WO2020088226A1 - 上行传输方法、装置、计算机可读存储介质及终端 - Google Patents

上行传输方法、装置、计算机可读存储介质及终端 Download PDF

Info

Publication number
WO2020088226A1
WO2020088226A1 PCT/CN2019/110943 CN2019110943W WO2020088226A1 WO 2020088226 A1 WO2020088226 A1 WO 2020088226A1 CN 2019110943 W CN2019110943 W CN 2019110943W WO 2020088226 A1 WO2020088226 A1 WO 2020088226A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
timer
random access
uplink transmission
timing duration
Prior art date
Application number
PCT/CN2019/110943
Other languages
English (en)
French (fr)
Inventor
韩立锋
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to EP19878454.8A priority Critical patent/EP3876654A4/en
Priority to US17/289,775 priority patent/US20210400736A1/en
Publication of WO2020088226A1 publication Critical patent/WO2020088226A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to an uplink transmission method, device, computer-readable storage medium, and terminal.
  • unlicensed spectrum In the European market, unlicensed spectrum must be used by listening-before-talk (LBT). By performing the LBT process, the channel can only be accessed when it is detected that it is idle.
  • LBT listening-before-talk
  • the process of LBT is as follows: Before transmitting data or signaling, the user terminal (User) performs a clear channel assessment (Clear Channel Assessment, CCA). If the assessment result is that the channel is idle, it indicates that the LBT is successful. Send data or signaling immediately, otherwise it means that LBT failed, and data cannot be transmitted until the next fixed frame period.
  • CCA Clear Channel Assessment
  • the fixed frame is composed of channel occupation time (Channel Occupancy Time, COT) and idle period (Idle period).
  • the channel occupation time is between 1ms and 10ms, and the minimum idle period is 5% of the channel occupation time.
  • the problem to be solved by the present invention is: how to perform uplink transmission when LBT fails many times.
  • an embodiment of the present invention provides an uplink transmission method.
  • the method includes: when an uplink process is started, a corresponding timer is started; when the timing duration of the timer has reached a preset timing duration, When the uplink process is still unsuccessful, the uplink process is terminated and other processes are triggered.
  • the uplink process is a random access process.
  • starting the corresponding timer when the uplink process starts includes: when determining the random access preamble sequence to be sent, or the medium access control layer of the terminal to which the random access preamble sequence is delivered to all When the physical layer of the terminal is described, a first timer corresponding to the random access process is started.
  • the uplink process is still unsuccessful, including any one of the following: a random access response message is not received within the first preset duration ; No conflict resolution message is received within the second preset duration; the conflict resolution message is received within the second preset duration, but conflict detection fails.
  • the other processes include: a radio link failure event.
  • the method further includes: when the timing duration of the timer does not reach the preset timing duration, and the uplink process is still unsuccessful, continue the uplink process.
  • the uplink process is a scheduling request process.
  • starting the corresponding timer when the uplink process starts includes: starting a second timer corresponding to the scheduling request process when the terminal belongs to send the scheduling request for the first time.
  • the uplink process is terminated and other processes are triggered, including: Before the number of requests reaches the preset maximum number of times, when the timing duration of the second timer has reached the preset timing duration, and the scheduling request process is still unsuccessful, terminate the scheduling request process, and Trigger other processes.
  • the other processes include: a random access process.
  • the network side uses a dedicated message or a public message to send the configuration information of the timer to the terminal.
  • the network side configures the configuration information of the timer based on the type of random access or the type of event that triggers random access.
  • the network side configures the configuration information of the timer based on the configuration of different scheduling requests.
  • An embodiment of the present invention further provides an upstream transmission device.
  • the device includes: a timing unit adapted to start a corresponding timer when the upstream process is started; a first processing unit adapted to be used for the duration of the timer When the preset timing duration has been reached, and the uplink process is still unsuccessful, the uplink process is terminated and other processes are triggered.
  • the uplink process is a random access process.
  • the timing unit is adapted to start when the random access preamble sequence sent is determined, or when the medium access control layer of the terminal to which the random access preamble sequence is delivered to the physical layer of the terminal The first timer corresponding to the random access process.
  • the timing duration of the timer has reached the preset timing duration, and the uplink process is still unsuccessful, including any one of the following: a random access response message is not received within the first preset duration; No conflict resolution message is received within the second preset duration; the conflict resolution message is received within the second preset duration, but conflict detection fails.
  • the first processing unit is adapted to terminate the uplink process and trigger wireless when the timing duration of the timer has reached the preset timing duration and the uplink process is still unsuccessful Link failure event.
  • the device further includes: a second processing unit adapted to continue the uplink when the timing duration of the timer does not reach the preset timing duration and the uplink process is still unsuccessful process.
  • the uplink process is a scheduling request process.
  • the timing unit is adapted to start a second timer corresponding to the scheduling request process when the terminal belongs to send the scheduling request for the first time.
  • the first processing unit is adapted to: before the number of sending scheduling requests reaches a preset maximum number of times, when the timing duration of the second timer has reached the preset timing duration, and the When the scheduling request process is still unsuccessful, the scheduling request process is terminated and other processes are triggered.
  • the other processes include: a random access process.
  • the configuration information of the timer is sent by the network side using a dedicated message or a public message.
  • the configuration information of the timer is configured by the network side based on the type of random access or the type of event that triggers random access.
  • the configuration information of the timer is configured by the network side based on different scheduling request configurations.
  • the uplink transmission device is integrated in a base station or a terminal.
  • An embodiment of the present invention further provides a computer-readable storage medium on which computer instructions are stored, and when the computer instructions run, the steps of any of the above-mentioned methods are performed.
  • An embodiment of the present invention further provides a terminal, including a memory and a processor, the memory stores computer instructions capable of running on the processor, and the processor executes any one of the above when the computer instruction is executed The steps of the method.
  • the uplink process when the uplink process is started, the corresponding timer is started. Regardless of the reason why the uplink process is unsuccessful, as long as the timing duration of the timer has reached the preset timing duration, the uplink process is terminated, whereby uplink transmission can be performed when multiple LBT failures occur. In addition, while terminating the uplink process, by triggering other processes, the duration of the uplink process can be shortened, and the increase in the delay of the uplink process can be avoided.
  • FIG. 2 is a schematic diagram of signaling interaction of a random access process in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of transmission of a scheduling request process in an embodiment of the present invention.
  • FIG. 4 is a transmission schematic diagram of another scheduling request process in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an uplink transmission device according to an embodiment of the present invention.
  • the present invention provides an upstream transmission method, by configuring a corresponding timer for the above process, and then starting the corresponding timer when the upstream process is started.
  • the timing duration of the timer has reached the preset timing duration and the uplink process is still unsuccessful, the uplink process is terminated, thereby solving the problem of how to perform uplink transmission when multiple LBT failures occur.
  • the duration of the uplink process can be shortened, and the increase in the delay of the uplink process can be avoided.
  • an embodiment of the present invention provides an uplink transmission method.
