslips were washed with PBS pH 7.2, fixed with 4% paraformaldehyde in PBS, washed again and permeabilized with 0.1 % Triton-X100 for 10 minutes. Finally, the coverslips were stained and mounted on specimen slides (Biosigma). The cytoskeletal actin was stained with TRITC-phalloidine (1/200, Sigma-Aldrich, excitation at 543 nm; emission at 560-620 nm) and the nuclei with TO-PRO-3 (1/50, Life Technologies, excitation at 642 nm, emission at 650-750 nm). The CelIROX® Green Reagent is only fluorescent in the oxidized State (as a consequence of ROS production). Therefore, the emission of green fluorescence (at 485/520 nm) is stable and is produced after the DNA binding and therefore its signal is mainly located in the nucleus and in the mitochondria. Fluorescence was detected using a Spectral Confocal Leica TCS SP2 AOBS microscope. The images were taken at 400X magnification. The ImageJ software was used for the analysis. in vivo magnetic targeting and antitumor activity
Female BALB/c mice were inoculated with 10s 4T 1 cells into fat pad of mammary gland When the tumors became palpable (10 days after ceil inoculation), mice were divided into 6 different
groups with comparable tumor volumes among the groups The 8 groups were intravenous injected and treated as follows: i) PBS (control), ii-iii) DOXO-BMNPs +/- gradient magnetic field, iv-v) BMNPs +/- gradient magnetic field, and vi) soluble DOXO. Mice were injected 5 times with a dose of 2 mg/kg DOXO soluble or adsorbed to the BMNPs or comparable doses of unfunctionalized BMNPs, each time 3-4 days apart and, in case of magnetic treatment, after each injection they received a magnetic field treatment for 1 h The magnetic field was applied by attaching a 10 in diamefer x 3 m fhick N42 neodymium magnet (1.8 kg pulí, Magnet Expert Ltd) with 3MTM VeíbondTM tissue adhesive on the tumor site and keeping it attached for 1 hour after the injection. This neodynium magnet, with a magnetic anisotropy normal to the plañe and a saturation magnetization of 800 emu/cc, could generate a direct current (d.c.) magnetic field of the order of 100 Oe a few miliimeters from the surface. Therefore, the effect of the magnet is equivaient to application of a local 100-Oe external d.c. magnetic field immediately after the administration of the nanoparticles. Throughout the study, body weight and tumor volumes (measured with caliper) were recorded every 3-4 days. Three days after the last injections (day 18), mice were euthanized, their weights, as well as, tumor weights were recorded and, then, tumors, hearts, iivers, spleens, brains, lungs, and kidneys were coliected for histology. Histoiogicai sections of the tumors were prepared for hematoxylin-eosin and Prussian blue staining to anaiyze particles biodistribution.
In vivo hyperthermia and antitumor activity
36 female BALB/c ice were inoculated with 10s 4T1 celis into fat pad of a mary gland. After -15 days after celi inoculation, when the tumor dimensions were -100 mm3, mice were divided into 8 different groups with comparable tumor volumes among the groups. The 6 groups were intratumor injected and treated as follows: i) PBS (control), ii-iii) DOXO-BMNPs +/- alternating magnetic field, iv-v) BMNPs +/- aiternating magnetic field, and vi) soluble DOXO. Mice were injected only once at beginning of the treatment (day 0) with a dose of 3 mg BMNPs/mouse, equivaient to 80 pg DOXO for the soluble DOXO and DOXO-B NPs groups. After each injection, the so e groups were exposed to an alternating magnetic field (130 kHz and 16 kAnr1) for 20 minutes immediately after the administration of the nanoparticles. Throughout the study, tumor volumes were measured with caliper every íwo days. Finally, five days post treatment, mice were euthanized and their tumor weights recorded.
Statistical analysis
One-way ANOVA statistical analyses were performed with Bonferroni’s or Dunnett’s post-test using GraphPad Prism versión 4.03 (San Diego, CA). Statistical differences between the treatments were considered significant when p valúes were p<0.05 (*), p<0.01 (**), p<0.001
Referencias
• Alphandéry, E., Faure, S., Seksek, O., Guyot, F., Chebbi, I., 2011. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cáncer therapy. ACS Nano 5, 6279-6296.
• Amemiya, Y., Arakaki, A., Staniland, S., Matsunaga, T., 2007. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28, 5381- 5389.
