WO2020088282A1 - 一种磁控电抗器及方法 - Google Patents

一种磁控电抗器及方法 Download PDF

Info

Publication number
WO2020088282A1
WO2020088282A1 PCT/CN2019/112019 CN2019112019W WO2020088282A1 WO 2020088282 A1 WO2020088282 A1 WO 2020088282A1 CN 2019112019 W CN2019112019 W CN 2019112019W WO 2020088282 A1 WO2020088282 A1 WO 2020088282A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic induction
induction intensity
iron core
point
Prior art date
Application number
PCT/CN2019/112019
Other languages
English (en)
French (fr)
Inventor
李晓明
Original Assignee
李晓明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811271234.4A external-priority patent/CN109326428B/zh
Priority claimed from CN201910814790.XA external-priority patent/CN110415938B/zh
Application filed by 李晓明 filed Critical 李晓明
Publication of WO2020088282A1 publication Critical patent/WO2020088282A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields

Definitions

  • the present disclosure relates to a magnetically controlled reactor and method.
  • Reactors are widely used in power systems. In some application areas, the reactance value of the reactor is fixed; while in other application areas, the reactance value of the reactor should be continuously adjusted as the operation mode of the power system changes.
  • the controllable reactor whose reactance value can be continuously adjusted is an important research topic.
  • Magnetic control reactor also called: saturation reactor
  • saturation reactor utilizes the non-linear characteristic of the closed-loop core magnetization curve to adjust the saturation of the closed-loop core by continuously adjusting the magnitude of the DC current in the DC coil on the closed-loop core to achieve continuous adjustment of the AC on the closed-loop core
  • the magnetron reactor works in the non-linear section of the magnetization curve of the closed-loop iron core, a large amount of higher harmonic currents will be generated in the current of the magnetron reactor.
  • the higher harmonic current is harmful to the power system, so it is necessary to study measures to reduce the higher harmonic current in the magnetron reactor.
  • Soviet scientists proposed to design a rectangular solenoid valve on the core of the magnetron reactor to reduce the high harmonic content in the current of the magnetron reactor. The effect is good and it is widely used.
  • the shape of the solenoid valve of the magnetron reactor has a rectangular shape at the beginning, and the number is only one, and it has developed into a number of later, multiple shapes (such as stepped, triangular, etc.).
  • the present disclosure proposes a magnetron reactor and a method.
  • the magnetron reactor provided by the present disclosure can effectively reduce the content of higher harmonics, make it tend to minimize, and have an ideal magnetization curve; and the core volume With smaller weight.
  • the present disclosure adopts the following technical solutions:
  • a magnetron reactor at least a pair of iron core columns with coils are provided with a solenoid valve, and the shape and size of the solenoid valve are configured to enable the magnetization curve of the iron core of the magnetron reactor to follow a1, a2 and a5
  • the line segments connected by the second connection are connected, where a1 is the starting point of the magnetization curve, and the corresponding magnetic induction intensity is zero; a2 is a point between the starting point of the magnetization curve and the knee point; Between the magnetic induction intensity corresponding to the point; the magnetic induction intensity corresponding to a5 is equal to the magnetic induction intensity corresponding to the knee point, and the magnetic field intensity corresponding to a5 is the peak value of the maximum reactance current of the magnetron reactor.
  • a magnetron reactor at least a pair of iron core columns with a coil is provided with a magnet valve, and the shape and size of the magnet valve are configured to enable the magnetization curve of the magnetron reactor core to be magnetized by a1 and a2
  • the curve segment is connected with the straight line segment where a2 and a5 are located, where a1 is the starting point of the magnetization curve and the corresponding magnetic induction intensity is zero; a2 is a point between the starting point of the magnetization curve and the knee point, and the magnetic induction corresponding to a2
  • the intensity B2 is between zero and the magnetic induction intensity corresponding to the knee point; the magnetic induction intensity corresponding to a5 is equal to the magnetic induction intensity corresponding to the knee point, and the magnetic field intensity corresponding to a5 is the peak value of the maximum reactance current of the magnetron reactor.
  • the a2 is between the starting point of the magnetization curve and the knee point, and the corresponding magnetic induction intensity is less than or equal to half of the magnetic induction intensity corresponding to the knee point.
  • the difference between the magnetic induction intensity corresponding to point a5 and the magnetic induction intensity corresponding to point a2 is less than or equal to half of the magnetic induction intensity corresponding to the knee point.
  • the structure of the magnetic valve is a notch, and the notch is provided at a symmetrical position on a corresponding pair of iron core posts, and the notch has a symmetrical shape and a uniform size.
  • the shape of the notch includes, but is not limited to, a rectangle, a step shape, a triangle, a trapezoid, and / or an arc.
  • the location of the notch is inside the iron core.
  • the number of the notches is several.
  • the cross-sectional area of the non-magnetic valve position where the core of the magnetic valve is provided is equal to (K 3 S + K 4 S), and (K 3 S + K 4 S) is greater than or equal to S; where: K 3 Less than or equal to 1, K 4 is less than or equal to 1, S is the cross-sectional area of the transformer core column of the same capacity without any magnetic valve.
  • a method for producing / optimizing a magnetron reactor A solenoid valve is processed on at least a pair of iron core columns with a coil, and the shape and size of the solenoid valve are configured to enable the magnetization curve of the iron core of the magnetron reactor to be a1 a2 and a5 are connected by a line segment connected in sequence, or by a magnetization curve segment where a1 and a2 are located and a straight line segment where a2 and a5 are located, where a1 is the starting point of the magnetization curve, and the corresponding magnetic induction intensity is zero; a2 is a point between the starting point of the magnetization curve and the knee point, the magnetic induction intensity B2 corresponding to a2 is between zero and the magnetic induction intensity corresponding to the knee point; the magnetic induction intensity corresponding to a5 is equal to the magnetic induction intensity corresponding to the knee point, a5
  • the corresponding magnetic field strength is the peak value of the maximum value of the reactance current of the magnetron reactor
  • a magnetic control reactor iron core structure includes at least two AC iron core columns, and a plurality of coil iron core columns disposed between the two AC iron core columns, and each AC iron core column is adjacent to the adjacent coil iron core
  • the columns are connected by an AC side yoke to form an AC closed-loop magnetic flux loop, and the adjacent two coil core columns are connected by a DC side yoke to form a DC closed-loop magnetic flux loop;
  • each coil core column is provided with Several solenoid valves;
  • the cross-sectional area of each AC core post and AC side yoke is equal to S; the cross-sectional area of the DC side yoke is greater than or equal to S and less than 1.2S; the cross-sectional area of the core at the solenoid valve is equal to K 3 S, and the position of the non-magnetic valve
  • the cross-sectional area is equal to (K 3 S + K 4 S), and 1 ⁇ (K 3 + K 4 ) ⁇ 2, K 3 ⁇ 1, S is the cross-sectional area of the core post of the transformer of the same capacity.
  • multiple refers to at least two.
  • each coil core post there are multiple solenoid valves on each coil core post.
  • the shapes, sizes, and / or numbers of the magnetic valves may or may not be the same.
  • the cross section of the solenoid valve is a combination of a rectangle and an isosceles triangle, and the wide side of the rectangle is connected to the bottom of the isosceles triangle, the length of the rectangle is L, and the height of the isosceles triangle is H, 3 ⁇ (L / H) ⁇ 10.
  • the magnetic valves on the core posts of each coil are arranged on a path away from the DC closed-loop magnetic flux loop.
  • the magnetic valves on the core posts of each coil are arranged on the path close to the AC magnetic flux.
  • each AC iron core post, AC side yoke, and DC side yoke may be the same or different.
  • a design method for the core structure of a magnetic control reactor A plurality of coil core columns are arranged side by side between two AC core columns, and the ends of each two adjacent core columns are connected together by a side yoke , Forming a closed loop, a number of solenoid valves are designed on each coil iron core column;
