WO2020088229A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2020088229A1
WO2020088229A1 PCT/CN2019/111003 CN2019111003W WO2020088229A1 WO 2020088229 A1 WO2020088229 A1 WO 2020088229A1 CN 2019111003 W CN2019111003 W CN 2019111003W WO 2020088229 A1 WO2020088229 A1 WO 2020088229A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
qcl information
reference signal
target
information
Prior art date
Application number
PCT/CN2019/111003
Other languages
English (en)
French (fr)
Inventor
杨宇
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19880115.1A priority Critical patent/EP3876634A4/en
Priority to KR1020217014665A priority patent/KR20210075169A/ko
Priority to JP2021523512A priority patent/JP7346563B2/ja
Priority to SG11202104579YA priority patent/SG11202104579YA/en
Publication of WO2020088229A1 publication Critical patent/WO2020088229A1/zh
Priority to US17/244,031 priority patent/US11968699B2/en
Priority to JP2023069069A priority patent/JP2023089237A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • This application relates to the field of communication technology, and more specifically to a method and device for wireless communication.
  • RRC Radio Resource Control
  • CORESET Control Resource Set
  • TCI Transmission Configuration Indication
  • the media access control control unit Media Access Control Element, MAC CE
  • the terminal equipment uses the same quasi-colocation (QCL) information for all Search Spaces in CORESET, that is, the same TCI state.
  • QCL quasi-colocation
  • the network device For the physical downlink shared channel (Physical Downlink Share Channel, PDSCH) beam indication, the network device configures M TCI states through RRC signaling, and then uses the MAC CE command to activate 2 N TCI states, and then through the downlink control information (Downlink Control Information , DCI) N-bit field (Field) to notify the TCI state, the terminal device can learn the PDSCH receive beam according to the notified TCI state.
  • DCI Downlink Control Information
  • the network device For the physical uplink control channel (Physical Uplink Control Channel, PUCCH) beam indication, the network device uses RRC signaling to configure spatial relationship information (Spatial Relation Information) for each PUCCH Resource.
  • PUCCH Resource configuration Spatial Relation Information contains multiple At the time of Entry, use MAC to indicate one of the Entry Spatial Relation Information.
  • the network device For the beam indication of the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), the network device configures PUSCH related information through RRC signaling.
  • PUSCH Physical Uplink Shared Channel
  • the network device configures PUSCH related information through RRC signaling.
  • each code point of the Sounding Reference Signal Resource (SRI) Field in the DCI indicates a SRI, which is used to indicate the Spatial Relation of the PUSCH.
  • SRI Sounding Reference Signal Resource
  • the network device configures Spatial Relation for the SRS Resource through RRC signaling.
  • the SRS is a semi-persistent SRS
  • the network device activates one from a set of Spatial Relations configured by RRC signaling through the MAC CE command.
  • the SR type is aperiodic SRS
  • the network device configures Spatial Relation for SRS Resource through RRC signaling.
  • the current beam indication for the uplink and downlink channels or reference signals is usually configured by RRC signaling for candidate QCL information or Spatial Relation information, and then activated by the MAC CE command or indicated by DCI.
  • RRC signaling for candidate QCL information or Spatial Relation information
  • the candidate QCL information occurs Or reconfiguration of Spatial Relation information, you need to use RRC signaling to configure again, which brings a large overhead of high-level signaling.
  • An object of the embodiments of the present disclosure is to provide a method and device for wireless communication, which can reduce high-level signaling overhead.
  • a method of wireless communication comprising: in a case where a first cell in a target frequency band is configured with a first target control resource set CORESET, determining that the first cell is configured with a first The first target standard co-location QCL information of the target CORESET; and according to the first target QCL information, determine the QCL information of the downlink channel or downlink reference signal on the at least one cell, and the uplink channel on the at least one cell Or the spatial relationship information of the uplink reference signal.
  • a method of wireless communication includes: receiving a spatial transmission information set, the spatial transmission information set including a quasi-co-located QCL information set and a spatial relationship information set; and according to the QCL information set, determining QCL information of a downlink channel or downlink reference signal on at least one cell; and determining spatial relationship information of an uplink channel or uplink reference signal on the at least one cell according to the set of spatial relationship information.
  • a method of wireless communication includes: receiving a spatial transmission information set, where the spatial transmission information set includes a quasi co-located QCL information set or a spatial relationship information set;
  • the QCL information of the downlink channel or the downlink reference signal on at least one cell and the spatial relationship information of the uplink channel or the uplink reference signal on the at least one cell are determined.
  • a method of wireless communication includes: sending a spatial transmission information set, where the spatial transmission information set includes a quasi co-located QCL information set and a spatial relationship information set, and the QCL information set is used for a terminal
  • the device determines QCL information of a downlink channel or downlink reference signal on at least one cell, and the spatial relationship information set is used by the terminal device to determine spatial relationship information of an uplink channel or uplink reference signal on the at least one cell.
  • a method of wireless communication includes: sending a set of spatial transmission information, the set of spatial transmission information including a set of quasi-co-located QCL information or a set of spatial relationship information, the set of spatial transmission information used for The terminal device determines the QCL information of the downlink channel or downlink reference signal on at least one cell, and the spatial relationship information of the uplink channel or uplink reference signal on the at least one cell.
  • a device configured to determine that the first cell is detected when the first cell in the target frequency band is configured with the first target control resource set CORESET The first target standard co-located QCL information of the configured first target CORESET; the second processing module is used to determine the QCL information of the downlink channel or downlink reference signal on at least one cell according to the first target QCL information, and the The spatial relationship information of the uplink channel or uplink reference signal on at least one cell.
  • a terminal device in a seventh aspect, includes: a transceiver module for receiving a set of spatial transmission information, the set of spatial transmission information including a quasi-co-located QCL information set and a spatial relationship information set; a processing module, used Determining the QCL information of the downlink channel or the downlink reference signal on at least one cell according to the QCL information set; the processing module is further configured to determine the uplink channel on the at least one cell according to the spatial relationship information set Or the spatial relationship information of the uplink reference signal.
  • a terminal device in an eighth aspect, includes: a transceiver module for receiving a set of spatial transmission information, the set of spatial transmission information including a quasi-co-located QCL information set or a spatial relationship information set; a processing module, used Based on the spatial transmission information set, the QCL information of the downlink channel or downlink reference signal on at least one cell and the spatial relationship information of the uplink channel or uplink reference signal on the at least one cell are determined.
  • a network device in a ninth aspect, includes: a transceiver module for sending a spatial transmission information set, the spatial transmission information set including a quasi co-located QCL information set and a spatial relationship information set, the QCL information The set is used by the terminal device to determine the QCL information of the downlink channel or downlink reference signal on at least one cell, and the spatial relationship information set is used by the terminal device to determine the spatial relationship of the uplink channel or uplink reference signal on the at least one cell information.
  • a network device includes: a transceiver module for sending a spatial transmission information set, the spatial transmission information set including a quasi co-located QCL information set or a spatial relationship information set, the spatial transmission The information set is used by the terminal device to determine the QCL information of the downlink channel or downlink reference signal on at least one cell, and the spatial relationship information of the uplink channel or uplink reference signal on the at least one cell.
  • an apparatus including: a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor. The steps of the method of implementing wireless communication as described in the first aspect.
  • a terminal device includes: a memory, a processor, and a computer program stored on the memory and executable on the processor, and the computer program is used by the processor The steps of the method of implementing wireless communication as described in the second aspect when executed.
  • a terminal device includes: a memory, a processor, and a computer program stored on the memory and executable on the processor, and the computer program is used by the processor The steps of the method of implementing wireless communication as described in the third aspect when executed.
  • a network device comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being used by the processor.
  • a network device includes: a memory, a processor, and a computer program stored on the memory and executable on the processor, and the computer program is used by the processor The steps of the method of implementing wireless communication as described in the fifth aspect when executed.
  • a computer-readable medium storing a computer program on the computer-readable storage medium, the computer program being executed by a processor to implement wireless communication as described in the first to fifth aspects Method steps.
  • the terminal device may determine the QCL information of the downlink channel or downlink reference signal on at least one cell and the spatial relationship of the uplink channel or uplink reference signal according to the quasi-co-location QCL information of a specific CORESET in the target frequency band Information, without the need for network equipment to configure through high-level information, can reduce high-level signaling overhead.
  • FIG. 1 is a schematic flowchart of a method of wireless communication according to an embodiment of the present disclosure
  • FIG. 2 is another schematic flowchart of a method of wireless communication according to an embodiment of the present disclosure
  • FIG. 3 is yet another schematic flowchart of a method of wireless communication according to an embodiment of the present disclosure
  • FIG. 4 is another schematic flowchart of a method of wireless communication according to an embodiment of the present disclosure.
  • FIG. 5 is still another schematic flowchart of a method of wireless communication according to an embodiment of the present disclosure.
  • FIG. 6 is another schematic flowchart of a method of wireless communication according to an embodiment of the present disclosure.
  • FIG. 7 is yet another schematic flowchart of a method of wireless communication according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is another schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 13 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of yet another structure of a network device according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-advanced
  • NR New Radio
  • the terminal equipment (User Equipment, UE), which may also be referred to as a mobile terminal (Mobile Terminal), mobile user equipment, etc., may be accessed via a wireless access network (eg, Radio Access Network, RAN)
  • a wireless access network eg, Radio Access Network, RAN
  • user equipment can be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, can be portable, pocket-sized, handheld, built-in computer Mobile devices on board or in vehicles, they exchange language and / or data with the wireless access network.
  • a network device is an apparatus deployed in a wireless access network device to provide wireless communication functions for terminal devices.
  • the network device may be, for example, a base station, and the base station may be an evolved base station in LTE (eNB or e-NodeB, evolutional Node B) and 5G base station (gNB).
  • eNB evolved base station in LTE
  • gNB 5G base station
  • downlink channels in some embodiments of the present disclosure include but are not limited to PDCCH and PDSCH.
  • Downlink reference signals include but are not limited to cell-specific reference signals (CRS), demodulation reference signals (Demodulation References, DMRS), and channel state information reference signals (Channel State Information References, CSI-RS) .
  • Uplink channels include but are not limited to PUCCH and PUSCH, and uplink reference signals include but are not limited to SRS.
  • FIG. 1 shows a method of wireless communication according to an embodiment of the present application.
  • the method shown in FIG. 1 may be performed by a terminal device or a network device.
  • the method includes:
  • the label of the first target CORESET may be a specific value.
  • the label of the first target CORESET is 0, that is, the first target CORESET is CORESET # 0.
  • S120 Determine, according to the first target QCL information, QCL information of a downlink channel or downlink reference signal on at least one cell, and spatial relationship information of an uplink channel or uplink reference signal on the at least one cell.
  • At least one cell in S120 may or may not include the first cell. At least one cell may be in the same frequency band or not in the same frequency band, for example, a part of cells in at least one cell are in one frequency band, and another part of cells are in another frequency band.
  • the first target QCL information in S120 may be determined by the terminal device from the first QCL information set to which the first target QCL information belongs according to the MAC CE indication, and the first QCL information set is configured by the network device through RRC signaling.
  • the network device uses the high-level parameter pdsch-Config in RRC signaling to carry information for configuring the first QCL information set.
  • the network device configures the relevant information of CORESET # 0 for the first cell, and the relevant information includes the QCL information set configured for CORESET # 0 (it can also be understood that the network device is CORESET # 0Configure QCL or TCI state).
  • the network device activates (or is called) one of the QCL information for CORESET # 0 through the MAC, and the activated (or instructed) QCL information is the first A target QCL information.
  • the network device can reconfigure through RRC signaling and use the MAC to reactivate (or indicate) the QCL information of CORESET # 0.
  • determining the QCL information of the downlink channel or the downlink reference signal on at least one cell includes: determining part or all of the bandwidth on the BWP of each cell in the at least one cell QCL information of the downlink channel or the downlink reference signal; determining the spatial relationship information of the uplink channel or the uplink reference signal on at least one cell includes: determining the uplink channel on part or all of the BWP on each cell in the at least one cell Or the spatial relationship information of the uplink reference signal.
  • At least one cell includes a first cell.
  • determining QCL information of a downlink channel or a downlink reference signal on at least one cell according to the first target QCL information includes: determining a downlink channel or a downlink reference signal on the first cell.
  • the QCL information is the first target QCL information.
  • the QCL information of CORESET # 0 on the first cell is used as the QCL information of the PDCCH on the first cell.
  • At least one cell includes the first cell, and in S120, determining the QCL information of the downlink channel or the downlink reference signal on the at least one cell according to the first target QCL information includes: determining the downlink channel or the downlink reference on the first cell
  • the QCL information set of the signal is the first QCL information set to which the first target QCL information belongs; from the QCL information set of the downlink channel or downlink reference signal on the first cell, the downlink channel or downlink reference on the first cell is determined The QCL information of the signal.
  • determining the QCL information of the downlink channel or the downlink reference signal on the first cell may be performed based on the indication of the MAC CE.
  • At least one cell includes a first cell, and multiple CORESETs are configured on the first cell, and if multiple CORESETs include a first target CORESET, in S120, at least one cell is determined according to the first target QCL information
  • the QCL information of the downlink channel or the downlink reference signal includes: according to the indication of the MAC, from the first QCL information set to which the first target QCL information belongs, determine the QCL information of CORESET among the multiple CORESETs except the first target CORESET .
  • the network device activates (or indicates) one from the QCL information set of CORESET # 0 through the MAC, as the QCL information of the CORESET, that is, the CORESET uplink and downlink channels Or the QCL information of the downlink reference signal.
  • At least one cell includes a first cell and a second cell, and the second cell is not configured with the first target CORESET.
  • determining the QCL information of the downlink channel or the downlink reference signal on at least one cell according to the first target QCL information includes: determining the downlink channel or downlink on the second cell according to the first target QCL information QCL information of the reference signal.
  • determining the QCL information of the downlink channel or the downlink reference signal on the second cell according to the first target QCL information includes: determining the QCL information of the downlink channel or the downlink reference signal on the second cell as the first target QCL information.
  • the first target QCL information of the first target CORESET configured on the first cell is used as the QCL information of the downlink channel or downlink reference signal on the second cell.
  • determining the QCL information of the downlink channel or the downlink reference signal on the second cell based on the first target QCL information includes: determining the downlink channel or the downlink channel on the second cell according to the first QCL information set to which the first target QCL information belongs QCL information of the downlink reference signal.
  • the QCL information set of the downlink channel or downlink reference signal on the second cell is the first QCL information set to which the first target QCL information belongs; from the QCL information set of the downlink channel or downlink reference signal on the second cell, Determine the QCL information of the downlink channel or downlink reference signal on the second cell.
  • the QCL information of the downlink channel or the downlink reference signal on the second cell may be determined from the first QCL information set according to a preset rule.
  • the QCL information of the downlink channel or the downlink reference signal on the second cell may be determined from the first QCL information set according to the instruction of the network device.
  • the cell index of the first cell satisfies the first preset rule.
  • the first cell is a cell with the smallest cell index (Cell Index) among the cells configured with the first target CORESET in the frequency band.
  • the second cell is located in the target frequency band, that is, the first cell and the second cell are located in the same frequency band.
  • the method shown in FIG. 1 further includes:
  • the network device may configure the second QCL information set for the third cell through RRC signaling.
  • the third cell may be a cell in a frequency band where a certain cell in at least one cell is located, or the frequency band in which the third cell is located is different from the frequency band in which any cell in at least one cell is located.
  • the third cell may be a cell whose cell index in the frequency band where the third cell is located satisfies certain rules, for example, the third cell may be a cell with the smallest cell index in the frequency band where the third cell is located.
  • At least one cell is located in the target frequency band, and the third cell is located in the target frequency band. That is, when no cell in a frequency band is configured with the first target CORESET, the downlink channel or downlink reference signal on the cell in the frequency band can be determined according to the QCL information set configured on a cell in the frequency band QCL information.
  • S140 Determine QCL information of a downlink channel or a downlink reference signal on the at least one cell according to the second QCL information set.
  • determining the QCL information of the downlink channel or the downlink reference signal on at least one cell according to the second QCL information set includes: determining the second target of the second target CORESET configured by the third cell from the second QCL information set QCL information; determine the QCL information of the downlink channel or the downlink reference signal on at least one cell as the second target QCL information.
  • the network device may use one MAC CE to activate (or indicate) a piece of QCL information for the second target CORESET from the second QCL information set as the second target QCL information.
  • determining the QCL information of the downlink channel or downlink reference signal on at least one cell according to the second QCL information set includes: determining the QCL information set of the downlink channel or downlink reference signal on at least one cell as the second QCL information set; From the QCL information set of the downlink channel or the downlink reference signal on the at least one cell, determine the QCL information of the downlink channel or the downlink reference signal on the at least one cell.
  • Example c the cell index of the third cell satisfies the second preset rule; and / or, the number of the second target CORESET satisfies the third preset rule; and / or, the bandwidth part where the second target CORESET is located (BandwidthPart , BWP) number meets the fourth rule.
  • the third cell is a cell with a specific Cell Index (for example, the smallest Cell Index) in the frequency band
  • the second target CORESET may be a specific number of CORESET, for example, may be a CORESET with a minimum number
  • the BWP where the second target CORESET is located may be It is a BWP with a specific number, for example, it may be the BWP with the smallest number in the third cell.
  • the "number" here can also be expressed as "identification or index”.
  • the network device may configure QCL information for a specific CORESET on a specific cell in the frequency band, and all cells in the frequency band The COCL on the QCL information is used.
  • At least one cell includes a first cell.
  • determining spatial relationship information of an uplink channel or an uplink reference signal on at least one cell according to the first target QCL information includes: determining a reference signal corresponding to the first transmission configuration indication TCI state RS set, the first TCI state is used to indicate the first target QCL information; according to the source RS in the RS set, the spatial relationship information of the uplink channel or uplink reference signal on the first cell is determined.
