WO2020089237A1 - Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes - Google Patents
Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes Download PDFInfo
- Publication number
- WO2020089237A1 WO2020089237A1 PCT/EP2019/079545 EP2019079545W WO2020089237A1 WO 2020089237 A1 WO2020089237 A1 WO 2020089237A1 EP 2019079545 W EP2019079545 W EP 2019079545W WO 2020089237 A1 WO2020089237 A1 WO 2020089237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind
- measuring device
- rotor blade
- rotor
- sensors
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 6
- 239000000835 fiber Substances 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 3
- 238000009530 blood pressure measurement Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 12
- 230000004044 response Effects 0.000 description 9
- 238000013459 approach Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/14—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/301—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/324—Air pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05B2270/804—Optical devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the application is in the field of wind turbine technology.
- the present application discloses systems and methods for improved prediction and evaluation of wind flows with regard to wind energy generation systems.
- Wind turbines are exposed to large loads, which can lead to material fatigue, in accordance with the changing wind conditions during operation.
- the estimated life of a wind turbine is based on its resistance to such harsh conditions.
- the wind conditions can no longer be homogeneous within this large range.
- This area is too large for this, for example if you assume a rotor diameter of more than 130 m.
- the area, for example, of a rotor with a diameter of 100 m is approximately 7,800 m 2 . It can thus be seen that within such an area there may be different wind conditions or wind flow conditions at different locations on the area.
- Time and space dependencies as well as statistical models can be used to estimate the change in wind flow conditions along the rotor blade axes, also known as “turbulent wind models”. Since modern wind turbines reach heights at which atmospheric influences can influence these models, the long-term description can be influenced by daily and regional differences.
- a yield of expected wind energy production is given with probabilities of P50, P75 and P90. That is,
- Probability values for an expected yield from wind power can be predicted with probabilities of 50, 75 or 90%.
- metal masts including several anemometers to describe wind flow fields (mathematically a vector field) during the location selection, as well as for carrying out wind energy estimates and layout optimization.
- Wind flow conditions are suggestions of a mechanical system whose system response is simulated using physical models. Therefore, the approaches proposed in the industry focus on a direct measurement of the system response i.e. on the generation of energy, mechanical loads or structural deformation of system components in a particular wind flow (excitation).
- the estimation of wind conditions are therefore the by-product of reverse modeling, in which the system response is used to infer an expected deflection or to estimate it.
- LiDARs are dependent on atmospheric conditions and are more suitable for wind energy prediction than for load estimation because they scan an area in front of the turbine rather than a point; on the other hand, anemometers on the rotor hub do the opposite and provide better estimates than current Nacellen-based measurements.
- US7281891B2 (2003-02-28) discloses a wind turbine control, with a LiDAR wind speed meter.
- US6909198B2 (2000-07-07) discloses a method and a device for processing and predicting the flow parameters of turbulent media.
- a simpler and improved method and a device for predicting wind flow conditions on a rotor is therefore desirable.
- a device for measuring wind flows on one or more rotor blades of a wind turbine can have at least two sensors, which can be designed to measure a fluid pressure at points on a rotor blade surface. This fluid pressure can be a wind-generated pressure and can be output as an electronically processable signal.
- the device can contain an evaluation unit, which can be designed to evaluate signals from the at least two sensors and to feed the resulting evaluation data to a subsequent control unit.
- a method for determining wind parameters on a rotor blade surface may include: determining air pressure readings at at least two points on a rotor blade surface; Transfer of the air pressure measured values into an electronic evaluation unit; Evaluating the air pressure measured values and subsequently; Determine one or more parameters from the group: wind speed vector, turbulence intensity or wind shear.
- a rotor blade is disclosed with a measuring device according to one or more aspects of the present disclosure.
- a wind turbine is disclosed with a measuring device according to one or more aspects of the present disclosure.
- La, lb, and lc a rotor blade according to embodiments of the present application
- FIG. 2 shows a rotor of a wind turbine in a front view
- FIG. 3 shows a side view of a wind turbine in wind power
- FIG. 4 shows a flowchart for a method according to embodiments of the invention.
- a measuring device for measuring wind flows on one or more rotor blades 110 of a wind turbine is therefore disclosed.
- the measuring device can contain at least two sensors 130. These sensors can be designed to measure a fluid pressure at points on a rotor blade surface and to output this as an electronically processable signal.
- the measuring device can also contain an evaluation device which is designed to evaluate signals from the at least two sensors and to supply these as evaluation data to a subsequent control unit.
- the sensors can be arranged along a rotor blade axis 120 of the rotor blade 110, as shown in FIG. 1 a and in FIG. 1 c (side view).
