WO2020088177A1 - 一种通信方法、移动性管理实体、用户设备及服务网关 - Google Patents

一种通信方法、移动性管理实体、用户设备及服务网关 Download PDF

Info

Publication number
WO2020088177A1
WO2020088177A1 PCT/CN2019/108887 CN2019108887W WO2020088177A1 WO 2020088177 A1 WO2020088177 A1 WO 2020088177A1 CN 2019108887 W CN2019108887 W CN 2019108887W WO 2020088177 A1 WO2020088177 A1 WO 2020088177A1
Authority
WO
WIPO (PCT)
Prior art keywords
mme
bearer
channel
message
request
Prior art date
Application number
PCT/CN2019/108887
Other languages
English (en)
French (fr)
Inventor
陈丽金
姜浩然
叶纶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088177A1 publication Critical patent/WO2020088177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • This application relates to the field of communications, and in particular, to a communication method, mobility management entity, user equipment, and service gateway.
  • CP transmission optimization that is, CP channel, refers to user equipment (UE) transmitting data packets to a mobility management entity (mobility management entity, MME) through a non-access-stratum (NAS) message. ), The MME sends the data packet to the serving gateway (SGW) through the S11_U interface.
  • UE user equipment
  • MME mobility management entity
  • NAS non-access-stratum
  • the data packet transmission can be switched from the CP channel transmission to the UP bearer transmission, that is, the establishment of the data radio bearer and the S1-U bearer need to be established. Furthermore, the UE can send the data packet to the base station through the data radio bearer, and the base station sends the data packet to the SGW through the S1-U bearer.
  • the current protocol stipulates that when the MME triggers the switching from the CP channel to the UP bearer to transmit the data packet, the MME first releases the S11_U bearer with the SGW, and then establishes the UP bearer.
  • the S11_U bearer is a part of the CP channel, and releasing the S11_U bearer may be regarded as releasing the CP channel.
  • the UE when the MME triggers the switch of the data transmission channel, the UE does not perceive the switch, but it takes a certain time to establish the data radio bearer. If the UE needs to send an uplink data packet during the process of establishing the data radio bearer, the uplink data packet is still The NAS message is sent to the MME for transmission. At this time, the S11_U bearer has been released, and the uplink data packet may not be sent to the SGW, thereby causing the uplink data packet to be lost.
  • An embodiment of the present application discloses a communication method for reducing the packet loss probability of an uplink data packet sent by a UE through a CP channel when the MME triggers the CP channel to switch the UP bearer for data transmission.
  • the first aspect of the embodiments of the present application provides a communication method, which may include:
  • the MME when the MME meets the trigger condition for data transmission channel switching, for example, when the transmission data received by the MME is too large, the MME triggers the data transmission channel to switch from the CP channel to the UP bearer and obtain the indication message.
  • the indication message may be a message sent by the base station, or a message sent by the UE through the base station.
  • the indication message is used to indicate that the current UE has stopped sending uplink data packets through the CP channel.
  • the MME determines that the UE no longer sends uplink data packets through the CP channel according to the instruction message, and then releases the CP channel according to the instruction message.
  • the MME determines that the UE does not send the uplink data packet through the CP channel
  • the CP channel is released. That is, when the CP channel switches the UP bearer, the UE needs to send the uplink data packet through the CP channel. It can still be sent through the CP, thereby reducing the packet loss probability of the uplink data packet sent by the UE during the CP channel switching UP bearer triggered by the MME.
  • the method may include: the MME sends an initial context establishment request to the base station, where the initial context establishment request is used to instruct the base station to establish the UP bearer; the MME obtains the indication message, which may Including: the MME receives the initial context establishment complete message sent by the base station.
  • the MME when the MME triggers the switching of the UP bearer by the CP channel, the MME first sends an initial context establishment request to the base station to instruct the base station to establish the UP bearer.
  • the MME After receiving the initial context establishment complete message sent by the base station, the MME determines that the UP bearer is established according to the initial context establishment complete message, that is, after the UE can send uplink data packets through the UP bearer and the UE has stopped sending uplink data packets through the CP channel, Then release the CP channel.
  • the timing of the CP channel is modified, so that during the handover process, before the UP bearer is established, the UE can still send uplink data packets through the CP channel, which reduces the uplink data packets sent by the UE during the handover process. The probability of packet loss.
  • the method may further include: the MME sends a first request message to the serving gateway SGW, where the first request message is used to indicate The SGW does not release the CP channel and stops sending downlink data packets through the CP channel; the MME receives the first response message sent by the SGW.
  • the first request message is used to instruct the SGW to set the CP channel to be in an up-linkable but not down-linkable state, but the CP channel is not released.
  • the upstream path (UP bearer) of the upstream data packet returned by the SGW is different from the downstream path (CP channel) of the original downstream data packet.
  • the method may further include: the MME sends a second request message to the UE through the base station, where the second request message is used to instruct the UE to stop sending uplinks through the CP channel Data packet; the MME acquisition indication message may include: the MME receiving a second response message sent by the UE through the base station.
  • the MME instructs the UE to stop sending the uplink data packet through the CP channel through the second request message, and then releases the CP channel after receiving the second response message sent by the UE.
  • the timing of releasing CP channel is adjusted, the probability of packet loss of uplink data packets sent by UE is reduced, and the diversity of solutions is increased.
  • the method may further include: if the MME receives the uplink sent by the UE through the CP channel Data packet, the MME sends a failure message to the UE through the base station, and the failure message is used to instruct the UE to send the uplink data packet through the UP bearer.
  • the MME may still receive the uplink data packet sent by the UE through the CP.
  • the MME sends a failure message to the UE through the base station.
  • the failure message Can be carried in NAS messages.
  • the failure message prompts the UE to send the uplink data packet through the UP bearer.
  • the failure message may carry the original uplink data packet, which further reduces the packet loss probability of the uplink data packet sent by the UE.
  • the MME acquisition indication message may include: the MME receiving the indication message sent by the UE through the base station.
  • the MME may receive an indication message sent by the UE.
  • the indication message indicates that the UE has currently stopped sending uplink data packets through the CP channel.
  • the indication message may be a NAS message. That is, in the embodiment of the present application, through cooperation of the MME and the UE, the probability of packet loss of uplink data packets sent by the UE is reduced, and the diversity of solutions is increased.
  • the method may further include: the MME sends the initial context establishment request to the base station, where the initial context establishment request is used to instruct the base station to establish the UP bearer; the MME receives the base station The initial context establishment complete message sent.
  • the description of the steps of the UP bearer establishment process is added, which increases the feasibility of the solution.
  • the MME releasing the CP channel according to the instruction message may include: the MME generates a modify bearer request according to the instruction message; the MME sends the modify bearer request to the SGW, the modification The bearer request is used to instruct the SGW to release the CP channel and establish the UP bearer; the MME receives the modified bearer response sent by the SGW.
  • a method for releasing a CP channel is provided. Compared with the prior art, the two signalings of releasing an access bearer request and releasing an access bearer response are reduced, thereby saving signaling resources.
  • the MME releasing the CP channel according to the indication message may include: the MME generating a release access bearer request according to the indication message; the MME sending the release access bearer request to the SGW , The release access bearer request is used to instruct the SGW to release the CP channel; the MME receives a release access bearer response sent by the SGW.
  • another method for releasing the CP channel is provided, which improves the diversity of solutions.
  • the second aspect of the embodiments of the present application provides a communication method, which may include:
  • the SGW receives the modified bearer request sent by the MME through the S11_U interface, and the modified bearer request carries the bearer address of the base station. After receiving the modified bearer request, the SGW releases the CP channel according to the modified bearer request, that is, deletes the local bearer of S11_U and establishes a UP bearer corresponding to the bearer address of the base station. After that, the SGW sends a modify bearer response to the MME, instructing the MME to also delete the local S11_U bearer.
  • the SGW releases the CP channel only after receiving the bearer modification request.
  • the UE has stopped using the CP channel to send uplink data packets and sent through the UP bearer. Therefore, releasing the CP channel at this time will not cause the uplink data sent by the UE Packet loss, thereby reducing the packet loss probability of uplink data packets sent by the UE.
  • the method may further include: the SGW receives the first request message sent by the MME; the SGW does not respond to the first request message Release the CP channel and stop sending downlink data packets through the CP channel; the SGW sends a first response message to the MME.
  • the SGW sets the CP channel to be uplinkable but not downlinkable according to the first request message, that is, the SGW can receive the uplink data packet sent by the UE through the CP channel, and does not send the downlink data packet to the UE through the CP channel.
  • the SGW sends a downlink data packet with a packet return request, the uplink and downlink channels are different, which increases the processing pressure of the UE (that is, when the switch is not completed, the downlink path is the CP channel, and after the switch is completed, the packet return request uplink path Change to UP bearer).
  • a third aspect of the embodiments of the present application provides a communication method, which may include:
  • the UE obtains an indication message, which may be a message generated by the UE itself, a message sent by the MME through the base station, or a message sent by the base station.
  • the message may be a NAS message.
  • the UE stops sending uplink data packets through the CP channel according to the indication message, and caches the uplink data packets locally.
  • the UP bearer is established, that is, after the UE senses that the data radio bearer is established, the UE then sends uplink data packets through the UP bearer.
  • the UE when the CP channel is switched during the UP bearer process triggered by the MME, the UE obtains an indication message and stops sending uplink data packets through the CP channel according to the indication message.
  • the UE no longer sends uplink data packets through the CP channel, thus avoiding the loss of uplink data packets due to the release of S11_U, thereby reducing the uplink sent by the UE The probability of packet loss.
  • the UE acquiring the indication message may include: the UE receiving the second request message sent by the MME through the base station; the method may further include: the UE sending the MME to the MME through the base station Send a second response message, where the second response message is used to instruct the MME to generate a release access bearer request.
  • the source of the indication message described that is, the cooperation between the MME and the UE reduces the packet loss probability of the uplink data packets sent by the UE, and increases the diversity of the solutions.
  • the method may further include: the UE receives a failure message sent by the MME through the base station; and the UE sends the uplink data packet through the UP bearer according to the failure message.
  • the UE after the UE stops sending the uplink data packet through the CP channel, if it receives the failure message sent by the MME through the base station, it indicates that the data packet corresponding to the failure message has not been successfully sent. If a data packet is carried in the failure message, the UE saves the data packet locally, and sends the data packet through the UP bearer after the UP bearer is established.
  • the UE determines the latest upstream data packet sent through the CP channel and caches the upstream data packet locally, and waits for the establishment of the UP bearer, and then sends the upstream data packet through the UP bearer.
  • the unsuccessful data packet is determined according to the failure message, and re-transmitted through the UP bearer, which reduces the packet loss probability of the uplink data packet sent by the UE and improves the stability of data transmission.
  • the UE acquiring the indication message may include: when the establishment of the radio bearer between the UE and the base station is completed, the UE generates the indication message; the method may further include: the UE passes The base station sends the instruction message to the MME, where the instruction message is used to instruct the MME to release the CP channel.
  • the UE after detecting that the data radio bearer is established, the UE can send the uplink data packet through the UP bearer, and then stop sending the uplink data packet through the CP channel, which improves the efficiency of using the channel.
  • the fourth aspect of the embodiments of the present application provides a mobility management entity, which may include:
  • the transceiver unit is used to obtain an indication message when the CP channel switching UP bearer is triggered for data transmission, and the indication message is used to instruct the UE to stop sending uplink data packets through the CP channel;
  • the processing unit is configured to release the CP channel according to the instruction message.
  • the transceiver unit is also used to send an initial context establishment request to the base station.
  • the initial context establishment request is used to instruct the base station to establish the UP bearer; specifically, it is used to receive an initial context establishment complete message sent by the base station.
  • the transceiver unit is also used to send a first request message to the serving gateway SGW.
  • the first request message is used to instruct the SGW not to release the CP channel and stop sending downlink data packets through the CP channel; receiving the first sent by the SGW Response message.
  • the transceiver unit is also used to send a second request message to the UE through the base station.
  • the second request message is used to instruct the UE to stop sending uplink data packets through the CP channel;
  • the second response message is used to instruct the UE to stop sending uplink data packets through the CP channel;
  • the second response message is used to instruct the UE to stop sending uplink data packets through the CP channel.
  • the transceiver unit is also used to send a failure message to the UE through the base station if the uplink data packet sent by the UE through the CP channel is received, the failure message is used to instruct the UE to send the uplink data through the UP bearer package.
  • the transceiver unit is specifically used to receive the indication message sent by the UE through the base station.
  • the transceiver unit is also used to send the initial context establishment request to the base station.
  • the initial context establishment request is used to instruct the base station to establish the UP bearer; and receives the initial context establishment complete message sent by the base station.
  • the processing unit is specifically configured to generate a modified bearer request according to the instruction message; send the modified bearer request to the SGW, and the modified bearer request is used to instruct the SGW to release the CP channel and establish the UP bearer; receive the modification sent by the SGW Bear the response.
  • the processing unit is specifically configured to generate a release access bearer request according to the instruction message; send the release access bearer request to the SGW, the release access bearer request is used to instruct the SGW to release the CP channel; and receive the SGW sent Release the access bearer response.
  • a fifth aspect of an embodiment of this application provides a service gateway, which may include:
  • the transceiver unit is used to receive the modify bearer request sent by the MME; send a modify bearer response to the MME;
