WO2020089237A1 - Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes - Google Patents

Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes Download PDF

Info

Publication number
WO2020089237A1
WO2020089237A1 PCT/EP2019/079545 EP2019079545W WO2020089237A1 WO 2020089237 A1 WO2020089237 A1 WO 2020089237A1 EP 2019079545 W EP2019079545 W EP 2019079545W WO 2020089237 A1 WO2020089237 A1 WO 2020089237A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
measuring device
rotor blade
rotor
sensors
Prior art date
Application number
PCT/EP2019/079545
Other languages
German (de)
English (en)
Inventor
Luis VERA-TUDELA
Markus Schmid
Onur KIMILLI
Original Assignee
fos4X GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by fos4X GmbH filed Critical fos4X GmbH
Publication of WO2020089237A1 publication Critical patent/WO2020089237A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/324Air pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the application is in the field of wind turbine technology.
  • the present application discloses systems and methods for improved prediction and evaluation of wind flows with regard to wind energy generation systems.
  • Wind turbines are exposed to large loads, which can lead to material fatigue, in accordance with the changing wind conditions during operation.
  • the estimated life of a wind turbine is based on its resistance to such harsh conditions.
  • the wind conditions can no longer be homogeneous within this large range.
  • This area is too large for this, for example if you assume a rotor diameter of more than 130 m.
  • the area, for example, of a rotor with a diameter of 100 m is approximately 7,800 m 2 . It can thus be seen that within such an area there may be different wind conditions or wind flow conditions at different locations on the area.
  • Time and space dependencies as well as statistical models can be used to estimate the change in wind flow conditions along the rotor blade axes, also known as “turbulent wind models”. Since modern wind turbines reach heights at which atmospheric influences can influence these models, the long-term description can be influenced by daily and regional differences.
  • a yield of expected wind energy production is given with probabilities of P50, P75 and P90. That is,
  • Probability values for an expected yield from wind power can be predicted with probabilities of 50, 75 or 90%.
  • metal masts including several anemometers to describe wind flow fields (mathematically a vector field) during the location selection, as well as for carrying out wind energy estimates and layout optimization.
  • Wind flow conditions are suggestions of a mechanical system whose system response is simulated using physical models. Therefore, the approaches proposed in the industry focus on a direct measurement of the system response i.e. on the generation of energy, mechanical loads or structural deformation of system components in a particular wind flow (excitation).
  • the estimation of wind conditions are therefore the by-product of reverse modeling, in which the system response is used to infer an expected deflection or to estimate it.
  • LiDARs are dependent on atmospheric conditions and are more suitable for wind energy prediction than for load estimation because they scan an area in front of the turbine rather than a point; on the other hand, anemometers on the rotor hub do the opposite and provide better estimates than current Nacellen-based measurements.
  • US7281891B2 (2003-02-28) discloses a wind turbine control, with a LiDAR wind speed meter.
  • US6909198B2 (2000-07-07) discloses a method and a device for processing and predicting the flow parameters of turbulent media.
  • a simpler and improved method and a device for predicting wind flow conditions on a rotor is therefore desirable.
  • a device for measuring wind flows on one or more rotor blades of a wind turbine can have at least two sensors, which can be designed to measure a fluid pressure at points on a rotor blade surface. This fluid pressure can be a wind-generated pressure and can be output as an electronically processable signal.
  • the device can contain an evaluation unit, which can be designed to evaluate signals from the at least two sensors and to feed the resulting evaluation data to a subsequent control unit.
  • a method for determining wind parameters on a rotor blade surface may include: determining air pressure readings at at least two points on a rotor blade surface; Transfer of the air pressure measured values into an electronic evaluation unit; Evaluating the air pressure measured values and subsequently; Determine one or more parameters from the group: wind speed vector, turbulence intensity or wind shear.
  • a rotor blade is disclosed with a measuring device according to one or more aspects of the present disclosure.
  • a wind turbine is disclosed with a measuring device according to one or more aspects of the present disclosure.
  • La, lb, and lc a rotor blade according to embodiments of the present application
  • FIG. 2 shows a rotor of a wind turbine in a front view
  • FIG. 3 shows a side view of a wind turbine in wind power
  • FIG. 4 shows a flowchart for a method according to embodiments of the invention.
  • a measuring device for measuring wind flows on one or more rotor blades 110 of a wind turbine is therefore disclosed.
  • the measuring device can contain at least two sensors 130. These sensors can be designed to measure a fluid pressure at points on a rotor blade surface and to output this as an electronically processable signal.
  • the measuring device can also contain an evaluation device which is designed to evaluate signals from the at least two sensors and to supply these as evaluation data to a subsequent control unit.
  • the sensors can be arranged along a rotor blade axis 120 of the rotor blade 110, as shown in FIG. 1 a and in FIG. 1 c (side view).
  • control unit and the evaluation device can be arranged in a rotor blade or at another location of the wind turbine evaluation device 150, 210 and control unit 220 can also be arranged at different positions of the wind turbine, for example, the external device can be arranged in a rotor blade and the control unit in the tower of the wind turbine or in a machine housing, that is to say the part of a wind turbine in which the generator, transmission, etc. are accommodated.
  • rotor blades 110 of a rotor 200 can be equipped with sensors along their rotor blade axis 120. It is particularly advantageous if at least two sensors are arranged along the rotor blade axis of each rotor blade. The higher the number of sensors used, the more precisely the following parameters can be determined.