  • the method may include the following steps:
  • Step 11 when the uplink process is started, the corresponding timer is started.
  • the uplink process may only include at least one uplink data or signaling transmission process, or may include at least one downlink data or information reception process at the same time, which is not specifically limited.
  • the uplink process may be a process of sending a data packet.
  • the uplink process may be a random access process.
  • the random access process includes not only two signaling sending processes but also two signaling receiving processes.
  • the uplink process may be a scheduling request (Scheduling Request, SR) process.
  • SR scheduling request
  • a scheduling request process may include multiple signaling transmission processes.
  • the network side may configure the UE with timers corresponding to different uplink processes.
  • the network side can configure corresponding timers for only one uplink process, and can configure corresponding timers for multiple uplink processes, which can be specifically set by those skilled in the art according to actual needs.
  • the network side may send the configuration information of the timer in the form of dedicated messages or public messages.
  • the dedicated message may be a radio resource control (Radio Resource Control, RRC) reconfiguration message, a handover command message, and so on.
  • the public message may be system information.
  • the configuration information of the timer includes but is not limited to the length information of the timer.
  • the network side may configure different configuration information for different timers for different types of random access or types of events that trigger random access, for example, to configure different The first timer of length time x.
  • the network side may configure different scheduling requests and configure different configuration information for different timers, for example, configure a second timer time of different value length for the UE For example, when the scheduling request is configured as 1, a second timer time with a length of 20 ms is configured for the UE.
  • Step 12 when the timing duration of the timer has reached a preset timing duration and the uplink process is still unsuccessful, terminate the uplink process and trigger other processes.
  • the uplink process may or may not be successful.
  • the uplink process is successful, that is, the conflict resolution message sent by the network side is received, and the collision detection is successful, that is, the random access is successful.
  • the uplink process is a scheduling request process
  • the uplink process is successful, that is, an authorization message sent by the network side is received.
  • the uplink process when the timing duration of the timer has reached the preset timing duration, and the uplink process is still unsuccessful, the uplink process is terminated.
  • the uplink process there may be multiple reasons for the failure of the uplink process, for example, multiple LBT failures. While the uplink process is terminated, other processes are triggered to avoid the duration of the uplink process being too long, resulting in additional delay.
  • the other process may be a wireless link failure event or a random access process, etc.
  • Those skilled in the art may set according to actual transmission requirements, without specific limitation.
  • the uplink transmission method in the embodiments of the present invention may be performed by the UE or the base station.
  • the UE may start a corresponding timer when the uplink process is started, and then terminate the time when the timing duration of the timer has reached the preset timing duration and the uplink process is still unsuccessful Uplink process, and trigger other processes.
  • the following uses UE as an execution subject, and the uplink processes are a random access process and a scheduling request process as examples, and the uplink control method in the embodiment of the present invention will be described in detail:
  • the start time of the uplink process may be: when a random access preamble sequence is determined to be sent, or the medium access control layer of the terminal to which the random access preamble sequence is delivered The physical layer of the terminal.
  • the UE may start the first timer timex corresponding to the random access process at the starting moment of the random access process.
  • the length of the first timer time x may be 10ms.
  • the random access process may include the following steps:
  • Step 21 The UE sends msg1 to the network side, where msg1 is a random access preamble (Random Access Preamble).
  • Step 22 The UE receives the msg2 sent by the network side, where the msg2 is a random access response message.
  • msg2 corresponds to the random access preamble sequence sent by msg1 and the time-frequency resource sent by the random access preamble sequence.
  • the terminal After sending msg1, the terminal will start the timer ra-ResponseWindow that receives msg2.
  • the timer duration of the timer ra-ResponseWindow is the first preset duration.
  • step 23 the UE sends msg3 to the network side, where msg3 is a connection establishment request message.
  • the UE If the UE successfully receives msg2, the UE sends msg3 according to the authorization information in msg2. After sending msg3, the UE will start the timer ra-ContentionResolutionTimer and wait for receiving msg4.
  • the timing duration of the timer ra-ContentionResolutionTimer is the second preset duration.
  • Step 24 The UE receives the msg4 sent by the network side, where the msg4 is the conflict resolution message.
  • the conflict detection refers to whether the UE verifies that the conflict resolution identity information contained in msg4 is consistent with the conflict resolution identity information carried by the UE in msg3. If they are inconsistent, it is considered that the collision detection has failed. If they are consistent, the collision detection is considered successful.
  • the random access process there may be various reasons, so that when the timing duration of the first timer time x has reached the preset timing duration, the random access process is still unsuccessful.
  • step 22 when step 22 is executed, msg2 may not be received within the first preset duration, that is, when the timer ra-ResponseWindow times out and msg2 is not received, the random access process fails.
  • step 24 when step 24 is executed, although msg2 is received within the first preset duration, msg2 does not correspond to the sent msg1, that is, the random access preamble sequence of msg2 and msg1 and the random access The time-frequency resources sent by the preamble sequence are not corresponding, and the terminal determines that the received msg2 does not correspond to the msg1 sent by the terminal. At this time, the random access process still fails.
  • step 24 when step 24 is executed, msg4 may not be received within the second preset duration, that is, when the timer ra-ContentionResolutionTimer times out and msg4 is not received, the random access process fails.
  • step 24 when step 24 is executed, although msg4 is received within the second preset duration, collision detection fails, and at this time, the random access process still fails.
  • the random access process is still unsuccessful, and it is determined that the random access process fails.
  • the Media Access Control (MAC) layer of the UE may indicate a random access problem (random access problem) to an upper layer (eg, RRC layer).
  • RRC layer of the UE After receiving the indication of the random access problem, the RRC layer of the UE triggers a radio link failure (Radio Link Failure, RLF) event. Under the condition that the access layer security mode is activated, the RLF event will trigger the RRC link re-establishment process.
  • RLF Radio Link Failure
  • the uplink process is continued, that is, steps 21 to 24 are re-executed until The random access is successful, or the random access is still unsuccessful but the timing duration of the timer has reached the preset timing duration to determine that the random access process has failed.
  • the uplink transmission method can be used for both a contention-based random access process and a non-contention-based random access process.
  • contention-based random access refers to a process in which random access resources are shared by multiple UEs, and the UE selects random access resources from the common random access resources for random access.
  • Non-contention-based random access refers to a process in which the UE uses dedicated random access resources for random access.
  • the MAC layer indicates the random access problem to the upper layer, triggers the RLF event, and subsequently triggers the RRC link re-establishment, thereby avoiding excessive random access time and reducing delay .
  • the starting time of the scheduling request process is: when the UE sends the scheduling request for the first time.
  • the UE may start a second timer corresponding to the scheduling request process when the scheduling request is sent for the first time.
  • the entire scheduling request process is as follows: the MAC layer of the UE increments the counter SR_COUNTER of the number of times the scheduling request is sent, and delivers the scheduling request to the physical layer. If the UE does not receive the authorization information sent by the network side, the UE continues to schedule the sending of the request until the UE receives the authorization information sent by the network side. When the UE receives the authorization information sent by the network side, the scheduling request process is successful.