  • the source RS (or referred to as Reference RS) in the RS set corresponding to the TCI of the first target QCL information of CORESET # 0 is used as the Source RS in the spatial relationship (PUCCH) Spatial Relation information.
  • the terminal device determines the reception beam to receive CORESET # according to the TCI indicating CORESET # 0, it uses the transmission beam in the direction of the reception beam (except that the directions are opposite, the other spatial parameters of the beam are the same) to send the PUCCH.
  • At least one cell includes a first cell, and in S120, the spatial relationship information of the uplink channel or the uplink reference signal on the at least one cell is determined according to the first target QCL information, including: the first QCL information to which the first target QCL information belongs Set to determine the spatial relationship information of the uplink channel or uplink reference signal on the first cell.
  • determining the spatial relationship information of the uplink channel or uplink reference signal on the first cell according to the first QCL information set to which the first target QCL information includes: determining to indicate all QCLs in the first QCL information set The second TCI state of the information; according to all source RSs in the RS set corresponding to the second TCI state, determine candidate spatial relationship information of the uplink channel or uplink reference signal on the first cell; from the candidate spatial relationship information, Determine the spatial relationship information of the uplink channel or uplink reference signal on the first cell.
  • all the Source RSs in the RS set corresponding to the TCI state of the QCL information set indicating CORESET # 0 are selected as the Source RSs in the PUCCH candidate Spatial Relation information, and then selected from the Source RS in the PUCCH candidate Spatial Relation information A subset, as the RS in the Spatial Relation information of PUCCH.
  • all Source RSs in the RS set corresponding to the TCI of the QCL information set indicating CORESET # 0 determine the candidate Spatial Relation information of the PUCCH, and then select a subset from the candidate Spatial Relation information as the Spatial Relation of PUCCH information.
  • determining the spatial relationship information of the uplink channel or the uplink reference signal on the first cell from the candidate spatial relationship information includes: according to the radio resource control RRC signaling and / or MAC indication, from the candidate spatial relationship information Determine the spatial relationship information of the uplink channel or uplink reference signal on the first cell. For example, there are 64 Source RSs in the candidate Spatial Relation information, and the network device uses RRC signaling or MAC to indicate 8 of them as Source RSs in the PUCCH Spatial Relation information.
  • the maximum amount of spatial relationship information that can be configured on the cell is greater than or equal to the amount of QCL information in the first QCL information set; then the first cell is determined according to the first QCL information set to which the first target QCL information belongs
  • the spatial relationship information of the uplink channel or uplink reference signal on the network includes: determining a second TCI state indicating all QCL information in the first QCL information set; and according to all source RSs in the RS set corresponding to the second TCI state , Determine candidate spatial relationship information of the uplink channel or uplink reference signal on the first cell; from the candidate spatial relationship information, determine spatial relationship information of the uplink channel or uplink reference signal on the first cell.
  • the network device is allowed to configure the maximum number of Spatial Relation Information of PUCCH greater than or equal to the number of QCL information in the QCL information set of CORESET # 0, you can directly set the QCL in the QCL information set of CORESET # 0
  • the information is the Spatial Relation information of PUCCH.
  • determining the spatial relationship information of the uplink channel or the uplink reference signal on the first cell according to the first QCL information set to which the first target QCL information includes: determining a preset number of QCLs from the first QCL information set Information; determine the spatial relationship of the uplink channel or uplink reference signal on the first cell according to the source RS in the RS set corresponding to the third TCI state.
  • the third TCI state is used to indicate a preset amount of QCL information.
  • determining the preset number of QCL information from the first QCL information set may be performed based on protocol agreement. For the terminal device, determining the preset number of QCL information from the first QCL information set may also be performed based on an instruction of the network device.
  • selecting a fixed number of QCL information from the QCL information set of CORESET # 0 (such as the 8 with the smallest entry in the TCI state when configuring QCL information) will indicate the TCI of the fixed number of QCL information
  • the Source RS in the RS set corresponding to the state serves as the Source RS of the PUCCH Spatial Relation Information, thereby determining the PUCCH Spatial Relation Information.
  • At least one cell includes a first cell and a fourth cell, and the fourth cell is not configured with a first target CORESET; then in S120, according to the first target QCL information, the spatial relationship of the uplink channel or uplink reference signal on the at least one cell is determined
  • the information includes: determining the spatial relationship information of the uplink channel or uplink reference signal on the fourth cell according to the first target QCL information.
  • the spatial relationship information of the uplink signal or uplink reference signal on the fourth cell may be determined according to the first target QCL information of the first target CORESET configured in the first cell.
  • determining the spatial relationship information of the uplink channel or uplink reference signal on the fourth cell according to the first target QCL information includes: determining a first TCI state indicating the first target QCL information; according to the first TCI state
  • the source RS in the corresponding RS set determines the spatial relationship information of the uplink channel or uplink reference signal on the fourth cell.
  • the Source RS in the RS set corresponding to the TCI of the first target QCL information of CORESET # 0 configured on the first cell is used as the Source RS in the Spatial Relation Information of the PUCCH of the fourth cell.
  • the terminal device determines the reception beam to receive CORESET # 0 according to the TCI indicating the first target QCL information of CORESET # 0
  • the transmission beam is used in the direction of the reception beam on the fourth cell (except for the opposite direction, the beam The other spatial parameters are the same) to send PUCCH.
  • determining the spatial relationship information of the uplink channel or uplink reference signal on the fourth cell according to the first target QCL information includes: according to the first QCL information set to which the first target QCL information belongs, Determine the spatial relationship information of the uplink channel or uplink reference signal on the fourth cell.
  • a second TCI state indicating all information in the first QCL information set is determined, and according to all source RSs in the RS set corresponding to the second TCI state, the uplink channel or uplink reference signal on the fourth cell is determined
  • the fourth cell is located in the target frequency band, that is, the first cell and the fourth cell are located in the same frequency band.
  • the method shown in FIG. 1 further includes:
  • the fifth cell may be a cell in a frequency band where a certain cell in at least one cell is located, or the frequency band in which the fifth cell is located is different from the frequency band in which any cell in at least one cell is located.
  • the fifth cell may be a cell whose cell index in the frequency band where the fifth cell is located meets certain rules, for example, the fifth cell may be a cell with the smallest cell index in the frequency band where the fifth cell is located.
  • S160 Determine spatial relationship information of an uplink channel or an uplink reference signal on at least one cell according to the third QCL information set.
  • At least one cell is located in the target frequency band, and the fifth cell is located in the target frequency band. That is, when no cell in a frequency band is configured with the first target CORESET, the uplink channel or uplink reference signal on the cell in the frequency band can be determined according to the QCL information set configured on a cell in the frequency band Spatial relationship information.
  • determining the spatial relationship information of the uplink channel or the uplink reference signal on at least one cell according to the third QCL information set includes: determining the TCI status used to indicate all QCL information in the third QCL information set; Determine the candidate spatial relationship information of the uplink channel or uplink reference signal on at least one cell from all source RSs in the RS set corresponding to the TCI states of all QCL information in the third QCL information set; from the spatial relationship information , Determine spatial relationship information of the uplink channel or uplink reference signal on at least one cell.
  • determining the spatial relationship information of the uplink channel or uplink reference signal on at least one cell according to the third QCL information set includes: determining a preset amount of QCL information from the third QCL information set; It is assumed that the source RS in the RS set corresponding to the TCI state of the quantity of QCL information determines the spatial relationship information of the uplink channel or uplink reference signal on at least one cell.
  • determining the spatial relationship information of the uplink channel or the uplink reference signal on at least one cell according to the third QCL information set includes: determining the third target CORESET configured on the fifth cell from the third QCL information set Third target QCL information; according to the third target QCL information, determine spatial relationship information of an uplink channel or uplink reference signal on at least one cell.
  • the network device may use a MAC CE to activate (or indicate) a piece of QCL information for the third target CORESET from the third QCL information set as the third target QCL information.
  • determining the spatial relationship information of the uplink channel or the uplink reference signal on at least one cell according to the third target QCL information may include: determining the TCI status used to indicate the third target QCL information; and according to the third QCL information used to indicate The source RS in the RS set corresponding to the TCI state determines the spatial relationship information of the uplink channel or uplink reference signal on at least one cell.
  • Example g the cell index of the fifth cell satisfies the fifth preset rule; and / or, the number of the third target CORESET satisfies the sixth preset rule; and / or, the number of the bandwidth part BWP where the third target CORESET is located Meet the seventh preset rule.
  • the fifth cell is a cell with a specific Cell Index (for example, the smallest Cell Index) in the frequency band
  • the third target CORESET may be a CORESET with a specific number, for example, may be a CORESET with a minimum number
  • the BWP where the third target CORESET is located may It is a BWP with a specific number, for example, it may be the BWP with the smallest number in the fifth cell.
  • At least one cell includes a first cell and a sixth cell, and the sixth cell is not configured with a QCL information set.
  • the method shown in FIG. 1 further includes: determining the QCL information set of the sixth cell as the first QCL to which the first target QCL information belongs Information set; according to the QCL information set of the sixth cell, determine the QCL information of the downlink channel or downlink reference signal on the sixth cell, and the spatial relationship information of the uplink channel or uplink reference signal on the sixth cell.
  • Example h after the first QCL information set of the first cell is used as the QCL information set of the sixth cell, the QCL of the downlink channel or downlink reference signal on the sixth cell is determined according to the QCL information set of the sixth cell
  • the information is the same as the implementation method of determining the QCL information of the downlink channel or the downlink reference signal on the first cell according to the first QCL information set to which the first QCL information of the first target CORESET configured in the first cell belongs in the foregoing example, to avoid Repeat, no more details here.
  • the QCL information set of the sixth cell to determine the spatial relationship information of the uplink channel or the uplink reference signal on the sixth cell
  • the method for implementing the first QCL information set to determine the spatial relationship information of the uplink channel or the uplink reference signal on the first cell will not be repeated here.
  • the first cell in Example h may be the cell with the smallest Cell Index among the cells configured with the QCL information set.
  • the sixth cell is located in the target frequency band, that is, the first cell and the sixth cell are located in the same frequency band.
  • At least one cell includes a first cell and a seventh cell, and the seventh cell is not configured with a QCL information set.
  • the method described in FIG. 1 further includes: determining the QCL information of the downlink channel or downlink reference signal on the seventh cell as the first cell QCL information of the downlink channel or downlink reference signal on the uplink; and / or, based on the QCL information of the downlink channel or downlink reference channel on the first cell, determine the spatial relationship information of the uplink channel or uplink reference signal on the seventh cell.
  • the QCL information of the PDCCH of the first cell is determined as the QCL information of the downlink channel or downlink reference signal on the seventh cell.
  • the spatial relationship information of the uplink channel (eg, PUCCH) or uplink reference signal (eg, SRS) on the seventh cell is determined.
  • determining the spatial relationship information of the uplink channel or the uplink reference signal on the seventh cell according to the QCL information of the downlink channel or the downlink reference channel on the first cell includes: according to the indication of the downlink channel on the first cell Or the source RS in the RS set corresponding to the TCI state of the QCL information of the downlink reference signal to determine the spatial relationship information of the uplink channel or uplink reference signal on the seventh cell.
  • determining the spatial relationship information of the uplink channel or the uplink reference signal on the seventh cell according to the QCL information of the downlink channel or the downlink reference signal on the first cell includes: according to the indication of the downlink channel or the downlink on the first cell Determine the candidate spatial relationship information of the uplink channel or uplink reference signal on the seventh cell from all source RSs in the RS set corresponding to the TCI status of all QCL information in the QCL information set to which the QCL information of the reference signal belongs; In the information, the spatial relationship information of the uplink channel or uplink reference signal on the seventh cell is determined.
  • the spatial relationship information of the uplink channel or uplink reference signal on the seventh cell is determined, including: Select a preset amount of QCL information from the QCL information set to which the QCL information belongs; determine the uplink channel or uplink on the seventh cell according to the source RS in the RS set corresponding to the TCI state indicating the preset amount of QCL information Reference signal spatial relationship information.
  • the seventh cell is located in the target frequency band, that is, the first cell and the seventh cell are located in the same frequency band.
  • At least one cell includes a first cell and an eighth cell.
  • the eighth cell is not configured with a QCL information set.
  • the method shown in FIG. 1 further includes: determining the spatial relationship information of the uplink channel or uplink signal on the eighth cell as the first cell Spatial relationship information of the uplink channel or uplink reference signal on the Internet.
  • the spatial relationship information of the PUCCH of the first cell is determined as the spatial relationship information of the uplink channel or uplink reference signal on the eighth cell.
  • the first cell in Examples i and j may be the cell with the smallest Cell Index among the cells configured with the QCL information set.
  • the eighth cell is located in the target frequency band, that is, the first cell and the eighth cell are located in the same frequency band.
  • the terminal device can determine the QCL of the downlink channel or the downlink reference signal on other cells according to the specific CORESET QCL information (or QCL information set) configured on the specific cell.
  • the information and the spatial relationship information of the uplink channel or the uplink reference signal can reduce high-level signaling overhead.
  • FIG. 4 is a method of wireless communication according to an embodiment of the present disclosure.
  • the method shown in FIG. 4 may be performed by a terminal device. As shown in FIG. 4, the method includes:
  • S410 Receive a spatial transmission information set, where the spatial transmission information set includes a quasi co-located QCL information set and a spatial relationship information set.
  • S420 Determine the QCL information of the downlink channel or downlink reference signal on at least one cell according to the QCL information set; determine the spatial relationship of the uplink channel or uplink reference signal on the at least one cell according to the spatial relationship information set information.
  • the spatial transmission information set received in S410 includes QCL information and spatial relationship information set, which can be understood as: the network device configures the QCL information set for the downlink on the cell of the terminal device and the cell of the terminal device The spatial configuration information set on the uplink configuration.
  • the QCL information is a common QCL information set of all cells in the at least one cell
  • the spatial relationship information set is a common spatial relationship information set of all cells in the at least one cell
  • the QCL information set is configured by a network device to a first target cell in the at least one cell
  • the spatial relationship information set is configured by a network device to a second target cell in the at least one cell.
  • the cell index of the first target cell satisfies the first preset rule, and / or, the cell index of the second target cell satisfies the second preset rule.
  • the first target cell is the cell with the smallest cell index in at least one cell
  • the second target cell is the cell with the largest cell index in at least one cell.
  • the network device can configure the same QCL information set for the cell of the terminal device, the QCL information on each cell can be selected from the QCL information set, or the network device can configure the QCL for a specific cell in the cell of the terminal device Information set.
  • the QCL information on each cell can be selected from the QCL information set configured on the specific cell.
  • the network device may configure the same spatial relationship information set for the cell of the terminal device, and the spatial relationship information on each cell may be selected from the spatial relationship information set, or the network device may be a specific one in the cell of the terminal device
  • the cell is configured with a spatial relationship information set.
  • the spatial relationship information on each cell can be selected from the spatial relationship information set configured on the specific cell. This eliminates the need for the network device to separately configure QCL information and spatial relationship information for the channel or reference signal on each BWP in each cell, which can reduce high-level signaling overhead.
  • the QCL information set and the spatial relationship information set are considered to be the common QCL information set and The common spatial relationship information set. If the information used by the network device to configure the QCL information set and the spatial relationship information set includes a cell index, the QCL information set and the spatial relationship information set are considered to be configured for the cell corresponding to the cell index.
  • the plurality of cells are located in the same frequency band.
  • the determining the QCL information of the downlink channel or the downlink reference signal on at least one cell includes: determining part or all of the bandwidth part on each of the at least one cell QCL information of the downlink channel or downlink reference signal on the BWP.
  • determining the spatial relationship information of the uplink channel or uplink reference signal on the at least one cell includes: determining the uplink channel or uplink reference signal on part or all of the BWP on each cell in the at least one cell Spatial relationship information.
  • FIG. 5 is a method of wireless communication according to an embodiment of the present disclosure.
  • the method shown in FIG. 5 may be performed by a terminal device. As shown in FIG. 5, the method includes:
  • S510 Receive a spatial transmission information set, where the spatial transmission information set includes a quasi co-located QCL information set or a spatial relationship information set.
  • S520 Determine QCL information of a downlink channel or a downlink reference signal on at least one cell and spatial relationship information of an uplink channel or an uplink reference signal on the at least one cell according to the spatial transmission information set.
  • the spatial transmission information set received in S510 includes QCL information or spatial relationship information set, which can be understood as: the network device configures the same spatial transmission information for the downlink and uplink on the cell of the terminal device set. This eliminates the need for the network device to separately configure the spatial transmission information set for the downlink and uplink of the terminal device, which can reduce high-level signaling overhead.
  • the spatial transmission information set is a common spatial transmission information set of all cells in the at least one cell, or the spatial transmission information set is configured by the network device to the at least one cell Target cell.
  • the cell index of the target cell meets a preset rule.
  • the target cell is the cell with the smallest cell index among at least one cell.
  • determining the QCL information of the downlink channel or the downlink reference signal on at least one cell includes: determining part or all of the bandwidth on the BWP of each cell in the at least one cell QCL information of the downlink channel or downlink reference signal.
  • determining the spatial relationship information of the uplink channel or uplink reference signal on the at least one cell includes: determining the uplink channel or uplink reference signal on part or all of the BWP on each cell in the at least one cell Spatial relationship information.
  • the at least one cell when the at least one cell is a plurality of cells, the plurality of cells are located in the same frequency band.
  • the spatial transmission information set includes the QCL information set in S510, then in S520, the QCL information of the downlink channel or downlink reference signal on at least one cell is determined according to the spatial transmission information set, which may be from QCL information is selected for at least one cell in the QCL information set, and the specific selection method is not limited in the embodiments of the present disclosure.
  • the spatial transmission information set includes a QCL information set