• Arakaki, A., Masuda, F., Amemiya, Y., Tanaka, T., Matsunaga, T., 2010. Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. J.Colloid Interface Sci. 343, 65-70.
• Arakaki, A., Yamagishi, A., Fukuyo, A., Tanaka, M., Matsunaga, T., 2014. Coordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Mol. Microbiol. 93, 554-567.
• Arató, B., Szányi, Z., Flies, C., Schüler, D., Frankel, R.B., Buseck, P.R., Pósfai, M., 2005.Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker. Am. Mineral. 90, 1233-1241.
• Bazylinski, D.A., Frankel, R.B., 2004. Magnetosome formation in prokaryotes. Nat.
Rev. Microbiol. 2 (3), 217-230.
• Brigger I, Dubernet C, Couvreur P. Nanoparticles in cáncer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631-51. Review.
• De Jong WH, Borm PJA Drug delivery and nanoparticles: Applications and hazards Int J Nanomedicine. 2008;3:133-149.
• Bird, S.M., Rawlings, A.E., Galloway, J.M., Staniland, S.S., 2016a. Using a biomimetic membrane surface experiment to investígate the activity of the magnetite biomineralisation protein Mms6. RSC Adv. 6, 7356.
• Galloway, J.M., Bramble, J.P., Rawlings, A.E., Burnell, G., Evans, S.D., Staniland, S.S., 2012a. Nanomagnetic arrays formed with the biomineralization protein Mms6. J. Nano Res. 2012 (17), 127-146.
• Galloway, J.M., Bramble, J.P., Rawlings, A.E., Burnell, G., Evans, S.D., Staniland, S.S., 2012b. Biotemplated magnetic nanoparticle arrays. Small 8, 204-208.
• lafisco, M., Varoni, E., Di Foggia, M., Pietronave, S., Finí, M., Roveri, N., Rimondini,
L, Prat, M., 2012. Conjugation of hydroxyapatite nanocrystals with human
immunoglobulin G for nanomedical applications. Colloids Surf B Biointerfaces 90, 1-7.
• lafisco, M., Delgado-Lopez, J.M., Varoni, E.M., Tampieri, A., Rimondini, L, Gomez- Morales, J., Prat, M. 2013. Cell surface receptor targeted biomimetic apatite nanocrystals for cáncer therapy. Small 25, 9 (22), 3834-3844.
• Jimenez-Lopez, C., Rodríguez-Navarro, C., Rodríguez-Navarro, A., Perez-Gonzalez, T., Bazylinski, D. A., Lauer, H. V., Romanek, Jr. C. S. 2012. Signatures in magnetites formed by (Ca,Mg,Fe)C03 thermal decomposition: Terrestrial and extraterrestrial implications. Geochimica et Cosmochimica Acta 87, 69-80.
• Kolinko, I., et al. D., 2014. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9, 193-197.
• Langmuir, I. The adsorption of gases on plañe surfaces of glass, mica and platinu . J.
A . Che . Soc 40, 1361-1403 (1918).
• Lisy, M.R., et al., 2007. Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest. Radiol. 42 (4), 235-241.
• Martín Ramos, J.D. XPowder, a software package for powderX-ray diffraction analysis.
Legal Deposit GR 1001/04 (2004).
• Maruyama, K., Takeyama, H., Nemoto, E., Tanaka, T., Yoda, K., Matsunaga, T., 2004.
Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic partióles based on dissociation curve analysis. Biotechnol. Bioeng. 87, 687-694.
• Maruyama, K., Takeyama, H., Morí, T., Ohshima, K., Ogura, S., Mochizuki, T., Matsunaga, T., 2007. Detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cáncer (NSCLC) using a fully automated system with a nano- scale engineered biomagnetite. Biosens. Bioelectron. 22, 2282-2288.
• Matsunaga, T., Suzuki, T., Tanaka, M., Arakaki, A., 2007. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic partióles for nano-biotechnology.Trends. Biotechnol. 25, 182-188.
• Oltolina, F., Gregoletto, L, Colangelo, D., Gómez-Morales, J., Delgado-López, J. M., Prat, M. 2015. Monoclonal Antibody-Targeted Fluorescein-5-isothiocyanate-Labeled Biomimetic Nanoapatites: A Promising Fluorescent Probe for Imaging Applications. Langmuir, 31 (5), 1766-1775.
• Ota, H., Lim, T.K., Tanaka, T., Yoshino, T., Harada, M., Matsunaga, T., 2006.