  • the processing unit is configured to release the CP channel according to the modified bearer request and establish the UP bearer.
  • the transceiver unit is also used to receive the first request message sent by the MME; send a first response message to the MME;
  • the processing unit is further configured not to release the CP channel according to the first request message and stop sending downlink data packets through the CP channel.
  • a sixth aspect of the embodiments of the present application provides user equipment, which may include:
  • the transceiver unit is used to obtain the indication message; when the UP bearer is established, the uplink data packet is sent through the UP bearer;
  • the processing unit is configured to stop sending uplink data packets through the CP channel according to the instruction message.
  • the transceiver unit is specifically used to receive a second request message sent by the MME through the base station; and also used to send a second response message to the MME through the base station, where the second response message is used to instruct the MME to generate a release access bearer request.
  • the transceiver unit is also used to receive the failure message sent by the MME through the base station; and send the uplink data packet through the UP bearer according to the failure message.
  • the transceiver unit is specifically used to generate the indication message when the establishment of the radio bearer between the UE and the base station is completed. It is also used to send the indication message to the MME through the base station. The indication message is used to instruct the MME to release the CP channel.
  • the seventh aspect of the embodiments of the present application further provides a mobility management entity, which may include:
  • At least one processor, memory, transceiver, and bus the processor, the memory, the transceiver are coupled through the bus system, and the mobility management entity communicates with the mobility management entity through the transceiver Communicate with other devices, the memory is used to store program instructions, and the at least one processor is used to execute the program instructions stored in the memory, so that the mobility management entity executes as described in the embodiment of the present application. The method described in one aspect and any optional manner.
  • the eighth aspect of the embodiments of the present application further provides a service gateway, which may include:
  • At least one processor, memory, transceiver, and bus the processor, the memory, the transceiver are coupled through the bus system, and the service gateway is external to the mobility management entity through the transceiver Devices communicate with each other, the memory is used to store program instructions, and the at least one processor is used to execute the program instructions stored in the memory, so that the service gateway executes the second aspect and any of the embodiments of the present application.
  • An alternative method is used.
  • the ninth aspect of the embodiments of the present application further provides user equipment, which may include:
  • At least one processor, memory, transceiver, and bus the processor, the memory, the transceiver are coupled through the bus system, and the user equipment is external to the mobility management entity through the transceiver Devices communicate with each other, the memory is used to store program instructions, and the at least one processor is used to execute the program instructions stored in the memory, so that the user equipment performs the third aspect and any of the embodiments of the present application.
  • An alternative method is used.
  • the tenth aspect of the embodiments of the present application further provides a computer storage medium, including instructions, which when executed on a computer, causes the computer to execute the method as described in the foregoing first aspect and any optional manner.
  • An eleventh aspect of an embodiment of the present application further provides a computer storage medium, including instructions that, when run on a computer, cause the computer to execute the method described in the foregoing second aspect and any optional manner.
  • a twelfth aspect of an embodiment of the present application also provides a computer storage medium, including instructions that, when run on a computer, cause the computer to execute the method as described in the foregoing third aspect and any optional manner.
  • a thirteenth aspect of the embodiments of the present application also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method as described in the first aspect and any optional manner described above.
  • a fourteenth aspect of the embodiments of the present application also provides a computer program product containing instructions that, when run on a computer, cause the computer to execute the method described in the foregoing second aspect and any optional manner.
  • a fifteenth aspect of an embodiment of the present application also provides a computer program product containing instructions, which when run on a computer, causes the computer to perform the method described in the foregoing third aspect and any optional manner.
  • the MME when the MME triggers the CP channel to switch to the UP bearer for data transmission, the MME obtains an indication message.
  • the indication message is used to instruct the UE to stop sending uplink data packets through the CP channel.
  • the MME obtains the indication message and then uses the indication The message releases the CP channel.
  • the MME determines that the UE stops sending uplink data packets through the CP channel, the CP channel is released, that is, compared with the prior art, the timing of releasing the CP channel is adjusted, so that the MME-triggered CP channel switches the UP bearer process If the UE still needs to send uplink data packets through the CP channel, that is, the MME does not perceive that the UE can still send uplink data packets through the CP channel before the UE stops sending the uplink data packets through the CP channel, which reduces the UE load during the CP channel switching. The packet loss probability of the sent upstream data packets.
  • FIG. 1 is a system architecture diagram applied in an embodiment of this application
  • FIG. 2 is a schematic diagram of the CP channel switching UP bearer triggered by the MME specified in the 3GPP protocol in the embodiment of the present application;
  • FIG. 3 is a schematic diagram of an embodiment of a communication method in an embodiment of this application.
  • FIG. 4 is a schematic diagram of another embodiment of a communication method in an embodiment of this application.
  • FIG. 5 is a schematic diagram of another embodiment of a communication method in an embodiment of this application.
  • FIG. 6 is a schematic diagram of another embodiment of a communication method in an embodiment of this application.
  • FIG. 7 is a schematic diagram of an embodiment of a mobility management entity in an embodiment of this application.
  • FIG. 8 is a schematic diagram of an embodiment of a service gateway in an embodiment of this application.
  • FIG. 9 is a schematic diagram of an embodiment of user equipment in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a mobility management entity in an embodiment of this application.
  • FIG. 11 is a schematic diagram of another embodiment of a service gateway in an embodiment of this application.
  • FIG. 12 is a schematic diagram of another embodiment of user equipment in an embodiment of the present application.
  • Narrowband Internet of Things is an emerging technology in the field of Internet of Things, which supports cellular data connection of low-power devices in a wide area network, so it is also called low power wide area network (LPWAN).
  • NB-IoT is built on a cellular network and can be directly deployed on a long term evolution (LTE) network.
  • LTE long term evolution
  • the design goal of LTE is high speed and large traffic, and the number of NB-IoT terminals is large, the terminal energy saving requirements are high, and the data transmission is mainly based on intermittent transmission of small data (network signaling overhead may be much greater The size of the data payload transmission itself). If the NB-IoT data exchange directly adopts the existing LTE signaling process, it may cause the IoT terminal to consume too much energy, and also increase the signaling burden on the deployed network.
  • the 3GPP protocol proposes two data transmission optimization schemes for the narrowband Internet of Things: CP transmission optimization scheme and UP transmission optimization scheme.
  • the CP optimized transmission scheme is an efficient transmission method for transmitting small data packets in NB-IoT, and can transmit small data packets on the control plane through the CP channel.
  • the UE and the MME are connected through the NAS layer, and the small data packet is carried on the NAS message to transmit data, and the MME then transmits the data with the SGW through the S11_U interface.
  • the CP channel is a two-way channel, that is, both upstream and downstream data. This scheme does not need to establish a data radio bearer and S1-U connection when transmitting data, thereby reducing the signaling overhead of the control plane, helping to reduce terminal power consumption and reduce the frequency band used.
  • the data transmission channel corresponding to the CP channel also has a UP bearer, and small data packets can only be sent through the CP channel or the UP bearer.
  • the MME will trigger the current data transmission channel to be switched, that is, the data transmission channel is switched from the CP channel to the UP channel.
  • FIG. 1 is a system architecture diagram applied in an embodiment of the present application.
  • step 201 a release access bearer request (release access bearers request) is sent to the SGW to instruct the SGW to release the S11_U bearer.
  • step 202 a release access bearer response (release access bearers response) is sent to the MME.
  • step 203 an initial context establishment request (initial context setup request) is sent to the base station to instruct the base station to establish an UP bearer, that is, step 204 is established: a wireless bearer is established with the UE (radio bearers setup).
  • step 205 After sensing that the radio bearer is established, the UE may perform step 205, that is, send uplink data (uplink data) through the UP bearer.
  • step 206 is performed: an initial context establishment complete message (initial context setup complete) is sent to the MME.
  • the MME determines that the UP bearer is established, and executes step 207: sends a modify bearer request (modify bearer request) to the SGW.
  • the SGW establishes the S1-U bearer according to the establishment and modification bearer request and switches the data transmission channel to the UP bearer.
  • step 208 sends a modify bearer response (modify bearer response) to the MME.
  • the CP channel switches the UP bearer completed.
  • the MME will not establish the UP bearer until the S11_U interface is released, that is, the CP channel is released. Since the handover process is triggered by the MME, the UE does not perceive the handover when the MME triggers the handover. During the handover of the data transmission channel, that is, the process from step 201 to step 204 shown in FIG. 2, The UE will still choose to send uplink data through the CP channel. After receiving the uplink data packet sent by the UE, the MME cannot send the uplink data packet to the SGW because the S11_U bearer has been released, causing the uplink data packet to be lost.
  • an embodiment of the present application provides a communication method for reducing the packet loss probability of an uplink data packet sent by a UE during a CP channel switching UP bearer triggered by an MME.
  • FIG. 3 is a schematic diagram of an embodiment of a communication method in an embodiment of the present application, which may include:
  • the MME When the MME triggers the CP channel to switch the UP bearer for data transmission, the MME sends a first request message to the SGW.
  • the MME when the MME triggers the handover, the MME sends a first request message to the SGW.
  • the first request message is a newly added message used to notify the SGW to temporarily buffer the downlink data packet but not release the S11_U channel.
  • the SGW needs to control
  • the S11_U channel receives the uplink data packet sent by the MME, but cannot send the downlink data packet to the MME through the S11_U channel, that is, the S11_U channel can be uplinked but not downlinked.
  • the first request message may be an indication flag (indication flag) added in the release access bearer request, so that the first request message is carried in the release access bearer request.
  • the SGW temporarily buffers the downlink data packet according to the instruction label and sets the S11_U channel to an uplink-not-downlinkable state.
  • the SGW does not release the CP channel according to the first request message and stops sending downlink data packets through the CP channel.
  • the SGW after receiving the first request message, the SGW buffers the downlink data packet according to the first request message, and sets the CP channel to an uplink-not-downlinkable state without releasing the CP channel.
  • the CP channel here refers to the S11_U bearer between the SGW and the MME.
  • the SGW sends a first response message to the MME.
  • the SGW after the SGW is set up, the SGW sends a first response message to the MME.
  • the first response message may also be carried in the release access bearer response.
  • the MME sends an initial context establishment request to the base station.
  • the MME after receiving the first response message sent by the SGW, the MME sends an initial context establishment request to the base station through the S1-MME interface.
  • the initial context establishment request is used to notify the base station to establish a data radio bearer between the UE and the Configure the S1-U interface bearer locally.
  • the base station establishes a wireless bearer with the UE.
  • the base station after the base station receives the initial context establishment request, the base station establishes a radio bearer with the UE, that is, establishes an air interface connection.
  • the UE switches to the UP bearer to send uplink data.
  • the UE stops sending uplink data packets through the CP channel, switches the data transmission channel to the UP bearer, and then sends the uplink data through the UP bearer.
  • the UE may choose to stop sending uplink data packets through the CP channel.
  • the base station sends an initial context establishment complete message to the MME.
  • the base station when the base station determines that the radio bearer is established and the S1-U interface has been configured locally, the base station sends an initial context establishment complete message to the MME.
  • the MME sends a modify bearer request to the SGW.
  • the MME when the MME receives the initial context completion request and determines that the UP bearer is established according to the initial context completion request, the MME sends a modify bearer request to the SGW.
  • the modified bearer request may carry the bearer address of the current base station of the UE.
  • the SGW releases the CP channel according to the modified bearer request and establishes the UP bearer.
  • the SGW releases the CP channel according to the modify bearer request and establishes the UP bearer. Specifically, the SGW deletes the S11_U bearer locally according to the modify bearer request.
  • the modify bearer request may carry the S11TF flag bit.
  • the S11TF flag bit is a special message cell.
  • the SGW may switch the currently connected S11_U bearer according to the S11TF flag bit.
  • Bearer for S1-U At the same time, the SGW stores the bearer address carried in the message locally, and configures the corresponding S1-U bearer locally according to the bearer address.
  • the SGW sends a modify bearer response to the MME.
  • the SGW after the SGW is set up, the SGW generates a modified bearer response and sends the modified bearer request response message to the MME.
  • the modified bearer response is used to instruct the MME to delete the local S11_U bearer and release the resources corresponding to the S11_U interface.
  • the MME When the MME triggers the CP channel to switch the UP bearer for data transmission, the MME sends a first request message to the SGW, instructing the SGW to set the CP channel to an uplink-not-downlinkable state without releasing the CP channel.
  • the MME After receiving the initial context establishment completion message sent by the base station, the MME determines that the UE no longer sends uplink data packets through the CP channel according to the initial context establishment completion message. At this time, the MME releases the CP channel again, and then completes other processes in which the CP channel switches to the UP bearer.
  • the UE can still send the uplink data packet through the CP channel, which reduces the packet loss probability of the uplink data packet during the switching process.
  • the uplink path (UP bearer) of the uplink data packet returned by the packet is different from the downlink path (CP channel) of the original downlink data packet, which causes the UE Difficult situations.
  • FIG. 4 is a schematic diagram of another embodiment of the communication method in the embodiment of the present application, which may include:
  • the MME sends an initial context establishment request to the base station.
  • the base station establishes a wireless bearer with the UE.
  • the UE switches to the UP bearer to send uplink data.
  • the base station sends an initial context establishment complete message to the MME.
  • the MME sends a modify bearer request to the SGW.
  • the SGW releases the CP channel according to the bearer modification request and establishes the UP bearer.