  • the cross-sectional area of each AC core column and AC side yoke is equal to S; the cross-sectional area of the DC side yoke is greater than or equal to S and less than 1.2S; the cross-sectional area of the core at the solenoid valve is equal to K 3 S, and the position of the non-magnetic valve
  • the cross-sectional area is equal to (K 3 S + K 4 S), and 1 ⁇ (K 3 + K 4 ) ⁇ 2, K 3 ⁇ 1, S is the cross-sectional area of the core post of the transformer of the same capacity.
  • An electric device includes the above iron core structure of the magnetic control reactor or a structure obtained based on the design method.
  • the present disclosure provides a way to achieve a more optimized design of the magnetic valve of the magnetic control reactor of different manufacturers.
  • the ideal magnetization curve of the magnetic core of the magnetic control reactor can be obtained, which makes the magnetic control reactor high
  • the subharmonic content is the smallest.
  • the present disclosure can design a magnetron reactor without adding DC current, and its characteristics can be close to the characteristics of the reactor.
  • the advantage of the magnetron reactor without adding DC current is that there is no need for a core cake and an air gap in the core column of the reactor The cushion reduces vibration and noise.
  • the core structure of the magnetron reactor provided by the present disclosure is configured by configuring the cross-sectional area of each AC core post and the AC side yoke equal to S; the cross-sectional area of the DC side yoke is greater than or equal to S and less than 1.2S, and the remaining iron core at the magnetic valve
  • the cross-sectional area is equal to K 3 S
  • the cross-sectional area of the non-magnetic valve position is equal to (K 3 S + K 4 S), and 1 ⁇ (K 3 + K 4 ) ⁇ 2, K 3 ⁇ 1, S is the transformer core of the same capacity
  • the cross-sectional area of the column can make the core of the magnetron reactor have ideal magnetization curve, and can make the volume and weight of the core smaller, and the current harmonic content of the magnetron reactor is smaller.
  • the magnetic valve is provided on each coil iron core column, and the magnetic valve is provided on the circulation loop path away from the DC closed-loop magnetic flux loop / near the circulation loop path near the AC magnetic flux, which is beneficial to the coil iron core column.
  • the iron core in the non-magnetic valve position is saturated, which realizes the sensitive control of the DC current; it is conducive to the flow of AC magnetic flux through the magnetic valve and reduces the high-order harmonic component of the magnetic control reactor current.
  • Figure 1 shows a magnetron reactor
  • Fig. 2 shows a magnetic core of a magnetron reactor with a magnetic valve.
  • Fig. 3 shows the magnetization curve of the core of the magnetron reactor.
  • Example 4 is an iron core structure of a magnetron reactor of Example 2.
  • FIG. 5 is the iron core structure of the magnetron reactor of Embodiment 3.
  • FIG. 5 is the iron core structure of the magnetron reactor of Embodiment 3.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only a relationship word determined to facilitate the description of the structural relationship of each component or element of the present disclosure, and does not specifically refer to any component or element in the present disclosure, and cannot be understood as a Open restrictions.
  • an existing magnetron reactor is used for details. Description, its structure and connection mode are shown in Figure 1. For its working principle and detailed settings, please refer to ZL201610607354.1, which is no longer cumbersome.
  • the structure of the magnetron reactor of other connection methods can be optimized as provided in the present disclosure, and is not limited to the above embodiments.
  • the conventional magnetron reactor core 3 shown in FIG. 1 does not describe a solenoid valve.
  • the table shows the core of the magnetron reactor of the rectangular solenoid valve, as shown in Figure 2.
  • the processing method of the magnetic valve is already known, and it is no longer cumbersome here.
  • the cross-sectional area of the four core posts of the existing magnetic control reactor core 3 without the magnetic valve is equal to the cross-sectional area S of the core post of the transformer of the same capacity.
  • the cross-sectional area of the coil wire remains the same as the existing magnetron reactor, but the cross-sectional area of the core of the magnetron reactor is equal to 2S.
  • the magnetization curve of the iron core of the magnetron reactor is shown as curves a1, a2, a3, and a4 in FIG.
  • the magnetization curve of the core of the magnetic reactor without the magnetic valve is composed of the curves where the four points a1, a2, a3, and a4 are smooth; where: a1 is the starting point of the magnetization curve, a3 is the knee point of the magnetization curve, and point a2 is at point a1 and Between point a3, when the magnetic induction intensity in the core of the magnetron reactor changes in the a1, a2, a3 magnetization curve segment, the saturation of the core of the magnetron reactor does not occur; point a4 is saturated in the core of the magnetron reactor Phenomenon on the curve segment.
  • the magnetic induction intensity corresponding to point a1 is zero, the magnetic induction intensity corresponding to point a2 is B2, and the magnetic induction intensity corresponding to point a3 is B3.
  • the cross-sectional area of the iron core of the magnetron reactor is 2S, and the magnetic induction intensity B3 corresponding to point a3 is B3 max when the solenoid valve is not processed. If the DC current is not applied to the magnetron reactor, the rated voltage is connected between the terminals 1 and 2 of the magnetron reactor, the magnetic induction intensity in the iron core varies between 0 and B2, and the magnetic induction intensity B2 is half of B3 max .
  • the reactor current is the excitation current, and the excitation current is very small.
  • the DC current is not applied to the magnetron reactor, twice the rated voltage is connected between the terminal 1 and the terminal 2 of the magnetron reactor, the magnetic induction intensity in the iron core varies from 0 to B3 max , and the current of the magnetron reactor is still the excitation current , The excitation current is very small. If twice the rated voltage is connected between the terminals 1 and 2 of the magnetron reactor, and the DC current is applied to the magnetron reactor, the magnetic induction intensity in the iron core varies between 0 ⁇ (K 1 ⁇ B3 max ), where K 1 If it is greater than 1, the iron core is saturated, and the reactance current of the magnetron reactor is greater than the excitation current.
  • the DC current of the magnetron reactor can be adjusted, and the reactance current of the magnetron reactor can be adjusted.
  • the reactance current of the magnetron reactor has a minimum value; when the DC current is added to the magnetron reactor, the maximum reactance current of the magnetron reactor can be adjusted.
  • the magnetic valve is processed on an iron core with a cross-sectional area of 2S, the cross-sectional area of the iron core at the magnetic valve is reduced, and if the cross-sectional area of the iron core at the designed magnetic valve is reduced to S.
  • the rated voltage is connected between the terminal 1 and the terminal 2 of the magnetron reactor, the DC current is not added to the magnetron reactor, and the magnetic induction intensity in the iron core varies from 0 to (0.5 ⁇ B3 max ).
  • the magnetron reactor is not saturated, and only a small excitation current flows through the magnetron reactor.
  • the magnetic induction intensity in the iron core varies from 0 to (K 2 ⁇ 0.5 ⁇ B3 max ), where K 2 Greater than 1; because the cross-sectional area of the iron core at the solenoid valve is only S, and the magnetic induction intensity is greater than (0.5 ⁇ B3 max ), the iron core at the solenoid valve begins to saturate; causing the reactance current of the magnetron reactor to be greater than the excitation current.
  • the greater the DC current applied to the magnetron reactor the greater the saturation at the solenoid valve, and the greater the reactance current of the magnetron reactor.
  • the DC current of the magnetron reactor can be adjusted, and the reactance current of the magnetron reactor can be adjusted. Since the core of the magnetron reactor is only saturated in the small area of the solenoid valve, most of the area of the core of the magnetron reactor is not saturated, so the high-order harmonic produced by the magnetron reactor with the solenoid valve The wave content is less than that of a magnetron reactor without a solenoid valve.
  • the magnetization curves a1, a2, a5 can be designed
  • the break point a2 decreases, that is, the magnetic induction intensity corresponding to a2 is less than (0.5 ⁇ B3 max ).
  • Still keep (B5-B2) (0.5 ⁇ B3 max ).
  • the decrease of the inflection point a2 means that the cross-sectional area of the core at the design solenoid valve is equal to K 3 S, and K 3 is less than 1.
  • the cross-sectional area of the non-magnetic valve of the iron core of the magnetic control reactor is (K 3 S + S). Realize the saving of iron core materials and reduce the volume and weight of the magnetic control reactor. Moreover, when the magnetron reactor works at the maximum current state, most of the time it still works between the line segments a2 and a5 of the magnetization curve, and the line segments a2 and a5 are straight line segments. Therefore, when the magnetron reactor operates at the maximum current state, the content of higher harmonics in the current is almost equal to zero.