Automated DNA extraction from genetically modified maize using aminosilane- modified bacterial magnetic partióles. J. Biotechnol. 125, 361-368.
• Perez-Gonzalez, T.C., Jimenez-Lopez, C., Neal, A.L., Rull-Perez, F., Rodríguez- Navarro, A., Fernandez-Vivas, A., lañez-Pareja, E., 2010. Magnetite biomineralization induced by Shewanellaoneidensis. Geochim. Cosmochim. Acta 74 (3), 967-979.
• Prozorov, T., Mallapragada, S.K., Narasimhan, B., Wang, L, Palo, P., Nilsen-Hamilton, M., Williams, T.J., Bazylinski, D.A., Prozorov, R., Canfield, P.C., 2007. Protein-
mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 17, 951-957.
• Prozorov, T., Bazylinski, D.A., Mallapragada, S.K., Prozorov, R., 2013. Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater.Sci. Eng. R 74, 133-172.
• Rawlings, A.E., Bramble, J.P., Walker, R., Bain, J., Galloway, J.M., Staniland, S.S., 2014. Self-assembled MmsFproteinosomes control magnetite nanoparticle for ation in vitro. Proc. Nati. Acad. Sci. U.S.A. 111 , 16094-16099.
• Rill, C., Kolar, Z. I., Kickelbick, G., Wolterbeek, H. T. & Peters, J. A. Kinetics and ther odyna ics of adsorption on hydroxyapatite of the [160Tb]terbium complexes of the bone-targeting ligands DOTP and BPPED. Langmuir 25, 2294-301 (2009).
• Schwert ann, U., Cornell, R.M., 2000. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed., vol. 188. Wiley-VCH, Weinhei , Ger any.
• Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol.
2009;86:215-23. Review.
• Sun, J.B., Duan, J.H., Dai, S.L., Ren, J., Guo, L, Jiang, W., Li, Y., 2008. Preparation and antitumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol. Bioeng. 101 (6), 1313-1320.
• Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., Clemett, S.J., McKay, D.S., Wentworth, S.J., Valí, H., Gibson Jr., E.K., Romanek, C.S., 2000. Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. Acta 64 (23), 4049-4081.
• Torchilin VP, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains vía p-nitrophenylcarbonyl groups. Biochim Biophys Acta. 2001 ; 1511 :397-411.
• Valverde-Tercedor, C., Montalbán-López, M., Perez-Gonzalez, T., Sanchez-Quesada, M.S., Prozorov, T., Pineda-Molina, E., Fernandez-Vivas, M.A., Rodríguez-Navarro, A.B., Trubitsyn, D., Bazylinski, D.A., Jimenez-Lopez, C., 2015. Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcusmarinus strain MC-1. Appl. Microbiol. Biotechnol. 99, 5109-5121.
Claims
1. Una composición que contiene:
(i) una fase mineral pura de magnetita biomimética superparamagnética;
(ii) MamC; y
(iii) opcionalmente, Mms6;
donde, al menos los componentes (i) y (ii) forman nanopartículas magnéticas superparamagnéticas que contienen hasta 5 wt% de MamC , con un tamaño medio de partícula entre 30-120 nm.
2. La composición de acuerdo con la reivindicación 1 , en la que no hay siderita en la composición a niveles detectables.
3. La composición según cualquiera de las reivindicaciones anteriores caracterizada porque su contenido en goetita no supera el 5wt%.
4. La composición de acuerdo a cualquiera de las reivindicaciones anteriores, donde el tamaño medio de la partícula es de 30-50 nm.
5. La composición de acuerdo a cualquiera de las reivindicaciones anteriores, donde las nanopartículas magnéticas biomiméticas se funcionalizan con un agente terapéutico, preferiblemente con un agente quimioterapéutico, más preferentemente doxorubicina.
6. La composición de acuerdo a cualquiera de las reivindicaciones anteriores, donde las nanopartículas magnéticas biomiméticas se funcionalizan con una sustancia señalizante, preferentemente con un anticuerpo monoclonal.
7. La composición según cualquiera de las reivindicaciones anteriores en las que las nanopartícunas biomiméticas MamC-mediadas se componen de ~95 wt% de magnetita y -5 wt% de MamC, con un tamaño medio de partícula entre 30-120 nm, punto isoeléctrico de -4.4, área superficial de ~ 90 m2/g, temperatura de bloqueo de -145 K y temperatura de irreversibilidad de -292 K.