- control unit and the evaluation device can be arranged in a rotor blade or at another location of the wind turbine evaluation device 150, 210 and control unit 220 can also be arranged at different positions of the wind turbine, for example, the external device can be arranged in a rotor blade and the control unit in the tower of the wind turbine or in a machine housing, that is to say the part of a wind turbine in which the generator, transmission, etc. are accommodated.
- rotor blades 110 of a rotor 200 can be equipped with sensors along their rotor blade axis 120. It is particularly advantageous if at least two sensors are arranged along the rotor blade axis of each rotor blade. The higher the number of sensors used, the more precisely the following parameters can be determined.
- 2 shows a rotor 200 with three rotor blades 110. The arrangement of pressure sensors 130 along the axis 120 of the rotor blade is shown schematically on one of the blades.
- the pressure sensors can be arranged parallel to the axis of the rotor blade.
- the axis of the rotor blade according to the embodiments described here is considered the neutral fiber of the rotor blade or the line on the surface of the rotor blade with the greatest wind-blade interaction.
- This axis or line can be a straight or a curved line starting from the leaf root to the leaf tip.
- the definition of the rotor blade axis, or the line with the greatest wind-blade interaction, is carried out uniformly starting from the blade root to the blade tip within the scope of the embodiments described here.
- the sensors of the measuring device can be fiber optic sensors according to one or more of the preceding aspects.
- Fiber optic sensors are very weather resistant, robust and insensitive to, for example, electrical influences such as lightning strikes, as can occur on wind power towers or rotor blades.
- Fiber optic sensors in particular fiber optic pressure sensors, are known as such and are disclosed, for example, in DE 10 2014 210 949 A1.
- a measuring device according to one or more of the preceding aspects is disclosed, wherein the evaluation device contained in the measuring device can be adapted to determine one or more parameters from the group of wind speed vector, turbulence intensity or wind shear from the evaluation data .
- the evaluation device can also be adapted to determine a prediction of the wind yield probability from the evaluation data. From this, a wind report can be created to predict the energy yields that the wind turbine can deliver.
- An optimized wind turbine control is therefore not implemented via their system response, but can advantageously be implemented directly via the deflection of the fiber-optic sensors attached to the rotor blades in order to control the system.
- FIG. 3 shows the conditions of a rotor, which is blown by the wind 310, with rotor blades 110, on which pressure sensors 130 are located.
- a measuring device according to one or more of the preceding aspects is disclosed, wherein the evaluation device can be further adapted to from the Evaluation data to determine a load prediction of one or more mechanical components of the wind turbine.
- the mechanical components can be, for example, the tower of the wind power plant, the rotor blades of the wind power plant or the gear of the wind power plant. All of these components are exposed to the loads caused by changing wind conditions, as becomes clear when looking at FIG. 3, for example.
- a method 400 for determining wind parameters on a rotor blade surface is disclosed.
- the process may include, among others:
- Determination 410 of fluid pressure measured values in particular of air pressure measured values at at least two points on a rotor blade surface. Transfer 420 of the air pressure measured values into an electronic evaluation unit as well as evaluating 430 of the air pressure measured values and subsequently determining 440 one or more parameters from the group: wind speed vector, turbulence intensity or wind shear.
- the determination of the air pressure measured values can be done by means of fiber-optic sensors, which are arranged along a rotor blade axis.
- Rotor blade 110 with a measuring device is disclosed.
- a wind turbine with one or more rotor blades 110 with a Measuring device according to one or more aspects of the present application disclosed.
- Fiber optic sensors are advantageously attached along the rotor blade axis. Measurements are thus carried out at an optimal position along the rotor blade axis, i.e. exactly where a wind-blade interaction takes place.
- This local arrangement overcomes the limitations of previous approaches because it measures the wind conditions along the entire area described by the rotor and does so at a higher sampling rate.
- Measurement of a deflection is the focus and not a system response. Advantage through time-to-response. It is not the system response that is of interest, but rather the measurement of a deflection as a direct reaction of a force caused by the oncoming wind.
- Measurements are carried out with fiber optic sensors that can measure a local pressure.
- the sensors are thus arranged in such a way that the measured values can map all points at least along the rotor blade axis.
- the measuring device according to the present disclosure and corresponding methods thus overcomes problems and restrictions of alternative approaches:
- Wind speed vector, turbulence intensity and wind shear are measurable as areas with high sampling rates.
- Turbulent wind field models can be better validated and further improved. Wind energy probability estimates can be improved in their accuracy and precision.
- the methods and devices presented enable new applications. For example, very short-term wind energy forecasts (less than 10 minutes goal time) are possible. In contrast to previous procedural measures, this enables very effective and fast control of the wind power plant and can thus contribute to optimized wind energy generation.