  • the sending of the scheduling request may be periodic, and the period is configured by the network side.
  • the scheduling request process before the number of scheduling requests reaches the preset maximum number of times SR-TransMax, if the timing duration of the second timer timer has reached the preset timing duration, and the scheduling request process When it is still unsuccessful, terminate the scheduling request process and trigger other processes; if the timing duration of the second timer timer does not reach the preset timing duration, and the scheduling request process is still unsuccessful, The UE continues to send the scheduling request until the scheduling request process is successful, or until the timing duration of the second timer timer has reached the preset timing duration and the scheduling request process is still unsuccessful to trigger other processes.
  • the scheduling should be terminated Request process, and trigger other processes.
  • the other process triggered may be a random access process.
  • the scheduling request counter SR-count is counted only when the scheduling request is successfully sent, that is, incremented by 1, for example, at times t0, t1, t3, t7, and t8. If LBT fails, for example at time t2, t4, t5 and t6, the scheduling request counter does not increase by one.
  • the scheduling request counter SR-count 1, the UE starts a second timer timer.
  • the count of the dispatch request counter SR-count is incremented by 1.
  • the uplink process is terminated, and the random access process is initiated in time, which can effectively avoid the time caused by LBT failure in the scheduling request process Delay.
  • the above uplink transmission method can be applied not only to the fifth generation mobile communication (5G) system, but also to 4G, 3G and other communication systems, and can also be applied to various communication systems that evolve in the future. For example, 6G, 7G, etc.
  • the uplink transmission method in the embodiment of the present invention when the uplink process starts, a corresponding timer is started, and as long as the timer duration reaches the preset timing duration, the uplink is terminated
  • the process can thus realize uplink transmission when multiple LBT failures.
  • the network side may configure at least one of the following counters for different scheduling requests: a counter for the number of attempts to send the scheduling request; a counter for the number of consecutive LBT failures; and a counter for the number of times the scheduling request is successfully sent.
  • the network side may configure the maximum value maxx of the number of scheduling request attempts.
  • the number of times the scheduling request is attempted to send refers to the number of times the scheduling request of the mac layer is sent to the physical layer, and the number of times does not reflect whether the physical layer finally sends the scheduling request successfully.
  • the UE triggers a random access procedure.
  • the network can configure the maximum number of consecutive LBT failures to be max.
  • the UE triggers a radio link failure event.
  • the network side can configure the maximum number of successful transmission of scheduling requests as SR-transmax.
  • the UE triggers a random access procedure.
  • the network side may configure the above counter for the UE by using a dedicated message or a public message.
  • the dedicated message may be a radio resource control (Radio Resource Control, RRC) reconfiguration message, a handover command message, and so on.
  • RRC Radio Resource Control
  • the public message may be system information.
  • the network side may configure different scheduling requests and configure the above-mentioned counters with different values for the UE.
  • the UE sends a scheduling request as follows:
  • the terminal sends a scheduling request to the network side at the start of scheduling request (SR transmission). Specifically, the mac layer of the UE increases the number of attempts to send the scheduling request by 1 and delivers the scheduling request to the physical layer. If the physical layer successfully sends the scheduling request, the UE adds 1 to the number of successful transmission of the scheduling request. When the physical layer sends a scheduling request, if LBT fails, the number of LBT failures is increased by 1.
  • the SR attempts to send the counter plus 1 and the SR successfully sends the counter to add 1.
  • the mac layer sends the SR to the physical layer, but the physical layer fails to send the SR due to the LBT failure.
  • the SR attempts to send the counter plus 1 and the SR successfully sends the counter remains unchanged. Increase the counter of LBT failure times by 1.
  • the terminal If the number of consecutive failures of LBT reaches 3, that is, times S5 to S7, the terminal triggers RLF.
  • the terminal triggers a random access process.
  • the terminal triggers a random access process.
  • RLF can be triggered when LBT fails continuously, while LBT does not fail continuously, triggering the terminal to perform a random access process. If the number of SR attempts to send reaches the maximum value, random access will be triggered, thereby reducing the delay. If the number of successful SR transmissions reaches the maximum value, random access will also be triggered.
  • an embodiment of the present invention provides an uplink transmission device 50.
  • the device 50 may include: a timing unit 51 and a first processing unit 52. among them:
  • the timing unit 51 is adapted to start a corresponding timer when the uplink process is started;
  • the first processing unit 52 is adapted to terminate the uplink process and trigger other processes when the timing duration of the timer has reached a preset timing duration and the uplink process is still unsuccessful.
  • the uplink process is a random access process.
  • the timing unit 51 is adapted to deliver the random access preamble sequence to the terminal when the random access preamble sequence sent is determined, or the medium access control layer of the terminal to which it belongs At the physical layer, a first timer corresponding to the random access process is started.
  • the timing duration of the timer has reached the preset timing duration, and the uplink process is still unsuccessful, including any of the following:
  • the random access response message is received within the first preset duration, but it does not correspond to the sent msg1 (random access preamble sequence).
  • the conflict resolution message is received within the second preset duration, but the conflict detection fails.
  • the first processing unit 52 is adapted to terminate the uplink when the timing duration of the timer reaches the preset timing duration and the uplink process is still unsuccessful Process and trigger a wireless link failure event.
  • the device 50 may further include: a second processing unit 52.
  • the second processing unit 52 is adapted to continue the uplink process when the timing duration of the timer does not reach the preset timing duration and the uplink process is still unsuccessful.
  • the uplink process is a scheduling request process.
  • the timing unit 51 is adapted to start a second timer corresponding to the scheduling request process when the belonging terminal sends the scheduling request for the first time.
  • the first processing unit 52 is adapted to, before the number of sending scheduling requests reaches a preset maximum number of times, when the timing duration of the timer reaches the preset timing duration, When the uplink process is still unsuccessful, the uplink process is terminated and other processes are triggered.
  • the other processes include: a random access process.
  • the configuration information of the timer is sent by the network side using a dedicated message or a public message.
  • the configuration information of the timer is configured by the network side based on the type of random access or the type of event that triggers random access.
  • the configuration information of the timer is configured by the network side based on different scheduling request configurations.
  • the uplink transmission device is integrated in a base station or a terminal.
  • An embodiment of the present invention also provides another computer-readable storage medium on which computer instructions are stored. When the computer instructions are executed, the steps of any one of the uplink transmission methods in the foregoing embodiments are executed, and details are not described herein.
  • the computer-readable storage medium may include: ROM, RAM, magnetic disk, or optical disk.
  • An embodiment of the present invention further provides a terminal.
  • the terminal may include a memory and a processor.
  • the memory stores computer instructions that can run on the processor.
  • the processor executes when the computer instructions are executed. The steps of any one of the uplink transmission methods in the above embodiments will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行传输方法、装置、计算机可读存储介质及终端。所述方法包括:在上行过程启动时,启动相应的定时器;当所述定时器的计时时长已达到预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。应用上述方法,可以在多次LBT失败时进行上行传输。并且,在终止所述上行过程的同时,通过触发其它过程,可以缩短所述上行过程的持续时间,避免所述上行过程时延加大。