  • K 3 the smaller the cross-sectional area of the non-magnetic valve of the iron core of the magnetron reactor, the smaller the volume and weight of the magnetron reactor; but the magnetron reactor does not have the magnetron reactor when DC current is added.
  • the minimum current value of the magnetron reactor when the DC current is not added to the magnetron reactor is relatively large.
  • the magnetron reactor operates at the maximum current state, it works between the line segments a1 and a2 of the magnetization curve part of the time, and works between the line segments a2 and a5 of the magnetization curve part of the time.
  • the magnetic control reactor works at the maximum current state, the content of higher harmonics in the current increases. The smaller K 4 is , the higher the higher harmonic content is.
  • (B5-B2) less than (0.5 ⁇ B3 max ) is that the cross-sectional area of most sections of the magnetron reactor core non-magnetic valve is (K 3 S + K 4 S), (K 3 S + K 4 S) is greater than or equal to S, which can save iron core material and reduce the volume and weight of the magnetron reactor.
  • the original magnetization curves a1, a2, a3, and a4 of the core of the magnetron reactor can be changed to curves a1, a2, and a5.
  • the shape of the solenoid valve can be rectangular, stepped, triangular solenoid valve, or other shapes; it can be one, two, or more; or a combination of several shapes, the solenoid valve can also be designed inside the iron core.
  • the so-called machining solenoid valve means that the cross-sectional area of the core of the magnetron reactor in most of the sections remains unchanged.
  • the two cores are placed in symmetrical positions and in symmetrical shapes Part of the core of a small section of the column is cut away so that the cross-sectional area of the core of this section is smaller than that of other sections.
  • the magnetic flux of the magnetron reactor core and the coil on the core column I6 of the coil circulates through the closed-loop core magnetic circuit composed of the coil core column I6, the AC core column I5, and the AC side yoke I9 .
  • the AC magnetic flux generated by the coil on the coil core post II7 circulates through the closed-loop core magnetic circuit composed of the coil core post II7, the AC core post II8, and the AC bypass yoke II11.
  • the DC magnetic flux generated by the coils on the coil iron core column I6 and the coil iron core column II7 circulates through the closed-loop iron core magnetic circuit composed of the coil iron core column I6, the coil iron core column II7, and the DC iron core column 10.
  • the specific reactor coil structure can refer to CN106026813A. Or choose other existing structures, which will not be repeated here.
  • the cross-sectional areas of the AC iron core column I5, the AC iron core column II8, the AC side yoke I9, the DC side yoke 10, and the AC side yoke II11 of the magnetron reactor core of this embodiment correspond to the positions of the cores of the traditional magnetron reactor the same cross-sectional area of the core, i.e., the same capacity is equal to the sectional area S of the transformer core posts; coil legs I6, II7 leg coil cross-sectional area equal to the non-magnetic valve position (K 3 S + K 4 S ), And (K 3 S + K 4 S) is greater than S, equal to or less than 2S; where: K 3 is less than or equal to 1.
  • S is the cross-sectional area of the transformer core post of the same capacity without any magnetic valve.
  • the cross-sectional area of the core at the solenoid valve is equal to K 3 S, and K 3 is less than or equal to 1.
  • the cross-sectional area of the AC core post I5, AC core post II8, AC bypass yoke I9, and AC bypass yoke II11 is equal to the cross-sectional area S of the transformer core post of the same capacity, the magnetron reactor is under rated voltage
  • the AC iron core column I5, the AC iron core column II8, the AC side yoke I9, and the AC side yoke II11 will not saturate. Therefore, the cross-sectional areas of the AC iron core column I5, the AC iron core column II8, the AC bypass yoke I9, and the AC bypass yoke II11 may not necessarily be larger than S.
  • the cross-sectional area of the DC bypass yoke 10 is greater than S. Under the action of the DC magnetic potential of the coil iron core column II6 and the coil iron core column II7, the saturation effect of the coil iron core column II6 and the coil iron core column II7 is strengthened. However, the volume and weight of the core of the magnetron reactor increase. Considering the manufacturing convenience factors and balancing the pros and cons, the cross-sectional area of the DC side yoke 10 is equal to S or slightly larger than S, which is more appropriate.
  • the cross-sectional areas of the AC core column I5, AC core column II8, AC bypass yoke I9, and AC bypass yoke II11 of the magnetron reactor core are equal to the transformer core column of the same capacity
  • the cross-sectional area S of DC, the cross-sectional area of the DC side yoke 10 is equal to or greater than the cross-sectional area S of the core post of the transformer of the same capacity, less than 1.2S.
  • the cross-sectional area of the AC core column I5, AC core column II8, AC side yoke I9, DC side yoke 10, and AC side yoke II11 of the core of the magnetron reactor core need not be the same as that of the coil core column II6 and the coil core column II7
  • the cross-sectional area is the same. The shorter the DC flux flow path in the core of the magnetic reactor, the more conducive to the saturation of the core at the non-magnetic valve position on the coil core column I6 and the coil core column II7, so as to realize the sensitive control of the DC current. Therefore, the solenoid valves on the coil iron core column I6 and the coil iron core column II7 should be far away from the short circulation path of the DC magnetic flux.
  • the magnetic valve is designed on the short path of the AC magnetic flux flow path. The more favorable the AC magnetic flux flows through the magnetic valve, the greater the proportion of AC magnetic flux flowing through the magnetic valve, which can reduce the high order of the magnetic control reactor current. Harmonic components. Therefore, the solenoid valves on the coil iron core column I6 and the coil iron core column II7 should be designed as short as possible on the short circulation path of the AC magnetic flux.
  • the AC magnetic flux generated by the coil on the coil core post I6 circulates through the closed-loop core magnetic circuit composed of the coil core post I6, the AC core post I5, and the AC bypass yoke I9.
  • the path is shorter. Therefore, it is better to design the solenoid valve on the left half of the coil core post I6.
  • the DC magnetic flux generated by the coil on the coil core post I6 circulates through the closed-loop core magnetic circuit composed of the coil core post I6, the coil core post II7, and the DC bypass yoke 10.
  • the DC magnetic flux flows through the right half of the coil core post I6, the path is shorter. Therefore, it is better to design the solenoid valve on the left half of the coil core post I6.
  • the solenoid valve on the coil core post II7 is preferably designed on the right half of the coil core post II7. As shown in Figure 1.
  • the solenoid valves on the coil iron core column I6 and the coil iron core column II7 are both rectangular in shape, and the solenoid valve has a rectangular structure, which can achieve a high current when the minimum current and the maximum current of the magnetron reactor The ratio of subharmonics to fundamentals is small. In other current states, the ratio of harmonics to fundamentals is large.
  • the number of magnetic valves on each coil iron core column can be changed, and the number of magnetic valves on each coil iron core column can be the same or different.
  • the shape of the solenoid valve can also be changed, such as triangle, arc and so on.
  • Embodiment 3 Another preferred structure is provided as shown in FIG. 5, namely Embodiment 3:
  • the solenoid valves on the coil core column I and the coil core column II are a combination of a rectangle and an isosceles triangle.
  • the rectangular depth of the solenoid valve on the coil core column I and the coil core column II is L, and the height of the isosceles triangle is H, (L / H) is greater than 3 and less than 10.
  • the solenoid valve of this embodiment is a combination of a rectangle and an isosceles triangle.
  • the non-magnetic valve iron core and the magnetic valve pass through the isosceles triangle transition, which can reduce the ratio of harmonics to the fundamental wave in other current states.
  • the magnetron reactor with an ideal magnetization curve of the present invention can be designed and manufactured in the prior art, and it can be fully realized and has broad application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种磁控电抗器及方法,具有线圈的至少一对铁芯柱上设置有磁阀,且磁阀的形状和大小被配置为能够使磁控电抗器铁芯的磁化曲线由a1、a2和a5顺次连接的线段连接而成,其中,a1是磁化曲线起始点,对应的磁感应强度为零;a2为在磁化曲线起始点到膝点之间的某一点,a2对应的磁感应强度B2在零和膝点所对应的磁感应强度之间;a5对应的磁感应强度等于膝点所对应的磁感应强度,a5对应的磁场强度为磁控电抗器的电抗电流最大值的峰值。通过磁阀设计,可获得磁控电抗器铁芯理想磁化曲线,使磁控电抗器高次谐波含量最小。