  • 2 shows a rotor 200 with three rotor blades 110. The arrangement of pressure sensors 130 along the axis 120 of the rotor blade is shown schematically on one of the blades.
  • the pressure sensors can be arranged parallel to the axis of the rotor blade.
  • the axis of the rotor blade according to the embodiments described here is considered the neutral fiber of the rotor blade or the line on the surface of the rotor blade with the greatest wind-blade interaction.
  • This axis or line can be a straight or a curved line starting from the leaf root to the leaf tip.
  • the definition of the rotor blade axis, or the line with the greatest wind-blade interaction, is carried out uniformly starting from the blade root to the blade tip within the scope of the embodiments described here.
  • the sensors of the measuring device can be fiber optic sensors according to one or more of the preceding aspects.
  • Fiber optic sensors are very weather resistant, robust and insensitive to, for example, electrical influences such as lightning strikes, as can occur on wind power towers or rotor blades.
  • Fiber optic sensors in particular fiber optic pressure sensors, are known as such and are disclosed, for example, in DE 10 2014 210 949 A1.
  • a measuring device according to one or more of the preceding aspects is disclosed, wherein the evaluation device contained in the measuring device can be adapted to determine one or more parameters from the group of wind speed vector, turbulence intensity or wind shear from the evaluation data .
  • the evaluation device can also be adapted to determine a prediction of the wind yield probability from the evaluation data. From this, a wind report can be created to predict the energy yields that the wind turbine can deliver.
  • An optimized wind turbine control is therefore not implemented via their system response, but can advantageously be implemented directly via the deflection of the fiber-optic sensors attached to the rotor blades in order to control the system.
  • FIG. 3 shows the conditions of a rotor, which is blown by the wind 310, with rotor blades 110, on which pressure sensors 130 are located.
  • a measuring device according to one or more of the preceding aspects is disclosed, wherein the evaluation device can be further adapted to from the Evaluation data to determine a load prediction of one or more mechanical components of the wind turbine.
  • the mechanical components can be, for example, the tower of the wind power plant, the rotor blades of the wind power plant or the gear of the wind power plant. All of these components are exposed to the loads caused by changing wind conditions, as becomes clear when looking at FIG. 3, for example.
  • a method 400 for determining wind parameters on a rotor blade surface is disclosed.
  • the process may include, among others:
  • Determination 410 of fluid pressure measured values in particular of air pressure measured values at at least two points on a rotor blade surface. Transfer 420 of the air pressure measured values into an electronic evaluation unit as well as evaluating 430 of the air pressure measured values and subsequently determining 440 one or more parameters from the group: wind speed vector, turbulence intensity or wind shear.
  • the determination of the air pressure measured values can be done by means of fiber-optic sensors, which are arranged along a rotor blade axis.
  • Rotor blade 110 with a measuring device is disclosed.
  • a wind turbine with one or more rotor blades 110 with a Measuring device according to one or more aspects of the present application disclosed.
  • Fiber optic sensors are advantageously attached along the rotor blade axis. Measurements are thus carried out at an optimal position along the rotor blade axis, i.e. exactly where a wind-blade interaction takes place.
  • This local arrangement overcomes the limitations of previous approaches because it measures the wind conditions along the entire area described by the rotor and does so at a higher sampling rate.
  • Measurement of a deflection is the focus and not a system response. Advantage through time-to-response. It is not the system response that is of interest, but rather the measurement of a deflection as a direct reaction of a force caused by the oncoming wind.
  • Measurements are carried out with fiber optic sensors that can measure a local pressure.
  • the sensors are thus arranged in such a way that the measured values can map all points at least along the rotor blade axis.
  • the measuring device according to the present disclosure and corresponding methods thus overcomes problems and restrictions of alternative approaches:
  • Wind speed vector, turbulence intensity and wind shear are measurable as areas with high sampling rates.
  • Turbulent wind field models can be better validated and further improved. Wind energy probability estimates can be improved in their accuracy and precision.
  • the methods and devices presented enable new applications. For example, very short-term wind energy forecasts (less than 10 minutes goal time) are possible. In contrast to previous procedural measures, this enables very effective and fast control of the wind power plant and can thus contribute to optimized wind energy generation.
  • the load values due to the wind flow measured directly on the blades of the installation can advantageously be used for the operation and also in the design of wind turbines.
  • the influence of the wind speed on the rotor can be determined directly at the measurement location (pitch angle and sheet torsion calibration)
  • a wind / load dependency can be measured in real time (hybrid model correction for aero-elastic models) and can contribute to an improved design in the development of wind turbines.
  • An optimized turbine control is not, as before, realized via its system response, but directly via its deflection, in order to control the wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un dispositif de mesure et un procédé de mesure de flux éoliens sur au moins une pale de rotor d'une éolienne. Au moins deux capteurs de pression sont prévus, qui sont conçus pour mesurer une pression de fluide, de préférence une pression d'air, à des points d'une surface de pale de rotor, lesdits capteurs étant montés le long d'un axe de pale de rotor. En outre, un dispositif d'évaluation est prévu, pour évaluer les signaux des au moins deux capteurs de pression.
PCT/EP2019/079545 2018-11-02 2019-10-29 Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes WO2020089237A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018127417.3 2018-11-02
DE102018127417.3A DE102018127417A1 (de) 2018-11-02 2018-11-02 Modellierung und Vorhersage von Windströmung mit faseroptischen Sensoren in Windturbinen