- the load values due to the wind flow measured directly on the blades of the installation can advantageously be used for the operation and also in the design of wind turbines.
- the influence of the wind speed on the rotor can be determined directly at the measurement location (pitch angle and sheet torsion calibration)
- a wind / load dependency can be measured in real time (hybrid model correction for aero-elastic models) and can contribute to an improved design in the development of wind turbines.
- An optimized turbine control is not, as before, realized via its system response, but directly via its deflection, in order to control the wind turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
L'invention concerne un dispositif de mesure et un procédé de mesure de flux éoliens sur au moins une pale de rotor d'une éolienne. Au moins deux capteurs de pression sont prévus, qui sont conçus pour mesurer une pression de fluide, de préférence une pression d'air, à des points d'une surface de pale de rotor, lesdits capteurs étant montés le long d'un axe de pale de rotor. En outre, un dispositif d'évaluation est prévu, pour évaluer les signaux des au moins deux capteurs de pression.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018127417.3 | 2018-11-02 | ||
DE102018127417.3A DE102018127417A1 (de) | 2018-11-02 | 2018-11-02 | Modellierung und Vorhersage von Windströmung mit faseroptischen Sensoren in Windturbinen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020089237A1 true WO2020089237A1 (fr) | 2020-05-07 |
Family
ID=68426441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/079545 WO2020089237A1 (fr) | 2018-11-02 | 2019-10-29 | Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018127417A1 (fr) |
WO (1) | WO2020089237A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11415110B2 (en) * | 2018-06-21 | 2022-08-16 | Vestas Wind Systems A/S | Wind turbine blade, a method of controlling a wind turbine, a control system, and a wind turbine |
CN118112284A (zh) * | 2024-04-30 | 2024-05-31 | 国网甘肃省电力公司兰州供电公司 | 一种风力发电设备风速检测校准方法及系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116907787B (zh) * | 2023-06-30 | 2024-01-30 | 中国舰船研究设计中心 | 一种水面船舱面风测量精度评定试验方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6909198B2 (en) | 2000-07-07 | 2005-06-21 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and device for processing and predicting the flow parameters of turbulent media |
US7281891B2 (en) | 2003-02-28 | 2007-10-16 | Qinetiq Limited | Wind turbine control having a lidar wind speed measurement apparatus |
DE102011011392A1 (de) | 2011-02-17 | 2012-08-23 | Ssb Wind Systems Gmbh & Co. Kg | Optische Messeinrichtung für die Verformung eines Rotorblattes einer Windkraftanlage |
DE102012108776A1 (de) * | 2012-09-18 | 2014-03-20 | Technische Universität München | Verfahren und Vorrichtung zur Überwachung von Betriebszuständen von Rotorblättern |
DE102014210949A1 (de) | 2014-06-06 | 2015-12-17 | Wobben Properties Gmbh | Windenergieanlage mit optischen Drucksensoren sowie Verfahren zum Betreiben einer Windenergieanlage |
US20170219697A1 (en) * | 2016-01-28 | 2017-08-03 | General Electric Company | System and method for improving lidar sensor signal availability on a wind turbine |
DE102016117191A1 (de) * | 2016-09-13 | 2018-03-15 | fos4X GmbH | Verfahren und Vorrichtung zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage |
DE102016119958A1 (de) * | 2016-10-20 | 2018-04-26 | Wobben Properties Gmbh | Verstelleinrichtung für ein Rotorblatt einer Windenergieanlage sowie eine Windenergieanlage damit und Verfahren dafür |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007015179A1 (de) * | 2007-03-29 | 2008-10-02 | Siemens Ag | Druckmessvorrichtung und Verfahren zur Bestimmung der Windkraft auf Windenergieanlagen sowie Verwendung der Druckmessvorrichtung und des Verfahrens |
-
2018
- 2018-11-02 DE DE102018127417.3A patent/DE102018127417A1/de active Pending
-
2019
- 2019-10-29 WO PCT/EP2019/079545 patent/WO2020089237A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6909198B2 (en) | 2000-07-07 | 2005-06-21 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and device for processing and predicting the flow parameters of turbulent media |
US7281891B2 (en) | 2003-02-28 | 2007-10-16 | Qinetiq Limited | Wind turbine control having a lidar wind speed measurement apparatus |