  • the implementation manner of determining the spatial relationship information of the uplink channel or uplink reference signal on at least one cell may be: Determining candidate spatial relationship information of an uplink channel or uplink reference signal on at least one cell from all source RSs in the RS set corresponding to the TCI states of all QCL information in the QCL information set; from the candidate spatial relationship information To determine the spatial relationship information of the uplink channel or uplink reference signal on at least one cell.
  • the spatial transmission information set includes a spatial relationship information set
  • the spatial relationship information of the uplink channel or uplink reference signal on at least one cell is determined according to the spatial transmission information set, It may be that the spatial relationship information is selected for at least one cell from the spatial relationship information set.
  • the embodiment of the present disclosure does not limit the specific selection method.
  • the spatial transmission information set includes a spatial relationship information set
  • determining the QCL information of the downlink channel or downlink reference signal on at least one cell may be implemented according to: All source RSs in all spatial relationship information in the relationship information set determine candidate QCL information of a downlink channel or downlink reference signal on at least one cell; from the candidate QCL information, determine a downlink channel or downlink on at least one cell QCL information of the reference signal.
  • a predetermined number of spatial relationship information sets are determined from the spatial relationship information set; according to the source RS in the predetermined number of spatial relationship information, the QCL information of the downlink channel or downlink reference signal on at least one cell is determined.
  • FIG. 6 is a method of wireless communication according to an embodiment of the present disclosure.
  • the method shown in FIG. 6 may be performed by a network device. It can be understood that the interaction between the network device and the terminal device described from the network device side is as shown in FIG. 4.
  • the description on the terminal device side in the method is the same, and in order to avoid repetition, the relevant description is appropriately omitted.
  • the method includes:
  • S610 Send a spatial transmission information set, where the spatial transmission information set includes a quasi co-located QCL information set and a spatial relationship information set, where the QCL information set is used by the terminal device to determine the QCL of a downlink channel or downlink reference signal on at least one cell Information, the spatial relationship information set is used by the terminal device to determine spatial relationship information of an uplink channel or an uplink reference signal on the at least one cell.
  • the QCL information is a common QCL information set of all cells in the at least one cell
  • the spatial relationship information set is a common spatial relationship information set of all cells in the at least one cell
  • the QCL information set is configured by a network device to a first target cell in the at least one cell
  • the spatial relationship information set is configured by a network device to a second target cell in the at least one cell.
  • the at least one cell is a plurality of cells
  • the plurality of cells are located in the same frequency band.
  • the cell index of the first target cell satisfies the first preset rule; and / or, the cell index of the second target cell satisfies the second preset rule.
  • FIG. 7 is a method of wireless communication according to an embodiment of the present disclosure.
  • the method shown in FIG. 7 may be performed by a network device. It can be understood that the interaction between the network device and the terminal device described from the network device side is as shown in FIG. 5.
  • the description on the terminal device side in the method is the same, and in order to avoid repetition, the relevant description is appropriately omitted.
  • the method includes:
  • the spatial transmission information set is used by the terminal device to determine a downlink channel or downlink reference signal on at least one cell.
  • the spatial transmission information set is a common spatial transmission information set of all cells in the at least one cell, or the spatial transmission information set is configured by the network device to the at least one cell The target cell in.
  • the at least one cell is a plurality of cells
  • the plurality of cells are located in the same frequency band.
  • FIG. 8 is a schematic structural diagram of a device according to an embodiment of the present disclosure. As shown in FIG. 8, the device includes:
  • the first processing module 81 determines the first target standard co-location QCL information of the first target CORESET configured in the first cell when the first target CORESET is configured in the first cell in the target frequency band;
  • the second processing module 82 is configured to determine the QCL information of the downlink channel or downlink reference signal on at least one cell and the spatial relationship of the uplink channel or uplink reference signal on the at least one cell according to the first target QCL information information.
  • the second processing module 82 is specifically configured to:
  • the spatial relationship information of the uplink channel or the uplink reference signal on part or all of the BWP on each cell in the at least one cell is determined.
  • the at least one cell includes the first cell
  • the second processing module 82 is specifically configured to:
  • the QCL information of the downlink channel or downlink reference signal on the first cell is the first target QCL information.
  • the at least one cell includes the first cell
  • the second processing module 82 is specifically configured to:
  • the QCL information set of the downlink channel or downlink reference signal on the first cell is the first QCL information set to which the first target QCL information belongs;
  • the at least one cell includes the first cell, and multiple CORESETs are configured on the first cell, and the multiple CORESETs include a first target CORESET;
  • the second processing module 42 is specifically used for:
  • the QCL information of CORESET among the plurality of CORESETs except the first target CORESET is determined.
  • the at least one cell includes the first cell and the second cell, and the second cell is not configured with the first target CORESET;
  • the second processing module 82 is specifically used for:
  • the first target QCL information determine the QCL information of the downlink channel or the downlink reference signal on the second cell.
  • the second processing module 82 is specifically configured to:
  • the QCL information of the downlink channel or the downlink reference signal on the second cell is the first target QCL information.
  • the second processing module 82 is specifically configured to:
  • the QCL information of the downlink channel or the downlink reference signal on the second cell is determined according to the first QCL information set to which the first target QCL information belongs.
  • the second processing module 82 is specifically configured to:
  • the QCL information set of the downlink channel or downlink reference signal on the second cell is the first QCL information set to which the first target QCL information belongs;
  • the cell index of the first cell satisfies the first preset rule.
  • the second cell is located in the target frequency band.
  • the second processing module 82 is further configured to:
  • the QCL information of the downlink channel or the downlink reference signal on the at least one cell is determined.
  • the at least one cell is located in the target frequency band, and the third cell is located in the target frequency band.
  • the second processing module 82 is specifically configured to:
  • the QCL information of the downlink channel or the downlink reference signal on the at least one cell is the second target QCL information.
  • the second processing module 82 is specifically configured to:
  • the QCL information set of the downlink channel or downlink reference signal on the at least one cell is the second QCL information set
  • the cell index of the third cell satisfies the second preset rule; and / or,
  • the number of the second target CORESET satisfies the third preset rule; and / or,
  • the number of the bandwidth part BWP where the second target CORESET is located satisfies the fourth preset rule.
  • the at least one cell includes the first cell
  • the second processing module 82 is specifically configured to:
  • the spatial relationship information of the uplink channel or the uplink reference signal on the first cell is determined.
  • the at least one cell includes the first cell
  • the second processing module 82 is specifically configured to:
  • the spatial relationship information of the uplink channel or uplink reference signal on the first cell is determined according to the first QCL information set to which the first target QCL information belongs.
  • the second processing module 82 is specifically configured to:
  • the spatial relationship information of the uplink channel or uplink reference signal on the first cell is determined.
  • the second processing module 82 is specifically configured to:
  • the spatial relationship information of the uplink channel or the uplink reference signal on the first cell is determined from the candidate spatial relationship information.
  • the maximum amount of spatial relationship information that can be configured on the cell is greater than or equal to the amount of QCL information in the first QCL information set;
  • the second processing module 82 is specifically used to:
  • the spatial relationship information of the uplink channel or uplink reference signal on the first cell is determined.
  • the second processing module 82 is specifically configured to:
  • the third TCI state is used to indicate the preset amount of QCL information .
  • the at least one cell includes the first cell and a fourth cell, and the fourth cell is not configured with the first target CORESET;
  • the second processing module 82 is specifically used to:
  • spatial relationship information of an uplink channel or an uplink reference signal on the fourth cell is determined.
  • the second processing module 82 is specifically configured to:
  • the spatial relationship information of the uplink channel or uplink reference signal on the fourth cell is determined according to the source RS in the RS set corresponding to the first TCI state.
  • the second processing module 82 is specifically configured to:
  • the spatial relationship information of the uplink channel or the uplink reference signal on the fourth cell is determined according to the first QCL information set to which the first target QCL information belongs.
  • the fourth cell is located in the target frequency band.
  • the second processing module 82 is further configured to:
  • spatial relationship information of an uplink channel or an uplink reference signal on the at least one cell is determined.
  • the at least one cell is located in the target frequency band, and the fifth cell is in the target frequency band.
  • the second processing module 82 is specifically configured to:
  • spatial relationship information of an uplink channel or an uplink reference signal on the at least one cell is determined.
  • the cell index of the fifth cell satisfies the fifth preset rule; and / or,
  • the number of the third target CORESET satisfies the sixth preset rule; and / or,
  • the number of the bandwidth part BWP where the third target CORESET is located satisfies the seventh preset rule.
  • the at least one cell includes the first cell and a sixth cell, the sixth cell is not configured with a QCL information set, and the second processing module 82 is further configured to:
  • the QCL information set of the sixth cell is the first QCL information set to which the first target QCL information belongs;
  • the QCL information set of the sixth cell determine the QCL information of the downlink channel or downlink reference signal on the sixth cell, and the spatial relationship information of the uplink channel or uplink reference signal on the sixth cell.
  • the sixth cell is located in the target frequency band.
  • the at least one cell includes the first cell and a seventh cell, the seventh cell is not configured with a QCL information set, and the second processing module 82 is further configured to:
  • the QCL information of the downlink channel or downlink reference signal on the seventh cell is the QCL information of the downlink channel or downlink reference signal on the first cell; and / or,
  • the spatial relationship information of the uplink channel or the uplink reference signal on the seventh cell is determined.
  • the seventh cell is located in the target frequency band.
  • the at least one cell includes the first cell and an eighth cell, the eighth cell is not configured with a QCL information set, and the second processing module 82 is further configured to:
  • the spatial relationship information of the uplink channel or uplink signal on the eighth cell is the spatial relationship information of the uplink channel or uplink reference signal on the first cell.
  • the eighth cell is located in the target frequency band.
  • the first processing module 81 is specifically used to:
  • the first target QCL information is determined from the first QCL information set to which the first target QCL information belongs according to the instruction of the MAC, and the first QCL information set is configured by the network device through RRC signaling.
  • the number of the first target CORESET is 0.
  • the device provided by some embodiments of the present disclosure can implement various processes implemented by the device in the method embodiments of FIG. 1 to FIG. 3, and to avoid repetition, details are not described herein again.
  • the terminal device includes:
  • the transceiver module 91 is configured to receive a spatial transmission information set, and the spatial transmission information set includes a quasi-co-located QCL information set and a spatial relationship information set;
  • the processing module 92 is configured to determine the QCL information of the downlink channel or downlink reference signal on at least one cell according to the QCL information set;
  • the processing module 92 is further configured to determine the spatial relationship information of the uplink channel or uplink reference signal on the at least one cell according to the spatial relationship information set.
  • the QCL information set is a common QCL information set for all cells in the at least one cell
  • the spatial relationship information set is a common spatial relationship information set for all cells in the at least one cell
  • the QCL information set is configured by the network device to the first target cell in the at least one cell
  • the spatial relationship information set is configured by the network device to the second target cell in the at least one cell.
  • the at least one cell is a plurality of cells
  • the plurality of cells are located in the same frequency band.
  • processing module 92 is specifically used to:
  • the spatial relationship information of the uplink channel or the uplink reference signal on part or all of the BWP on each cell in the at least one cell is determined.
  • the cell index of the first target cell satisfies the first preset rule; and / or, the cell index of the second target cell satisfies the second preset rule.
  • the terminal device provided by some embodiments of the present disclosure can implement various processes implemented by the device in the method embodiment of FIG. 4, and to avoid repetition, details are not described here.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 10, the terminal device includes:
  • the transceiver module 101 is configured to receive a spatial transmission information set, and the spatial transmission information set includes a quasi co-located QCL information set or a spatial relationship information set;
  • the processing module 102 is configured to determine QCL information of a downlink channel or downlink reference signal on at least one cell and spatial relationship information of an uplink channel or uplink reference signal on the at least one cell according to the spatial transmission information set.
  • the spatial transmission information set is a common spatial transmission information set of all cells in the at least one cell, or the spatial transmission information set is configured by the network device to the at least one cell Target cell.
  • processing module 102 is specifically used to:
  • the spatial relationship information of the uplink channel or the uplink reference signal on part or all of the BWP on each cell in the at least one cell is determined.
  • the at least one cell is a plurality of cells
  • the plurality of cells are located in the same frequency band.
  • the terminal device provided by some embodiments of the present disclosure can implement various processes implemented by the device in the method embodiment of FIG. 5. To avoid repetition, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 11, the network device includes:
  • the transceiver module 111 is configured to receive and transmit a spatial transmission information set, and the spatial transmission information set includes a quasi-co-located QCL information set and a spatial relationship information set.
  • the QCL information set is used by the terminal device to determine a downlink channel or QCL information of a downlink reference signal
  • the spatial relationship information set is used by the terminal device to determine spatial relationship information of an uplink channel or an uplink reference signal on the at least one cell.
  • the QCL information is a common QCL information set of all cells in the at least one cell
  • the spatial relationship information set is a common spatial relationship information set of all cells in the at least one cell
  • the QCL information set is configured by a network device to a first target cell in the at least one cell
  • the spatial relationship information set is configured by a network device to a second target cell in the at least one cell.
  • the at least one cell is a plurality of cells
  • the plurality of cells are located in the same frequency band.
  • the cell index of the first target cell satisfies the first preset rule; and / or, the cell index of the second target cell satisfies the second preset rule.
  • the network device provided by some embodiments of the present disclosure can implement various processes implemented by the network device in the method embodiment of FIG. 7. To avoid repetition, details are not described here.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 12, the network device includes:
  • the transceiver module 121 is used to send a spatial transmission information set, the spatial transmission information set includes a quasi co-located QCL information set or a spatial relationship information set, and the spatial transmission information set is used by the terminal device to determine a downlink channel on at least one cell Or QCL information of a downlink reference signal, and spatial relationship information of an uplink channel or uplink reference signal on the at least one cell.
  • the spatial transmission information set is a common spatial transmission information set of all cells in the at least one cell, or the spatial transmission information set is configured by the network device to the at least one cell The target cell in.
  • the at least one cell is a plurality of cells
  • the plurality of cells are located in the same frequency band.
  • the network device provided by some embodiments of the present disclosure can implement various processes implemented by the network device in the method embodiment of FIG. 8. To avoid repetition, details are not described herein again.
  • the terminal device 1300 shown in FIG. 13 includes: at least one processor 1301, memory 1302, user interface 1303, and at least one network interface 1304.
  • the various components in the terminal device 1300 are coupled together through a bus system 1305.
  • the bus system 1305 is used to implement connection and communication between these components.
  • the bus system 1305 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 1305 in FIG. 13.
  • the user interface 1303 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball, a touch pad, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball, a touch pad, or a touch screen, etc.
  • the memory 1302 in some embodiments of the present disclosure may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory 1302 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 13021 and application programs 13022.
  • the operating system 13021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 13022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services. Programs implementing the methods of some embodiments of the present disclosure may be included in the application program 13022.
  • the terminal device 1300 further includes: a computer program stored on the memory 1302 and executable on the processor 1301.
  • the computer program is executed by the processor 1301 to implement the above-described FIG. 1 to FIG. 7
  • the various processes of the method, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the methods disclosed in some embodiments of the present disclosure described above may be applied to the processor 1301 or implemented by the processor 1301.
  • the processor 1301 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1301 or an instruction in the form of software.
  • the foregoing processor 1301 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA), or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the disclosed methods, steps, and logical block diagrams in some embodiments of the present disclosure may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with some embodiments of the present disclosure may be directly embodied and completed by a hardware decoding processor, or may be performed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the computer-readable storage medium is located in the memory 1302.
  • the processor 1301 reads the information in the memory 1302 and completes the steps of the above method in combination with the hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 1301, the steps of the method embodiments described above in FIGS. 1 to 7 are implemented.
  • the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing device (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), field programmable gate array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, others used to perform the functions described Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing device
  • PLD programmable Logic Device
  • FPGA field programmable gate array
  • general-purpose processor controller, microcontroller, microprocessor, others used to perform the functions described Electronic unit or its combination.
  • the technology described in some embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.
  • the network device 1400 includes a processor 1401, a transceiver 1402, a memory 1403, and a bus interface. among them:
  • the network device 1400 further includes: a computer program stored on the memory 1403 and executable on the processor 1401, and when the computer program is executed by the processor 1401, FIG.
  • a computer program stored on the memory 1403 and executable on the processor 1401, and when the computer program is executed by the processor 1401, FIG.
  • the various processes performed by the network device in the method shown in FIG. 7 can achieve the same technical effect, and to avoid repetition, they are not repeated here.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 1401 and various circuits of the memory represented by the memory 1403 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1402 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1401 is responsible for managing the bus architecture and general processing, and the memory 1403 may store data used by the processor 1401 when performing operations.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium.
  • the computer program is executed by a processor to implement each of the method embodiments shown in FIGS. 1 to 7 described above. Process, and can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the existing technology or part of the technical solution may be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开一种无线通信的方法和设备,该方法包括:在目标频带内的第一小区被配置了第一目标控制资源集CORESET的情况下,确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息;以及根据所述第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。