Publications (1)

Publication Number Publication Date
WO2020089237A1 true WO2020089237A1 (fr) 2020-05-07

Family

ID=68426441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/079545 WO2020089237A1 (fr) 2018-11-02 2019-10-29 Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes

Country Status (2)

Country Link
DE (1) DE102018127417A1 (fr)
WO (1) WO2020089237A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415110B2 (en) * 2018-06-21 2022-08-16 Vestas Wind Systems A/S Wind turbine blade, a method of controlling a wind turbine, a control system, and a wind turbine
CN118112284A (zh) * 2024-04-30 2024-05-31 国网甘肃省电力公司兰州供电公司 一种风力发电设备风速检测校准方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907787B (zh) * 2023-06-30 2024-01-30 中国舰船研究设计中心 一种水面船舱面风测量精度评定试验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909198B2 (en) 2000-07-07 2005-06-21 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for processing and predicting the flow parameters of turbulent media
US7281891B2 (en) 2003-02-28 2007-10-16 Qinetiq Limited Wind turbine control having a lidar wind speed measurement apparatus
DE102011011392A1 (de) 2011-02-17 2012-08-23 Ssb Wind Systems Gmbh & Co. Kg Optische Messeinrichtung für die Verformung eines Rotorblattes einer Windkraftanlage
DE102012108776A1 (de) * 2012-09-18 2014-03-20 Technische Universität München Verfahren und Vorrichtung zur Überwachung von Betriebszuständen von Rotorblättern
DE102014210949A1 (de) 2014-06-06 2015-12-17 Wobben Properties Gmbh Windenergieanlage mit optischen Drucksensoren sowie Verfahren zum Betreiben einer Windenergieanlage
US20170219697A1 (en) * 2016-01-28 2017-08-03 General Electric Company System and method for improving lidar sensor signal availability on a wind turbine
DE102016117191A1 (de) * 2016-09-13 2018-03-15 fos4X GmbH Verfahren und Vorrichtung zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage
DE102016119958A1 (de) * 2016-10-20 2018-04-26 Wobben Properties Gmbh Verstelleinrichtung für ein Rotorblatt einer Windenergieanlage sowie eine Windenergieanlage damit und Verfahren dafür