Description

一种磁控电抗器及方法 技术领域
本公开涉及一种磁控电抗器及方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
电抗器在电力系统中的应用非常广泛。在一些应用领域,电抗器的电抗值是固定不变的;而在另一些应用领域,电抗器的电抗值应随着电力系统运行方式的变化而不断调节。电抗值可以连续调节的可控电抗器是重要研究课题。
磁控电抗器(也称:饱和电抗器)利用闭环铁心磁化曲线的非线性特性,通过连续调节闭环铁心上直流线圈中直流电流的大小来调节闭环铁心的饱和程度,实现连续调节闭环铁心上交流线圈(电抗线圈)电抗值的大小。
由于磁控电抗器工作在闭环铁心磁化曲线的非线性区段,磁控电抗器的电流中会产生大量高次谐波电流。高次谐波电流对电力系统有危害,所以,需要研究减小磁控电抗器中高次谐波电流的措施。1986年苏联科学家提出在磁控电抗器铁芯上设计一个矩形磁阀,以减小磁控电抗器电流中的高次谐波含量。效果良好,获得广泛应用。随着技术的发展,磁控电抗器磁阀的形状由一开始的矩形,且数量只有一个,发展到后期的数个、多种化的形状(例如阶梯状、三角状等等)。
然而,目前磁控电抗器的磁阀的设置位置、方式和原则等往往只凭经验,不同产家生产的磁控电抗器性能差别较大,在实际应用中,存在质量不统一、 容易出现较多含量的高次谐波等问题,具体的效果不能令人满意。
发明内容
本公开为了解决上述问题,提出了一种磁控电抗器及方法,本公开提供的磁控电抗器能够有效减少高次谐波含量,使其趋向于最小,具有理想磁化曲线;且铁芯体积与重量较小。
根据一些实施例,本公开采用如下技术方案:
一种磁控电抗器,具有线圈的至少一对铁芯柱上设置有磁阀,且磁阀的形状和大小被配置为能够使磁控电抗器铁芯的磁化曲线由a1、a2和a5顺次连接的线段连接而成,其中,a1是磁化曲线起始点,对应的磁感应强度为零;a2为在磁化曲线起始点到膝点之间的某一点,a2对应的磁感应强度B2在零和膝点所对应的磁感应强度之间;a5对应的磁感应强度等于膝点所对应的磁感应强度,a5对应的磁场强度为所述磁控电抗器的电抗电流最大值的峰值。
一种磁控电抗器,具有线圈的至少一对铁芯柱上设置有磁阀,且磁阀的形状和大小被配置为能够使磁控电抗器铁芯的磁化曲线由a1与a2所在的磁化曲线段和a2与a5所在的直线段连接而成,其中,a1是磁化曲线起始点,对应的磁感应强度为零;a2为在磁化曲线起始点到膝点之间的某一点,a2对应的磁感应强度B2在零和膝点所对应的磁感应强度之间;a5对应的磁感应强度等于膝点所对应的磁感应强度,a5对应的磁场强度为所述磁控电抗器的电抗电流最大值的峰值。
以下进一步的限定,对于上述两种磁控电抗器都适用。
作为进一步的限定,所述a2为磁化曲线起始点到膝点之间,且对应的磁感应强度小于或等于膝点所对应的磁感应强度的一半。
作为进一步的限定,所述a5点对应的磁感应强度与a2点对应的磁感应强度的差小于或等于膝点所对应的磁感应强度的一半。
作为进一步的限定,所述磁阀的结构为缺口,且所述缺口设置在相应一对铁芯柱上的对称位置,且所述缺口的形状对称,大小一致。
作为更进一步的限定,所述缺口的形状包括但不限于矩形、阶梯形状、三角形、梯形和/或弧形。
作为更进一步的限定,所述缺口的设置位置为铁芯内部。
作为更进一步的限定,所述缺口的数量为若干个。
作为进一步的限定,设置磁阀的铁芯的、非磁阀位置的截面积等于(K 3S+K 4S),且(K 3S+K 4S)大于或等于S;其中:K 3小于或等于1,K 4小于或等于1,S为同等容量的、没有设置任何磁阀的变压器铁芯柱的截面积。
一种磁控电抗器的生产/优化方法,具有线圈的至少一对铁芯柱上加工磁阀,且磁阀的形状和大小被配置为能够使磁控电抗器铁芯的磁化曲线由a1、a2和a5顺次连接的线段连接而成,或由a1与a2所在的磁化曲线段和a2与a5所在的直线段连接而成,其中,a1是磁化曲线起始点,对应的磁感应强度为零;a2为在磁化曲线起始点到膝点之间的某一点,a2对应的磁感应强度B2在零和膝点所对应的磁感应强度之间;a5对应的磁感应强度等于膝点所对应的磁感应强度,a5对应的磁场强度为所述磁控电抗器的电抗电流最大值的峰值。
一种磁控电抗器铁芯结构,包括至少两个交流铁芯柱,以及设置在两交流铁芯柱之间的多个线圈铁芯柱,且各交流铁芯柱与相邻的线圈铁芯柱之间通过交流旁轭连接,形成交流闭环磁通环路,相邻的两个线圈铁芯柱之间通过直流旁轭连接,形成直流闭环磁通环路;各线圈铁芯柱上设置有若干磁阀;
其中,各交流铁芯柱、交流旁轭的截面积等于S;直流旁轭的截面积大于或等于S,小于1.2S;磁阀处剩余的铁芯截面积等于K 3S,非磁阀位置的截面积等于(K 3S+K 4S),且1<(K 3+K 4)≤2,K 3≤1,S为同等容量变压器铁芯柱的截面积。
本公开中,多个是指至少两个。
作为可选择的实施方式,各线圈铁芯柱上的磁阀有多个。
作为可选择的实施方式,各磁阀的形状、大小和/或个数可以一致也可以不一致。
作为可选择的实施方式,所述磁阀的截面呈矩形与等腰三角形的组合,且矩形的宽边一端连接等腰三角形的底边,矩形的长是L,等腰三角形的高是H,3<(L/H)<10。
作为可选择的实施方式,各线圈铁芯柱上的磁阀设置在远离直流闭环磁通环路的路径。
作为可选择的实施方式,各线圈铁芯柱上的磁阀设置在靠近交流磁通的路径上。
作为可选择的实施方式,各交流铁芯柱、交流旁轭和直流旁轭的截面积可以相同,也可以不同。
一种磁控电抗器铁芯结构的设计方法,在两个交流铁芯柱之间并排设置多个线圈铁芯柱,每两个相邻的铁芯柱的端部均通过旁轭连接在一起,形成闭合环路,在各线圈铁芯柱上设计有若干磁阀;
其中,各交流铁芯柱和交流旁轭的截面积等于S;直流旁轭的截面积大于或等于S,小于1.2S;磁阀处剩余的铁芯截面积等于K 3S,非磁阀位置的截面积等于(K 3S+K 4S),且1<(K 3+K 4)≤2,K 3≤1,S为同等容量变压器铁芯柱的截面积。
一种用电设备,包括上述磁控电抗器铁芯结构或基于所述设计方法得到的结构。
与现有技术相比,本公开的有益效果为:
本公开提供了一种能够实现不同产家磁控电抗器的磁阀设计更为优化的方式,通过合理的磁阀设计,可获得磁控电抗器铁芯理想磁化曲线,使磁控电抗器高次谐波含量最小。
本公开可以设计不加直流电流的磁控电抗器,其特性就可以接近电抗器特性,不加直流电流的磁控电抗器的优点是,不需要电抗器铁芯柱中的铁芯饼和气隙垫块,振动减小,噪声较小。