  • the SGW sends a modify bearer response to the MME.
  • steps 401 to 407 are similar to steps 304 to 310 shown in FIG. 3 and will not be repeated here.
  • the MME When the MME triggers the CP channel to switch the UP bearer for data transmission, the MME first performs the process of establishing the UP bearer without releasing the CP channel. After receiving the initial context establishment completion message sent by the base station, the MME determines that the UE no longer sends uplink data packets through the CP channel according to the initial context establishment completion message. At this time, the MME releases the CP channel again, and then completes other processes in which the CP channel switches to the UP bearer. After waiting for the establishment of the UP bearer, release the CP channel.
  • the UE can still send the uplink data packet through the CP channel, which reduces the packet loss probability of the uplink data packet during the switching process.
  • FIG. 5 is a schematic diagram of another embodiment of the communication method in the embodiment of the present application, which may include:
  • the MME When the MME triggers the CP channel to switch the UP bearer for data transmission, the MME sends a second request message to the UE through the base station.
  • the MME when the MME triggers the transmission channel switch, the MME sends a second request message to the UE through the base station.
  • the second request message may be a NAS message, and the second request message carries the UE's identity.
  • the base station may identify the corresponding UE through the identification, and forward the second request message to the UE.
  • the second request message may also be carried in the downlink data packet sent by the MME.
  • the UE stops sending uplink data packets through the CP channel according to the second request message.
  • the second request message may carry an end marker.
  • the UE stops sending uplink data packets through the CP channel, and buffers the uplink request. Upstream data packets are local.
  • the UE sends a second response message to the MME through the base station.
  • the UE after setting, the UE sends a second response message to the MME.
  • the MME generates a request to release the access bearer according to the second response message.
  • the MME when the MME receives the second response message and determines that the UE no longer sends uplink data packets through the CP channel according to the second response message, the MME generates a release access request message to instruct the SGW to release the S11_U bearer.
  • the MME may generate a corresponding failure message and send the failure message to the UE through the base station.
  • the failure message may carry the uplink data packet to notify the UE to send the uplink data packet through the UP bearer.
  • the failure message may not carry the uplink data packet, and is used to notify the UE to send the latest uplink data packet sent through the CP channel from the current time through the UP bearer.
  • the MME sends a release access bearer request to the SGW.
  • the second request message is used to indicate that the UE no longer sends uplink data packets through the CP channel.
  • the MME After the MME receives the second response message, the MME generates a release access bearer request, which is used to instruct the SGW Release the S11_U bearer.
  • the SGW sends a release access bearer response to the MME.
  • the SGW buffers the downlink data packet according to the received access bearer release request, and deletes the S11_U bearer locally. After releasing the S11_U bearer, the SGW sends a release access bearer response to the MME.
  • the release access bearer response is used to instruct the MME to delete the S11_U bearer locally.
  • the MME sends an initial context establishment request to the base station.
  • the base station establishes a radio bearer with the UE.
  • the UE sends uplink data through the UP bearer.
  • the base station sends an initial context establishment complete message to the MME.
  • steps 507 to 510 are similar to steps 304 to 307 shown in FIG. 3 and will not be repeated here.
  • the MME sends a modify bearer request to the SGW.
  • the SGW when the SGW receives the modify bearer request and determines that the UP bearer has been established according to the modify bearer request, the SGW generates a modify bearer request, which may carry the bearer address of the current base station of the UE.
  • the modify bearer request may also be used to notify the SGW to release the S11_U bearer.
  • the SGW sends a modify bearer response to the MME.
  • the SGW after the SGW receives the modify bearer request, the SGW establishes the UP bearer according to the modify bearer request, and switches the CP channel to the UP bearer.
  • the bearer modification request may carry the S11TF flag, which is a special message cell, and the SGW may switch the currently connected S11_U bearer to the S1-U bearer according to the S11TF flag.
  • the SGW stores the bearer address carried in the message locally, and configures the corresponding S1-U bearer locally according to the bearer address.
  • the SGW after receiving the modify bearer request, releases the S11_U bearer according to the modify bearer request.
  • the MME When the MME triggers the CP channel to switch the UP bearer for data transmission, the MME first sends a second request message to the UE through the base station to instruct the UE to stop sending uplink data packets through the CP channel. After the MME receives the second response message sent by the UE, Then switch the data transmission channel and release the CP channel. Therefore, during the switching process of the data transmission channel, the MME no longer receives the uplink data packet sent by the UE through the CP channel, thereby reducing the probability of packet loss of the uplink data packet during the switching process.
  • FIG. 6 is a schematic diagram of another embodiment of the communication method in the embodiment of the present application, which may include:
  • the MME When the MME triggers the CP channel to switch the UP bearer for data transmission, the MME sends an initial context establishment request to the base station.
  • the base station establishes a radio bearer with the UE.
  • steps 601 to 602 are similar to steps 304 to 305 shown in FIG. 3 and will not be repeated here.
  • the UE When the establishment of the radio bearer between the UE and the base station is completed, the UE generates an indication message.
  • the UE when the establishment of the radio bearer between the base station and the UE is completed, the UE stops sending uplink data packets through the CP channel, and buffers the uplink data packets to be uploaded locally. After that, the UE generates an indication message.
  • the UE may stop sending uplink data packets through the CP channel and buffer the uplink data packets to be uploaded locally. After that, the UE generates an indication message.
  • the UE sends an indication message to the MME through the base station.
  • the UE may send an indication message to the MME through the base station, and the indication message may be sent in the form of a NAS message through the NAS layer.
  • the MME generates a request to release the access bearer according to the instruction message.
  • the MME when the MME receives the indication message and determines that the UE no longer sends uplink data packets through the CP channel according to the indication message, the MME generates a release access request message, and the release access bearer request is used to instruct the SGW to release the CP bearer .
  • the MME sends a release access bearer request to the SGW.
  • the SGW sends a release access bearer response to the MME.
  • steps 606 to 607 are similar to steps 505 to 506 shown in FIG. 5 and will not be repeated here.
  • the UE sends uplink data through the UP bearer.
  • the MME sends a modify bearer request to the SGW.
  • the SGW sends a modify bearer response to the MME.
  • the base station sends an initial context establishment complete message to the MME.
  • steps 608 to 611 are similar to steps 509 to 512 shown in FIG. 5 and will not be repeated here.
  • the MME When the MME triggers the CP channel to switch the UP bearer for data transmission, the MME first instructs the base station to establish the UP bearer. In the process of establishing a radio bearer between the base station and the UE, when the MME receives the indication message from the UE, the CP channel is released. The indication message is used to indicate that the UE has stopped sending uplink data packets through the CP channel. After receiving the uplink data packet sent by the UE through the CP channel, the CP channel is released, thereby reducing the probability of uplink packet loss during the handover process.
  • FIG. 7 is a schematic diagram of an embodiment of a mobility management entity in an embodiment of the present application, which may include:
  • the transceiver unit 701 is used to obtain an indication message when the CP channel switching UP bearer is triggered for data transmission, and the indication message is used to instruct the UE to stop sending uplink data packets through the CP channel;
  • the processing unit 702 is configured to release the CP channel according to the instruction message.
  • the transceiver unit 701 is also used to send an initial context establishment request to the base station, where the initial context establishment request is used to instruct the base station to establish the UP bearer; specifically, it is used to receive an initial context establishment complete message sent by the base station.
  • the transceiver unit 701 is further configured to send a first request message to the serving gateway SGW, where the first request message is used to instruct the SGW not to release the CP channel and stop sending downlink data packets through the CP channel; receiving the first sent by the SGW Response message.
  • the transceiver unit 701 is also used to send a second request message to the UE through the base station, the second request message is used to instruct the UE to stop sending uplink data packets through the CP channel; The second response message.
  • the transceiver unit 701 is further configured to send a failure message to the UE through the base station if the uplink data packet sent by the UE through the CP channel is received, the failure message is used to instruct the UE to send the uplink data through the UP bearer package.
  • the transceiver unit 701 is specifically configured to receive the instruction message sent by the UE through the base station.
  • the transceiver unit 701 is further configured to send the initial context establishment request to the base station, where the initial context establishment request is used to instruct the base station to establish the UP bearer; and to receive the initial context establishment complete message sent by the base station.
  • the processing unit 702 is specifically configured to generate a modify bearer request according to the instruction message; send the modify bearer request to the SGW, and the modify bearer request is used to instruct the SGW to release the CP channel and establish the UP bearer; receive the modification sent by the SGW Bear the response.
  • the processing unit 702 is specifically configured to generate a release access bearer request according to the instruction message; send the release access bearer request to the SGW, and the release access bearer request is used to instruct the SGW to release the CP channel; and receive the SGW Release the access bearer response.
  • FIG. 8 is a schematic diagram of an embodiment of a service gateway in an embodiment of the present application, which may include:
  • the transceiver unit 801 is configured to receive a modify bearer request sent by the MME; send a modify bearer response to the MME;
  • the processing unit 802 is configured to release the CP channel according to the modified bearer request and establish the UP bearer.
  • the transceiver unit 801 is further configured to receive the first request message sent by the MME; send the first response message to the MME;
  • the processing unit 802 is further configured not to release the CP channel according to the first request message and stop sending downlink data packets through the CP channel.
  • FIG. 9 is a schematic diagram of an embodiment of user equipment in an embodiment of the present application, which may include:
  • the transceiver unit 901 is used to obtain the indication message; when the UP bearer is established, the uplink data packet is sent through the UP bearer;
  • the processing unit 902 is configured to stop sending uplink data packets through the CP channel according to the instruction message.
  • the transceiver unit 901 is specifically configured to receive a second request message sent by the MME through the base station; and also used to send a second response message to the MME through the base station, where the second response message is used to instruct the MME to generate a release access bearer request.
  • the transceiver unit 901 is further configured to receive the failure message sent by the MME through the base station; and send the uplink data packet through the UP bearer according to the failure message.
  • the transceiver unit 901 is specifically used to generate the indication message when the establishment of the radio bearer between the UE and the base station is completed; and is also used to send the indication message to the MME through the base station.
  • the indication message is used to instruct the MME to release the CP channel.
  • FIG. 10 is a schematic diagram of another embodiment of a mobility management entity in an embodiment of the present application, which may include:
  • At least one processor 1001, memory 1002, transceiver 1003, and bus 1004, processor 1001, memory 1002, and transceiver 1003 are coupled through the bus 1004 system, and the mobility management entity communicates with the mobility management entity through the transceiver 1003
  • the external device communicates with each other.
  • the memory 1002 is used to store program instructions
  • the processor 1001 is used to execute the program instructions stored in the memory, so that the mobility management entity executes as shown in FIG. 3 to FIG. 6 in the embodiment of the present application. The method performed by the mobility management entity in the illustrated embodiment and any optional manner.
  • FIG. 11 is a schematic diagram of another embodiment of a service gateway in an embodiment of the present application, which may include:
  • At least one processor 1101, memory 1102, transceiver 1103 and bus 1104, the processor 1101, memory 1102 and transceiver 1103 are system-coupled through the bus 1104, and the service gateway communicates with the mobility management entity through the transceiver 1103
  • the devices communicate with each other, the memory 1102 is used to store program instructions, and the processor 1101 is used to execute the program instructions stored in the memory, so that the service gateway executes the embodiments shown in FIG. 3 to FIG. 6 in the embodiment of the present application. And the method performed by the service gateway in any optional manner.
  • FIG. 12 is a schematic diagram of another embodiment of user equipment in an embodiment of the present application, which may include:
  • At least one processor 1201, memory 1202, transceiver 1203 and bus 1204, the processor 1201, the memory 1202 and the transceiver 1203 are system-coupled through the bus 1204, and the user equipment is connected with the mobility management entity through the transceiver 1203
  • the devices communicate with each other, the memory 1202 is used to store program instructions, and the processor 1201 is used to execute the program instructions stored in the memory, so that the user equipment executes the embodiments shown in FIGS. 3 to 6 in the embodiments of the present application And the method performed by the user equipment in any optional manner.
  • An embodiment of the present application also provides a computer storage medium, including instructions, which when executed on a computer, causes the computer to execute as described in the foregoing embodiments shown in FIGS. 3 to 6 and in any optional manner by the mobility management entity Methods.
  • An embodiment of the present application also provides a computer storage medium, including instructions that, when run on a computer, cause the computer to perform the same as that performed by the service gateway in the foregoing embodiments shown in FIGS. 3 to 6 and any optional manner method.
  • An embodiment of the present application also provides a computer storage medium, including instructions that, when run on a computer, cause the computer to execute the user equipment in the embodiments shown in FIG. 3 to FIG. 6 and any optional manners. method.
  • An embodiment of the present application also provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the mobility management entity in the foregoing embodiment shown in FIGS. 3 to 6 and any optional manner. Methods.
  • An embodiment of the present application also provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the same as that performed by the service gateway in the foregoing embodiment shown in FIGS. 3 to 6 and any optional manner method.
  • An embodiment of the present application also provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the user equipment in the embodiment shown in FIGS. 3 to 6 and any optional manners. method.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)) or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, Solid State Disk (SSD)
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium,
  • a computer device which may be a personal computer, server, or network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法,用于当MME触发由CP通道切换UP承载进行数据传输时,减少UE通过CP通道发送的上行数据包的丢包概率。本申请实施例方法包括:当移动性管理实体MME触发由控制面CP通道切换用户面UP承载进行数据传输时,所述MME获取指示消息,所述指示消息用于指示UE停止通过所述CP通道发送上行数据包;所述MME根据所述指示消息释放所述CP通道。