Description

无线通信的方法和设备
相关申请的交叉引用
本申请主张在2018年11月2日在中国提交的中国专利申请号No.201811303170.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,更具体地涉及无线通信的方法和设备。
背景技术
在移动通信系统中,对于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的波束指示,网络设备通过无线资源控制(Radio Resource Control,RRC)信令为每个控制资源集(Control Resource Set,CORESET)配置K个传输配置指示(Transmission Configuration Indication,TCI)状态(state),当K>1时,由介质访问控制控制单元(Media Access Control Control Element,MAC CE)指示一个TCI state,当K=1时,不需要额外的MAC CE命令。终端设备在监听CORESET时,对CORESET内部全部搜索空间(Search Space)使用相同的准共址(Quasi-colocation,QCL)信息,即相同的TCI state。终端设备根据该TCI state即可获知PDCCH的接收波束。
对于物理下行共享信道(Physical Downlink Share Channel,PDSCH)的波束指示,网络设备通过RRC信令配置M个TCI state,再使用MAC CE命令激活2 N个TCI state,然后通过下行控制信息(Downlink Control Information,DCI)的N-bit域(Field)来通知TCI state,终端设备根据被通知的TCI state即可获知PDSCH的接收波束。
对于物理上行控制信道(Physical Uplink Control Channel,PUCCH)的波束指示,网络设备使用RRC信令为每个PUCCH Resource配置 空间关系信息(Spatial Relation Information),当为PUCCH Resource配置的Spatial Relation Information包含多个入口(Entry)时,使用MAC CE指示其中一个Entry的Spatial Relation Information。
对于物理上行共享信道(Physical Uplink Share Channel,PUSCH)的波束指示,网络设备通过RRC信令配置PUSCH的相关信息。当PDCCH承载的DCI调度PUSCH时,DCI中的探测参考信号资源指示(Sounding Reference Signal Resource Indicator,SRI)Field的每个代码点(Code Point)指示一个SRI,该SRI用于指示PUSCH的Spatial Relation。
对于SRS的波束指示,当SRS为周期SRS时,网络设备通过RRC信令为SRS Resource配置Spatial Relation。当SRS为半持续SRS时,网络设备通过MAC CE命令来从RRC信令配置的一组Spatial Relation中激活一个。当SR类型为非周期SRS时,网络设备通过RRC信令为SRS Resource配置Spatial Relation。
由以上描述可知,目前对上下行信道或参考信号的波束指示通常通过RRC信令配置候选的QCL信息或Spatial Relation信息,然后再通过MAC CE命令进行激活或者通过DCI进行指示,当发生候选QCL信息或Spatial Relation信息的重配置时,需要再次使用RRC信令进行配置,带来较大的高层信令开销。
发明内容
本公开实施例的目的是提供一种无线通信的方法和设备,可以减少高层信令开销。
第一方面,提供了一种无线通信的方法,该方法包括:在目标频带内的第一小区被配置了第一目标控制资源集CORESET的情况下,确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息;以及根据所述第一目标QCL信息,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第二方面,提供了一种无线通信的方法,该方法包括:接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合;根据所述QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息;以及根据所述空间关系信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第三方面,提供了一种无线通信的方法,该方法包括:接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合;
根据所述空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第四方面,提供了一种无线通信的方法,该方法包括:发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合,所述QCL信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,所述空间关系信息集合用于所述终端设备确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第五方面,提供了一种无线通信的方法,该方法包括:发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合,所述空间传输信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第六方面,提供了一种设备,该设备包括:第一处理模块,用于在目标频带内的第一小区被配置了第一目标控制资源集CORESET的情况下,确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息;第二处理模块,用于根据所述第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信 息。
第七方面,提供了一种终端设备,该终端设备包括:收发模块,用于接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合;处理模块,用于根据所述QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息;所述处理模块,还用于根据所述空间关系信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第八方面,提供了一种终端设备,该终端设备包括:收发模块,用于接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合;处理模块,用于根据所述空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第九方面,提供了一种网络设备,该网络设备包括:收发模块,用于发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合,所述QCL信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,所述空间关系信息集合用于所述终端设备确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第十方面,提供了一种网络设备,该网络设备包括:收发模块,用于发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合,所述空间传输信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
第十一方面,提供了一种设备,该设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的无线通信的方法的步骤。
第十二方面,提供了一种终端设备,该终端设备包括:存储器、 处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的无线通信的方法的步骤。
第十三方面,提供了一种终端设备,该终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第三方面所述的无线通信的方法的步骤。
第十四方面,提供了一种网络设备,该网络设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第四方面所述的无线通信的方法的步骤。
第十五方面,提供了一种网络设备,该网络设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第五方面所述的无线通信的方法的步骤。
第十六方面,提供了一种计算机可读介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面至第五方面所述的无线通信的方法的步骤。
在本公开的一些实施例中,终端设备根据目标频带内特定CORESET的准共址QCL信息可以确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及上行信道或上行参考信号的空间关系信息,无需网络设备通过高层信息进行配置,可以减少高层信令开销。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开的实施例的无线通信的方法的示意性流程图;
图2是根据本公开的实施例的无线通信的方法的另一示意性流程图;
图3是根据本公开的实施例的无线通信的方法的再一示意性流程图;
图4是根据本公开的实施例的无线通信的方法的另一示意性流程图;
图5是根据本公开的实施例的无线通信的方法的再一示意性流程图;
图6是根据本公开的实施例的无线通信的方法的另一示意性流程图;
图7是根据本公开的实施例的无线通信的方法的再一示意性流程图;
图8是根据本公开的实施例的设备的结构示意图;
图9是根据本公开的实施例的终端设备的结构示意图;
图10是根据本公开的实施例的终端设备的另一结构示意图;
图11是根据本公开的实施例的网络设备的结构示意图;
图12是根据本公开的实施例的网络设备的另一结构示意图;
图13是根据本公开的实施例的终端设备的再一结构示意图;以及
图14是根据本公开的实施例的网络设备的再一结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term  Evolution-advanced,LTE-A)系统,新空口(New Radio,NR)系统等。
在本公开的一些实施例中,终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
在本公开的一些实施例中,网络设备一种部署在无线接入网设中用于为终端设备提供无线通信功能的装置,网络设备例如可以是基站,基站可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB)。
以下结合附图,详细说明本公开各实施例提供的技术方案。
需要说明的是,本公开的一些实施例中的下行信道包括但不限于PDCCH和PDSCH。下行参考信号包括但不限于小区特定参考信号(Cell-specific Reference Signals,CRS)、解调参考信号(Demodulation Reference Signals,DMRS)、以及信道状态信息参考信号(Channel State Information Reference Signals,CSI-RS)。上行信道包括但不限于PUCCH和PUSCH,上行参考信号包括但不限于SRS。
图1示出了根据本申请一个实施例的无线通信的方法。图1所示的方法可以由终端设备或网络设备执行,如图1所示,方法包括:
S110,在目标频带内的第一小区被配置了第一目标控制资源集CORESET的情况下,确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息。
在S110中,第一目标CORESET可以的标号可以为特定值。例如,第一目标CORESET的标号为0,即第一目标CORESET为CORESET#0。
S120,根据所述第一目标QCL信息,确定至少一个小区上的下 行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
S120中的至少一个小区可以包括第一小区,也可以不包括第一小区。至少一个小区可以在同一个频带内,也可以不在同一个频带内,例如至少一个小区中的一部分小区在一个频带内,另一部分小区在另一个频带内。
在S120中的第一目标QCL信息可以是终端设备根据MAC CE的指示从第一目标QCL信息所属的第一QCL信息集合中确定的,第一QCL信息集合由网络设备通过RRC信令配置。例如,网络设备使用RRC信令中的高层参数pdsch-Config承载配置第一QCL信息集合的信息。
以第一目标CORESET为CORESET#0为例,网络设备为第一小区配置CORESET#0的相关信息,该相关信息中包括为CORESET#0配置的QCL信息集合(也可以理解为网络设备为CORESET#0配置QCL pool或TCI state pool)。当候选QCL信息集合中的QCL信息为多个时,网络设备通过MAC CE为CORESET#0激活(或称为指示)其中的一个QCL信息,该被激活(或被指示)的QCL信息即为第一目标QCL信息。在需要对QCL信息集合进行重配置时,网络设备可以通过RRC信令进行重配置,并使用MAC CE重新激活(或指示)CORESET#0的QCL信息。
具体地,在一些实施例中,在S120中,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息;确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
以下将结合具体的例子描述本公开的技术方案。
例子a
至少一个小区包括第一小区,在S120中,根据第一目标QCL信 息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:确定第一小区上的下行信道或下行参考信号的QCL信息为所述第一目标QCL信息。例如,将第一小区上CORESET#0的QCL信息作为第一小区上PDCCH的QCL信息。
或者,至少一个小区包括第一小区,在S120中,根据第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:确定第一小区上的下行信道或下行参考信号的QCL信息集合为第一目标QCL信息所属的第一QCL信息集合;从第一小区上的下行信道或下行参考信号的QCL信息集合中,确定所述第一小区上的下行信道或下行参考信号的QCL信息。在这里,从第一小区的下行信道或下行参考信号的QCL信息集合中,确定第一小区上的下行信道或下行参考信号的QCL信息可以是基于MAC CE的指示进行的。
又或者,至少一个小区包括第一小区,在第一小区上配置有多个CORESET,多个CORESET包括第一目标CORESET的情况下,在S120中,根据第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:根据MAC CE的指示,从第一目标QCL信息所属的第一QCL信息集合中,确定多个CORESET中除第一目标CORESET外的CORESET的QCL信息。
例如,对于第一小区上被配置的编号不是0的CORESET,网络设备通过MAC CE从CORESET#0的QCL信息集合中激活(或指示)一个,作为该CORESET的QCL信息,即该CORESET上下行信道或下行参考信号的QCL信息。
例子b
至少一个小区包括第一小区和第二小区,第二小区未被配置第一目标CORESET。相对应的,在S120中,根据第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:根据第一目标QCL信息,确定第二小区上的下行信道或下行参考信号的QCL信息。
具体地,根据第一目标QCL信息,确定第二小区上的下行信道或下行参考信号的QCL信息,包括:确定第二小区上的下行信道或下行参考信号的QCL信息为所述第一目标QCL信息。或者可以理解为,将第一小区上配置的第一目标CORESET的第一目标QCL信息作为第二小区上的下行信道或下行参考信号的QCL信息。
或者,根据第一目标QCL信息,确定第二小区上的下行信道或下行参考信号的QCL信息,包括:根据第一目标QCL信息所属的第一QCL信息集合,确定第二小区上的下行信道或下行参考信号的QCL信息。
例如,确定第二小区上的下行信道或下行参考信号的QCL信息集合为第一目标QCL信息所属的第一QCL信息集合;从第二小区上的下行信道或下行参考信号的QCL信息集合中,确定第二小区上的下行信道或下行参考信号的QCL信息。这里,可以根据预设规则,从第一QCL信息集合中确定第二小区上的下行信道或下行参考信号的QCL信息。或者对于终端设备来说,可以根据网络设备的指示,从第一QCL信息集合中确定第二小区上的下行信道或下行参考信号的QCL信息。
可选地,在例子b中,第一小区的小区索引满足第一预设规则。例如,第一小区为频带内被配置了第一目标CORESET的小区中具有最小小区索引(Cell Index)的小区。
可选地,在例子b中,第二小区位于目标频带内,即第一小区和第二小区位于同一个频带内。
例子c
至少一个小区中每个小区所在的频带内的所有小区均未被配置第一目标CORESET,如图2所示出的,图1所示的方法还包括:
S130,确定第三小区上配置的第二QCL信息集合。
网络设备可以通过RRC信令为第三小区配置第二QCL信息集合。
需要说明的是,第三小区可以是至少一个小区中某个小区所在的频带内的小区,或者第三小区所在的频带与至少一个小区中任何一个 小区所在的频带都不同。
在这里,第三小区可以是第三小区所在的频带内小区索引满足一定规则的小区,例如第三小区可以是第三小区所在的频带内具有最小小区索引的小区。
举例来说,至少一个小区位于目标频带内,第三小区位于目标频带内。也就是说,在一个频带内的所有小区均没有被配置第一目标CORESET时,可以根据该频带内的某个小区上配置的QCL信息集合确定该频带内的小区上的下行信道或下行参考信号的QCL信息。
S140,根据第二QCL信息集合,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息。
例如,根据第二QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:从第二QCL信息集合中,确定第三小区被配置的第二目标CORESET的第二目标QCL信息;确定至少一个小区上的下行信道或下行参考信号的QCL信息为第二目标QCL信息。网络设备可以用个MAC CE从第二QCL信息集合中为第二目标CORESET激活(或指示)一个QCL信息作为第二目标QCL信息。
或者,根据第二QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:确定至少一个小区上的下行信道或下行参考信号的QCL信息集合为第二QCL信息集合;从所述至少一个小区上的下行信道或下行参考信号的QCL信息集合中,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息。
在例子c中,第三小区的小区索引满足第二预设规则;和/或,第二目标CORESET的编号满足第三预设规则;和/或,第二目标CORESET所在的带宽部分(Bandwidth Part,BWP)的编号满足第四规则。
例如,第三小区为频带内具有特定Cell Index(例如,最小Cell Index)的小区,第二目标CORESET可以是特定编号的CORESET,例如可以是具有最小编号的CORESET,第二目标CORESET所在的 BWP可以是具有特定编号的BWP,例如可以是第三小区中具有最小编号的BWP。这里的“编号”也可以表述为“标识或索引”。
以第一目标CORESET为CORESET#0为例,当一个频带内所有小区都没有被配置CORESET#0时,网络设备可以为该频带内的特定小区上的特定CORESET配置QCL信息,该频带内所有小区上的CORESET都使用该QCL信息。
例子d
至少一个小区包括第一小区,在S120中,根据第一目标QCL信息,确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:确定第一传输配置指示TCI状态对应的参考信号RS集合,所述第一TCI状态用于指示第一目标QCL信息;根据RS集合中的源RS,确定第一小区上的上行信道或上行参考信号的空间关系信息。