本公开提供的磁控电抗器铁芯结构,通过配置各交流铁芯柱和交流旁轭的截面积等于S;直流旁轭的截面积大于等于S,小于1.2S,磁阀处剩余的铁芯截面积等于K 3S,非磁阀位置的截面积等于(K 3S+K 4S),且1<(K 3+K 4)≤2,K 3≤1,S为同等容量变压器铁芯柱的截面积,能够使磁控电抗器铁芯有理想磁化曲线,还能使铁芯体积与重量较小,磁控电抗器电流高次谐波含量较小。
本公开通过在各线圈铁芯柱上磁阀,且磁阀设置在远离直流闭环磁通环路的流通环路路径上/靠近交流磁通的流通环路路径上,有利于线圈铁芯柱的非磁阀位置的铁芯饱和,实现直流电流的灵敏控制;有利于交流磁通流过磁阀,减小磁控电抗器电流的高次谐波分量。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1表示一种磁控电抗器。
图2表示具有磁阀的磁控电抗器磁芯。
图3表示磁控电抗器磁芯的磁化曲线。
图4是实施例2的磁控电抗器铁芯结构;
图5是实施例3的磁控电抗器铁芯结构。
其中,1、端子I,2、端子II,3、闭环铁芯,4、控制模块,5、交流铁芯柱I,6、线圈铁芯柱I,7、线圈铁芯柱II,8、交流铁芯柱II,9、交流旁轭I,10、直流旁轭,11、交流旁轭II。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以 是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
为了使得本领域技术人员更加形象的理解在一种或多种实施例中可以实现的磁控电抗器的结构与优化方法,在本实施例中,以一种已有的磁控电抗器进行详细的说明,其结构与连接方式如图1所示。其工作原理和细节设置,可参阅ZL201610607354.1,在此不再累赘。
当然,在其他实施例中,完全可以对其他连接方式的磁控电抗器的结构进行如本公开所提供的方式的优化,并不仅仅限于上述实施例。
实施例1:
如图1所示的已有的磁控电抗器铁芯3没有表述出磁阀。表示出矩形磁阀的磁控电抗器铁芯,如图2所示。磁阀的加工方法是已有知识,在此也不再累赘。
没有磁阀的已有的磁控电抗器铁芯3的四根铁芯柱的截面积等于同等容量变压器铁芯柱的截面积S。
如果磁控电抗器线圈匝数保持与现有的磁控电抗器一样,线圈导线的截面积也保持与现有的磁控电抗器一样,但磁控电抗器铁芯的截面积等于2S。这时,在铁芯还没有加工磁阀的状态下,磁控电抗器铁芯的磁化曲线如图3中的曲线a1、a2、a3、a4所示。磁控电抗器铁芯没有磁阀时的磁化曲线由a1、a2、a3、a4四点所在曲线平滑构成;其中:a1是磁化曲线起始点,a3是磁化曲线膝点,a2点在a1点与a3点之间,当磁控电抗器铁芯中的磁感应强度在a1、a2、a3磁化曲线段变化时,磁控电抗器铁芯没有发生饱和现象;a4点在磁控电抗器铁 芯发生饱和现象的曲线段上。a1点对应的磁感应强度是零,a2点对应的磁感应强度是B2,a3点对应的磁感应强度是B3。定义:磁控电抗器铁芯的截面积是2S,且没有加工磁阀时,a3点对应的磁感应强度B3的值是B3 max。如果磁控电抗器不加直流电流,磁控电抗器端子1和端子2之间连接额定电压,铁芯中的磁感应强度在0~B2之间变化,磁感应强度B2是B3 max的一半,磁控电抗器电流是励磁电流,励磁电流很小。如果磁控电抗器不加直流电流,磁控电抗器端子1和端子2之间连接两倍额定电压,铁芯中的磁感应强度在0~B3 max之间变化,磁控电抗器电流还是励磁电流,励磁电流很小。如果磁控电抗器端子1和端子2之间连接两倍额定电压,且磁控电抗器加直流电流,铁芯中的磁感应强度在0~(K 1×B3 max)之间变化,其中K 1大于1,铁芯出现饱和,磁控电抗器电抗电流大于励磁电流。磁控电抗器加的直流电流越大,铁芯出现饱和程度越大,磁控电抗器电抗电流越大。调节磁控电抗器直流电流大小,可调节磁控电抗器电抗电流大小。磁控电抗器没有加直流电流时,磁控电抗器电抗电流有最小值;磁控电抗器加直流电流,可调节到磁控电抗器电抗电流最大值。
如果在截面积2S的铁芯上加工磁阀,磁阀处铁芯的截面积减小,如果设计磁阀处铁芯的截面积减小至S。如果磁控电抗器端子1和端子2之间连接额定电压,磁控电抗器不加直流电流,铁芯中的磁感应强度在0~(0.5×B3 max)之间变化。磁控电抗器没有饱和,磁控电抗器只流过很小的励磁电流。如果磁控电抗器端子1和端子2之间连接额定电压,且磁控电抗器加直流电流,铁芯中的磁感应强度在0~(K 2×0.5×B3 max)之间变化,其中K 2大于1;由于磁阀处铁芯的截面积只有S,磁感应强度大于(0.5×B3 max)时,磁阀处的铁芯开始饱和;造成磁控电抗器电抗电流大于励磁电流。磁控电抗器加的直流电流越大,磁阀处饱和 程度越大,磁控电抗器电抗电流越大。调节磁控电抗器直流电流大小,可调节磁控电抗器电抗电流大小。由于磁控电抗器铁芯只在磁阀处这一小段区域饱和,磁控电抗器铁芯非磁阀处的大部分区域不饱和,所以,有磁阀的磁控电抗器产生的高次谐波含量小于没有磁阀的磁控电抗器。
设计磁阀的形状和大小,使磁控电抗器铁芯的磁化曲线如图3中的曲线a1、a2、a5所示,其中:a2点与a5点是直线段的两端点,a2点对应的磁感应强度是B2;a5点对应的磁场强度是H5,磁场强度与线圈电流成正比,所以,可以用电流i5表示磁场强度H5。a5点对应的磁感应强度是B5,设计B5=B3 max,即(B5-B2)=(0.5×B3 max);这时,再设计电流i5等于磁控电抗器所需调节到的最大电流值的峰值i5 max,则磁控电抗器在最大电流状态工作时,绝大部分时间工作在磁化曲线的线段a2、a5之间,线段a2、a5为直线段。所以,磁控电抗器在最大电流状态工作时,电流中的高次谐波含量几乎等于零。
如果磁控电抗器没有加直流电流时的磁控电抗器的最小电流值不要求等于励磁电流,磁控电抗器的最小电流值可以大于励磁电流,则可以设计磁化曲线a1、a2、a5中的折点a2下降,即a2对应的磁感应强度小于(0.5×B3 max)。仍然保持(B5-B2)=(0.5×B3 max)。折点a2下降,就是设计磁阀处铁芯截面积等于K 3S,K 3小于1。磁控电抗器铁芯非磁阀的截面积为(K 3S+S)。实现节约铁芯材料,降低磁控电抗器体积和重量。且磁控电抗器在最大电流状态工作时,绝大部分时间还是工作在磁化曲线的线段a2、a5之间,线段a2、a5为直线段。所以,磁控电抗器在最大电流状态工作时,电流中的高次谐波含量几乎等于零。
不难看出,K 3越小,磁控电抗器铁芯非磁阀的截面积越小,磁控电抗器体积和重量越小;但磁控电抗器没有加直流电流时的磁控电抗器的最小电流值越大。 如果令K 3=0.1,磁控电抗器磁阀处的铁芯截面积为0.1S,磁控电抗器铁芯非磁阀区段的截面积为0.1S+S=1.1S。磁控电抗器没有加直流电流时的磁控电抗器的最小电流值比较大了。不难看出,磁化曲线a1与a2线段很短,大部分由磁化曲线a2与a5确定的直线段确定;这时,不加直流电流的磁控电抗器特性就很接近电抗器特性。电抗器的电抗电流不会产生高次谐波,这时的磁控电抗器中的电流还含有量值不大的高次谐波,但带来的好处是,去除了电抗器铁芯柱中的铁芯饼和气隙垫块,振动减小,噪声较小。