Description

一种通信方法、移动性管理实体、用户设备及服务网关
本申请要求于2018年10月30日提交中国专利局、申请号为201811278117.0、发明名称为“一种通信方法、移动性管理实体、用户设备及服务网关”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法、移动性管理实体、用户设备及服务网关。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议中,针对窄带物联网(narrow band internet of things,NB-IoT)中数据的传输特点提出了两种数据传输优化方案:控制面传输优化(control plane cellular internet of thing evolved packet system optimisation)和用户面传输优化(user plane cellular internet of thing evolved packet system optimisation)。其中,CP传输优化,即CP通道,是指用户设备(user equipment,UE)通过非接入层(non-access-stratum,NAS)消息将数据包传送给移动性管理实体(mobility management entity,MME),MME通过S11_U接口将数据包再发送给服务网关(serving gateway,SGW)。在该过程中,由于无需建立空口数据无线承载(data radio bearer,DRB)和S1-U承载,因而降低物联网(internet of things,IoT)终端总的数据发送量(含信令),进而降低IoT终端功耗,同时也降低了对网络的信令负荷。
在CP传输优化场景下,当UE主动触发或MME触发数据传输通道切换时,数据包的传输可以由CP通道传输切换为UP承载传输,即需要建立数据无线承载和S1-U承载。进而,UE可以通过数据无线承载将数据包发送给基站,基站再通过S1-U承载将数据包发送给SGW。目前的协议中规定,当MME触发由CP通道切换为UP承载进行数据包的传输时,MME首先释放与SGW的S11_U承载,进而建立UP承载。其中,S11_U承载作为CP通道的一部分,释放S11_U承载可认为是释放CP通道。
需要说明的是,MME触发数据传输通道切换时,UE并不感知切换,而建立数据无线承载需要一定时间,若建立数据无线承载的过程中UE需要发送上行数据包,此时该上行数据包还是通过NAS消息发送给MME进行传输,此时S11_U承载已释放,该上行数据包可能无法发送给SGW,从而造成该上行数据包丢失。
发明内容
本申请实施例公开了一种通信方法,用于当MME触发由CP通道切换UP承载进行数据传输时,减少UE通过CP通道发送的上行数据包的丢包概率。
有鉴于此,本申请实施例第一方面提供了一种通信方法,可以包括:
在窄带物联网的应用场景下,当MME满足数据传输通道切换的触发条件,例如MME接收到的传输数据过大时,MME触发数据传输通道由CP通道切换至UP承载,并获取指示消息。该指示消息可以是基站发送的消息,也可以是UE通过基站发送的消息,该指示消息用于指示当前UE已停止通过该CP通道发送上行数据包。MME根据该指示消息确定UE不再通过CP通道发送上行数据包后,再根据该指示消息释放该CP通道。
在本申请实施例中,由于MME是在确定UE不通过CP通道发送上行数据包后,才释放的 CP通道,即在CP通道切换UP承载过程中,UE需要通过CP通道发送上行数据包时,依然可以通过CP通过发送,从而降低了在MME触发的CP通道切换UP承载过程中,UE发送的上行数据包的丢包概率。
可选的,在本申请的一些实施例中,该方法可以包括:该MME向基站发送初始上下文建立请求,该初始上下文建立请求用于指示该基站建立该UP承载;该MME获取指示消息,可以包括:该MME接收该基站发送的初始上下文建立完成消息。在本申请实施例中,可以看出,当MME触发由CP通道切换UP承载时,MME先向基站发送初始上下文建立请求,指示基站建立UP承载。在接收到基站发送的初始上下文建立完成消息后,MME根据初始上下文建立完成消息确定UP承载已建立,即UE可通过UP承载发送上行数据包,且UE已停止通过CP通道发送上行数据包之后,再释放CP通道。与现有技术相比,修改了CP通道的时机,从而使得在切换过程中,UP承载未建立之前,UE依然可以通过CP通道发送上行数据包,降低了切换过程中UE发送的上行数据包的丢包概率。
可选的,在本申请的一些实施例中,该MME向基站发送初始上下文建立请求之前,该方法还可以包括:该MME向服务网关SGW发送第一请求消息,该第一请求消息用于指示该SGW不释放该CP通道并停止通过该CP通道发送下行数据包;该MME接收该SGW发送的第一响应消息。本申请实施例中,通过第一请求消息,指示SGW将CP通道设置为可上行不可下行状态,但不释放CP通道。从而避免了当一些SGW发送的下行数据包有回包请求时,在切换完成后,其回包的上行数据包的上行路径(UP承载)与原下行数据包的下行路径(CP通道)不同而导致UE难以处理的情况。
可选的,在本申请的一些实施例中,该方法还可以包括:该MME通过该基站向该UE发送第二请求消息,该第二请求消息用于指示该UE停止通过该CP通道发送上行数据包;该MME获取指示消息可以包括:该MME接收该UE通过该基站发送的第二响应消息。本申请实施例中,MME通过第二请求消息,指示UE停止通过CP通道发送上行数据包,在接收到UE发送的第二响应消息后,再释放CP通道。通过MME与UE的配合,调整了释放CP通道的时机,减少了UE发送的上行数据包的丢包概率,增加了方案的多样性。
可选的,在本申请的一些实施例中,该MME接收该UE通过该基站发送的第二响应消息之后,该方法还可以包括:若该MME接收到该UE通过该CP通道发送的该上行数据包,则该MME通过该基站向该UE发送失败消息,该失败消息用于指示该UE通过该UP承载发送该上行数据包。在本申请实施例中,由于网络原因,可能存在MME在接收到第二响应消息后,依然还接收到UE通过CP发送的上行数据包,此时MME通过基站向UE发送失败消息,该失败消息可以承载在NAS消息中。该失败消息提示UE通过UP承载发送上行数据包,该失败消息中可以携带有原上行数据包,进一步降低了UE发送的上行数据包的丢包概率。
可选的,在本申请的一些实施例中,该MME获取指示消息可以包括:该MME接收该UE通过基站发送的该指示消息。在本申请实施例中,MME在切换过程中,可以接收到UE发送的指示消息,该指示消息指示UE当前已停止通过CP通道发送上行数据包,该指示消息可以是NAS消息。即,本申请实施例中通过MME月UE的配合,降低了UE发送的上行数据包的丢包概率,增加了方案的多样性。
可选的,在本申请的一些实施例中,该方法还可以包括:该MME向基站发送该初始上下 文建立请求,该初始上下文建立请求用于指示该基站建立该UP承载;该MME接收该基站发送的初始上下文建立完成消息。本申请实施例中,增加了对UP承载建立过程的步骤的说明,增加了方案的可行性。
可选的,在本申请的一些实施例中,该MME根据该指示消息释放CP通道,可以包括:该MME根据该指示消息生成修改承载请求;该MME向该SGW发送该修改承载请求,该修改承载请求用于指示该SGW释放该CP通道并建立该UP承载;该MME接收该SGW发送的修改承载响应。本申请实施例中,提供了一种释放CP通道的方法,相比较现有技术中,减少了释放接入承载请求和释放接入承载响应两条信令,节约了信令资源。
可选的,在本申请的一些实施例中,该MME根据该指示消息释放CP通道可以包括:该MME根据该指示消息生成释放接入承载请求;该MME向该SGW发送该释放接入承载请求,该释放接入承载请求用于指示该SGW释放该CP通道;该MME接收该SGW发送的释放接入承载响应。本申请实施例中,提供了另一种释放CP通道的方法,提高了方案的多样性。
本申请实施例第二方面提供了一种通信方法,可以包括:
在CP通道切换UP承载过程中,SGW接收MME通过S11_U接口发送的修改承载请求,该修改承载请求中携带有基站的承载地址。SGW接收到该修改承载请求后,根据该修改承载请求释放CP通道,即删除S11_U的本地承载,并建立与该基站的承载地址对应的UP承载。之后,该SGW向该MME发送修改承载响应,指示MME也删除本地的S11_U承载。
本申请实施例中,SGW在接收修改承载请求后才释放CP通道,此时UE已经停止使用CP通道发送上行数据包而通过UP承载发送,因而此时释放CP通道不会造成UE发送的上行数据包的丢失,进而减少了UE发送的上行数据包的丢包概率。
可选的,在本申请的一些实施例中,SGW接收MME发送的修改承载请求之前,该方法还可以包括:该SGW接收该MME发送的第一请求消息;该SGW根据该第一请求消息不释放该CP通道并停止通过该CP通道发送下行数据包;该SGW向该MME发送第一响应消息。本申请实施例中,SGW根据第一请求消息,将CP通道设置为可上行而不可下行,即SGW可以接收UE通过CP通道发送的上行数据包,而不通过CP通道向UE发送下行数据包,避免了若SGW发送具有回包请求的下行数据包,其上下行通道不同而增大UE的处理压力的情况(即切换未完成时,下行路径为CP通道,切换完成后,回包请求上行路径变为UP承载)。
本申请实施例第三方面提供了一种通信方法,可以包括:
当在MME触发的在CP通道切换UP承载过程中时,UE获取指示消息,该指示消息可以是UE自生成的消息,也可以是MME通过基站发送的消息,或者是基站发送的消息,该指示消息可以是NAS消息。UE获取到该指示消息后,根据该指示消息停止通过CP通道发送上行数据包,并将上行数据包缓存在本地。当UP承载建立时,即UE感知数据无线承载建立后,该UE再通过该UP承载发送上行数据包。
本申请实施例中,当在MME触发的在CP通道切换UP承载过程中时,UE获取指示消息,并根据该指示消息停止通过CP通道发送上行数据包。由于在CP通道切换UP承载过程中,UE接收到指示消息后,UE不再通过CP通道发送上行数据包,因而避免了因为S11_U释放而导致上行数据包丢失的情况,从而降低了UE发送的上行数据包的丢包概率。
可选的,在本申请的一些实施例中,该UE获取指示消息,可以包括:该UE接收MME通 过该基站发送的第二请求消息;该方法还可以包括:该UE通过该基站向该MME发送第二响应消息,该第二响应消息用于指示MME生成释放接入承载请求。本申请实施例中,说明的该指示消息的来源方,即通过MME与UE的配合降低UE发送的上行数据包的丢包概率,增加了方案的多样性。
可选的,在本申请的一些实施例中,该方法还可以包括:该UE接收该MME通过该基站发送的失败消息;该UE根据该失败消息通过该UP承载发送该上行数据包。本申请实施例中,当UE在停止通过CP通道发送上行数据包后,若收到MME通过基站发送的失败消息,则表明该失败消息对应的数据包未发送成功。该失败消息中若携带有数据包,则UE保存该数据包在本地,在UP承载建立后,通过UP承载发送该数据包。若该失败消息中未携带数据包,则UE确定最新一次通过CP通道发送的上行数据包,并将该上行数据包缓存在本地,等待UP承载建立后,通过UP承载发送该上行数据包。根据失败消息确定未发送成功的数据包,并通过UP承载重新发送,降低了UE发送的上行数据包的丢包概率,提高了数据发送的稳定性。
可选的,在本申请的一些实施例中,该UE获取指示消息,可以包括:当该UE与该基站无线承载建立完成时,该UE生成该指示消息;该方法还可以包括:该UE通过基站向MME发送该指示消息,该指示消息用于指示该MME释放该CP通道。本申请实施例中,UE在检测数据无线承载建立后,即可通过UP承载发送上行数据包,此时再停止通过CP通道发送上行数据包,提高了信道的使用效率。
本申请实施例第四方面提供了一种移动性管理实体,可以包括:
收发单元,用于当触发由CP通道切换UP承载进行数据传输时,获取指示消息,该指示消息用于指示UE停止通过该CP通道发送上行数据包;
处理单元,用于根据该指示消息释放该CP通道。
可选的,在本申请的一些实施例中,
该收发单元,还用于向基站发送初始上下文建立请求,该初始上下文建立请求用于指示该基站建立该UP承载;具体用于接收该基站发送的初始上下文建立完成消息。
可选的,在本申请的一些实施例中,
该收发单元,还用于向服务网关SGW发送第一请求消息,该第一请求消息用于指示该SGW不释放该CP通道并停止通过该CP通道发送下行数据包;接收该SGW发送的第一响应消息。