8. Una formulación para hacer magnetoliposomas que engloba:
(i) la composición de acuerdo con cualquiera de las reivindicaciones 1-7;
(ii) un agente que forma liposomas; y
(iii) opcionalmente magnetitas inorgánicas superparamagnéticas (MNPs).
9. La formulación de magnetoliposomas de acuerdo con la reivindicación 8, donde los liposomas se funcionalizan con un agente terapéutico y/o con una sustancia señalizante.
10. Una composición farmacéutica que engloba la composición de la presente invención o la formulación de los magnetoliposomas de la presente invención y un transportador farmacéuticamente aceptable y/o diluente.
1 1. La composición de acuerdo con cualquiera de las cláusulas 1-7, la formulación de los magnetoliposomas de acuerdo con cualquiera de las reivindicaciones 8-9 o la composición farmacéutica de acuerdo con la reivindicación 8 para usarse como medicamento.
12. La composición de acuerdo con cualquiera de las reivindicaciones 1-7, la formulación de los magnetoliposomas de acuerdo con cualquiera de las reivindicaciones 8-9 o la composición farmacéutica de acuerdo con la reivindicación 8 para usarse en tratamientos contra el cáncer.
13. La composición, la formulación de los magnetoliposomas o la composición farmacéutica para uso de acuerdo con la reivindicación 12, donde el cáncer se selecciona se selecciona del grupo que consiste en leucemia linfocítica aguda, leucemia mielógena aguda, cáncer de hueso, cáncer de mama, cáncer de cuello de útero, cáncer gástrico, tumor cerebral y cuello, linfoma de Hodgkin, linfoma de no-Hodgkin, cáncer de hígado, cáncer de riñón, mieloma múltiple, neuroblastoma, cáncer de ovarios, cáncer de pulmón no microcítico, sarcoma de tejidos blandos, timomas, cáncer de tiroides, cáncer de vejiga de células transicionales, tumor de Wilms, macroglobulinemia de Waldenstróm.
14. Un método para producir una composición de una fase mineral sustancialmente pura de magnetita biomimética superparamagnética que comprende los siguientes pasos:
(a) preparar una solución de carbonato;
(b) añadir FeCh a la solución de carbonato;
(c) agregar MamC y, opcionalmente, Mms6 a la solución obtenida en el paso (b);
(d) incubar la solución obtenida en el paso (c) durante al menos 30 minutos;
(e) añadir Fe(CIC>4)2 a la solución obtenida en el paso (d) y
(f) ajustar el pH de la solución obtenida en el paso (e) a pH 9 usando una base;
Donde el método se realiza a 25 ° C y 1 atmósfera de presión y todas las soluciones utilizadas son previamente desoxigenadas.
15. El método de acuerdo con la reivindicación 14, donde la solución carbonatada consiste en NaHCOsy Na2CC>3 y, opcionalmente, la base es NaOH.
16. El método de acuerdo con la reivindicación 15, donde la concentración final de la solución obtenida en el paso (f) es 3.5 mM NaHCC>3, 3.5 mM Na2CC>3, 2.78 mM Fe(CIC>4)2,
5.56 mM FeCh y una cantidad variable de MamC y, opcionalmente, Mms6.
17. El método de acuerdo con la reivindicación 15, donde la concentración de los reservónos de proteínas en solución son [MamC] = 2-5 mg/mg, [Mms6] y [Mms7] > 1 mg/ml_.
18. El uso de la composición de acuerdo con cualquiera de las reivindicaciones 1-7, la formulación de los magnetoliposomas de acuerdo con cualquiera de las reivindicaciones 8-9 o la composición farmacéutica de acuerdo con la reivindicación 8 para la preparación de una agente de contraste para técnicas clínicas de imagen, preferentemente técnicas de imagen de resonancia magnética.
19. El uso de la composición de acuerdo con cualquiera de las reivindicaciones 1-7 para el aislamiento y purificación de ácidos nucleicos.