Description

上行传输方法、装置、计算机可读存储介质及终端
本申请要求于2018年10月31日提交中国专利局、申请号为201811287103.5、发明名称为“上行传输方法、装置、计算机可读存储介质及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种上行传输方法、装置、计算机可读存储介质及终端。
背景技术
对于非授权频谱的使用,不同国家有着不同的管制。在欧洲市场,必须通过先听后说(Listen-Before-Talk,LBT)的方式使用非授权频谱。通过执行LBT过程,检测到信道为空闲时,才可以接入该信道。
具体地,LBT的过程如下:用户终端(User Equipment,UE)在传输数据或信令前,进行干净信道评估(Clear Channel Assessment,CCA),若评估结果为信道空闲,表示LBT成功,此时可以立即发送数据或信令,否则表示LBT失败,直到下一个固定帧周期前,不能传输数据。
其中,固定帧由信道占用时间(Channel Occupancy Time,COT)和空闲周期(Idle period)组成。信道占用时间在1ms到10ms之间取值,最小的空闲周期为信道占用时间的5%。
然而,在实际应用中,经常出现多次LBT失败的情况,但是现有技术中未给出这种情况下如何进行上行传输的解决方案。
发明内容
本发明要解决的问题是:在多次LBT失败时,如何进行上行传输。
为解决上述问题,本发明实施例提供了一种上行传输方法,所述方法包括:在上行过程启动时,启动相应的定时器;当所述定时器的计时时长已达到预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
可选地,所述上行过程为随机接入过程。
可选地,所述在上行过程启动时,启动相应的定时器,包括:在确定出发送的随机接入前导序列时,或者,所属终端的介质访问控制层将随机接入前导序列投递到所述终端的物理层时,启动与所述随机接入过程对应的第一定时器。
可选地,所述定时器的计时时长已达到所述预设的定时时长时,所述上行过程仍未成功,包括以下任意一种:第一预设时长内未接收到随机接入响应消息;第二预设时长内未接收到冲突解决的消息;在所述第二预设时长内接收到所述冲突解决的消息,但冲突检测失败。
可选地,所述其它过程,包括:无线链路失败事件。
可选地,所述方法还包括:当所述定时器的计时时长未达到所述预设的定时时长,且所述上行过程仍未成功时,继续进行所述上行过程。
可选地,所述上行过程为调度请求过程。
可选地,所述在上行过程启动时,启动相应的定时器,包括:在所属终端首次发送调度请求时,启动与所述的调度请求过程对应的第二定时器。
可选地,所述当所述定时器的计时时长已达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过 程,包括:在发送调度请求的次数达到预设的最大次数之前,当所述第二定时器的计时时长已达到所述预设的定时时长,且所述调度请求过程仍未成功时,终止所述调度请求过程,并触发其它过程。
可选地,所述其它过程,包括:随机接入过程。
可选地,网络侧采用专用消息或者公共消息,向终端发送所述定时器的配置信息。
可选地,网络侧基于随机接入的类型或者触发随机接入的事件的类型,配置所述定时器的配置信息。
可选地,网络侧基于不同的调度请求的配置,配置所述定时器的配置信息。
本发明实施例还提供了一种上行传输装置,所述装置包括:计时单元,适于在上行过程启动时,启动相应的定时器;第一处理单元,适于当所述定时器的计时时长已达到预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
可选地,所述上行过程为随机接入过程。
可选地,所述计时单元,适于在确定出发送的随机接入前导序列时,或者,所属终端的介质访问控制层将随机接入前导序列投递到所述终端的物理层时,启动与所述随机接入过程对应的第一定时器。
可选地,所述定时器的计时时长已达到所述预设的定时时长,所述上行过程仍未成功,包括以下任意一种:第一预设时长内未接收到随机接入响应消息;第二预设时长内未接收到冲突解决的消息;在所述第二预设时长内接收到所述冲突解决的消息,但冲突检测失败。
可选地,所述第一处理单元,适于当所述定时器的计时时长已达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发无线链路失败事件。
可选地,所述装置还包括:第二处理单元,适于当所述定时器的 计时时长未达到所述预设的定时时长,且所述上行过程仍未成功时,继续进行所述上行过程。
可选地,所述上行过程为调度请求过程。
可选地,所述计时单元,适于在所属终端首次发送调度请求时,启动与所述的调度请求过程对应的第二定时器。
可选地,所述第一处理单元,适于在发送调度请求的次数达到预设的最大次数之前,当所述第二定时器的计时时长已达到所述预设的定时时长,且所述调度请求过程仍未成功时,终止所述调度请求过程,并触发其它过程。
可选地,所述其它过程,包括:随机接入过程。
可选地,所述定时器的配置信息是网络侧采用专用消息或者公共消息发送的。
可选地,所述定时器的配置信息是网络侧基于随机接入的类型或者触发随机接入的事件的类型进行配置的。
可选地,所述定时器的配置信息是网络侧基于不同的调度请求的配置进行配置的。
可选地,所述上行传输装置集成于基站或者终端中。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一种所述方法的步骤。
本发明实施例还提供了一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下优点:
应用本发明的方案,在上行过程启动时,启动相应的定时器。不论所述上行过程因为何种原因未成功,只要所述定时器的计时时长已 达到所述预设的定时时长,则终止所述上行过程,由此可以在多次LBT失败时进行上行传输。并且,在终止所述上行过程的同时,通过触发其它过程,可以缩短所述上行过程的持续时间,避免所述上行过程时延加大。
附图说明
图1是本发明实施例中一种上行传输方法的流程图;
图2是本发明实施例中一种随机接入过程的信令交互示意图;
图3是本发明实施例中一种调度请求过程的传输示意图;
图4是本发明实施例中另一种调度请求过程的传输示意图;
图5是本发明实施例中一种上行传输装置的结构示意图。
具体实施方式
目前,尚未提供UE在多次LBT失败的情况下如何进行数据传输的解决方案。
针对该问题,本发明提供了一种上行传输方法,通过为上述过程配置相应的定时器,进而在该上行过程启动时,启动相应的定时器。当所述定时器的计时时长已达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,由此可以解决多次LBT失败时如何进行上行传输的问题。并且,在终止所述上行过程的同时,通过触发其它过程,可以缩短所述上行过程的持续时间,避免所述上行过程时延加大。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例作详细地说明。
参照图1,本发明实施例提供了一种上行传输方法。所述方法可以包括以下步骤:
步骤11,在上行过程启动时,启动相应的定时器。
在本发明的实施例中,所述上行过程中可以仅包括至少一次上行数据或信令的发送过程,也可以同时包括至少一次下行数据或信息的接收过程,具体不作限制。
比如,所述上行过程可以为一个数据包的发送过程。
又如,所述上行过程可以为随机接入过程,所述随机接入过程不仅包含两次信令发送过程,还同时包含两次信令接收过程。
再如,所述上行过程可以为调度请求(Scheduling Request,SR)过程。通常情况下,一个调度请求过程可以包括多次信令的发送过程。