可选的,在本申请的一些实施例中,
该收发单元,还用于通过该基站向该UE发送第二请求消息,该第二请求消息用于指示该UE停止通过该CP通道发送上行数据包;具体用于接收该UE通过该基站发送的第二响应消息。
可选的,在本申请的一些实施例中,
该收发单元,还用于若接收到该UE通过该CP通道发送的该上行数据包,则通过该基站向该UE发送失败消息,该失败消息用于指示该UE通过该UP承载发送该上行数据包。
可选的,在本申请的一些实施例中,
该收发单元,具体用于接收该UE通过基站发送的该指示消息。
可选的,在本申请的一些实施例中,
该收发单元,还用于向基站发送该初始上下文建立请求,该初始上下文建立请求用于指 示该基站建立该UP承载;接收该基站发送的初始上下文建立完成消息。
可选的,在本申请的一些实施例中,
该处理单元,具体用于根据该指示消息生成修改承载请求;向该SGW发送该修改承载请求,该修改承载请求用于指示该SGW释放该CP通道并建立该UP承载;接收该SGW发送的修改承载响应。
可选的,在本申请的一些实施例中,
该处理单元,具体用于根据该指示消息生成释放接入承载请求;向该SGW发送该释放接入承载请求,该释放接入承载请求用于指示该SGW释放该CP通道;接收该SGW发送的释放接入承载响应。
本申请实施例第五方面提供了一种服务网关,可以包括:
收发单元,用于接收MME发送的修改承载请求;向该MME发送修改承载响应;
处理单元,用于根据该修改承载请求释放CP通道,并建立UP承载。
可选的,在本申请的一些实施例中,
该收发单元,还用于接收该MME发送的第一请求消息;向该MME发送第一响应消息;
该处理单元,还用于根据该第一请求消息不释放该CP通道并停止通过该CP通道发送下行数据包。
本申请实施例第六方面提供了一种用户设备,可以包括:
收发单元,用于获取指示消息;当UP承载建立时,通过该UP承载发送上行数据包;
处理单元,用于根据该指示消息停止通过CP通道发送上行数据包。
可选的,在本申请的一些实施例中,
该收发单元,具体用于接收MME通过该基站发送的第二请求消息;还用于通过该基站向该MME发送第二响应消息,该第二响应消息用于指示MME生成释放接入承载请求。
可选的,在本申请的一些实施例中,
该收发单元,还用于接收该MME通过该基站发送的失败消息;根据该失败消息通过该UP承载发送该上行数据包。
可选的,在本申请的一些实施例中,
该收发单元,具体用于当该UE与该基站无线承载建立完成时,生成该指示消息;还用于通过基站向MME发送该指示消息,该指示消息用于指示该MME释放该CP通道。
本申请实施例第七方面还提供了一种移动性管理实体,可以包括:
至少一个处理器,存储器,收发器和总线,所述处理器,所述存储器,所述收发器通过所述总线系统耦合,所述移动性管理实体通过所述收发器与所述移动性管理实体之外的装置相通信,所述存储器用于存储程序指令,所述至少一个处理器用于执行所述存储器中存储的所述程序指令,使得所述移动性管理实体执行如本申请实施例中第一方面及任一可选方式中所述的方法。
本申请实施例第八方面还提供了一种服务网关,可以包括:
至少一个处理器,存储器,收发器和总线,所述处理器,所述存储器,所述收发器通过所述总线系统耦合,所述服务网关通过所述收发器与所述移动性管理实体之外的装置相通信,所述存储器用于存储程序指令,所述至少一个处理器用于执行所述存储器中存储的所述程序 指令,使得所述服务网关执行如本申请实施例中第二方面及任一可选方式中所述的方法。
本申请实施例第九方面还提供了一种用户设备,可以包括:
至少一个处理器,存储器,收发器和总线,所述处理器,所述存储器,所述收发器通过所述总线系统耦合,所述用户设备通过所述收发器与所述移动性管理实体之外的装置相通信,所述存储器用于存储程序指令,所述至少一个处理器用于执行所述存储器中存储的所述程序指令,使得所述用户设备执行如本申请实施例中第三方面及任一可选方式中所述的方法。
本申请实施例第十方面还提供了一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述第一方面及任一可选方式中所述的方法。
本申请实施例第十一方面还提供了一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述第二方面及任一可选方式中所述的方法。
本申请实施例第十二方面还提供了一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述第三方面及任一可选方式中所述的方法。
本申请实施例第十三方面还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如前述第一方面及任一可选方式中所述的方法。
本申请实施例第十四方面还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如前述第二方面及任一可选方式中所述的方法。
本申请实施例第十五方面还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如前述第三方面及任一可选方式中所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本方案中,当MME触发由CP通道切换UP承载进行数据传输时,MME获取指示消息,该指示消息用于指示UE停止通过该CP通道发送上行数据包,MME获取指示消息后,再根据该指示消息释放CP通道。由于MME是在确定UE停止通过CP通道发送上行数据包之后,才释放的CP通道,即与现有技术相比,调整了释放CP通道的时机,从而使得在MME触发的CP通道切换UP承载过程中,若UE还需要通过CP通道发送上行数据包,即MME未感知UE停止通过CP通道发送上行数据包前,UE依然可以使用CP通道发送上行数据包,降低了CP通道切换UP承载过程中UE发送的上行数据包的丢包概率。
附图说明
图1为本申请实施例中所应用的系统架构图;
图2为本申请实施例中3GPP协议规定的MME触发的CP通道切换UP承载的示意图;
图3为本申请实施例中通信方法的一个实施例示意图;
图4为本申请实施例中通信方法的另一个实施例示意图;
图5为本申请实施例中通信方法的另一个实施例示意图;
图6为本申请实施例中通信方法的另一个实施例示意图;
图7为本申请实施例中移动性管理实体的一个实施例示意图;
图8为本申请实施例中服务网关的一个实施例示意图;
图9为本申请实施例中用户设备的一个实施例示意图;
图10为本申请实施例中移动性管理实体的另一个实施例示意图;
图11为本申请实施例中服务网关的另一个实施例示意图;
图12为本申请实施例中用户设备的另一个实施例示意图。
具体实施方式
窄带物联网是物联网领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,因而也被叫作低功耗广域网(low power wide area network,LPWAN)。NB-IoT构建于蜂窝网络,可直接部署于长期演进(long term evolution,LTE)网络。但与LTE网络不同的是,LTE的设计目标是高速率、大流量,而NB-IoT终端数量众多、终端节能要求高,且数据传输以间歇传送小数据为主(网络信令开销可能远大于数据载荷传输本身大小)。若NB-IoT的数据交互直接采用现有的LTE信令流程,可能会导致IoT终端耗能过高,并且也增大了对所部署的网络的信令负担。
基于窄带物联网的数据传输特点,3GPP协议中对窄带物联网提出了两种数据传输优化方案:CP传输优化方案和UP传输优化方案。其中,CP优化传输方案是NB-IoT中一种传输小数据包的高效传输方法,可以通过CP通道将小数据包在控制面上传输。具体地,UE与MME之间通过NAS层连接,将小数据包承载在NAS消息上传输数据,而MME再通过S11_U接口与SGW传输数据。CP通道为双向通道,即可上行数据也可下行数据。这一方案在传输数据时,无需建立数据无线承载和S1-U连接,从而减少了控制面的信令开销,有助于降低终端功耗和减少使用的频带。
与CP通道对应的数据传输通道还有UP承载,小数据包只能通过CP通道或UP承载二选一发送。协议中规定,在一些场景下,数据传输通道也可以由CP通道切换为UP承载,该切换过程可以由MME或UE触发。例如当MME接收的上行或下行数据包过大时,CP通道不能再满足数据传输要求,MME会触发对当前数据传输通道进行切换,即将数据传输通道由CP通道切换为UP通道。
其中,图1为本申请实施例中所应用的系统架构图。
协议中,在CP传输优化场景下,MME触发的CP通道切换UP承载的流程图如图2所示。
在图2中,MME触发传输通道切换后,执行步骤201:向SGW发送释放接入承载请求(release access bearers request),指示SGW释放S11_U承载。SGW释放S11_U承载完毕之后,执行步骤202:向MME发送释放接入承载响应(release access bearers response)。MME根据释放接入承载响应确定S11_U接口承载释放后,执行步骤203:向基站发送初始上下文建立请求(initial context setup request),指示基站建立UP承载,即执行步骤204:与UE之间建立无线承载(radio bearers setup)。UE感知到无线承载建立后,可执行步骤205,即通过UP承载发送上行数据(uplink data)。基站建立完毕UP承载后,执行步骤206:向MME发送初始上下文建立完成消息(initial context setup complete)。MME接收到初始上下文建立完成消息,确定UP承载建立后,执行步骤207:向SGW发送修改承载请求(modify bearer request)。SGW根据建立修改承载请求建立S1-U承载并将数据传输通道切换至UP承载。之后,SGW执行步骤208:向MME发送修改承载响应(modify bearer response),此时CP通道切换UP承载完毕。
在图2所示的步骤中,MME在释放S11_U接口,即释放CP通道后,MME才会进行UP承载的建立。由于该切换过程是MME触发的切换过程,在MME触发进行切换时,UE并未感知到切换,其中,在进行数据传输通道切换过程中,即图2所示的步骤201至步骤204过程中,UE 依然会选择通过CP通道发送上行数据。而MME接收到UE发送的上行数据包后,由于S11_U承载已被释放,从而无法再将该上行数据包发送给SGW,造成该上行数据包丢包。
基于此,本申请实施例提供了一种通信方法,用于在MME触发的CP通道切换UP承载过程中,减少UE发送的上行数据包的丢包概率。
下面具体参照图3,图3为本申请实施例中通信方法的一个实施例示意图,可以包括:
301、当MME触发由CP通道切换UP承载进行数据传输时,MME向SGW发送第一请求消息。
本实施例中,当MME触发切换时,MME向SGW发送第一请求消息,该第一请求消息为新增消息,用于通知SGW临时缓存下行数据包但是不释放S11_U通道,SGW需要控制能从S11_U通道接收MME发送的上行数据包,而不能通过S11_U通道向MME发送下行数据包,即S11_U通道可上行不可下行。
可选的,在一些可能的实现方式中,该第一请求消息可以是在释放接入承载请求中添加的指示标签(indication flag),从而将第一请求消息携带在释放接入承载请求中。SGW根据该指示标签临时缓存下行数据包并将S11_U通道设置为可上行不可下行状态。
302、SGW根据第一请求消息不释放所述CP通道并停止通过所述CP通道发送下行数据包。
本实施例中,SGW接收到第一请求消息后,根据该第一请求消息缓存下行数据包,并将CP通道设置为可上行不可下行状态,而不释放CP通道。具体地,此处CP通道是指SGW与MME之间的S11_U承载。
304、SGW向MME发送第一响应消息。
本实施例中,当SGW设置完毕后,SGW向MME发送第一响应消息。
可选的,在一些可能的实现方式中,第一响应消息也可以携带在释放接入承载响应中。
304、MME向基站发送初始上下文建立请求。
本实施例中,MME接收到SGW发送的第一响应消息后,通过S1-MME接口向基站发送初始上下文建立请求,该初始上下文建立请求用于通知基站建立与UE之间的数据无线承载以及在本地进行S1-U接口承载的配置。
305、基站与UE建立无线承载。