例如,将指示CORESET#0的第一目标QCL信息的TCI state对应的RS集合中的源(Source)RS(或者称为Reference RS),作为PUCCH的空间关系(Spatial Relation)信息中的Source RS。假设终端设备根据指示CORESET#0的TCI state确定了接收CORESET#的接收波束,则在该接收波束的方向上使用发送波束(除了方向相反之外,波束的其他空间参数相同)来发送PUCCH。
例子e
至少一个小区包括第一小区,在S120中,根据第一目标QCL信息,确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:根据第一目标QCL信息所属的第一QCL信息集合,确定第一小区上的上行信道或上行参考信号的空间关系信息。
可选地,根据第一目标QCL信息所属的第一QCL信息集合,确定第一小区上的上行信道或上行参考信号的空间关系信息,包括:确定用于指示第一QCL信息集合中的全部QCL信息的第二TCI状态;根据第二TCI状态所对应的RS集合中的全部源RS,确定第一小区上的上行信道或上行参考信号的候选空间关系信息;从所述候选空间关系信息中,确定所述第一小区上的上行信道或上行参考信号的空间 关系信息。
例如,将指示CORESET#0的QCL信息集合的TCI state对应的RS集合中的全部Source RS,作为PUCCH的候选Spatial Relation信息中的Source RS,再从PUCCH的候选Spatial Relation信息中的Source RS中选择一个子集,作为PUCCH的Spatial Relation信息中的RS。或者描述为,根据指示CORESET#0的QCL信息集合的TCI state对应的RS集合中的全部Source RS,确定PUCCH的候选Spatial Relation信息,再从候选Spatial Relation信息中选择一个子集作为PUCCH的Spatial Relation信息。
进一步地,从候选空间关系信息中,确定第一小区上的上行信道或上行参考信号的空间关系信息,包括:根据无线资源控制RRC信令和/或MAC CE的指示,从候选空间关系信息中确定第一小区上的上行信道或上行参考信号的空间关系信息。例如,候选Spatial Relation信息中的Source RS共有64个,网络设备使用RRC信令或MAC CE指示其中的8个作为PUCCH的Spatial Relation信息中的Source RS。
可选地,小区上可被配置的空间关系信息的最大数量大于或等于第一QCL信息集合中的QCL信息的数量;则根据第一目标QCL信息所属的第一QCL信息集合,确定第一小区上的上行信道或上行参考信号的空间关系信息,包括:确定用于指示第一QCL信息集合中的全部QCL信息的第二TCI状态;根据第二TCI状态所对应的RS集合中的全部源RS,确定第一小区上的上行信道或上行参考信号的候选空间关系信息;从所述候选空间关系信息中,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
举例来说,如果允许网络设备配置PUCCH的Spatial Relation信息的最大个数大于或等于CORESET#0的QCL信息集合中的QCL信息的个数,则可以直接将CORESET#0的QCL信息集合中的QCL信息作为PUCCH的Spatial Relation信息。
可选地,根据第一目标QCL信息所属的第一QCL信息集合,确定第一小区上的上行信道或上行参考信号的空间关系信息,包括:从 第一QCL信息集合中确定预设数量的QCL信息;根据第三TCI状态所对应的RS集合中的源RS,确定第一小区上的上行信道或上行参考信号的空间关系,第三TCI状态用于指示预设数量的QCL信息。在这里,从第一QCL信息集合中确定预设数量的QCL信息可以是基于协议约定进行的。对于终端设备来讲,从第一QCL信息集合中确定预设数量的QCL信息还可以是基于网络设备的指示进行的。
例如,从CORESET#0的QCL信息集合中选择出固定个数的QCL信息(如配置QCL信息时TCI state中具有最小入口(Entry)的8个),将指示该固定个数的QCL信息的TCI state对应的RS集合中的Source RS作为PUCCH的Spatial Relation信息的Source RS,从而确定出PUCCH的Spatial Relation信息。
例子f
至少一个小区包括第一小区和第四小区,第四小区未被配置第一目标CORESET;则在S120中,根据第一目标QCL信息,确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:根据第一目标QCL信息,确定第四小区上的上行信道或上行参考信号的空间关系信息。
也就是说,可以根据第一小区被配置的第一目标CORESET的第一目标QCL信息,确定第四小区上的上行信号或上行参考信号的空间关系信息。
可选地,根据第一目标QCL信息,确定第四小区上的上行信道或上行参考信号的空间关系信息,包括:确定用于指示第一目标QCL信息的第一TCI状态;根据第一TCI状态对应的RS集合中的源RS,确定第四小区上的上行信道或上行参考信号的空间关系信息。
例如,将指示第一小区上配置的CORESET#0的第一目标QCL信息的TCI state对应的RS集合中的Source RS,作为第四小区的PUCCH的Spatial Relation信息中的Source RS。假设终端设备根据指示CORESET#0的第一目标QCL信息的TCI state确定了接收CORESET#0的接收波束,则在第四小区上该接收波束的方向上使用 发送波束(除了方向相反之外,波束的其他空间参数相同)来发送PUCCH。
可选地,根据所述第一目标QCL信息,确定所述第四小区上的上行信道或上行参考信号的空间关系信息,包括:根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
例如,确定用于指示第一QCL信息集合中的全部信息的第二TCI状态,根据第二TCI状态所对应的RS集合中的全部源RS,确定第四小区上的上行信道或上行参考信号的候选空间关系信息;从候选空间关系信息中,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
或者,从第一QCL信息集合中确定预设数量的QCL信息;根据指示预设数量的QCL信息的TCI状态对应的RS集合中的源RS,确定第四小区上的上行信道或上行参考信号的空间关系信息。
可选地,在例子h中,第四小区位于目标频带内,即第一小区和第四小区位于同一个频带内。
例子g
在所述至少一个小区中每个小区所在的频带内的所有小区均未被配置第一目标CORESET的情况下,如图3所示出的,图1所示的方法还包括:
S150,确定第五小区上配置的第三QCL信息集合。
需要说明的是,第五小区可以是至少一个小区中某个小区所在的频带内的小区,或者第五小区所在的频带与至少一个小区中任何一个小区所在的频带都不同。在这里,第五小区可以是第五小区所在的频带内小区索引满足一定规则的小区,例如第五小区可以是第五小区所在的频带内具有最小小区索引的小区。
S160,根据第三QCL信息集合,确定至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,至少一个小区位于目标频带内,第五小区位于目标频带 内。也就是说,在一个频带内的所有小区均没有被配置第一目标CORESET时,可以根据该频带内的某个小区上配置的QCL信息集合确定该频带内的小区上的上行信道或上行参考信号的空间关系信息。
可选地,根据第三QCL信息集合,确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:确定用于指示第三QCL信息集合中的全部QCL信息的TCI状态;根据用于指示第三QCL信息集合中的全部QCL信息的TCI状态所对应的RS集合中的全部源RS,确定至少一个小区上的上行信道或上行参考信号的候选空间关系信息;从所述空间关系信息中,确定至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,根据第三QCL信息集合,确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:从第三QCL信息集合中确定预设数量的QCL信息;根据用于指示预设数量的QCL信息的TCI状态对应的RS集合中的源RS,确定至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,根据第三QCL信息集合,确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:从第三QCL信息集合中,确定第五小区上配置的第三目标CORESET的第三目标QCL信息;根据第三目标QCL信息,确定至少一个小区上的上行信道或上行参考信号的空间关系信息。网络设备可以用个MAC CE从第三QCL信息集合中为第三目标CORESET激活(或指示)一个QCL信息作为第三目标QCL信息。
在这里,根据第三目标QCL信息,确定至少一个小区上的上行信道或上行参考信号的空间关系信息可以包括:确定用于指示第三目标QCL信息的TCI状态;根据用于指示第三QCL信息的TCI状态对应的RS集合中的源RS,确定至少一个小区上的上行信道或上行参考信号的空间关系信息。
在例子g中,第五小区的小区索引满足第五预设规则;和/或, 第三目标CORESET的编号满足第六预设规则;和/或,第三目标CORESET所在的带宽部分BWP的编号满足第七预设规则。
例如,第五小区为频带内具有特定Cell Index(例如,最小Cell Index)的小区,第三目标CORESET可以是特定编号的CORESET,例如可以是具有最小编号的CORESET,第三目标CORESET所在的BWP可以是具有特定编号的BWP,例如可以是第五小区中具有最小编号的BWP。
例子h
至少一个小区包括第一小区和第六小区,第六小区未被配置QCL信息集合,图1所示的方法还包括:确定第六小区的QCL信息集合为第一目标QCL信息所属的第一QCL信息集合;根据第六小区的QCL信息集合,确定第六小区上的下行信道或下行参考信号的QCL信息,以及第六小区上的上行信道或上行参考信号的空间关系信息。
可以理解的是,例子h中将第一小区的第一QCL信息集合作为第六小区的QCL信息集合后,根据第六小区的QCL信息集合确定第六小区上的下行信道或下行参考信号的QCL信息与前述例子中根据第一小区被配置的第一目标CORESET的第一QCL信息所属的第一QCL信息集合确定第一小区上的下行信道或下行参考信号的QCL信息的实现方法相同,为避免重复,在此不再赘述。
同样地,根据第六小区的QCL信息集合确定第六小区上的上行信道或上行参考信号的空间关系信息可参照前述例子中根据第一小区的被配置的第一目标CORESET的第一QCL信息所属的第一QCL信息集合确定第一小区上的上行信道或上行参考信号的空间关系信息的实现方法,在此不再赘述。
例子h中的第一小区可以是配置了QCL信息集合的小区中具有最小Cell Index的小区。
可选地,第六小区位于目标频带内,即第一小区和第六小区位于同一个频带内。
例子i
至少一个小区包括第一小区和第七小区,第七小区未被配置QCL信息集合,图1所述的方法还包括:确定第七小区上的下行信道或下行参考信号的QCL信息为第一小区上的下行信道或下行参考信号的QCL信息;和/或,根据第一小区上的下行信道或下行参考信道的QCL信息,确定第七小区上的上行信道或上行参考信号的空间关系信息。
例如,将第一小区的PDCCH的QCL信息确定为第七小区上的下行信道或下行参考信号的QCL信息。或者,根据第一小区的PDCCH的QCL信息,确定第七小区上的上行信道(例如PUCCH)或上行参考信号(例如SRS)的空间关系信息。
可选地,根据第一小区上的下行信道或下行参考信道的QCL信息,确定第七小区上的上行信道或上行参考信号的空间关系信息,包括:根据用于指示第一小区上的下行信道或下行参考信号的QCL信息的TCI状态对应的RS集合中的源RS,确定第七小区上的上行信道或上行参考信号的空间关系信息。
或者,根据第一小区上的下行信道或下行参考信号的QCL信息,确定第七小区上的上行信道或上行参考信号的空间关系信息,包括:根据用于指示第一小区上的下行信道或下行参考信号的QCL信息所属的QCL信息集合中的全部QCL信息的TCI状态对应的RS集合中的全部源RS,确定第七小区上的上行信道或上行参考信号的候选空间关系信息;从候选空间关系信息中,确定第七小区上的上行信道或上行参考信号的空间关系信息。
或者,根据第一小区上的下行信道或下行参考信号的QCL信息,确定第七小区上的上行信道或上行参考信号的空间关系信息,包括:从第一小区上的下行信道或下行参考信号的QCL信息所属的QCL信息集合中选择预设数量的QCL信息;根据用于指示该预设数量的QCL信息的TCI状态所对应的RS集合中的源RS,确定第七小区上的上行信道或上行参考信号的空间关系信息。
可选地,第七小区位于目标频带内,即第一小区和第七小区位于 同一个频带内。
例子j
至少一个小区包括第一小区和第八小区,第八小区未被配置QCL信息集合,图1所示的方法还包括:确定第八小区上的上行信道或上行信号的空间关系信息为第一小区上的上行信道或上行参考信号的空间关系信息。
例如,将第一小区的PUCCH的空间关系信息确定为第八小区上的上行信道或上行参考信号的空间关系信息。
可选地,例子i和j中的第一小区可以是配置了QCL信息集合的小区中具有最小Cell Index的小区。
可选地,第八小区位于目标频带内,即第一小区和第八小区位于同一个频带内。
基于例子b、c、f、g、h、i和j,终端设备可以根据特定小区上配置的特定CORESET的QCL信息(或QCL信息集合),确定其他小区上的下行信道或下行参考信号的QCL信息以及上行信道或上行参考信号的空间关系信息,而无需网络设备通过高层信令针对每个小区进行配置,可以减少高层信令开销。
图4是根据本公开的实施例的无线通信的方法,图4所示的方法可以由终端设备执行,如图4所示出的,方法包括:
S410,接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合。
S420,根据所述QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息;根据所述空间关系信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
需要说明的是,在S410中接收到的空间传输信息集合包括QCL信息和空间关系信息集合,可以理解为:网络设备为终端设备的小区上的下行链路配置QCL信息集合,为终端设备的小区上的上行链路配置空间关系信息集合。
可选地,作为一个示例,所述QCL信息为所述至少一个小区中 全部小区的公用QCL信息集合,所述空间关系信息集合为所述至少一个小区中全部小区的公用空间关系信息集合,或,所述QCL信息集合由网络设备配置给所述至少一个小区中的第一目标小区,所述空间关系信息集合由网络设备配置给所述至少一个小区中的第二目标小区。
可选地,第一目标小区的小区索引满足第一预设规则,和/或,第二目标小区的小区索引满足第二预设规则。例如第一目标小区为至少一个小区中小区索引最小的小区,第二目标小区为至少一个小区中小区索引最大的小区。
换言之,网络设备可以为终端设备的小区配置同一个QCL信息集合,每个小区上的QCL信息可以从该QCL信息集合中选取,或者网络设备可以为终端设备的小区中的某个特定小区配置QCL信息集合,每个小区上的QCL信息可以从该特定小区上配置的QCL信息集合中选取。或者,网络设备可以为终端设备的小区配置同一个空间关系信息集合,每个小区上的空间关系信息可以从该空间关系信息集合中选取,或网络设备可以为终端设备的小区中的某个特定小区配置空间关系信息集合,每个小区上的空间关系信息可以从该特定小区上配置的空间关系信息集合中选取。由此无需网络设备为每个小区上的每个BWP上的信道或参考信号单独配置QCL信息和空间关系信息,能够降低高层信令开销。
举例来说,如果网络设备用于配置QCL信息集合和空间关系信息集合的信息中不包括小区索引,则认为该QCL信息集合和空间关系信息集合是至少一个小区中全部小区的公用QCL信息集合和公用空间关系信息集合,如果网络设备用于配置QCL信息集合和空间关系信息集合的信息中包括小区索引,则认为该QCL信息集合和空间关系信息集合是配置给该小区索引对应的小区的。
可选地,在一些实施例中,在至少一个小区为多个小区的情况下,多个小区位于同一频带内。
具体地,在一些实施例中,在S420中,所述确定至少一个小区 上的下行信道或下行参考信号的QCL信息,包括:确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息。在S420中,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
图5是根据本公开的实施例的无线通信的方法,图5所示的方法可以由终端设备执行,如图5所示出的,方法包括:
S510,接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合。
S520,根据所述空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
需要说明的是,在S510中接收到的空间传输信息集合包括QCL信息或空间关系信息集合,可以理解为:网络设备为终端设备的小区上的下行链路和上行链路配置同一个空间传输信息集合。由此,无需网络设备为终端设备的下行链路和上行链路分别配置空间传输信息集合,能够降低高层信令开销。
可选地,作为一个示例,所述空间传输信息集合为所述至少一个小区中全部小区的公用空间传输信息集合,或,所述空间传输信息集合由网络设备配置给所述至少一个小区中的目标小区。
可选地,目标小区的小区索引满足预设规则。例如目标小区为至少一个小区中小区索引最小的小区。
具体地,在一些实施例中,在S520中,确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息。在S520中,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间 关系信息。
可选地,在一些实施例中,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
可以理解的是,如果在S510中,空间传输信息集合中包括QCL信息集合,则在S520中,根据空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,可以是从QCL信息集合中为至少一个小区选择QCL信息,本公开实施例对具体选择的方法不作限定。
或者如果在S510中,空间传输信息集合中包括QCL信息集合,在S520中,根据空间传输信息集合,确定至少一个小区上的上行信道或上行参考信号的空间关系信息的实现方式可以是:根据用于指示QCL信息集合中的全部QCL信息的TCI状态所对应的RS集合中的全部源RS,确定至少一个小区上的上行信道或上行参考信号的候选空间关系信息;从所述候选空间关系信息中,确定至少一个小区上的上行信道或上行参考信号的空间关系信息。或者,从QCL信息集合中确定预设数量的QCL信息;根据用于指示预设数量的QCL信息的TCI状态对应的RS集合中的源RS,确定至少一个小区上的上行信道或上行参考信号的空间关系信息。
还可以理解的是,如果在S510中,空间传输信息集合中包括空间关系信息集合,则在S520中,根据空间传输信息集合,确定至少一个小区上的上行信道或上行参考信号的空间关系信息,可以是从空间关系信息集合中为至少一个小区选择空间关系信息,本公开实施例对具体选择的方法不作限定。
或者如果在S510中,空间传输信息集合中包括空间关系信息集合,在S520中,根据空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息的实现方式可以是:根据空间关系信息集合中的全部空间关系信息中的全部源RS,确定至少一个小区上的下行信道或下行参考信号的候选QCL信息;从所述候选QCL信息中,确定至少一个小区上的下行信道或下行参考信号的QCL信 息。或者,从空间关系信息集合中确定预设数量的空间关系信息集合;根据预设数量的空间关系信息中的源RS,确定至少一个小区上的下行信道或下行参考信号的QCL信息。
图6是根据本公开的实施例的无线通信的方法,图6所示的方法可以由网络设备执行,可以理解的是,从网络设备侧描述的网络设备与终端设备的交互与图4所示的方法中的终端设备侧的描述相同,为避免重复,适当省略相关描述。如图6所示出的,方法包括:
S610,发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合,所述QCL信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,所述空间关系信息集合用于所述终端设备确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述QCL信息为所述至少一个小区中全部小区的公用QCL信息集合,所述空间关系信息集合为所述至少一个小区中全部小区的公用空间关系信息集合,或,所述QCL信息集合由网络设备配置给所述至少一个小区中的第一目标小区,所述空间关系信息集合由网络设备配置给所述至少一个小区中的第二目标小区。
可选地,作为一个示例,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
可选地,作为一个示例,所述第一目标小区的小区索引满足第一预设规则;和/或,所述第二目标小区的小区索引满足第二预设规则。
图7是根据本公开的实施例的无线通信的方法,图7所示的方法可以由网络设备执行,可以理解的是,从网络设备侧描述的网络设备与终端设备的交互与图5所示的方法中的终端设备侧的描述相同,为避免重复,适当省略相关描述。如图7所示出的,方法包括:
S710,发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合,所述空间传输信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信 息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述空间传输信息集合为所述至少一个小区中全部小区的公用空间传输信息集合,或,所述空间传输信息集合由所述网络设备配置给所述至少一个小区中的目标小区。
可选地,作为一个示例,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
以上结合图1至图7详细描述了根据本公开的一些实施例的无线通信的方法,下面将结合图8详细描述根据本公开的一些实施例的设备。
图8是根据本公开的实施例的设备的结构示意图,如图8所示出的,设备包括:
第一处理模块81,在目标频带内的第一小区被配置了的第一目标CORESET的情况下,确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息;
第二处理模块82,用于根据所述第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息;
确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述至少一个小区包括所述第一小区,所述第二处理模块82具体用于:
确定所述第一小区上的下行信道或下行参考信号的QCL信息为所述第一目标QCL信息。
可选地,作为一个示例,所述至少一个小区包括所述第一小区,所述第二处理模块82具体用于:
确定所述第一小区上的下行信道或下行参考信号的QCL信息集合为所述第一目标QCL信息所属的第一QCL信息集合;
从所述第一小区上的下行信道或下行参考信号的QCL信息集合中,确定所述第一小区上的下行信道或下行参考信号的QCL信息。
可选地,作为一个示例,所述至少一个小区包括所述第一小区,所述第一小区上配置有多个CORESET,所述多个CORESET包括第一目标CORESET;
其中,所述第二处理模块42具体用于:
根据介质访问控制控制单元MAC CE的指示,从所述第一目标QCL信息所属的第一QCL信息集合中,确定所述多个CORESET中除第一目标CORESET外的CORESET的QCL信息。
可选地,作为一个示例,所述至少一个小区包括所述第一小区和第二小区,所述第二小区未被配置第一目标CORESET;
其中,第二处理模块82具体用于:
根据所述第一目标QCL信息,确定所述第二小区上的下行信道或下行参考信号的QCL信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
确定所述第二小区上的下行信道或下行参考信号的QCL信息为所述第一目标QCL信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第二小区上的下行信道或下行参考信号的QCL信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
确定所述第二小区上的下行信道或下行参考信号的QCL信息集合为所述第一目标QCL信息所属的第一QCL信息集合;
从所述第二小区上的下行信道或下行参考信号的QCL信息集合中,确定所述第二小区上的下行信道或下行参考信号的QCL信息。
可选地,作为一个示例,所述第一小区的小区索引满足第一预设规则。
可选地,作为一个示例,所述第二小区位于所述目标频带内。
可选地,作为一个示例,在所述至少一个小区中每个小区所在的频带内的所有小区均未被配置第一目标CORESET的情况下,所述第二处理模块82还用于:
确定第三小区上配置的第二QCL信息集合;
根据所述第二QCL信息集合,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息。
可选地,作为一个示例,所述至少一个小区位于所述目标频带内,所述第三小区位于所述目标频带内。
可选地,作为一个示例,所述第二处理模块82具体用于:
从所述第二QCL信息集合中,确定所述第三小区被配置的第二目标CORESET的第二目标QCL信息;
确定所述至少一个小区上的下行信道或下行参考信号的QCL信息为所述第二目标QCL信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
确定所述至少一个小区上的下行信道或下行参考信号的QCL信息集合为所述第二QCL信息集合;
从所述至少一个小区上的下行信道或下行参考信号的QCL信息集合中,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息。
可选地,作为一个示例,所述第三小区的小区索引满足第二预设规则;和/或,
所述第二目标CORESET的编号满足第三预设规则;和/或,
所述第二目标CORESET所在的带宽部分BWP的编号满足第四预设规则。
可选地,作为一个示例,所述至少一个小区包括所述第一小区,所述第二处理模块82具体用于:
确定第一传输配置指示TCI状态对应的参考信号RS集合,所述第一TCI状态用于指示所述第一目标QCL信息;
根据所述RS集合中的源RS,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,述至少一个小区包括所述第一小区,所述第二处理模块82具体用于:
根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
确定用于指示所述第一QCL信息集合中的全部QCL信息的第二TCI状态;
根据所述第二TCI状态所对应的RS集合中的全部源RS,确定所述第一小区上的上行信道或上行参考信号的候选空间关系信息;
从所述候选空间关系信息中,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
根据无线资源控制RRC信令和/或MAC CE的指示,从所述候选空间关系信息中确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,小区上可被配置的空间关系信息的最大数量大于或等于所述第一QCL信息集合中的QCL信息的数量;
其中,所述第二处理模块82具体用于:
确定用于指示所述第一QCL信息集合中的全部QCL信息的第二TCI状态;
根据所述第二TCI状态所对应的RS集合中的全部源RS,确定所述第一小区上的上行信道或上行参考信号的候选空间关系信息;
从所述候选空间关系信息中,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
从所述第一QCL信息集合中确定预设数量的QCL信息;
根据第三TCI状态所对应的RS集合中的源RS,确定所述第一 小区上的上行信道或上行参考信号的空间关系,所述第三TCI状态用于指示所述预设数量的QCL信息。
可选地,作为一个示例,所述至少一个小区包括所述第一小区和第四小区,所述第四小区未被配置第一目标CORESET;
其中,所述第二处理模块82具体用于:
根据所述第一目标QCL信息,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
确定用于指示所述第一目标QCL信息的第一TCI状态;
根据所述第一TCI状态所对应的RS集合中的源RS,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第二处理模块82具体用于:
根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第四小区位于所述目标频带内。
可选地,作为一个示例,在所述至少一个小区中每个小区所在的频带内的所有小区均未被配置第一目标CORESET的情况下,所述第二处理模块82还用于:
确定第五小区上配置的第三QCL信息集合;
根据所述第三QCL信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述至少一个小区位于所述目标频带内,第五小区在目标频带内。
可选地,作为一个示例,所述第二处理模块82具体用于:
从所述第三QCL信息集合中,确定所述第五小区上配置的第三目标CORESET的第三目标QCL信息;
根据所述第三目标QCL信息,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第五小区的小区索引满足第五预设 规则;和/或,
所述第三目标CORESET的编号满足第六预设规则;和/或,
所述第三目标CORESET所在的带宽部分BWP的编号满足第七预设规则。
可选地,作为一个示例,所述至少一个小区包括所述第一小区和第六小区,所述第六小区未被配置QCL信息集合,所述第二处理模块82还用于:
确定所述第六小区的QCL信息集合为所述第一目标QCL信息所属的第一QCL信息集合;
根据所述第六小区的QCL信息集合,确定所述第六小区上的下行信道或下行参考信号的QCL信息,以及所述第六小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第六小区位于所述目标频带内。
可选地,作为一个示例,所述至少一个小区包括所述第一小区和第七小区,所述第七小区未被配置QCL信息集合,所述第二处理模块82还用于:
确定所述第七小区上的下行信道或下行参考信号的QCL信息为所述第一小区上的下行信道或下行参考信号的QCL信息;和/或,
根据所述第一小区上的下行信道或下行参考信号的QCL信息,确定所述第七小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第七小区位于所述目标频带内。
可选地,作为一个示例,所述至少一个小区包括所述第一小区和第八小区,所述第八小区未被配置QCL信息集合,所述第二处理模块82还用于:
确定所述第八小区上的上行信道或上行信号的空间关系信息为所述第一小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第八小区位于所述目标频带内。
可选地,作为一个示例,所述第一处理模块81具体用于:
根据MAC CE的指示从所述第一目标QCL信息所属的第一QCL 信息集合中,确定所述第一目标QCL信息,所述第一QCL信息集合由网络设备通过RRC信令配置。
可选地,作为一个示例,第一目标CORESET的编号为0。
本公开的一些实施例提供的设备能够实现图1至图3的方法实施例中设备实现的各个过程,为避免重复,这里不再赘述。
图9是根据本公开的实施例的终端设备的结构示意图,如图9所示出的,终端设备包括:
收发模块91,用于接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合;
处理模块92,用于根据所述QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息;
所述处理模块92,还用于根据所述空间关系信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述QCL信息集合为所述至少一个小区中全部小区的公用QCL信息集合,所述空间关系信息集合为所述至少一个小区中全部小区的公用空间关系信息集合,或,所述QCL信息集合由网络设备配置给所述至少一个小区中的第一目标小区,所述空间关系信息集合由网络设备配置给所述至少一个小区中的第二目标小区。
可选地,作为一个示例,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
可选地,作为一个示例,所述处理模块92具体用于:
确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息;
确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述第一目标小区的小区索引满足第一预设规则;和/或,所述第二目标小区的小区索引满足第二预设规则。
本公开的一些实施例提供的终端设备能够实现图4的方法实施 例中设备实现的各个过程,为避免重复,这里不再赘述。
图10是根据本公开的个实施例的终端设备的结构示意图,如图10所示出的,终端设备包括:
收发模块101,用于确接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合;
处理模块102,用于根据所述空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述空间传输信息集合为所述至少一个小区中全部小区的公用空间传输信息集合,或,所述空间传输信息集合由网络设备配置给所述至少一个小区中的目标小区。
可选地,作为一个示例,所述处理模块102具体用于:
确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息;
确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
本公开的一些实施例提供的终端设备能够实现图5的方法实施例中设备实现的各个过程,为避免重复,这里不再赘述。
图11是根据本公开的实施例的网络设备的结构示意图,如图11所示出的,网络设备包括:
收发模块111,用于接发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合,所述QCL信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,所述空间关系信息集合用于所述终端设备确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述QCL信息为所述至少一个小区中全部小区的公用QCL信息集合,所述空间关系信息集合为所述至少 一个小区中全部小区的公用空间关系信息集合,或,所述QCL信息集合由网络设备配置给所述至少一个小区中的第一目标小区,所述空间关系信息集合由网络设备配置给所述至少一个小区中的第二目标小区。
可选地,作为一个示例,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
可选地,作为一个示例,所述第一目标小区的小区索引满足第一预设规则;和/或,所述第二目标小区的小区索引满足第二预设规则。
本公开的一些实施例提供的网络设备能够实现图7的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
图12是根据本公开的实施例的网络设备的结构示意图,如图12所示出的,网络设备包括:
收发模块,121,用于发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合,所述空间传输信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
可选地,作为一个示例,所述空间传输信息集合为所述至少一个小区中全部小区的公用空间传输信息集合,或,所述空间传输信息集合由所述网络设备配置给所述至少一个小区中的目标小区。
可选地,作为一个示例,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
本公开的一些实施例提供的网络设备能够实现图8的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
图13是本公开的实施例的终端设备的框图。图13所示的终端设备1300包括:至少一个处理器1301、存储器1302、用户接口1303和至少一个网络接口1304。终端设备1300中的各个组件通过总线系统1305耦合在一起。可理解,总线系统1305用于实现这些组件之间的连接通信。总线系统1305除包括数据总线之外,还包括电源总线、 控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统1305。
其中,用户接口1303可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开的一些实施例中的存储器1302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开的一些实施例描述的系统和方法的存储器1302旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1302存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统13021和应用程序13022。
其中,操作系统13021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序13022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开的一些实施例方法的程序可以包含在应用程序13022中。
在本公开的一些实施例中,终端设备1300还包括:存储在存储 器1302上并可在处理器1301上运行的计算机程序,计算机程序被处理器1301执行时实现上述图1至图7中所述的方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开的一些实施例揭示的方法可以应用于处理器1301中,或者由处理器1301实现。处理器1301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开的一些实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开的一些实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1302,处理器1301读取存储器1302中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器1301执行时实现如上述图1至7所述的方法实施例的各步骤。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、 微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
图14示出了根据本公开的一些实施例的网络设备的结构示意图。如图14所示,网络设备1400包括处理器1401、收发机1402、存储器1403和总线接口。其中:
在本公开的一些实施例中,网络设备1400还包括:存储在存储器1403上并可在所述处理器1401上运行的计算机程序,所述计算机程序被所述处理器1401执行时实现上述图1至图7所示的方法中由网络设备执行的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图14中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1401代表的一个或多个处理器和存储器1403代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1402可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1401负责管理总线架构和通常的处理,存储器1403可以存储处理器1401在执行操作时所使用的数据。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图1至图7所示的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (63)