可以理解的是,无论所述上行过程具体为何种过程,均不够成对本发明的限制,且均在本发明的保护范围之内。
在具体实施中,可以由网络侧(例如各种类型的基站、中继站等)给UE配置不同上行过程对应的定时器。其中,网络侧可以仅为一个上行过程配置对应的定时器,可以为多个上行过程配置对应的定时器,具体可由本领域技术人员根据实际需要设定。
在具体实施中,网络侧可采用专用消息的方式或公共消息的方式发送定时器的配置信息。其中,所述专用消息可以为无线资源控制(Radio Resource Control,RRC)重配置消息,切换命令消息等。所述公共消息可以为系统信息。所述定时器的配置信息包含但不限于定时器的长度信息。
以所述上行过程为随机接入过程为例,网络侧可以为不同的随机接入类型,或者触发随机接入的事件的类型,为不同的定时器配置不同的配置信息,例如,来配置不同长度的第一定时器time x。
以所述上行过程为调度请求过程为例,网络侧可以为不同的调度请求配置,为不同的定时器配置不同的配置信息,例如,为UE配置不同取值的长度的第二定时器time y,比如,当调度请求配置为1时, 为UE配置长度为20ms的第二定时器time y。
步骤12,当所述定时器的计时时长已达到预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
在具体实施中,在定时器的计时时长已达到所述预设的定时时长时,上行过程可能成功,也可能未成功。比如,当所述上行过程为随机接入过程时,上行过程成功,即接收到网络侧发送的冲突解决的消息,且冲突检测成功,也就是随机接入成功。当所述上行过程为调度请求过程时,上行过程成功,即接收到网络侧发送的授权消息。
在本发明的实施例中,当所述定时器的计时时长已达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程。其中,导致上行过程失败的原因可能存在多种,比如,多次LBT失败。在终止所述上行过程的同时,触发其它过程,以避免所述上行过程持续时间过长,导致额外时延。
其中,所述其它过程可以为无线链路失败事件,也可以为随机接入过程等,本领域技术人员可以根据实际传输需求进行设置,具体不作限制。
在具体实施中,本发明实施例中的上行传输方法,可以由UE来执行,也可以由基站来执行。
具体地,UE可以在上行过程启动时,来启动相应的定时器,进而在所述定时器的计时时长已达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
可以理解的是,无论具体执行主体为何,均不够成对本发明的限制,且均在本发明的保护范围之内。
下面以UE作为执行主体,且上行过程分别为随机接入过程和调度请求过程为例,对本发明实施例中的上行控制方法进行详细描述:
当所述上行过程为随机接入过程时,上行过程的启动时刻可以 为:确定出发送的随机接入前导序列时,或者,所属终端的介质访问控制层将随机接入前导序列投递到所述终端的物理层时。UE可以在随机接入过程的启动时刻,启动与所述随机接入过程对应的第一定时器time x。其中,第一定时器time x的长度可以为10ms。
在具体实施中,参照图2,随机接入过程可以包括如下步骤:
步骤21,UE向网络侧发送msg1,所述msg1即随机接入前导序列(Random Access Preamble)。
步骤22,UE接收网络侧发送的msg2,所述msg2即随机接入响应消息。
其中,msg2与msg1发送的随机接入前导序列及所述随机接入前导序列发送的时频资源相对应。终端在发送完msg1后,会启动接收msg2的定时器ra-ResponseWindow。定时器ra-ResponseWindow的计时时长为第一预设时长。
步骤23,UE发送msg3到网络侧,所述msg3即连接建立请求消息。
若UE成功接收msg2,UE根据msg2中的授权信息来发送msg3。UE在msg3发送完成后,会启动定时器ra-ContentionResolutionTimer,等待接收msg4。定时器ra-ContentionResolutionTimer的计时时长为第二预设时长。
步骤24,UE接收网络侧发送的msg4,所述msg4即冲突解决的消息。
UE接收到msg4后,会进行冲突检测。所述冲突检测,是指UE验证msg4中包含的冲突解决身份信息,是否与UE在msg3中携带的冲突解决身份信息一致。若不一致,则认为是冲突检测失败,若一致,则认为冲突检测成功。
在随机接入过程中,可能存在多种原因,使得第一定时器time x 的计时时长已达到所述预设的定时时长时,随机接入过程仍未成功。
比如,执行步骤22时,在第一预设时长内可能未接收到msg2,即定时器ra-ResponseWindow超时且未接收到msg2时,随机接入过程失败。
再如,执行步骤24时,虽然在所述第一预设时长内接收到msg2,但msg2与已发送的msg1不是相对应的,即msg2与msg1的随机接入前导序列及所述随机接入前导序列发送的时频资源不是相对应的,则终端判断此收到的msg2不对应于终端发送的msg1。此时,随机接入过程仍失败。
又如,执行步骤24时,第二预设时长内可能未接收到msg4,即定时器ra-ContentionResolutionTimer超时且未接收到msg4时,随机接入过程失败。
再如,执行步骤24时,虽然在所述第二预设时长内接收到msg4,但冲突检测失败,此时,随机接入过程仍失败。
在具体实施中,无论何种原因导致使得第一定时器time x的计时时长已达到所述预设的定时时长时,随机接入过程仍未成功,均判定随机接入过程失败。此时,UE的介质访问控制(Media Access Control,MAC)层可以指示随机接入问题(random access problem)到上层(例如,RRC层)。UE的RRC层在接收到随机接入问题的指示后,触发无线链路失败(Radio Link Failure,RLF)事件。在接入层安全模式激活的条件下,RLF事件会触发RRC链接重建立过程。
在具体实施中,当所述定时器的计时时长未达到所述预设的定时时长,且所述上行过程仍未成功时,继续进行所述上行过程,即重新执行步骤21至步骤24,直至随机接入成功,或者随机接入仍未成功但定时器的计时时长已达到所述预设的定时时长从而判定随机接入过程失败。
在具体实施中,本发明实施例中,所述上行传输方法,既可用于 基于竞争的随机接入过程,也可用于基于非竞争的随机接入过程。其中,基于竞争的随机接入是指随机接入资源是多个UE共用的,UE在公共随机接入资源中选择随机接入资源进行随机接入的过程。基于非竞争的随机接入是指UE采用专用随机接入资源进行随机接入的过程。
通过定时器的设置,UE在定时器超时时,由MAC层指示随机接入问题到上层,触发RLF事件,后续可以触发RRC链接重建立,从而可以避免随机接入的时间过长,减少时延。
当所述上行过程为调度请求过程时,调度请求过程的启动时刻为:UE首次发送调度请求时。UE可以在首次发送调度请求时,启动与所述的调度请求过程对应的第二定时器timer y。
整个调度请求过程如下:UE的MAC层把调度请求发送次数的计数器SR_COUNTER加1,并把调度请求投递到物理层。若UE未收到网络侧发送的授权信息,UE继续调度请求的发送,直到UE收到网络侧发送的授权信息。当UE收到网络侧发送的授权信息时,调度请求过程成功。其中,调度请求的发送可以是周期性的,其周期是网络侧配置的。
在具体实施中,在发送调度请求的次数达到预设的最大次数SR-TransMax之前,若所述第二定时器timer y的计时时长已达到所述预设的定时时长,且所述调度请求过程仍未成功时,终止所述调度请求过程,并触发其它过程;若所述第二定时器timer y的计时时长未达到所述预设的定时时长,且所述调度请求过程仍未成功时,UE继续调度请求的发送,直至调度请求过程成功,或者直到所述第二定时器timer y的计时时长已达到所述预设的定时时长且所述调度请求过程仍未成功从而触发其它过程。