20. El uso de la composición de acuerdo con cualquiera de las reivindicaciones 1-7 como biosensor o como separador molecular.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19877759.1A EP3875433A4 (en) | 2018-11-02 | 2019-11-04 | BIOMIMETIC NANOPARTICLES MEDIATED BY MAMC |
US17/290,522 US20220143212A1 (en) | 2018-11-02 | 2019-11-04 | Mamc-mediated biomimetic nanoparticles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201831064A ES2758400B2 (es) | 2018-11-02 | 2018-11-02 | Nanoparticulas biomimeticas mediadas por mamc |
ESP201831064 | 2018-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020089505A1 true WO2020089505A1 (es) | 2020-05-07 |
Family
ID=70457367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2019/070747 WO2020089505A1 (es) | 2018-11-02 | 2019-11-04 | Nanopartículas biomiméticas mediadas por mamc |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220143212A1 (es) |
EP (1) | EP3875433A4 (es) |
ES (1) | ES2758400B2 (es) |
WO (1) | WO2020089505A1 (es) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114939187B (zh) * | 2022-03-24 | 2022-12-27 | 上海大学 | 一种3D打印MnPSe3纳米片复合支架及其制备方法和应用 |
CN117586923B (zh) * | 2024-01-15 | 2024-04-30 | 中国矿业大学(北京) | 磁性纳米粒子、生物传感器及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2231037A1 (es) | 2003-10-31 | 2005-05-01 | Archivel Technologies, Sl | Agente inmunoterapico util para el tratamiento combinado de la tuberculosis en asociacion con otros farmacos. |
WO2007097593A1 (en) * | 2006-02-24 | 2007-08-30 | Atgen Co., Ltd. | Magnetic nano-composite for contrast agent, intelligent contrast agent, drug delivery agent for simultaneous diagnosis and treatment, and separation agent for target substance |
US20100292495A1 (en) | 2007-10-11 | 2010-11-18 | Schueler Dirk | Method for the recombinant production of magnetic nanoparticles |
WO2017153996A1 (en) | 2016-03-08 | 2017-09-14 | The National Institute for Biotechnology in the Negev Ltd. | Peptides derived from magnetotactic bacteria and use thereof |
-
2018
- 2018-11-02 ES ES201831064A patent/ES2758400B2/es not_active Expired - Fee Related
-
2019
- 2019-11-04 WO PCT/ES2019/070747 patent/WO2020089505A1/es unknown
- 2019-11-04 US US17/290,522 patent/US20220143212A1/en active Pending
- 2019-11-04 EP EP19877759.1A patent/EP3875433A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2231037A1 (es) | 2003-10-31 | 2005-05-01 | Archivel Technologies, Sl | Agente inmunoterapico util para el tratamiento combinado de la tuberculosis en asociacion con otros farmacos. |
WO2007097593A1 (en) * | 2006-02-24 | 2007-08-30 | Atgen Co., Ltd. | Magnetic nano-composite for contrast agent, intelligent contrast agent, drug delivery agent for simultaneous diagnosis and treatment, and separation agent for target substance |
US20100292495A1 (en) | 2007-10-11 | 2010-11-18 | Schueler Dirk | Method for the recombinant production of magnetic nanoparticles |
WO2017153996A1 (en) | 2016-03-08 | 2017-09-14 | The National Institute for Biotechnology in the Negev Ltd. | Peptides derived from magnetotactic bacteria and use thereof |
Non-Patent Citations (40)
Title |
---|
"Remington's Pharmaceutical Sciences", 1980 |
ALPHANDERY, E.FAURE, S.SEKSEK, O.GUYOT, F.CHEBBI, I.: "Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy", ACS NANO, vol. 5, 2011, pages 6279 - 6296, XP002665005, DOI: 10.1021/nn201290k |
ALTSCHUL ET AL., J MOL BIOL., vol. 215, no. 3, 1990, pages 403 - 10 |
AMEMIYA, Y.ARAKAKI, A.STANILAND, S.MATSUNAGA, T.: "Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6", BIOMATERIALS, vol. 28, 2007, pages 5381 - 5389, XP022290577, DOI: 10.1016/j.biomaterials.2007.07.051 |