如果不要求磁控电抗器工作在最大电流值时的非基波含量最小,只要磁控电抗器工作在最大电流值时的非基波含量不是太大即可,可以设计(B5-B2)=(K 4×0.5×B3 max),K 4小于1。磁控电抗器在最大电流状态工作时,一部分时间工作在磁化曲线的线段a1、a2之间,一部分时间工作在磁化曲线的线段a2、a5之间。磁控电抗器在最大电流状态工作时,电流中的高次谐波含量增大。K 4越小,高次谐波含量越大。(B5-B2)小于(0.5×B3 max)所带来的好处是,磁控电抗器铁芯非磁阀的大部分区段的截面积是(K 3S+K 4S),(K 3S+K 4S)大于或等于S,可节约铁芯材料,降低磁控电抗器体积和重量。
通过加工磁阀,可把磁控电抗器铁芯的原来磁化曲线a1、a2、a3、a4,变为曲线a1、a2、a5。磁阀的形状可以是矩形,阶梯形状,三角形磁阀,或其他形状;可以是一个、两个、或多个;也可是几种形状的组合,磁阀还可以设计在铁芯内部。所谓加工磁阀,就是大部分区段的磁控电抗器铁芯截面积保持不变,在磁控电抗器有线圈的一对铁芯柱上,分别在对称位置、用对称形状把两铁芯柱某一小区段的铁芯部分削除,使该区段铁芯截面积小于其他区段的铁芯截面积。
在实际生产加工中,为了简化磁阀的加工工艺和节约材料,不必使磁控电抗器铁芯的磁化曲线一丝不差地如图3中的曲线a1、a2、a5所示,其中:线段a2、a5为直线。只要磁控电抗器铁芯的磁化曲线接近曲线a1、a2、a5即可。
实施例2:
如图4所示,磁控电抗器铁芯,线圈铁芯柱I6上线圈产生的交流磁通在线圈铁芯柱I6、交流铁芯柱I5、交流旁轭I9构成的闭环铁芯磁路流通。线圈铁芯柱II7上线圈产生的交流磁通在线圈铁芯柱II7、交流铁芯柱II8、交流旁轭II11构成的闭环铁芯磁路流通。线圈铁芯柱I6与线圈铁芯柱II7上线圈产生的直流磁通在线圈铁芯柱I6、线圈铁芯柱II7、直流铁芯柱10构成的闭环铁芯磁路流通。线圈铁芯柱I6、线圈铁芯柱II7上有磁阀。
具体的电抗器线圈结构可参阅CN106026813A。或选用其他现有结构,在此不再赘述。
本实施例的磁控电抗器铁芯的交流铁芯柱I5、交流铁芯柱II8、交流旁轭I9、直流旁轭10、交流旁轭II11的截面积与传统磁控电抗器铁芯相应位置的铁芯截面积相同,即等于同等容量变压器铁芯柱的截面积S;线圈铁芯柱I6、线圈铁芯柱II7上非磁阀位置的截面积等于(K 3S+K 4S),且(K 3S+K 4S)大于S,等于或小于2S;其中:K 3小于或等于1。S为同等容量的、没有设置任何磁阀的变压器铁芯柱的截面积。磁阀处剩余的铁芯截面积等于K 3S,K 3小于或等于1。
可以分析,如果交流铁芯柱I5、交流铁芯柱II8、交流旁轭I9、交流旁轭II11的截面积等于同等容量变压器铁芯柱的截面积S,磁控电抗器在额定电压条件下,交流铁芯柱I5、交流铁芯柱II8、交流旁轭I9、交流旁轭II11就不会出现饱和现象。因此交流铁芯柱I5、交流铁芯柱II8、交流旁轭I9、交流旁轭 II11的截面积可以不必大于S。如果交流铁芯柱I5、交流铁芯柱II8、交流旁轭I9、交流旁轭II11的截面积大于S,不能提高磁控电抗器性能指标,却增加磁控电抗器重量与体积。
直流旁轭10截面积大于S,在线圈铁芯柱II6与线圈铁芯柱II7的直流磁势作用下,线圈铁芯柱II6与线圈铁芯柱II7的饱和作用有所加强。但磁控电抗器铁芯体积与重量加大。再考虑制造方便因素,平衡利弊,直流旁轭10截面积等于S或略大于S,比较合适。
考虑工艺与裕度要求,以及实际经验,磁控电抗器铁芯的交流铁芯柱I5、交流铁芯柱II8、交流旁轭I9、交流旁轭II11的截面积取等于同等容量变压器铁芯柱的截面积S,直流旁轭10的截面积取等于或大于同等容量变压器铁芯柱的截面积S,小于1.2S。这样,磁控电抗器铁芯结构就能够使磁控电抗器铁芯有理想磁化曲线,磁控电抗器高次谐波含量最小,还能使铁芯体积与重量较小。磁控电抗器铁芯的交流铁芯柱I5、交流铁芯柱II8、交流旁轭I9、直流旁轭10、交流旁轭II11的截面积不必与线圈铁芯柱II6与线圈铁芯柱II7的截面积相同。磁控电抗器铁芯中的直流磁通流通路径越短,越有利于线圈铁芯柱I6、线圈铁芯柱II7上非磁阀位置的铁芯饱和,实现直流电流的灵敏控制。所以,线圈铁芯柱I6、线圈铁芯柱II7上的磁阀应远离直流磁通的较短的流通路径。
磁阀设计在交流磁通流通路径较短的路径上,越有利于交流磁通流过磁阀,交流磁通流过磁阀的比例就越大,可减小磁控电抗器电流的高次谐波分量。所以,线圈铁芯柱I6、线圈铁芯柱II7上的磁阀应尽可能设计在交流磁通的较短的流通路径上。
如图4所示,线圈铁芯柱I6上线圈产生的交流磁通在线圈铁芯柱I6、交流 铁芯柱I5、交流旁轭I9构成的闭环铁芯磁路流通。交流磁通在线圈铁芯柱I6的左半边流通时,路径较短。所以,磁阀设计在线圈铁芯柱I6的左半边为好。线圈铁芯柱I6上线圈产生的直流磁通在线圈铁芯柱I6、线圈铁芯柱II7、直流旁轭10构成的闭环铁芯磁路流通。直流磁通在线圈铁芯柱I6的右半边流通时,路径较短。所以,磁阀也是设计在线圈铁芯柱I6的左半边为好。
同理,线圈铁芯柱II7上的磁阀设计在线圈铁芯柱II7的右半边为好。如图1所示。
当然,本实施例中,线圈铁芯柱I6、线圈铁芯柱II7上的磁阀均为两个,为矩形,磁阀是矩形结构,可以实现磁控电抗器最小电流和最大电流时,高次谐波与基波的比例较小。其他电流状态时,谐波与基波的比例较大。
在其他实施例中,每个线圈铁芯柱上的磁阀的数量可以更改,每个线圈铁芯柱上的磁阀数量可以一致,也可以不一致。且磁阀的形状也可以更改,如改为三角形、弧形等等。
例如提供另一种优选结构如图5所示,即实施例3:
线圈铁芯柱I、线圈铁芯柱II上的磁阀是矩形与等腰三角形的组合。线圈铁芯柱I、线圈铁芯柱II上的磁阀的矩形深是L,等腰三角形的高是H,(L/H)大于3,小于10。该实施例的磁阀是矩形与等腰三角形的组合。非磁阀铁芯与磁阀通过等腰三角形过渡,可减小其他电流状态时,谐波与基波的比例。
本发明的一种具有理想磁化曲线的磁控电抗器可用现有技术设计制造,完全可以实现,有广阔应用前景。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则 之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (13)