  1. 一种无线通信的方法,包括:
    在目标频带内的第一小区被配置了第一目标控制资源集CORESET的情况下,确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息;以及
    根据所述第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  2. 根据权利要求1所述的方法,其中,所述确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息;
    其中,所述确定至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:
    确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
  3. 根据权利要求1或2所述的方法,其特征在,所述至少一个小区包括所述第一小区;
    其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述第一小区上的下行信道或下行参考信号的QCL信息为所述第一目标QCL信息。
  4. 根据权利要求1或2所述的方法,其特征在,所述至少一个小区包括所述第一小区;
    其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述第一小区上的下行信道或下行参考信号的QCL信息集 合为所述第一目标QCL信息所属的第一QCL信息集合;
    从所述第一小区上的下行信道或下行参考信号的QCL信息集合中,确定所述第一小区上的下行信道或下行参考信号的QCL信息。
  5. 根据权利要求1或2所述的方法,其中,所述至少一个小区包括所述第一小区,所述第一小区上配置有多个CORESET,所述多个CORESET包括第一目标CORESET;
    其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    根据介质访问控制控制单元MAC CE的指示,从所述第一目标QCL信息所属的第一QCL信息集合中,确定所述多个CORESET中除第一目标CORESET外的CORESET的QCL信息。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述至少一个小区包括所述第一小区和第二小区,所述第二小区未被配置第一目标CORESET;
    其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    根据所述第一目标QCL信息,确定所述第二小区上的下行信道或下行参考信号的QCL信息。
  7. 根据权利要求6所述的方法,其中,所述根据所述第一目标QCL信息,确定所述第二小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述第二小区上的下行信道或下行参考信号的QCL信息为所述第一目标QCL信息。
  8. 根据权利要求6所述的方法,其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第二小区上的下行信道或下行参考信号的QCL信息。
  9. 根据权利要求8所述的方法,其中,所述根据所述第一目标 QCL信息所属的第一QCL信息集合,确定所述第二小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述第二小区上的下行信道或下行参考信号的QCL信息集合为所述第一目标QCL信息所属的第一QCL信息集合;以及
    从所述第二小区上的下行信道或下行参考信号的QCL信息集合中,确定所述第二小区上的下行信道或下行参考信号的QCL信息。
  10. 根据权利要求6至9中任一项所述的方法,其中,所述第一小区的小区索引满足第一预设规则。
  11. 根据权利要求6至9中任一项所述的方法,其中,所述第二小区位于所述目标频带内。
  12. 根据权利要求1至11中任一项所述的方法,其中,在所述至少一个小区中每个小区所在的频带内的所有小区均未被配置第一目标CORESET的情况下,所述方法还包括:
    确定第三小区上配置的第二QCL信息集合;以及
    根据所述第二QCL信息集合,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息。
  13. 根据权利要求12所述的方法,其中,所述至少一个小区位于所述目标频带内,所述第三小区位于所述目标频带内。
  14. 根据权利要求12所述的方法,其中,所述根据所述第二QCL信息集合,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    从所述第二QCL信息集合中,确定所述第三小区被配置的第二目标CORESET的第二目标QCL信息;以及
    确定所述至少一个小区上的下行信道或下行参考信号的QCL信息为所述第二目标QCL信息。
  15. 根据权利要求12所述的方法,其中,所述根据所述第二QCL信息集合,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述至少一个小区上的下行信道或下行参考信号的QCL信 息集合为所述第二QCL信息集合;以及
    从所述至少一个小区上的下行信道或下行参考信号的QCL信息集合中,确定所述至少一个小区上的下行信道或下行参考信号的QCL信息。
  16. 根据权利要求14或15所述的方法,其中,所述第三小区的小区索引满足第二预设规则;和/或,
    所述第二目标CORESET的编号满足第三预设规则;和/或,
    所述第二目标CORESET所在的带宽部分BWP的编号满足第四预设规则。
  17. 根据权利要求1或2所述的方法,其中,所述至少一个小区包括所述第一小区;
    其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:
    确定第一传输配置指示TCI状态对应的参考信号RS集合,所述第一TCI状态用于指示所述第一目标QCL信息;
    根据所述RS集合中的源RS,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
  18. 根据权利要求1或2所述的方法,其中,所述至少一个小区包括所述第一小区;
    其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:
    根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
  19. 根据权利要求18所述的方法,其中,所述根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第一小区上的上行信道或上行参考信号的空间关系信息,包括:
    确定用于指示所述第一QCL信息集合中的全部QCL信息的第二TCI状态;
    根据所述第二TCI状态所对应的RS集合中的全部源RS,确定 所述第一小区上的上行信道或上行参考信号的候选空间关系信息;以及
    从所述候选空间关系信息中,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
  20. 根据权利要求19所述的方法,其中,所述从所述候选空间关系信息中,确定所述第一小区上的上行信道或上行参考信号的空间关系信息,包括:
    根据无线资源控制RRC信令和/或MAC CE的指示,从所述候选空间关系信息中确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
  21. 根据权利要求18所述的方法,其中,小区上可被配置的空间关系信息的最大数量大于或等于所述第一QCL信息集合中的QCL信息的数量;
    其中,所述根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第一小区上的上行信道或上行参考信号的空间关系信息,包括:
    确定用于指示所述第一QCL信息集合中的全部QCL信息的第二TCI状态;
    根据所述第二TCI状态所对应的RS集合中的全部源RS,确定所述第一小区上的上行信道或上行参考信号的候选空间关系信息;以及
    从所述候选空间关系信息中,确定所述第一小区上的上行信道或上行参考信号的空间关系信息。
  22. 根据权利要求18所述的方法,其中,所述根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第一小区上的上行信道或上行参考信号的空间关系信息,包括:
    从所述第一QCL信息集合中确定预设数量的QCL信息;以及
    根据第三TCI状态所对应的RS集合中的源RS,确定所述第一小区上的上行信道或上行参考信号的空间关系信息,所述第三TCI 状态用于指示所述预设数量的QCL信息。
  23. 根据权利要求17至22中任一项所述的方法,其中,所述至少一个小区包括所述第一小区和第四小区,所述第四小区未被配置第一目标CORESET;
    其中,所述根据所述第一目标QCL信息,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息,还包括:
    根据所述第一目标QCL信息,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
  24. 根据权利要求23所述的方法,其中,所述根据所述第一目标QCL信息,确定所述第四小区上的上行信道或上行参考信号的空间关系信息,包括:
    确定用于指示所述第一目标QCL信息的第一TCI状态;以及
    根据所述第一TCI状态所对应的RS集合中的源RS,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
  25. 根据权利要求23所述的方法,其中,所述根据所述第一目标QCL信息,确定所述第四小区上的上行信道或上行参考信号的空间关系信息,包括:
    根据所述第一目标QCL信息所属的第一QCL信息集合,确定所述第四小区上的上行信道或上行参考信号的空间关系信息。
  26. 根据权利要求23至25中任一项所述的方法,其中,所述第四小区位于所述目标频带内。
  27. 根据权利要求18至22中任一项所述的方法,其中,在所述至少一个小区中每个小区所在的频带内的所有小区均未被配置第一目标CORESET的情况下,所述方法还包括:
    确定第五小区上配置的第三QCL信息集合;以及
    根据所述第三QCL信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  28. 根据权利要求27所述的方法,其中,所述至少一个小区位于所述目标频带内,第五小区在目标频带内。
  29. 根据权利要求27所述的方法,其中,所述根据所述第三QCL信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:
    从所述第三QCL信息集合中,确定所述第五小区上配置的第三目标CORESET的第三目标QCL信息;以及
    根据所述第三目标QCL信息,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  30. 根据权利要求29所述的方法,其中,所述第五小区的小区索引满足第五预设规则;和/或,
    所述第三目标CORESET的编号满足第六预设规则;和/或,
    所述第三目标CORESET所在的带宽部分BWP的编号满足第七预设规则。
  31. 根据权利要求1所述的方法,其中,所述至少一个小区包括所述第一小区和第六小区,所述第六小区未被配置QCL信息集合,所述方法还包括:
    确定所述第六小区的QCL信息集合为所述第一目标QCL信息所属的第一QCL信息集合;以及
    根据所述第六小区的QCL信息集合,确定所述第六小区上的下行信道或下行参考信号的QCL信息,以及所述第六小区上的上行信道或上行参考信号的空间关系信息。
  32. 根据权利要求31所述的方法,其中,所述第六小区位于所述目标频带内。
  33. 根据权利要求3至16中任一项所述的方法,其中,所述至少一个小区包括所述第一小区和第七小区,所述第七小区未被配置QCL信息集合,所述方法还包括:
    确定所述第七小区上的下行信道或下行参考信号的QCL信息为所述第一小区上的下行信道或下行参考信号的QCL信息;和/或,
    根据所述第一小区上的下行信道或下行参考信号的QCL信息,确定所述第七小区上的上行信道或上行参考信号的空间关系信息。
  34. 根据权利要求33所述的方法,其中,所述第七小区位于所述目标频带内。
  35. 根据权利要求17至30中任一项所述的方法,其中,所述至少一个小区包括所述第一小区和第八小区,所述第八小区未被配置QCL信息集合,所述方法还包括:
    确定所述第八小区上的上行信道或上行信号的空间关系信息为所述第一小区上的上行信道或上行参考信号的空间关系信息。
  36. 根据权利要35所述的方法,其中,所述第八小区位于所述目标频带内。
  37. 根据权利要求1至36中任一项所述的方法,其中,所述确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息,包括:
    根据MAC CE的指示从所述第一目标QCL信息所属的第一QCL信息集合中,确定所述第一目标QCL信息,所述第一QCL信息集合由网络设备通过RRC信令配置。
  38. 根据权利要求1至37中任一项所述的方法,其中,第一目标CORESET的编号为0。
  39. 一种无线通信的方法,应用于终端设备,包括:
    接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合;
    根据所述QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息;以及
    根据所述空间关系信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  40. 根据权利要求39所述的方法,其中,所述QCL信息集合为所述至少一个小区中全部小区的公用QCL信息集合,所述空间关系信息集合为所述至少一个小区中全部小区的公用空间关系信息集合,或,所述QCL信息集合由网络设备配置给所述至少一个小区中的第一目标小区,所述空间关系信息集合由网络设备配置给所述至少一个 小区中的第二目标小区。
  41. 根据权利要求39所述的方法,其中,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
  42. 根据权利要求39至41中任一项所述的方法,其中,所述确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息;
    所述确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息,包括:
    确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
  43. 根据权利要求39至42中任一项所述的方法,其中,所述第一目标小区的小区索引满足第一预设规则;和/或,所述第二目标小区的小区索引满足第二预设规则。
  44. 一种无线通信的方法,应用于终端设备,包括:
    接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合;以及
    根据所述空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  45. 根据权利要求44所述的方法,其中,所述空间传输信息集合为所述至少一个小区中全部小区的公用空间传输信息集合,或,所述空间传输信息集合由网络设备配置给所述至少一个小区中的目标小区。
  46. 根据权利要求44或45所述的方法,其中,所述确定至少一个小区上的下行信道或下行参考信号的QCL信息,包括:
    确定所述至少一个小区中每个小区上的部分或全部带宽部分BWP上的下行信道或下行参考信号的QCL信息;
    所述确定所述至少一个小区上的上行信道或上行参考信号的空 间关系信息,包括:
    确定所述至少一个小区中每个小区上的部分或全部BWP上的上行信道或上行参考信号的空间关系信息。
  47. 根据权利要求44至46中任一项所述的方法,其中,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
  48. 一种无线通信的方法,应用于网络设备,包括:
    发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合,所述QCL信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,所述空间关系信息集合用于所述终端设备确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  49. 根据权利要求48所述的方法,其中,所述QCL信息为所述至少一个小区中全部小区的公用QCL信息集合,所述空间关系信息集合为所述至少一个小区中全部小区的公用空间关系信息集合,或,所述QCL信息集合由网络设备配置给所述至少一个小区中的第一目标小区,所述空间关系信息集合由网络设备配置给所述至少一个小区中的第二目标小区。
  50. 根据权利要求48或49所述的方法,其中,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
  51. 根据权利要求48至50中任一项所述的方法,其中,所述第一目标小区的小区索引满足第一预设规则;和/或,所述第二目标小区的小区索引满足第二预设规则。
  52. 一种无线通信的方法,应用于网络设备,包括:
    发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合,所述空间传输信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  53. 根据权利要求52所述的方法,其中,所述空间传输信息集合为所述至少一个小区中全部小区的公用空间传输信息集合,或,所 述空间传输信息集合由所述网络设备配置给所述至少一个小区中的目标小区。
  54. 根据权利要求52或53所述的方法,其中,在所述至少一个小区为多个小区的情况下,所述多个小区位于同一频带内。
  55. 一种设备,包括:
    第一处理模块,用于在目标频带内的第一小区被配置了第一目标控制资源集CORESET的情况下,确定所述第一小区被配置的第一目标CORESET的第一目标准共址QCL信息;以及
    第二处理模块,用于根据所述第一目标QCL信息,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  56. 一种终端设备,包括:
    收发模块,用于接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合;
    处理模块,用于根据所述QCL信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息;以及
    所述处理模块,还用于根据所述空间关系信息集合,确定所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  57. 一种终端设备,包括:
    收发模块,用于接收空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合;以及
    处理模块,用于根据所述空间传输信息集合,确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  58. 一种网络设备,包括:
    收发模块,用于发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合和空间关系信息集合,所述QCL信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,所述空间关系信息集合用于所述终端设备确定所述至少 一个小区上的上行信道或上行参考信号的空间关系信息。
  59. 一种网络设备,包括:
    收发模块,用于发送空间传输信息集合,所述空间传输信息集合包括准共址QCL信息集合或空间关系信息集合,所述空间传输信息集合用于终端设备确定至少一个小区上的下行信道或下行参考信号的QCL信息,以及所述至少一个小区上的上行信道或上行参考信号的空间关系信息。
  60. 一种设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至38中任一项所述的无线通信的方法的步骤。
  61. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求39至47中任一项所述的无线通信的方法的步骤。
  62. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求48至54中任一项所述的无线通信的方法的步骤。
  63. 一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至54中任一项所述的无线通信的方法的步骤。
PCT/CN2019/111003 2018-11-02 2019-10-14 无线通信的方法和设备 WO2020088229A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19880115.1A EP3876634A4 (en) 2018-11-02 2019-10-14 WIRELESS COMMUNICATION METHOD AND DEVICE
KR1020217014665A KR20210075169A (ko) 2018-11-02 2019-10-14 무선통신 방법과 장치
JP2021523512A JP7346563B2 (ja) 2018-11-02 2019-10-14 無線通信の方法及び機器
SG11202104579YA SG11202104579YA (en) 2018-11-02 2019-10-14 Wireless communication method and device
US17/244,031 US11968699B2 (en) 2018-11-02 2021-04-29 Radio communication method and device
JP2023069069A JP2023089237A (ja) 2018-11-02 2023-04-20 無線通信の方法及び機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303170.1 2018-11-02
CN201811303170.1A CN111106913B (zh) 2018-11-02 2018-11-02 无线通信的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,031 Continuation US11968699B2 (en) 2018-11-02 2021-04-29 Radio communication method and device