ARAKAKI, A.MASUDA, F.AMEMIYA, Y.TANAKA, T.MATSUNAGA, T.: "Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria", J.COLLOID INTERFACE SCI., vol. 343, 2010, pages 65 - 70 |
ARAKAKI, A.YAMAGISHI, A.FUKUYO, A.TANAKA, M.MATSUNAGA, T.: "Coordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria", MOL. MICROBIOL., vol. 93, 2014, pages 554 - 567 |
ARATO, B.SZANYI, Z.FLIES, C.SCHULER, D.FRANKEL, R.B.BUSECK, P.R.POSFAI, M.: "Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker", AM. MINERAL., vol. 90, 2005, pages 1233 - 1241 |
BAZYLINSKI, D.A.FRANKEL, R.B.: "Magnetosome formation in prokaryotes", NAT. REV. MICROBIOL., vol. 2, no. 3, 2004, pages 217 - 230, XP009072074, DOI: 10.1038/nrmicro842 |
BIRD, S.M.RAWLINGS, A.E.GALLOWAY, J.M.STANILAND, S.S.: "Using a biomimetic membrane surface experiment to investigate the activity of the magnetite biomineralisation protein Mms6", RSC ADV., vol. 6, 2016, pages 7356 |
BRIGGER IDUBERNET CCOUVREUR P.: "Nanoparticles in cancer therapy and diagnosis", ADV DRUG DELIV REV, vol. 54, 2002, pages 631 - 51, XP002969695, DOI: 10.1016/S0169-409X(02)00044-3 |
DE JONG WHBORM PJA: "Drug delivery and nanoparticles: Applications and hazards", INT J NANOMEDICINE, vol. 3, 2008, pages 133 - 149, XP055228154, DOI: 10.2147/IJN.S596 |
GALLOWAY, J.M.BRAMBLE, J.P.RAWLINGS, A.E.BURNELL, G.EVANS, S.D.STANILAND, S.S.: "Biotemplated magnetic nanoparticle arrays", SMALL, vol. 8, 2012, pages 204 - 208 |
GALLOWAY, J.M.BRAMBLE, J.P.RAWLINGS, A.E.BURNELL, G.EVANS, S.D.STANILAND, S.S.: "Nanomagnetic arrays formed with the biomineralization protein Mms6", J. NANO RES., no. 17, 2012, pages 127 - 146 |
JIMENEZ-LOPEZ, C.RODRIGUEZ-NAVARRO, C.RODRIGUEZ-NAVARRO, A.PEREZ-GONZALEZ, T.BAZYLINSKI, D. A.LAUER, H. V.ROMANEK, JR. C. S.: "Signatures in magnetites formed by (Ca,Mg,Fe)C03 thermal decomposition: Terrestrial and extraterrestrial implications", GEOCHIMICA ET COSMOCHIMICA ACTA, vol. 87, 2012, pages 69 - 80, XP028489891, DOI: 10.1016/j.gca.2012.03.028 |
KOLINKO, I.: "Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters", NAT. NANOTECHNOL., vol. 9, 2014, pages 193 - 197 |
LAFISCO, M.DELGADO-LOPEZ, J.M.VARONI, E.M.TAMPIERI, A.RIMONDINI, L.GOMEZ-MORALES, J.PRAT, M.: "Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy", SMALL, vol. 9, no. 22, 2013, pages 3834 - 3844 |
LAFISCO, M.VARONI, E.DI FOGGIA, M.PIETRONAVE, S.FINI, M.ROVERI, N.RIMONDINI, L.PRAT, M.: "Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications", COLLOIDS SURF B BIOINTERFACES, vol. 90, 2012, pages 1 - 7, XP028125036, DOI: 10.1016/j.colsurfb.2011.09.033 |
LANGMUIR, I.: "The adsorption of gases on plane surfaces of glass, mica and platinum", J. AM. CHEM. SOC, vol. 40, 1918, pages 1361 - 1403, XP055629095, DOI: https://doi.org/10.1021/ja02242a004 |
LISY, M.R. ET AL.: "Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents", INVEST. RADIOL., vol. 42, no. 4, 2007, pages 235 - 241, XP055334270, DOI: 10.1097/01.rli.0000255832.44443.e7 |
LOPEZ MORENO, R. ET AL.: "Magnetite Nanoparticles Biomineralization in the Presence of the Magnetosome Membrane Protein MamC: Effect of Protein Aggregation and Protein Structure on Magnetite Formation", CRYSTAL GROWTH & DESIGN, vol. 17, 13 February 2017 (2017-02-13), pages 1620 - 1629, XP055703614, DOI: 10.1021/acs.cgd.6b01643 * |
MARTIN RAMOS, J.D.: "XPowder, a software package for powder X-ray diffraction analysis", LEGAL DEPOSIT GR 1001/04, 2004 |
MARUYAMA, K.TAKEYAMA, H.MORI, T.OHSHIMA, K.OGURA, S.MOCHIZUKI, T.MATSUNAGA, T.: "Detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) using a fully automated system with a nano-scale engineered biomagnetite", BIOSENS. BIOELECTRON., vol. 22, 2007, pages 2282 - 2288 |