  1. 一种磁控电抗器,其特征是:具有线圈的至少一对铁芯柱上设置有磁阀,且磁阀的形状和大小被配置为能够使磁控电抗器铁芯的磁化曲线由a1、a2和a5顺次连接的线段连接而成,其中,a1是磁化曲线起始点,对应的磁感应强度为零;a2为在磁化曲线起始点到膝点之间的某一点,a2对应的磁感应强度B2在零和膝点所对应的磁感应强度之间;a5对应的磁感应强度等于膝点所对应的磁感应强度,a5对应的磁场强度为所述磁控电抗器的电抗电流最大值的峰值。
  2. 如权利要求1所述的一种磁控电抗器,其特征是:所述a2为磁化曲线起始点到膝点之间,且对应的磁感应强度小于或等于膝点所对应的磁感应强度的一半。
  3. 如权利要求1所述的一种磁控电抗器,其特征是:所述a5点对应的磁感应强度与a2点对应的磁感应强度的差小于或等于膝点所对应的磁感应强度的一半。
  4. 如权利要求1所述的一种磁控电抗器,其特征是:设置磁阀的铁芯的、非磁阀位置的截面积等于(K 3S+K 4S),且(K 3S+K 4S)大于或等于S;其中:K 3小于或等于1,K 4小于或等于1,S为同等容量的、没有设置任何磁阀的变压器铁芯柱的截面积。
  5. 一种磁控电抗器,其特征是:具有线圈的至少一对铁芯柱上设置有磁阀,且磁阀的形状和大小被配置为能够使磁控电抗器铁芯的磁化曲线由a1与a2所在的磁化曲线段和a2与a5所在的直线段连接而成,其中,a1是磁化曲线起始点,对应的磁感应强度为零;a2为在磁化曲线起始点到膝点之间的某一点,a2对应的磁感应强度B2在零和膝点所对应的磁感应强度之间;a5对应的磁感应强度等于膝点所对应的磁感应强度,a5对应的磁场强度为所述磁控电抗器的电抗 电流最大值的峰值。
  6. 如权利要求5所述的一种磁控电抗器,其特征是:所述a2为磁化曲线起始点到膝点之间,且对应的磁感应强度小于或等于膝点所对应的磁感应强度的一半。
  7. 如权利要求5所述的一种磁控电抗器,其特征是:所述a5点对应的磁感应强度与a2点对应的磁感应强度的差小于或等于膝点所对应的磁感应强度的一半。
  8. 一种磁控电抗器的生产/优化方法,其特征是:具有线圈的至少一对铁芯柱上加工磁阀,且磁阀的形状和大小被配置为能够使磁控电抗器铁芯的磁化曲线由a1、a2和a5顺次连接的线段连接而成,或由a1与a2所在的磁化曲线段和a2与a5所在的直线段连接而成,其中,a1是磁化曲线起始点,对应的磁感应强度为零;a2为在磁化曲线起始点到膝点之间的某一点,a2对应的磁感应强度B2在零和膝点所对应的磁感应强度之间;a5对应的磁感应强度等于膝点所对应的磁感应强度,a5对应的磁场强度为所述磁控电抗器的电抗电流最大值的峰值。
  9. 如权利要求1所述的一种磁控电抗器,其特征是:磁控电抗器铁芯结构包括至少两个交流铁芯柱,以及设置在两交流铁芯柱之间的多个线圈铁芯柱,且各交流铁芯柱与相邻的线圈铁芯柱之间通过交流旁轭连接,形成交流闭环磁通环路,相邻的线圈铁芯柱之间通过直流旁轭连接,形成直流闭环磁通环路;各线圈铁芯柱上设置有若干磁阀;
    其中,各交流铁芯柱、交流旁轭的截面积等于S;直流旁轭的截面积大于或等于S,小于1.2S;磁阀处剩余的铁芯截面积等于K 3S,非磁阀位置的截面积等 于(K 3S+K 4S),且1<(K 3+K 4)≤2,K 3≤1,S为同等容量变压器铁芯柱的截面积。
  10. 如权利要求9所述的一种磁控电抗器铁芯结构,其特征是:各线圈铁芯柱上的磁阀有多个。
  11. 如权利要求9所述的一种磁控电抗器铁芯结构,其特征是:所述磁阀的截面呈矩形与等腰三角形的组合,且矩形的宽边一端连接等腰三角形的底边,矩形的长是L,等腰三角形的高是H,3<(L/H)<10。
  12. 如权利要求9所述的一种磁控电抗器铁芯结构,其特征是:各线圈铁芯柱上的磁阀设置在远离直流闭环磁通环路的路径上。
  13. 如权利要求9所述的一种磁控电抗器铁芯结构,其特征是:各线圈铁芯柱上的磁阀设置在靠近交流磁通的路径上。
PCT/CN2019/112019 2018-10-29 2019-10-18 一种磁控电抗器及方法 WO2020088282A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811271234.4A CN109326428B (zh) 2018-10-29 2018-10-29 一种磁控电抗器及方法
CN201811271234.4 2018-10-29
CN201910814790.XA CN110415938B (zh) 2019-08-30 2019-08-30 一种磁控电抗器铁芯结构及设计方法
CN201910814790.X 2019-08-30