在具体实施中,在发送调度请求的次数达到预设的最大次数SR-TransMax时,即便所述第二定时器timer y的计时时长未达到所述预设的定时时长,也应终止所述调度请求过程,并触发其它过程。
在本发明的一实施例中,终止所述调度请求过程时,所触发的其它过程可以为随机接入过程。
如图3所示,调度请求的配置中:第二定时器timer y=20ms,预设的最大次数SR-transmax=9。其中,只有调度请求发送成功才进行调度请求计数器SR-count的计数,即加1,比如在t0、t1、t3、t7及t8时刻。若LBT失败,比如在t2、t4、t5及t6时刻,则调度请求计数器不加1。在UE首次发送调度请求过程时,调度请求计数器SR-count=1时,UE启动第二定时器timer y。每次调度请求发送成功进行调度请求计数器SR-count的计数,即加1。在准备进行第5次的调度请求的发送时,若此时第二定时器timer y超时,则UE不发送第5次的调度请求,而是触发随机接入(random access)过程。
在第二定时器的计时时长已达到预设的定时时长,且调度请求过程仍未成功时,终止所述上行过程,及时发起随机接入过程,可以有效避免调度请求过程由于LBT失败导致的时延。
本发明的实施例中,上述上行传输方法,不仅可以适用于在第五代移动通信(5G)系统,还可以适用于4G、3G等通信系统,还可适用于后续演进的各种通信系统,例如6G、7G等。
由上述内容可知,采用本发明实施例中的上行传输方法,在上行过程启动时,启动相应的定时器,只要所述定时器的计时时长达到所述预设的定时时长,则终止所述上行过程,由此可以实现在多次LBT失败时进行上行传输。
在本发明的一实施例中,网络侧可为不同的调度请求配置以下至少一个计数器:调度请求尝试发送次数计数器;连续LBT失败次数计数器;调度请求成功发送次数计数器。
其中,网络侧可以配置调度请求尝试发送次数的最大值max x。所述调度请求尝试发送次数是指mac层调度请求到物理层的次数,所述次数并不体现物理层最终是否将调度请求成功发送。当调度请求尝 试发送次数达到最大值max x时,UE触发随机接入过程。
网络侧可以配置连续LBT失败的最大次数为max y。当连续LBT失败的次数达到最大次数max y时,UE触发无线链路失败事件。
网络侧可以配置调度请求最大成功发送次数为SR-transmax。当调度请求成功发送次数达到最大成功发送次数SR-transmax时,UE触发随机接入过程。
在具体实施中,网络侧可采用专用消息的方式或公共消息的方式给UE配置上述计数器。其中,所述专用消息可以为无线资源控制(Radio Resource Control,RRC)重配置消息,切换命令消息等。所述公共消息可以为系统信息。
在本发明的一实施例中,网络侧可以为不同的调度请求配置,为UE配置不同取值的上述计数器。
UE发送调度请求过程如下:
终端在调度请求启动时刻(SR transmission occasion)发送调度请求到网络侧。具体地,UE的mac层把调度请求尝试发送次数加1,并把调度请求投递到物理层,若物理层发送调度请求成功,则UE把调度请求成功发送次数加1。物理层在发送调度请求时,若LBT失败,则LBT失败的次数加1。
以图4为例,其中,SR的尝试发送次数计数器的最大值max x=9;连续LBT失败的最大次数max y=3。SR的最大成功发送次数SR-transmax=4。
终端在时刻S1时,mac层发送SR到物理层,并且物理层发送成功,则SR尝试发送次数计数器加1,SR成功发送次数计数器加1。而在时刻S3,mac层发送SR到物理层,但是物理层由于LBT失败而导致发送SR失败,则SR尝试发送次数计数器加1,SR成功发送次数计数器维持不变。LBT失败次数计数器加1。
若LBT连续失败次数达到3,即时刻S5至S7,则终端触发RLF。
若SR的尝试发送次数达到9,即时刻S9,则终端触发random access过程。
若SR的成功发送次数达到4,即时刻S8,则终端触发random access过程。
通过引入不同的计数器,使得LBT连续失败时可以触发RLF,而LBT没有连续失败,触发终端进行随机接入过程。若SR尝试发送次数达到最大值,会触发随机接入,从而减少时延。若SR成功发送次数达到最大值,也会触发随机接入。
为了使本领域技术人员更好地理解和实现本发明,以下对上述方法对应的装置及计算机可读存储介质进行详细描述。
参照图5,本发明实施例提供了一种上行传输装置50,所述装置50可以包括:计时单元51及第一处理单元52。其中:
所述计时单元51,适于在上行过程启动时,启动相应的定时器;
所述第一处理单元52,适于当所述定时器的计时时长已达到预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
在本发明的一实施例中,所述上行过程为随机接入过程。
在本发明的一实施例中,所述计时单元51,适于在确定出发送的随机接入前导序列时,或者,所属终端的介质访问控制层将随机接入前导序列投递到所述终端的物理层时,启动与所述随机接入过程对应的第一定时器。
在具体实施中,所述定时器的计时时长已达到所述预设的定时时长,所述上行过程仍未成功,包括以下任意一种:
第一预设时长内未接收到随机接入响应消息;
第二预设时长内未接收到冲突解决的消息;
在所述第一预设时长内接收到所述随机接入响应消息,但是与在发送的msg1(随机接入前导序列)不对应。
在所述第二预设时长内接收到所述冲突解决的消息,但冲突检测失败。
在本发明的一实施例中,所述第一处理单元52,适于当所述定时器的计时时长达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发无线链路失败事件。
在具体实施中,所述装置50还可以包括:第二处理单元52。所述第二处理单元52,适于当所述定时器的计时时长未达到所述预设的定时时长,且所述上行过程仍未成功时,继续进行所述上行过程。
在本发明的一实施例中,所述上行过程为调度请求过程。
在本发明的一实施例中,所述计时单元51,适于在所属终端首次发送调度请求时,启动与所述的调度请求过程对应的第二定时器。
在本发明的一实施例中,所述第一处理单元52,适于在发送调度请求的次数达到预设的最大次数之前,当所述定时器的计时时长达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
在本发明的另一实施例中,所述其它过程,包括:随机接入过程。
在具体实施中,所述定时器的配置信息是网络侧采用专用消息或者公共消息发送的。
在具体实施中,所述定时器的配置信息是网络侧基于随机接入的类型或者触发随机接入的事件的类型进行配置的。
在具体实施中,所述定时器的配置信息是网络侧基于不同的调度请求的配置进行配置的。
在具体实施中,所述上行传输装置集成于基站或者终端中。
本发明实施例还提供了另一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述实施例中任一种所述上行传输方法的步骤,不再赘述。
在具体实施中,所述计算机可读存储介质可以包括:ROM、RAM、磁盘或光盘等。
本发明实施例还提供了一种终端,所述终端可以包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述实施例中任一种所述上行传输方法的步骤,不再赘述。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (29)