MARUYAMA, K.TAKEYAMA, H.NEMOTO, E.TANAKA, T.YODA, K.MATSUNAGA, T.: "Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis", BIOTECHNOL. BIOENG., vol. 87, 2004, pages 687 - 694, XP055275589, DOI: 10.1002/bit.20073 |
MATSUNAGA, T.SUZUKI, T.TANAKA, M.ARAKAKI, A.: "Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology", TRENDS. BIOTECHNOL., vol. 25, 2007, pages 182 - 188, XP005932535, DOI: 10.1016/j.tibtech.2007.02.002 |
NUDELMAN, H. ET AL.: "Understanding the Biomineralization Role of Magnetite-Interacting Components (MICs) From Magnetotactic Bacteria", FRONTIERS IN MICROBIOLOGY, vol. 9, 23 October 2018 (2018-10-23), XP055703608, ISSN: 1664-302X, DOI: 10.3389/fmicb.2018.02480 * |
OLTOLINA, F.GREGOLETTO, L.COLANGELO, D.GOMEZ-MORALES, J.DELGADO-LOPEZ, J. M.PRAT, M.: "Monoclonal Antibody-Targeted Fluorescein-5-isothiocyanate-Labeled Biomimetic Nanoapatites: A Promising Fluorescent Probe for Imaging Applications", LANGMUIR, vol. 31, no. 5, 2015, pages 1766 - 1775 |
OTA, H.LIM, T.K.TANAKA, T.YOSHINO, T.HARADA, M.MATSUNAGA, T.: "Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles", J. BIOTECHNOL., vol. 125, 2006, pages 361 - 368, XP024956659, DOI: 10.1016/j.jbiotec.2006.03.007 |
PEIGNEUX, A. ET AL.: "Tuning properties of biomimetic magnetic nanoparticles by combining magnetosome associated proteins", SCIENTIFIC REPORTS, vol. 9, 19 June 2019 (2019-06-19), XP055703627, ISSN: 2045-2322, DOI: 10.1038/s41598-019-45219-7 * |
PEREZ-GONZALEZ, T.C.JIMENEZ-LOPEZ, C.NEAL, A.L.RULL-PEREZ, F.RODRIGUEZ-NAVARRO, A.FERNANDEZ-VIVAS, A.LANEZ-PAREJA, E.: "Magnetite biomineralization induced by Shewanellaoneidensis", GEOCHIM. COSMOCHIM. ACTA, vol. 74, no. 3, 2010, pages 967 - 979, XP026814499 |
PROZOROV, T.BAZYLINSKI, D.A.MALLAPRAGADA, S.K.PROZOROV, R.: "Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review", MATER.SCI. ENG. R, vol. 74, 2013, pages 133 - 172 |
PROZOROV, T.MALLAPRAGADA, S.K.NARASIMHAN, B.WANG, L.PALO, P.NILSEN-HAMILTON, M.WILLIAMS, T.J.BAZYLINSKI, D.A.PROZOROV, R.CANFIELD,: "Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals", ADV. FUNCT. MATER., vol. 17, 2007, pages 951 - 957, XP055185556, DOI: 10.1002/adfm.200600448 |
RAWLINGS, A.E.BRAMBLE, J.P.WALKER, R.BAIN, J.GALLOWAY, J.M.STANILAND, S.S.: "Self-assembled MmsFproteinosomes control magnetite nanoparticle formation in vitro", PROC. NATL. ACAD. SCI. U.S.A., vol. 111, 2014, pages 16094 - 16099 |
RILL, C.KOLAR, Z. I.KICKELBICK, G.WOLTERBEEK, H. T.PETERS, J. A.: "Kinetics and thermodynamics of adsorption on hydroxyapatite of the [160Tb]terbium complexes of the bone-targeting ligands DOTP and BPPED", LANGMUIR, vol. 25, 2009, pages 2294 - 301 |
See also references of EP3875433A4 |
SINGH RLILLARD JW JR: "Nanoparticle-based targeted drug delivery", EXP MOL PATHOL, vol. 86, 2009, pages 215 - 23, XP026096507, DOI: 10.1016/j.yexmp.2008.12.004 |
SUN, J.B.DUAN, J.H.DAI, S.L.REN, J.GUO, L.JIANG, W.LI, Y.: "Preparation and antitumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense", BIOTECHNOL. BIOENG., vol. 101, no. 6, 2008, pages 1313 - 1320 |
THOMAS-KEPRTA, K.L.BAZYLINSKI, D.A.KIRSCHVINK, J.L.CLEMETT, S.J.MCKAY, D.S.WENTWORTH, S.J.VALI, H.GIBSON JR., E.KROMANEK, C.S.: "Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils", GEOCHIM. COSMOCHIM. ACTA, vol. 188, no. 23, 2000, pages 4049 - 4081 |
TORCHILIN VP ET AL.: "p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups", BIOCHIM BIOPHYS ACTA, vol. 1511, 2001, pages 397 - 411, XP004273433, DOI: 10.1016/S0005-2728(01)00165-7 |