Publications (1)

Publication Number Publication Date
WO2020088282A1 true WO2020088282A1 (zh) 2020-05-07

Family

ID=70464728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112019 WO2020088282A1 (zh) 2018-10-29 2019-10-18 一种磁控电抗器及方法

Country Status (1)

Country Link
WO (1) WO2020088282A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550372B2 (zh) * 1974-04-17 1980-12-17
US20050000230A1 (en) * 2001-03-27 2005-01-06 Akiko Saito Magnetic material
CN101661826A (zh) * 2009-09-10 2010-03-03 刘有斌 直流偏磁式可控电抗器
CN102682956A (zh) * 2012-04-28 2012-09-19 蒋正荣 垂直双激励可控电抗器
CN106026813A (zh) * 2016-07-28 2016-10-12 李晓明 一种快速响应饱和电抗器
CN109326428A (zh) * 2018-10-29 2019-02-12 李晓明 一种磁控电抗器及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550372B2 (zh) * 1974-04-17 1980-12-17
US20050000230A1 (en) * 2001-03-27 2005-01-06 Akiko Saito Magnetic material
CN101661826A (zh) * 2009-09-10 2010-03-03 刘有斌 直流偏磁式可控电抗器
CN102682956A (zh) * 2012-04-28 2012-09-19 蒋正荣 垂直双激励可控电抗器
CN106026813A (zh) * 2016-07-28 2016-10-12 李晓明 一种快速响应饱和电抗器
CN109326428A (zh) * 2018-10-29 2019-02-12 李晓明 一种磁控电抗器及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, XINYING: "Research on Simulation and Experiment of Magnetic-Valve Controllable Reactor", MASTER THESIS, no. 02, 15 February 2017 (2017-02-15), pages 1 - 67, XP009520892, ISSN: 1674-0246 *

Similar Documents

Publication Publication Date Title
CN109326428B (zh) 一种磁控电抗器及方法
TWI692190B (zh) 串聯諧振式轉換器
CN102982985B (zh) 一种多抽头复合励磁型可控电抗器
CN2911906Y (zh) 一种可控三相组合式电抗器
CN110690029A (zh) 铁芯结构及虚拟气隙式可控电抗器(vcr)
WO2020088282A1 (zh) 一种磁控电抗器及方法
CN107633936A (zh) Llc变压器、及其实现方法及磁芯组件
CN110415938B (zh) 一种磁控电抗器铁芯结构及设计方法
WO2024139941A2 (zh) 磁路自适应式电网潮流控制器
CN102982970B (zh) 一种多磁阀式可控电抗器
CN103077804B (zh) 多级正交磁饱和式可控电抗器
CN114925548B (zh) 一种含矩阵变压器的llc谐振变换器全磁集成优化设计方法
CN204204582U (zh) 一种铁芯磁控电抗器
CN102208244B (zh) 一种正交磁化的单相可控电抗器
CN103997217A (zh) 一种基于平板型电感的定频串联谐振变换器
CN201663042U (zh) 直流励磁可控饱和电抗器
CN201174312Y (zh) 高漏抗型有级可调串联铁心电抗器
CN203250617U (zh) 多级正交磁饱和式可控电抗器
CN102290200A (zh) 一种可控饱和电抗器
TWI771254B (zh) 鐵芯結構及電壓變換器
Chen et al. A novel compact structure of the three-phase virtual air gap controllable reactor
WO2016141614A1 (zh) 一种结构简单的饱和电抗器
CN201444427U (zh) 六柱铁芯磁控电抗器
CN117095914B (zh) 具有三相独立调磁回路的三相三柱并联磁阀式电抗器
CN202008894U (zh) 一种正交磁化的单相可控电抗器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879530

Country of ref document: EP

Kind code of ref document: A1