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015179A1 (de) * 2007-03-29 2008-10-02 Siemens Ag Druckmessvorrichtung und Verfahren zur Bestimmung der Windkraft auf Windenergieanlagen sowie Verwendung der Druckmessvorrichtung und des Verfahrens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909198B2 (en) 2000-07-07 2005-06-21 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for processing and predicting the flow parameters of turbulent media
US7281891B2 (en) 2003-02-28 2007-10-16 Qinetiq Limited Wind turbine control having a lidar wind speed measurement apparatus
DE102011011392A1 (de) 2011-02-17 2012-08-23 Ssb Wind Systems Gmbh & Co. Kg Optische Messeinrichtung für die Verformung eines Rotorblattes einer Windkraftanlage
DE102012108776A1 (de) * 2012-09-18 2014-03-20 Technische Universität München Verfahren und Vorrichtung zur Überwachung von Betriebszuständen von Rotorblättern
DE102014210949A1 (de) 2014-06-06 2015-12-17 Wobben Properties Gmbh Windenergieanlage mit optischen Drucksensoren sowie Verfahren zum Betreiben einer Windenergieanlage
US20170219697A1 (en) * 2016-01-28 2017-08-03 General Electric Company System and method for improving lidar sensor signal availability on a wind turbine
DE102016117191A1 (de) * 2016-09-13 2018-03-15 fos4X GmbH Verfahren und Vorrichtung zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage
DE102016119958A1 (de) * 2016-10-20 2018-04-26 Wobben Properties Gmbh Verstelleinrichtung für ein Rotorblatt einer Windenergieanlage sowie eine Windenergieanlage damit und Verfahren dafür

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415110B2 (en) * 2018-06-21 2022-08-16 Vestas Wind Systems A/S Wind turbine blade, a method of controlling a wind turbine, a control system, and a wind turbine
CN118112284A (zh) * 2024-04-30 2024-05-31 国网甘肃省电力公司兰州供电公司 一种风力发电设备风速检测校准方法及系统

Also Published As

Publication number Publication date
DE102018127417A1 (de) 2020-05-07

Similar Documents

Publication Publication Date Title
EP3513069B1 (fr) Procédé et dispositif pour déterminer des sollicitations exercées sur un mât d'éolienne
WO2020089237A1 (fr) Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes
DE102011083749B4 (de) Rotorblatt einer Windkraftanlage mit einer Vorrichtung zum Erfassen eines Abstandswertes und Verfahren zum Erfassen eines Abstandswertes
EP2021890B1 (fr) Procede de surveillance des contraintes de pales de rotor d'eoliennes
DE10022129C2 (de) Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage zur Durchführung des Verfahrens
EP1454058B1 (fr) Procede pour surveiller un detecteur
DE102008020154B4 (de) Verfahren zum Betreiben einer Windenergieanlage
DE102017125457B4 (de) Verfahren zum Bestimmen einer Wahrscheinlichkeit zu einem Drosseln und/oder einem Abschalten zumindest einer Windkraftanlage aufgrund von Eisansatz
DE102005048805A1 (de) Verfahren zum Betreiben einer Windenergieanlage
EP1817496A1 (fr) Procede pour optimaliser le fonctionnement d'installations d'energie eolienne
EP3555466B1 (fr) Dispositif et procédé de détection de l'accumulation de glace à une structure d'un ouvrage de construction
EP3803114A1 (fr) Arrangement de capteur pour un aérogénérateur
DE102012011210A1 (de) Zielwertabhängige Steuerung eines Windparks
DE102018001269A1 (de) Verfahren und System zum Ermitteln einer Ausrichtungskorrekturfunktion
DE102018108858A1 (de) Windenergieanlage, Windpark sowie Verfahren zum Regeln einer Windenergieanlage und eines Windparks
EP2674616A2 (fr) Dispositif de commande d'installation éolienne et système de commande d'un parc éolien
DE102014204017A1 (de) Verfahren und Vorrichtung zur Rotorblatteinstellung für eine Windkraftanlage
EP2395320A1 (fr) Dispositif de mesure pour la mesure de déformations d'objets élastiquement déformables
EP3500752B1 (fr) Système de mesure d'une éolienne
WO2020239706A1 (fr) Modélisation et prévision de traînées tourbillonnaires et de cisaillements de vent à l'aide de capteurs à fibre optique dans des éoliennes
DE102018116941A1 (de) Vorrichtung und Verfahren zum Erkennen der Anlagerung oder der Eisart von Eis an einem Rotorblatt eines Rotors einer Windkraftanlage
DE102021210569A1 (de) Verfahren zum Betreiben einer Windenergieanlage in einem Windpark und Windparkmanager
EP3587805B1 (fr) Système de détermination de la performance disponible d'un parc éolien
WO2021013487A1 (fr) Procédé pour commander un parc éolien, module de commande pour un parc éolien et parc éolien
EP4086454A1 (fr) Procédé de fonctionnement d'une éolienne, éolienne et parc éolien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19797640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19797640

Country of ref document: EP

Kind code of ref document: A1