  1. 一种上行传输方法,其特征在于,包括:
    在上行过程启动时,启动相应的定时器;
    当所述定时器的计时时长已达到预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
  2. 如权利要求1所述的上行传输方法,其特征在于,所述上行过程为随机接入过程。
  3. 如权利要求2所述的上行传输方法,其特征在于,所述在上行过程启动时,启动相应的定时器,包括:
    在确定出发送的随机接入前导序列时,或者,所属终端的介质访问控制层将随机接入前导序列投递到所述终端的物理层时,启动与所述随机接入过程对应的第一定时器。
  4. 如权利要求2所述的上行传输方法,其特征在于,所述定时器的计时时长已达到所述预设的定时时长时,所述上行过程仍未成功,包括以下任意一种:
    第一预设时长内未接收到随机接入响应消息;
    第二预设时长内未接收到冲突解决的消息;
    在所述第二预设时长内接收到所述冲突解决的消息,但冲突检测失败。
  5. 如权利要求2所述的上行传输方法,其特征在于,所述其它过程,包括:无线链路失败事件。
  6. 如权利要求2所述的上行传输方法,其特征在于,还包括:
    当所述定时器的计时时长未达到所述预设的定时时长,且所述上行过程仍未成功时,继续进行所述上行过程。
  7. 如权利要求1所述的上行传输方法,其特征在于,所述上行过程 为调度请求过程。
  8. 如权利要求7所述的上行传输方法,其特征在于,所述在上行过程启动时,启动相应的定时器,包括:
    在所属终端首次发送调度请求时,启动与所述的调度请求过程对应的第二定时器。
  9. 如权利要求8所述的上行传输方法,其特征在于,所述当所述定时器的计时时长已达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程,包括:
    在发送调度请求的次数达到预设的最大次数之前,当所述第二定时器的计时时长已达到所述预设的定时时长,且所述调度请求过程仍未成功时,终止所述调度请求过程,并触发其它过程。
  10. 如权利要求7所述的上行传输方法,其特征在于,所述其它过程,包括:随机接入过程。
  11. 如权利要求1所述的上行传输方法,其特征在于,网络侧采用专用消息或者公共消息,向终端发送所述定时器的配置信息。
  12. 如权利要求11所述的上行传输方法,其特征在于,网络侧基于随机接入的类型或者触发随机接入的事件的类型,配置所述定时器的配置信息。
  13. 如权利要求11所述的上行传输方法,其特征在于,网络侧基于不同的调度请求的配置,配置所述定时器的配置信息。
  14. 一种上行传输装置,其特征在于,包括:
    计时单元,适于在上行过程启动时,启动相应的定时器;
    第一处理单元,适于当所述定时器的计时时长已达到预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发其它过程。
  15. 如权利要求14所述的上行传输装置,其特征在于,所述上行过程为随机接入过程。
  16. 如权利要求15所述的上行传输装置,其特征在于,所述计时单元,适于在确定出发送的随机接入前导序列时,或者,所属终端的介质访问控制层将随机接入前导序列投递到所述终端的物理层时,启动与所述随机接入过程对应的第一定时器。
  17. 如权利要求15所述的上行传输装置,其特征在于,所述定时器的计时时长已达到所述预设的定时时长,所述上行过程仍未成功,包括以下任意一种:
    第一预设时长内未接收到随机接入响应消息;
    第二预设时长内未接收到冲突解决的消息;
    在所述第二预设时长内接收到所述冲突解决的消息,但冲突检测失败。
  18. 如权利要求15所述的上行传输装置,其特征在于,所述第一处理单元,适于当所述定时器的计时时长已达到所述预设的定时时长,且所述上行过程仍未成功时,终止所述上行过程,并触发无线链路失败事件。
  19. 如权利要求15所述的上行传输装置,其特征在于,还包括:
    第二处理单元,适于当所述定时器的计时时长未达到所述预设的定时时长,且所述上行过程仍未成功时,继续进行所述上行过程。
  20. 如权利要求14所述的上行传输装置,其特征在于,所述上行过程为调度请求过程。
  21. 如权利要求20所述的上行传输装置,其特征在于,所述计时单元,适于在所属终端首次发送调度请求时,启动与所述的调度请求过程对应的第二定时器。
  22. 如权利要求21所述的上行传输装置,其特征在于,所述第一处 理单元,适于在发送调度请求的次数达到预设的最大次数之前,当所述第二定时器的计时时长已达到所述预设的定时时长,且所述调度请求过程仍未成功时,终止所述调度请求过程,并触发其它过程。
  23. 如权利要求20所述的上行传输装置,其特征在于,所述其它过程,包括:随机接入过程。
  24. 如权利要求14所述的上行传输装置,其特征在于,所述定时器的配置信息是网络侧采用专用消息或者公共消息发送的。
  25. 如权利要求24所述的上行传输装置,其特征在于,所述定时器的配置信息是网络侧基于随机接入的类型或者触发随机接入的事件的类型进行配置的。
  26. 如权利要求24所述的上行传输装置,其特征在于,所述定时器的配置信息是网络侧基于不同的调度请求的配置进行配置的。
  27. 如权利要求14所述的上行传输装置,其特征在于,所述上行传输装置集成于基站或者终端中。
  28. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至13任一项所述方法的步骤。
  29. 一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至13任一项所述方法的步骤。
PCT/CN2019/110943 2018-10-31 2019-10-14 上行传输方法、装置、计算机可读存储介质及终端 WO2020088226A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19878454.8A EP3876654A4 (en) 2018-10-31 2019-10-14 Uplink transmission method and device, computer readable storage medium and terminal
US17/289,775 US20210400736A1 (en) 2018-10-31 2019-10-14 Uplink transmission method and device, computer readable storage medium and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811287103.5 2018-10-31
CN201811287103.5A CN111132365B (zh) 2018-10-31 2018-10-31 上行传输方法、装置、计算机可读存储介质及终端