VALVERDE-TERCEDOR, C. ET AL.: "Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC -1", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 99, 21 January 2015 (2015-01-21), pages 5109 - 5121, XP055703624, ISSN: 0175-7598, DOI: 10.1007/s00253-014-6326-y * |
VALVERDE-TERCEDOR, C.MONTALBAN-LOPEZ, M.PEREZ-GONZALEZ, T.SANCHEZ-QUESADA, M.S.PROZOROV, T.PINEDA-MOLINA, E.FERNANDEZ-VIVAS, M.A.R: "Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcusmarinus strain MC-1", APPL. MICROBIOL. BIOTECHNOL., vol. 99, 2015, pages 5109 - 5121, XP055703624, DOI: 10.1007/s00253-014-6326-y |
Also Published As
Publication number | Publication date |
---|---|
EP3875433A4 (en) | 2022-08-17 |
US20220143212A1 (en) | 2022-05-12 |
ES2758400B2 (es) | 2021-01-20 |
ES2758400A1 (es) | 2020-05-05 |
EP3875433A1 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Uthappa et al. | Nanodiamonds and their surface modification strategies for drug delivery applications | |
Liu et al. | Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy | |
Barui et al. | Biomedical applications of zinc oxide nanoparticles | |
Nasrolahi Shirazi et al. | Cyclic peptide–selenium nanoparticles as drug transporters | |
Bhushan et al. | Ferritin nanocages: a novel platform for biomedical applications | |
Patil et al. | Nanotechnology derived nanotools in biomedical perspectives: An update | |
Mehta et al. | Hybrid nanostructures: Versatile systems for biomedical applications | |
Demin et al. | Smart design of a pH-responsive system based on pHLIP-modified magnetite nanoparticles for tumor MRI | |
JP2009536151A (ja) | ナノ粒子 | |
Grumezescu et al. | Nanostructures for Cancer Therapy | |
ES2862167T3 (es) | Preparación apirógena que contiene nanopartículas sintetizadas por una bacteria magnetotáctica para aplicaciones médicas o cosméticas | |
Peigneux et al. | Functionalized biomimetic magnetic nanoparticles as effective nanocarriers for targeted chemotherapy | |
Jin et al. | Biosafe nanoscale pharmaceutical adjuvant materials | |
WO2020089505A1 (es) | Nanopartículas biomiméticas mediadas por mamc | |
Zhang et al. | A facile route to core–shell nanoparticulate formation of arsenic trioxide for effective solid tumor treatment | |
Wang et al. | Magnetic multi-walled carbon nanotubes for tumor theranostics | |
Yang et al. | Rational design of GO-modified Fe3O4/SiO2 nanoparticles with combined rhenium-188 and gambogic acid for magnetic target therapy | |
Xie et al. | Layered clay minerals in cancer therapy: recent progress and prospects | |
Zhang et al. | Elevating mitochondrial reactive oxygen species by mitochondria-targeted inhibition of superoxide dismutase with a mesoporous silica nanocarrier for cancer therapy | |
Demin et al. | Design of SiO2/aminopropylsilane-modified magnetic Fe3O4 nanoparticles for doxorubicin immobilization | |
Kim et al. | Pharmaceutical applications of graphene-based nanosheets | |
Dong et al. | Targeted MRI and chemotherapy of ovarian cancer with clinic available nano-drug based nanoprobe | |
Zeb et al. | Recent progress and drug delivery applications of surface-functionalized inorganic nanoparticles in cancer therapy | |
Wu et al. | Combined biomimetic MOF-RVG15 nanoformulation efficient over BBB for effective anti-glioblastoma in mice model | |
EP2942064B1 (en) | Mri contrast agent including t1 contrast material coated on surface of nanoparticle support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877759 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019877759 Country of ref document: EP Effective date: 20210602 |