DE102011011392A1 (de) | 2011-02-17 | 2012-08-23 | Ssb Wind Systems Gmbh & Co. Kg | Optische Messeinrichtung für die Verformung eines Rotorblattes einer Windkraftanlage |
DE102012108776A1 (de) * | 2012-09-18 | 2014-03-20 | Technische Universität München | Verfahren und Vorrichtung zur Überwachung von Betriebszuständen von Rotorblättern |
DE102014210949A1 (de) | 2014-06-06 | 2015-12-17 | Wobben Properties Gmbh | Windenergieanlage mit optischen Drucksensoren sowie Verfahren zum Betreiben einer Windenergieanlage |
US20170219697A1 (en) * | 2016-01-28 | 2017-08-03 | General Electric Company | System and method for improving lidar sensor signal availability on a wind turbine |
DE102016117191A1 (de) * | 2016-09-13 | 2018-03-15 | fos4X GmbH | Verfahren und Vorrichtung zur Ermittlung von Belastungen auf einen Turm einer Windenergieanlage |
DE102016119958A1 (de) * | 2016-10-20 | 2018-04-26 | Wobben Properties Gmbh | Verstelleinrichtung für ein Rotorblatt einer Windenergieanlage sowie eine Windenergieanlage damit und Verfahren dafür |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11415110B2 (en) * | 2018-06-21 | 2022-08-16 | Vestas Wind Systems A/S | Wind turbine blade, a method of controlling a wind turbine, a control system, and a wind turbine |
CN118112284A (zh) * | 2024-04-30 | 2024-05-31 | 国网甘肃省电力公司兰州供电公司 | 一种风力发电设备风速检测校准方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
DE102018127417A1 (de) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3513069B1 (fr) | Procédé et dispositif pour déterminer des sollicitations exercées sur un mât d'éolienne | |
WO2020089237A1 (fr) | Modélisation et prévision du flux éolien à l'aide de capteurs à fibres optiques dans des éoliennes | |
DE102011083749B4 (de) | Rotorblatt einer Windkraftanlage mit einer Vorrichtung zum Erfassen eines Abstandswertes und Verfahren zum Erfassen eines Abstandswertes | |
EP2021890B1 (fr) | Procede de surveillance des contraintes de pales de rotor d'eoliennes | |
DE10022129C2 (de) | Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage zur Durchführung des Verfahrens | |
EP1454058B1 (fr) | Procede pour surveiller un detecteur | |
DE102008020154B4 (de) | Verfahren zum Betreiben einer Windenergieanlage | |
DE102017125457B4 (de) | Verfahren zum Bestimmen einer Wahrscheinlichkeit zu einem Drosseln und/oder einem Abschalten zumindest einer Windkraftanlage aufgrund von Eisansatz | |
DE102005048805A1 (de) | Verfahren zum Betreiben einer Windenergieanlage | |
EP1817496A1 (fr) | Procede pour optimaliser le fonctionnement d'installations d'energie eolienne | |
EP3555466B1 (fr) | Dispositif et procédé de détection de l'accumulation de glace à une structure d'un ouvrage de construction | |
EP3803114A1 (fr) | Arrangement de capteur pour un aérogénérateur | |
DE102012011210A1 (de) | Zielwertabhängige Steuerung eines Windparks | |
DE102018001269A1 (de) | Verfahren und System zum Ermitteln einer Ausrichtungskorrekturfunktion | |
DE102018108858A1 (de) | Windenergieanlage, Windpark sowie Verfahren zum Regeln einer Windenergieanlage und eines Windparks | |
EP2674616A2 (fr) | Dispositif de commande d'installation éolienne et système de commande d'un parc éolien | |
DE102014204017A1 (de) | Verfahren und Vorrichtung zur Rotorblatteinstellung für eine Windkraftanlage | |
EP2395320A1 (fr) | Dispositif de mesure pour la mesure de déformations d'objets élastiquement déformables | |
EP3500752B1 (fr) | Système de mesure d'une éolienne | |
WO2020239706A1 (fr) | Modélisation et prévision de traînées tourbillonnaires et de cisaillements de vent à l'aide de capteurs à fibre optique dans des éoliennes | |
DE102018116941A1 (de) | Vorrichtung und Verfahren zum Erkennen der Anlagerung oder der Eisart von Eis an einem Rotorblatt eines Rotors einer Windkraftanlage | |
DE102021210569A1 (de) | Verfahren zum Betreiben einer Windenergieanlage in einem Windpark und Windparkmanager | |
EP3587805B1 (fr) | Système de détermination de la performance disponible d'un parc éolien | |
WO2021013487A1 (fr) | Procédé pour commander un parc éolien, module de commande pour un parc éolien et parc éolien | |
EP4086454A1 (fr) | Procédé de fonctionnement d'une éolienne, éolienne et parc éolien |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19797640 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19797640 Country of ref document: EP Kind code of ref document: A1 |