Publications (1)

Publication Number Publication Date
WO2020088229A1 true WO2020088229A1 (zh) 2020-05-07

Family

ID=70419793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111003 WO2020088229A1 (zh) 2018-11-02 2019-10-14 无线通信的方法和设备

Country Status (7)

Country Link
US (1) US11968699B2 (zh)
EP (1) EP3876634A4 (zh)
JP (2) JP7346563B2 (zh)
KR (1) KR20210075169A (zh)
CN (1) CN111106913B (zh)
SG (1) SG11202104579YA (zh)
WO (1) WO2020088229A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131668A1 (en) * 2019-02-15 2022-04-28 Ntt Docomo, Inc. User terminal and radio communication method
KR20210001754A (ko) * 2019-06-28 2021-01-06 삼성전자주식회사 무선 통신 시스템에서 pdcch에 대한 커버리지 향상 방법 및 장치
US11722952B2 (en) * 2019-12-23 2023-08-08 Qualcomm Incorporated Joint cell selection and beam/path loss reference signal update in layer 1/layer 2 based mobility
CN115664473A (zh) * 2020-09-25 2023-01-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
BR112022027071A2 (pt) * 2020-09-30 2023-04-11 Zte Corp Aquisição de informações de quase-co-localização usando indicadores de configuração de transmissão

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备
EP3337111A1 (en) * 2016-12-16 2018-06-20 Industrial Technology Research Institute Method for transmitting channel information and wireless communication system using the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940730B1 (ko) 2007-09-07 2010-02-04 엘지전자 주식회사 무선통신 시스템에서 기준 신호 생성 방법
TWI648995B (zh) * 2013-04-03 2019-01-21 內數位專利控股公司 用於執行無線電鏈路監控測量的方法及無線傳輸/接收單元
WO2017180049A1 (en) * 2016-04-11 2017-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods for handling quasi co-location (qcl) configuration for multicast transmissions
CN113472500B (zh) * 2017-01-09 2022-11-15 中兴通讯股份有限公司 信令发送、接收方法及装置
US10148337B2 (en) * 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
WO2018190678A1 (ko) * 2017-04-14 2018-10-18 엘지전자 주식회사 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 장치
US10735225B2 (en) 2017-05-04 2020-08-04 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal for low peak-to-average power ratio in wireless communication system
CN116961833A (zh) * 2017-05-05 2023-10-27 苹果公司 新无线电控制信道资源集合设计
CN109245844B (zh) 2017-06-30 2020-11-03 华为技术有限公司 无线通信方法、装置及系统
CN109219134B (zh) 2017-06-30 2020-11-06 华为技术有限公司 一种发送方法及装置
CN108809609B (zh) 2017-08-11 2019-07-09 华为技术有限公司 一种dmrs指示和接收方法,发射端和接收端
CN117914665A (zh) 2017-08-25 2024-04-19 华为技术有限公司 一种信号传输的方法、设备及系统
PT3689026T (pt) * 2017-09-28 2022-05-23 Ericsson Telefon Ab L M Procedimento de acesso aleatório de múltiplos feixes numa execução de uma transferência intercelular
US11153800B2 (en) * 2017-11-17 2021-10-19 Asustek Computer Inc. Method and apparatus for User Equipment (UE) monitoring behavior for beam recovery in a wireless communication system
CN110034891B (zh) * 2018-01-12 2020-10-20 电信科学技术研究院有限公司 一种系统信息配置方法和装置
CN112134668B (zh) * 2018-02-09 2021-08-13 华为技术有限公司 一种传输控制方法、终端设备及网络设备
WO2019165224A1 (en) * 2018-02-23 2019-08-29 Idac Holdings, Inc. System and method for bandwidth part operation
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
CN110366251B (zh) * 2018-03-26 2023-06-02 华硕电脑股份有限公司 无线通信中考虑交叉载波调度下波束指示的方法和设备
CN110351010B (zh) * 2018-04-03 2021-04-30 电信科学技术研究院有限公司 一种信道盲检方法、信号传输方法和相关设备
WO2019192304A1 (zh) * 2018-04-03 2019-10-10 电信科学技术研究院有限公司 信道盲检方法、信号传输方法和相关设备
CN110446269B (zh) * 2018-05-04 2022-12-06 华硕电脑股份有限公司 无线通信系统中下行链路控制信息内容处理的方法和设备
WO2019216640A1 (ko) * 2018-05-09 2019-11-14 엘지전자 주식회사 무선 통신 시스템에서 단말의 제어 채널 모니터링 방법 및 상기 방법을 이용하는 단말
US10952231B2 (en) * 2018-05-10 2021-03-16 Asustek Computer Inc. Method and apparatus for beam indication for uplink transmission in a wireless communication system
EP3657725B1 (en) * 2018-07-31 2021-07-21 LG Electronics Inc. Method for monitoring control signal by terminal in wireless communication system, and terminal using same method
KR20200020272A (ko) * 2018-08-16 2020-02-26 삼성전자주식회사 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
US20210377825A1 (en) * 2018-10-30 2021-12-02 Idac Holdings, Inc. Methods and apparatus for mobility in moving networks
WO2020088295A1 (en) * 2018-11-01 2020-05-07 FG Innovation Company Limited Methods and apparatuses of determining quasi co-location (qcl) assumptions for beam operations
US10985827B2 (en) * 2018-11-01 2021-04-20 Qualcomm Incorporated Prioritizing reception of PDCCH for beam failure recovery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备
EP3337111A1 (en) * 2016-12-16 2018-06-20 Industrial Technology Research Institute Method for transmitting channel information and wireless communication system using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOTHENBURG , SWEDEN: "Feature Lead Summary for Beam Management - Thursday", 3GPP DRAFT; R1-1809864, 24 August 2018 (2018-08-24), Gothenburg ,Sweden, pages 1 - 26, XP051517219 *
VIVO: "Remaining Issues on Beam Measurement and Reporting", 3GPP DRAFT; R1-1808221, 24 August 2018 (2018-08-24), Gothenburg, Sweden, pages 1 - 7, XP051515606 *

Also Published As

Publication number Publication date
SG11202104579YA (en) 2021-06-29
US11968699B2 (en) 2024-04-23
EP3876634A4 (en) 2021-12-22
KR20210075169A (ko) 2021-06-22
CN111106913B (zh) 2021-04-27
JP2022506284A (ja) 2022-01-17
US20210250951A1 (en) 2021-08-12
JP7346563B2 (ja) 2023-09-19
JP2023089237A (ja) 2023-06-27
CN111106913A (zh) 2020-05-05
EP3876634A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2020088229A1 (zh) 无线通信的方法和设备
CN109802787B (zh) 传输配置指示tci的传输方法、网络侧设备和终端设备
CN109391971B (zh) 一种pdcch的搜索空间的配置、监听方法及设备
US11985679B2 (en) Wireless communication method and device
US20220015144A1 (en) Method for sharing channel occupancy time and device
US11950245B2 (en) Method and device for cross carrier scheduling physical downlink shared channel
RU2759842C1 (ru) Способ определения параметра области поиска и абонентское устройство
WO2021159981A1 (zh) 下行控制信息传输方法、终端设备和网络设备
US11160096B2 (en) Method and apparatus for determining transmission direction and transmission channel and computer storage medium
WO2021238944A1 (zh) 波束指示方法、网络侧设备和终端
JP7386359B2 (ja) ビーム報告の方法及び装置
WO2021013102A1 (zh) 参数确定、信息配置方法和设备
CN114375008A (zh) 配置授权的重复传输方法、装置、设备及可读存储介质
WO2022237620A1 (zh) Csi测量资源的处理方法及装置、终端及可读存储介质
WO2019214395A1 (zh) 数据传输方法和设备
US20210153235A1 (en) Method and Device for Indicating Channel Resource Set, and Computer Storage Medium
US11973710B2 (en) Resource configuration method and device
EP4195567A1 (en) Signal transmission method and apparatus, and storage medium
WO2021013035A1 (zh) Pucch发送、信息配置方法和设备
CN114557118A (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217014665

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019880115

Country of ref document: EP

Effective date: 20210602