本实施例中,基站接收到初始上下文建立请求后,基站与UE建立无线承载,即建立空口连接。
306、当无线承载建立完成时,UE切换至UP承载发送上行数据。
本实施例中,当UE检测数据无线承载建立完成后,UE停止通过CP通道发送上行数据包,并将数据传输通道切换至UP承载,进而通过UP承载发送上行数据。
可选的,在一些可能的实现方式中,当UE接收到基站发送的初始数据无线承载建立请求后,UE即可以选择停止通过CP通道发送上行数据包。
307、基站向MME发送初始上下文建立完成消息。
本实施例中,当基站确定无线承载建立及本地已配置好S1-U接口时,基站向MME发送初始上下文建立完成消息。
308、MME向SGW发送修改承载请求。
本实施例中,当MME接收到初始上下文完成请求,根据初始上下文完成请求确定UP承载建立后,MME向SGW发送修改承载请求,该修改承载请求中可以携带有UE当前基站的承载地 址。
309、SGW根据修改承载请求释放CP通道,并建立UP承载。
本实施例中,SGW接收到修改承载请求后,SGW根据修改承载请求释放CP通道,并建立UP承载。具体地,SGW根据修改承载请求在本地删除S11_U承载,该修改承载请求可以携带有S11TF标志位,S11TF标志位为一个特殊的消息信元,SGW可根据该S11TF标志位将当前连接的S11_U承载切换为S1-U承载。同时,SGW将消息中携带的承载地址保存在本地,并根据该承载地址在本地进行对应的S1-U承载的配置。
310、SGW向MME发送修改承载响应。
本实施例中,当SGW设置完毕后,SGW生成修改承载响应,并向MME发送该修改承载请求响应消息,该修改承载响应用于指示MME删除本地的S11_U承载,并释放S11_U接口对应的资源。
从以上技术方案可以看出,本申请实施例具有以下优点:
当MME触发由CP通道切换UP承载进行数据传输时,MME向SGW发送第一请求消息,指示SGW将CP通道设置为可上行不可下行状态,而不释放CP通道。等接收到基站发送的初始上下文建立完成消息后,MME根据初始上下文建立完成消息确定UE不再通过CP通道发送上行数据包。此时,MME再释放CP通道,并完成之后CP通道切换UP承载的其他流程。从而使得在CP通道切换UP承载的过程中,当UE需要利用CP通道发送上行数据包时,UE依然可以通过CP通道发送上行数据包,降低了切换过程中上行数据包的丢包概率。同时也避免了当一些下行数据包有回包请求时,在切换完成后,其回包的上行数据包的上行路径(UP承载)与原下行数据包的下行路径(CP通道)不同而导致UE难以处理的情况。
下面具体参照图4,图4为本申请实施例中通信方法的另一个实施例示意图,可以包括:
401、MME向基站发送初始上下文建立请求。
402、基站与UE建立无线承载。
403、当无线承载建立完成时,UE切换至UP承载发送上行数据。
404、基站向MME发送初始上下文建立完成消息。
405、MME向SGW发送修改承载请求。
406、SGW根据修改承载请求释放CP通道,并建立UP承载。
407、SGW向MME发送修改承载响应。
需要说明的是,步骤401至步骤407与图3所示的步骤304至步骤310类似,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
当MME触发由CP通道切换UP承载进行数据传输时,MME先执行建立UP承载的流程,而不释放CP通道。等接收到基站发送的初始上下文建立完成消息后,MME根据初始上下文建立完成消息确定UE不再通过CP通道发送上行数据包。此时,MME再释放CP通道,并完成之后CP通道切换UP承载的其他流程。等待UP承载建立后,再释放CP通道。从而使得在CP通道切换UP承载的过程中,当UE需要利用CP通道发送上行数据包时,UE依然可以通过CP通道发送上行数据包,降低了切换过程中上行数据包的丢包概率。
下面具体参照图5,图5为本申请实施例中通信方法的另一个实施例示意图,可以包括:
501、当MME触发由CP通道切换UP承载进行数据传输时,MME通过基站向UE发送第二请求消息。
本实施例中,当MME触发传输通道切换时,MME通过基站向UE发送第二请求消息,该第二请求消息可以是NAS消息,该第二请求消息中携带有UE的标识。基站可以通过标识识别对应的UE,将第二请求消息转发给UE。
可选的,在一种可能的实现方式中,该第二请求消息也可以携带在MME发送的下行数据包中。
502、UE根据第二请求消息停止通过CP通道发送上行数据包。
本实施例中,UE接收到第二请求消息后,该第二请求消息中可以携带结束标识(end marker),UE通过识别该标识信息,停止通过CP通道发送上行数据包,并缓存需要上行的上行数据包在本地。
503、UE通过基站向MME发送第二响应消息。
本实施例中,UE在设置完毕后,向MME发送第二响应消息。
504、MME根据第二响应消息生成释放接入承载请求。
本实施例中,当MME接收到第二响应消息,根据该第二响应消息确定UE不再通过CP通道发送上行数据包后,MME生成释放接入请求消息,用于指示SGW释放S11_U承载。
可选的,在一些可能的实现方式中,若存在网络抖动的原因,可能存在MME接收到第二响应消息后,依然收到UE通过基站发送的上行数据包(UE在接收到第二请求消息之前发出,而由于上行数据包发送较慢,MME在接收到第二响应消息后才接收到该上行数据包)。此时,MME接收到该上行数据包后,可以生成对应的失败消息,并通过基站向UE发送该失败消息。该失败消息中可以携带有该上行数据包,用于通知UE通过UP承载发送该上行数据包。该失败消息中也可以不携带该上行数据包,用于通知UE通过UP承载发送距离当前时间最近一次通过CP通道发送的上行数据包。
505、MME向SGW发送释放接入承载请求。
本实施例中,第二请求消息用以指示UE不再通过CP通道发送上行数据包,MME接收到第二响应消息后,MME生成释放接入承载请求,该释放接入承载请求用以指示SGW释放S11_U承载。
506、SGW向MME发送释放接入承载响应。
本实施例中,SGW根据接收的释放接入承载请求缓存下行数据包,并在本地删除S11_U承载。释放S11_U承载后,SGW向MME发送释放接入承载响应,该释放接入承载响应用以指示MME本地删除S11_U承载。
507、MME向基站发送初始上下文建立请求。
508、基站与UE建立无线承载。
509、当无线承载建立完成时,UE通过UP承载发送上行数据。
510、基站向MME发送初始上下文建立完成消息。
需要说明的是,步骤507至步骤510与图3中所示的步骤304至步骤307类似,此处不再赘述。
511、MME向SGW发送修改承载请求。
本实施例中,当SGW接收到修改承载请求,根据修改承载请求确定UP承载已建立后,SGW生成修改承载请求,该修改承载请求可以携带有UE当前基站的承载地址。
可选的,在一些可能的实现方式中,该修改承载请求中也可以用于通知SGW释放S11_U承载。
512、SGW向MME发送修改承载响应。
本实施例中,SGW接收到修改承载请求后,SGW根据修改承载请求建立UP承载,并将CP通道切换至UP承载。具体地,该修改承载请求可以携带有S11TF标志位,S11TF标志位为一个特殊的消息信元,SGW可根据该S11TF标志位将当前连接的S11_U承载切换为S1-U承载。同时,SGW将消息中携带的承载地址保存在本地,并根据该承载地址在本地进行对应的S1-U承载的配置。
可选的,在一些可能的实现方式中,SGW接收到修改承载请求后,根据该修改承载请求释放S11_U承载。
从以上技术方案可以看出,本申请实施例具有以下优点:
当MME触发由CP通道切换UP承载进行数据传输时,MME首先通过基站向UE发送第二请求消息,指示UE停止通过CP通道发送上行数据包,在MME接收到UE发送的第二响应消息后,再进行数据传输通道的切换,并释放CP通道。从而使得MME在数据传输通道的切换过程中,不再接收UE通过CP通道发送的上行数据包,减低了切换过程中上行数据包的丢包概率。
下面具体参照图6,图6为本申请实施例中通信方法的另一个实施例示意图,可以包括:
601、当MME触发由CP通道切换UP承载进行数据传输时,MME向基站发送初始上下文建立请求。
602、基站与UE建立无线承载。
需要说明的是,步骤601至步骤602与图3中所示的步骤304至步骤305类似,此处不再赘述。
603、当UE与基站无线承载建立完成时,UE生成指示消息。
本实施例中,当基站与UE无线承载建立完成时,UE停止通过CP通道发送上行数据包,并缓存待上行的上行数据包在本地。之后,UE生成指示消息。
可选的,在一些可能的实现方式中,UE在接收到初始无线承载建立请求后,即可停止通过CP通道发送上行数据包,并缓存待上行的上行数据包在本地。之后,UE生成指示消息。
604、UE通过基站向MME发送指示消息。
本实施例中,当UE设置完毕后,UE可以通过基站向MME发送指示消息,该指示消息可以通过NAS层以NAS消息形式发送。
605、MME根据指示消息生成释放接入承载请求。
本实施例中,当MME接收到指示消息,根据该指示消息确定UE不再通过CP通道发送上行数据包后,MME生成释放接入请求消息,该释放接入承载请求用于指示SGW释放CP承载。
606、MME向SGW发送释放接入承载请求。
607、SGW向MME发送释放接入承载响应。
需要说明的是,步骤606至步骤607与图5所示的步骤505至步骤506类似,此处不再赘述。
608、当无线承载建立完成时,UE通过UP承载发送上行数据。
609、MME向SGW发送修改承载请求。
610、SGW向MME发送修改承载响应。
611、基站向MME发送初始上下文建立完成消息。
需要说明的是,步骤608至步骤611与图5中所示的步骤509至512类似,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
当MME触发由CP通道切换UP承载进行数据传输时,MME先指示基站建立UP承载。在基站与UE建立无线承载过程中,当MME接收到UE的指示消息后,再释放CP通道,该指示消息用于指示UE当前已停止通过CP通道发送上行数据包,即使得MME在确定不会再接收UE通过CP通道发送的上行数据包后,再释放CP通道,从而降低了切换过程中上行数据包的丢包概率。
下面具体参照图7,图7为本申请实施例中移动性管理实体的一个实施例示意图,可以包括:
收发单元701,用于当触发由CP通道切换UP承载进行数据传输时,获取指示消息,该指示消息用于指示UE停止通过该CP通道发送上行数据包;
处理单元702,用于根据该指示消息释放该CP通道。
可选的,在本申请的一些实施例中,
收发单元701,还用于向基站发送初始上下文建立请求,该初始上下文建立请求用于指示该基站建立该UP承载;具体用于接收该基站发送的初始上下文建立完成消息。
可选的,在本申请的一些实施例中,
收发单元701,还用于向服务网关SGW发送第一请求消息,该第一请求消息用于指示该SGW不释放该CP通道并停止通过该CP通道发送下行数据包;接收该SGW发送的第一响应消息。
可选的,在本申请的一些实施例中,
收发单元701,还用于通过该基站向该UE发送第二请求消息,该第二请求消息用于指示该UE停止通过该CP通道发送上行数据包;具体用于接收该UE通过该基站发送的第二响应消息。
可选的,在本申请的一些实施例中,
收发单元701,还用于若接收到该UE通过该CP通道发送的该上行数据包,则通过该基站向该UE发送失败消息,该失败消息用于指示该UE通过该UP承载发送该上行数据包。
可选的,在本申请的一些实施例中,
收发单元701,具体用于接收该UE通过基站发送的该指示消息。
可选的,在本申请的一些实施例中,
收发单元701,还用于向基站发送该初始上下文建立请求,该初始上下文建立请求用于指示该基站建立该UP承载;接收该基站发送的初始上下文建立完成消息。
可选的,在本申请的一些实施例中,
处理单元702,具体用于根据该指示消息生成修改承载请求;向该SGW发送该修改承载 请求,该修改承载请求用于指示该SGW释放该CP通道并建立该UP承载;接收该SGW发送的修改承载响应。
可选的,在本申请的一些实施例中,
处理单元702,具体用于根据该指示消息生成释放接入承载请求;向该SGW发送该释放接入承载请求,该释放接入承载请求用于指示该SGW释放该CP通道;接收该SGW发送的释放接入承载响应。
下面具体参照图8,图8为本申请实施例中服务网关的一个实施例示意图,可以包括:
收发单元801,用于接收MME发送的修改承载请求;向该MME发送修改承载响应;
处理单元802,用于根据该修改承载请求释放CP通道,并建立UP承载。
可选的,在本申请的一些实施例中,
收发单元801,还用于接收该MME发送的第一请求消息;向该MME发送第一响应消息;
处理单元802,还用于根据该第一请求消息不释放该CP通道并停止通过该CP通道发送下行数据包。
下面具体参照图9,图9为本申请实施例中用户设备的一个实施例示意图,可以包括:
收发单元901,用于获取指示消息;当UP承载建立时,通过该UP承载发送上行数据包;
处理单元902,用于根据该指示消息停止通过CP通道发送上行数据包。
可选的,在本申请的一些实施例中,
收发单元901,具体用于接收MME通过该基站发送的第二请求消息;还用于通过该基站向该MME发送第二响应消息,该第二响应消息用于指示MME生成释放接入承载请求。
可选的,在本申请的一些实施例中,
收发单元901,还用于接收该MME通过该基站发送的失败消息;根据该失败消息通过该UP承载发送该上行数据包。
可选的,在本申请的一些实施例中,
收发单元901,具体用于当该UE与该基站无线承载建立完成时,生成该指示消息;还用于通过基站向MME发送该指示消息,该指示消息用于指示该MME释放该CP通道。
下面具体参照图10,图10为本申请实施例中移动性管理实体的另一个实施例示意图,可以包括:
至少一个处理器1001,存储器1002,收发器1003和总线1004,处理器1001、存储器1002和收发器1003通过总线1004系统耦合,所述移动性管理实体通过收发器1003与所述移动性管理实体之外的装置相通信,存储器1002用于存储程序指令,处理器1001用于执行所述存储器中存储的所述程序指令,使得所述移动性管理实体执行如本申请实施例中图3至图6所示实施例及任一可选方式中移动性管理实体所执行的方法。
下面具体参照图11,图11为本申请实施例中服务网关的另一个实施例示意图,可以包括:
至少一个处理器1101,存储器1102,收发器1103和总线1104,处理器1101、存储器1102和收发器1103通过总线1104系统耦合,所述服务网关通过收发器1103与所述移动性管理实体之外的装置相通信,存储器1102用于存储程序指令,处理器1101用于执行所述存储器中存储的所述程序指令,使得所述服务网关执行如本申请实施例中图3至图6所示实施 例及任一可选方式中服务网关所执行的方法。
下面具体参照图12,图12为本申请实施例中用户设备的另一个实施例示意图,可以包括:
至少一个处理器1201,存储器1202,收发器1203和总线1204,处理器1201、存储器1202和收发器1203通过总线1204系统耦合,所述用户设备通过收发器1203与所述移动性管理实体之外的装置相通信,存储器1202用于存储程序指令,处理器1201用于执行所述存储器中存储的所述程序指令,使得所述用户设备执行如本申请实施例中图3至图6所示实施例及任一可选方式中用户设备所执行的方法。
本申请实施例还提供了一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述图3至图6所示实施例及任一可选方式中移动性管理实体所执行的方法。
本申请实施例还提供了一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述图3至图6所示实施例及任一可选方式中服务网关所执行的方法。
本申请实施例还提供了一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述图3至图6所示实施例及任一可选方式中用户设备所执行的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如前述图3至图6所示实施例及任一可选方式中移动性管理实体所执行的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如前述图3至图6所示实施例及任一可选方式中服务网关所执行的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如前述图3至图6所示实施例及任一可选方式中用户设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的 相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用于使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用于说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    当移动性管理实体MME触发由控制面CP通道切换用户面UP承载进行数据传输时,所述MME获取指示消息,所述指示消息用于指示用户设备UE停止通过所述CP通道发送上行数据包;
    所述MME根据所述指示消息释放所述CP通道。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述MME向基站发送初始上下文建立请求,所述初始上下文建立请求用于指示所述基站建立所述UP承载;
    所述MME获取指示消息,包括:
    所述MME接收所述基站发送的初始上下文建立完成消息。
  3. 根据权利要求2所述的方法,其特征在于,所述MME向基站发送初始上下文建立请求之前,所述方法还包括:
    所述MME向服务网关SGW发送第一请求消息,所述第一请求消息用于指示所述SGW不释放所述CP通道并停止通过所述CP通道发送下行数据包;
    所述MME接收所述SGW发送的第一响应消息。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述MME通过所述基站向所述UE发送第二请求消息,所述第二请求消息用于指示所述UE停止通过所述CP通道发送上行数据包;
    所述MME获取指示消息包括:
    所述MME接收所述UE通过所述基站发送的第二响应消息。
  5. 根据权利要求4所述的方法,其特征在于,所述MME接收所述UE通过所述基站发送的第二响应消息之后,所述方法还包括:
    若所述MME接收到所述UE通过所述CP通道发送的所述上行数据包,则所述MME通过所述基站向所述UE发送失败消息,所述失败消息用于指示所述UE通过所述UP承载发送所述上行数据包。
  6. 根据权利要求1所述的方法,其特征在于,所述MME获取指示消息包括:
    所述MME接收所述UE通过基站发送的所述指示消息。
  7. 根据权利要求4-6中任一项所述的方法,其特征在于,所述方法还包括:
    所述MME向基站发送所述初始上下文建立请求,所述初始上下文建立请求用于指示所述基站建立所述UP承载;
    所述MME接收所述基站发送的初始上下文建立完成消息。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述MME根据所述指示消息释放CP通道,包括:
    所述MME根据所述指示消息生成修改承载请求;
    所述MME向所述SGW发送所述修改承载请求,所述修改承载请求用于指示所述SGW释放所述CP通道并建立所述UP承载;
    所述MME接收所述SGW发送的修改承载响应。
  9. 根据权利要求1-7中任一项所述的方法,其特征在于,所述MME根据所述指示消息释放CP通道包括:
    所述MME根据所述指示消息生成释放接入承载请求;
    所述MME向所述SGW发送所述释放接入承载请求,所述释放接入承载请求用于指示所述SGW释放所述CP通道;
    所述MME接收所述SGW发送的释放接入承载响应。
  10. 一种通信方法,其特征在于,包括:
    服务网关SGW接收移动性管理实体MME发送的修改承载请求;
    所述SGW根据所述修改承载请求释放控制面CP通道,并建立用户面UP承载;
    所述SGW向所述MME发送修改承载响应。
  11. 根据权利要求10所述的方法,其特征在于,SGW接收MME发送的修改承载请求之前,所述方法还包括:
    所述SGW接收所述MME发送的第一请求消息;
    所述SGW根据所述第一请求消息不释放所述CP通道并停止通过所述CP通道发送下行数据包;
    所述SGW向所述MME发送第一响应消息。
  12. 一种通信方法,其特征在于,包括:
    用户设备UE获取指示消息;
    所述UE根据所述指示消息停止通过控制面CP通道发送上行数据包;
    当用户面UP承载建立时,所述UE通过所述UP承载发送上行数据包。
  13. 根据权利要求12所述的方法,其特征在于,所述UE获取指示消息,包括:
    所述UE接收移动性管理实体MME通过所述基站发送的第二请求消息;
    所述方法还包括:
    所述UE通过所述基站向所述MME发送第二响应消息,所述第二响应消息用于指示MME生成释放接入承载请求。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述UE接收所述MME通过所述基站发送的失败消息;
    所述UE根据所述失败消息通过所述UP承载发送所述上行数据包。
  15. 根据权利要求12所述的方法,其特征在于,所述UE获取指示消息,包括:
    当所述UE与所述基站无线承载建立完成时,所述UE生成所述指示消息;
    所述方法还包括:
    所述UE通过基站向MME发送所述指示消息,所述指示消息用于指示所述MME释放所述CP通道。
  16. 一种移动性管理实体,其特征在于,包括:
    收发单元,用于当触发由CP通道切换UP承载进行数据传输时,获取指示消息,所述指示消息用于指示UE停止通过所述CP通道发送上行数据包;
    处理单元,用于根据所述指示消息释放所述CP通道。
  17. 一种服务网关,其特征在于,包括:
    收发单元,用于接收MME发送的修改承载请求;向所述MME发送修改承载响应;
    处理单元,用于根据所述修改承载请求释放CP通道,并建立UP承载。
  18. 一种用户设备,其特征在于,包括:
    收发单元,用于获取指示消息;当UP承载建立时,通过所述UP承载发送上行数据包;
    处理单元,用于根据所述指示消息停止通过CP通道发送上行数据包。
  19. 一种移动性管理实体,其特征在于,包括:
    处理器、存储器、总线以及收发器;
    所述存储器、所述收发器和所述处理器通过所述总线连接;
    所述收发器用于与所述移动性管理实体之外的装置进行通信;
    所述存储器用于存储操作指令;
    所述处理器用于调用所述操作指令,执行如权利要求1-9任一项所述的方法。
  20. 一种服务网关,其特征在于,包括:
    处理器、存储器、总线以及收发器;
    所述存储器、所述收发器和所述处理器通过所述总线连接;
    所述收发器用于与所述移动性管理实体之外的装置进行通信;
    所述存储器用于存储操作指令;
    所述处理器用于调用所述操作指令,执行如权利要求10-11中任一项所述的方法。
  21. 一种用户设备,其特征在于,包括:
    处理器、存储器、总线以及收发器;
    所述存储器、所述收发器和所述处理器通过所述总线连接;
    所述收发器用于与所述移动性管理实体之外的装置进行通信;
    所述存储器用于存储操作指令;
    所述处理器用于调用所述操作指令,执行如权利要求12-15中任一项所述的方法。
  22. 一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至9任一项,或者,权利要求10至11任一项,或者,权利要求12至15任一项所述的方法。
PCT/CN2019/108887 2018-10-30 2019-09-29 一种通信方法、移动性管理实体、用户设备及服务网关 WO2020088177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811278117.0 2018-10-30
CN201811278117.0A CN111132241B (zh) 2018-10-30 2018-10-30 一种通信方法、移动性管理实体、用户设备及服务网关