Publications (1)

Publication Number Publication Date
WO2020088226A1 true WO2020088226A1 (zh) 2020-05-07

Family

ID=68652338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110943 WO2020088226A1 (zh) 2018-10-31 2019-10-14 上行传输方法、装置、计算机可读存储介质及终端

Country Status (4)

Country Link
US (1) US20210400736A1 (zh)
EP (1) EP3876654A4 (zh)
CN (2) CN111132365B (zh)
WO (1) WO2020088226A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097810A1 (zh) * 2018-11-14 2020-05-22 北京小米移动软件有限公司 调度请求发送方法和装置
CN111615146B (zh) * 2019-06-28 2023-01-10 维沃移动通信有限公司 处理方法及设备
US11558899B2 (en) 2019-08-15 2023-01-17 Industrial Technology Research Institute Method and user equipment of performing resource switching in unlicensed spectrum
CN113260004A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 一种通信方法及装置
WO2021232384A1 (zh) * 2020-05-21 2021-11-25 富士通株式会社 计数器维护方法,调度请求接收方法以及装置
CN116235613A (zh) * 2020-11-17 2023-06-06 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN112333675B (zh) * 2020-11-25 2022-09-13 紫光展锐(重庆)科技有限公司 一种数据计数的方法及相关装置
US20230422294A1 (en) * 2020-11-26 2023-12-28 Unisoc (Chongqing) Technologies Co., Ltd. Method for data transmission, terminal, and chip
CN116133068B (zh) * 2023-02-13 2023-08-11 荣耀终端有限公司 上行资源分配方法、用户设备、存储介质及通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898878A (zh) * 2016-06-02 2016-08-24 浙江大学 免许可频段下信令与数据的收发方法
WO2017023458A1 (en) * 2015-08-04 2017-02-09 Qualcomm Incorporated Techniques for retransmitting physical layer packets after inactivity on a secondary component carrier
CN106797571A (zh) * 2014-10-03 2017-05-31 高通股份有限公司 用于未许可频谱中的lte的物理层过程
CN108024310A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441138B1 (ko) * 2007-09-28 2014-09-18 엘지전자 주식회사 무선통신 시스템에서 상향링크 시간 동기 수행 방법
WO2010002130A2 (en) * 2008-07-03 2010-01-07 Lg Electronics Inc. Method for processing ndi in random access procedure and a method for transmitting and receiving a signal using the same
CN101772174B (zh) * 2009-01-04 2013-04-10 电信科学技术研究院 提高上行调度性能的方法及用户设备
CN101795497B (zh) * 2009-02-01 2012-02-15 电信科学技术研究院 调度请求的发送方法及用户设备
KR101607336B1 (ko) * 2009-06-07 2016-03-30 엘지전자 주식회사 무선 통신 시스템에서 rb 설정 방법 및 장치
CN102742346B (zh) * 2010-02-02 2015-03-25 诺基亚公司 用于请求上行链路无线电资源的装置和方法
CN102238751B (zh) * 2010-04-22 2014-11-12 联芯科技有限公司 一种提高随机接入成功率的方法、装置和系统
KR101776873B1 (ko) * 2011-01-11 2017-09-11 삼성전자 주식회사 이동통신 시스템에서 역방향 전송 출력 결정 방법 및 장치
WO2013025142A1 (en) * 2011-08-15 2013-02-21 Telefonaktiebolaget L M Ericsson (Publ) Controlling random access in secondary cells
CN102291841A (zh) * 2011-09-15 2011-12-21 华为技术有限公司 随机接入方法及设备
US20140269637A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Detecting missing rrc connection release message
WO2016072908A1 (en) * 2014-11-06 2016-05-12 Telefonaktiebolaget L M Ericsson (Publ) Dynamic listen before talk in license-assisted access
KR102253866B1 (ko) * 2014-11-07 2021-05-20 삼성전자주식회사 비인가 주파수 대역을 사용하는 이동통신 시스템에서의 통신 방법 및 이를 위한 장치
US10187907B2 (en) * 2015-07-05 2019-01-22 Ofinno Technologies, Llc Preamble transmission in a wireless device
GB2542172A (en) * 2015-09-10 2017-03-15 Nec Corp Communication system
CN106559906B (zh) * 2015-09-21 2021-11-02 中兴通讯股份有限公司 数据传输方法、指示信息的发送方法及装置
KR20230027324A (ko) * 2016-11-03 2023-02-27 삼성전자주식회사 무선 링크 실패를 결정하는 방법 및 장치
CN109314998B (zh) * 2017-04-25 2020-12-15 华为技术有限公司 一种随机接入方法和装置
CN111034338A (zh) * 2017-06-23 2020-04-17 华为技术有限公司 统一rlf检测、nr中的多波束rlm和全分集bfr机制
EP3996421A3 (en) * 2018-01-11 2022-08-24 Comcast Cable Communications LLC Connection failure reporting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797571A (zh) * 2014-10-03 2017-05-31 高通股份有限公司 用于未许可频谱中的lte的物理层过程
WO2017023458A1 (en) * 2015-08-04 2017-02-09 Qualcomm Incorporated Techniques for retransmitting physical layer packets after inactivity on a secondary component carrier
CN105898878A (zh) * 2016-06-02 2016-08-24 浙江大学 免许可频段下信令与数据的收发方法
CN108024310A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876654A4 *

Also Published As

Publication number Publication date
EP3876654A4 (en) 2021-12-29
CN110519794B (zh) 2021-10-22
CN111132365B (zh) 2022-07-12
US20210400736A1 (en) 2021-12-23
CN110519794A (zh) 2019-11-29
CN111132365A (zh) 2020-05-08
EP3876654A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2020088226A1 (zh) 上行传输方法、装置、计算机可读存储介质及终端
US11363636B2 (en) Method and device for contention based random access
WO2018127244A1 (zh) 两步竞争随机接入方法和装置
US11252760B2 (en) Method and wireless communication system for handling timer operation
US11611994B2 (en) Random access method, user equipment, and network device
US10159095B2 (en) Random access method and related apparatus
US8773987B2 (en) Method, device, and system for judging random access contention resolution
WO2016048870A1 (en) Latency reduction for mode switching in sidelink communications
WO2010015155A1 (zh) 随机接入过程和测量间隙冲突的处理方法
WO2020164058A1 (zh) 随机接入消息传输方法、装置及存储介质
WO2020147130A1 (zh) 随机接入方法、装置及存储介质
CN111083798B (zh) 一种基于竞争的随机接入方法和装置
US10462827B2 (en) Random access method and apparatus
CN109792680A (zh) 用于传输数据的方法和终端设备
US20210352721A1 (en) Listen before talk wireless communication enhancements
CN110536250A (zh) 一种系统消息的接收和发送方法、装置和存储介质
JP2022543309A (ja) アンライセンスバンドの2ステップランダムアクセス方法及び機器
KR102433683B1 (ko) 랜덤 접속 절차 메시지를 포함하는 타이밍 충돌 처리
WO2020221279A1 (zh) 随机接入方法和装置
WO2020156188A1 (zh) 一种随机接入方法、设备及装置
EP3930408A1 (en) Random access method and apparatus, terminal and network side device
CN111526597B (zh) 一种两步随机接入方法、设备及装置
CN114208376A (zh) 接收或发送随机接入消息的方法和装置
CN112385282A (zh) 随机接入过程期间的上行链路跳过
CN114071691B (zh) 随机接入响应检测方法、装置、终端及基站侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019878454

Country of ref document: EP

Effective date: 20210531