Publications (1)

Publication Number Publication Date
WO2020088177A1 true WO2020088177A1 (zh) 2020-05-07

Family

ID=70463452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108887 WO2020088177A1 (zh) 2018-10-30 2019-09-29 一种通信方法、移动性管理实体、用户设备及服务网关

Country Status (2)

Country Link
CN (1) CN111132241B (zh)
WO (1) WO2020088177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142592A1 (zh) * 2022-01-28 2023-08-03 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机可读介质及电子设备、计算机程序产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833802A (zh) * 2012-08-15 2012-12-19 电信科学技术研究院 一种数据转发方法及设备
WO2018030826A1 (en) * 2016-08-12 2018-02-15 Samsung Electronics Co., Ltd. Method for controlling a user equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096664A (ja) * 2012-11-08 2014-05-22 Ntt Docomo Inc 無線通信システムおよび通信制御方法
WO2016165127A1 (en) * 2015-04-17 2016-10-20 Mediatek Singapore Pte. Ltd. Multiple conectivity in millimeter wave system
CN108235376B (zh) * 2016-12-21 2020-03-06 电信科学技术研究院 一种用户面锚点选择方法及装置
EP3346734B1 (en) * 2017-01-09 2020-12-02 Vodafone GmbH Providing information to a mobile device operated in a mobile radio network via a broadcast channel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833802A (zh) * 2012-08-15 2012-12-19 电信科学技术研究院 一种数据转发方法及设备
WO2018030826A1 (en) * 2016-08-12 2018-02-15 Samsung Electronics Co., Ltd. Method for controlling a user equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL: "Correction to S1-U bearer establishment procedure during data transport using CP CIoT Optimisations", 3GPP DRAFT; S2-188172, 24 August 2018 (2018-08-24), Sophia Antipolis France, pages 1 - 4, XP051537104 *
HUAWEI: "Release S11-U bearers with Release Access Bearers Request message", 3GPP DRAFT; C4-162077, 15 April 2016 (2016-04-15), Ljubljana, Slovenia, pages 1 - 16, XP051078993 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142592A1 (zh) * 2022-01-28 2023-08-03 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机可读介质及电子设备、计算机程序产品

Also Published As

Publication number Publication date
CN111132241B (zh) 2021-06-08
CN111132241A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US11076334B2 (en) Data forwarding method, device, and communications system
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
RU2767981C2 (ru) Способ обработки информации и соответствующее устройство
US20220225437A1 (en) Relay communication method and relay communications apparatus and system
CN108605376B (zh) 无线终端、无线站及其方法
US9999028B2 (en) Data transmission method, base station, and user equipment
US10772146B2 (en) Multi-connectivity communication method, device, and terminal
WO2018165996A1 (zh) 切换方法和装置
KR101521886B1 (ko) 이동통신 시스템에서 지티피 처리를 위한 장치 및 방법
US20180049091A1 (en) Method, apparatus, and system for transmitting data during handover procedure
US20170339722A1 (en) Method and device for transmitting downlink data
US10542473B2 (en) Wireless communication system, a wireless device, network nodes, and methods therein, for changing master node for the wireless device
US20200351714A1 (en) Communication Method for Deterministic Transmission and Related Apparatus
US11696180B2 (en) Base station, wireless communication system, and communication method
WO2020001257A1 (zh) 一种数据传输方法及装置
JP2024503709A (ja) データ伝送方法及び装置
CN114026929B (zh) 一种f1接口管理方法及装置
US11382152B2 (en) Method and device for configuring GTP transmission channel and storage medium
WO2020103871A1 (zh) 一种数据通信方法及装置
WO2020001256A1 (zh) 一种数据传输方法及装置
CN110708720A (zh) 切换方法、分布单元、终端、集中单元及计算机存储介质
US20230254729A1 (en) Migration method and apparatus for iab-node
EP3457758B1 (en) Data transmission methods and devices
WO2020088177A1 (zh) 一种通信方法、移动性管理实体、用户设备及服务网关
WO2017166291A1 (zh) 一种通信方法、终端、基站和移动性管理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880797

Country of ref document: EP

Kind code of ref document: A1