WO2020087839A1 - 一种参考信号的发送方法、装置以及存储介质 - Google Patents

一种参考信号的发送方法、装置以及存储介质 Download PDF

Info

Publication number
WO2020087839A1
WO2020087839A1 PCT/CN2019/078681 CN2019078681W WO2020087839A1 WO 2020087839 A1 WO2020087839 A1 WO 2020087839A1 CN 2019078681 W CN2019078681 W CN 2019078681W WO 2020087839 A1 WO2020087839 A1 WO 2020087839A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
relay node
hop
time position
signal
Prior art date
Application number
PCT/CN2019/078681
Other languages
English (en)
French (fr)
Inventor
焦慧颖
Original Assignee
中国信息通信研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国信息通信研究院 filed Critical 中国信息通信研究院
Publication of WO2020087839A1 publication Critical patent/WO2020087839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels

Definitions

  • the present invention relates to the field of communication technology, in particular to a method, device and storage medium for transmitting reference signals.
  • Supporting wireless backhaul relay links enables more flexible and dense cell deployment.
  • the future mobile communication system can provide greater bandwidth, it can also deploy a large-scale multiple-input multiple-output (MIMO: Multiple-Input Multiple-Output) system or a multi-beam system to provide a unified access and return link Opportunities, making dense network deployment easier and easier.
  • MIMO Multiple-Input Multiple-Output
  • Relay nodes can multiplex the access and return links in time, frequency or space.
  • the access and return links may be in the same frequency band or on different frequency bands. When the access and return links are on the same frequency, more compact interoperation is required to configure duplex restrictions to avoid interference.
  • a relay node During the discovery of a relay node, a relay node needs to detect a reference signal, that is, a synchronization sequence block (SSB: Synchronous Sequence) block signal, to discover a new relay node, and also needs to send a reference signal for other relays.
  • the node discovers this relay node. Due to the limitation of duplexing, the relay node cannot receive and send the reference signal at the same time. Therefore, the relay node should coordinate the relationship of sending and receiving the reference signal.
  • SSB Synchronous Sequence
  • An embodiment of the present application provides a method for sending a reference signal, which is applied to any relay node.
  • the method includes:
  • the SSB signal is sent on a different SSB block at the same time position as the first node; wherein, the first node is a relay node with the same hop count as the relay node.
  • An embodiment of the present application further provides a reference signal transmission device, which is applied to any relay node, and the device includes: a determination unit and a transmission unit;
  • the determining unit is configured to determine the time position of periodically sending the SSB signal of the synchronization sequence block according to the hop number of the relay node;
  • the sending unit is configured to send the SSB signal on a different SSB block at the same time position determined by the sending unit as the first node; wherein, the first node is a relay with the same hop count as the current relay node node.
  • the embodiments of the present application also provide a computer storage medium, and the computer storage medium stores program instructions, and when the program instructions are executed, it is used to implement the method for sending the reference signal.
  • 1A is a schematic diagram of a system structure of an application scenario of a method for sending a reference signal provided by an embodiment of the present application;
  • 1B is a schematic flowchart of a method for sending a reference signal provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a location where a 4-hop relay node according to an embodiment of the present application sends an SSB signal in a basic period;
  • FIG. 3 is a schematic diagram of a position where a 4-hop relay node according to an embodiment of the present application sends an SSB signal at a base period of 3 times;
  • FIG. 4 is a schematic diagram of sending SSB signals on different SSB blocks at the same time position according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a reference signal sending apparatus provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a computing device according to an embodiment of the present application.
  • An embodiment of the present application provides a method for transmitting a reference signal, which is applied to any relay node.
  • the relay node determines a time position for periodically transmitting the SSB signal of the synchronization sequence block according to its own hop count; and among the same hop count
  • the SSB blocks of the SSB signal sent by the relay node are different. This scheme guarantees the orthogonality of the SSB signal sent by the relay node to avoid the interference of the transmitted and received signals.
  • information is not directly transmitted from the base station to the terminal, but is forwarded through multiple relay nodes from the base station to the terminal, that is, the information is transmitted through multiple links on the link.
  • Relay node forwarding is complete.
  • a relay node is located between the base station and the terminal, that is, the hop between the base station and the terminal is the hop number of the relay node.
  • multi-hop is multiple forwarding.
  • the first one is achieved by detecting SSB signals sent by other relay nodes, specifically:
  • the number of hops of the relay node of the previous hop is determined according to the periodic time position of the SSB signal sent by the relay node of the previous hop, and the number of hops of the relay node is further determined.
  • the configuration information determine the periodic time position of the SSB signal corresponding to the hop number of the relay node
  • the unoccupied SSB block is used to send the SSB signal; or, the SSB block is randomly selected at the determined periodic time position to send the SSB signal.
  • the second type through public control signaling and dedicated signaling sent by network equipment, specifically:
  • the network device sends common control signaling and dedicated signaling to the relay node; wherein, the common control signaling carries the hop count of each relay node; the common control signaling carries the periodicity of each hop relay node The time position at which the SSB signal is sent; the dedicated signaling carries orthogonal spreading code information.
  • the relay point receives the common control signaling sent by the network device; determines the hop number of the relay node according to the received common control signaling; determines that each hop relay node periodically sends the SSB signal according to the received common control signaling Time position.
  • the relay node receives the dedicated signaling sent by the network device; according to the dedicated signaling, the location of the SSB block of the SSB signal sent by the relay node with the same hop number as the local node is determined.
  • the network device When the network device sends the common signaling, it is sent periodically, or when the hop count of the relay node changes.
  • FIG. 1A is a schematic diagram of a system structure of an application scenario of a method for sending a reference signal provided by an embodiment of the present application.
  • the application scenario of the embodiment of the present application of the present invention includes a base station 11, a relay node 12, and a terminal 13.
  • the base station 11 can send the downlink data of the backhaul link; and receive the uplink data of the backhaul link.
  • the relay node 12 determines the time position of periodically sending the SSB signal of the synchronization sequence block according to the hop number of the relay node; and sends the SSB signal on a different SSB block at the same time position as the first node; wherein, the first One node is a relay node with the same hop count as the current relay node;
  • the terminal 13 sends uplink data of the access link; and receives downlink data of the access link. Furthermore, the terminal 13 can also receive respective OCC information, which is used to find the time position of sending the SSB.
  • FIG. 1B is a schematic flowchart of a method for sending a reference signal according to an embodiment of the present application. The specific steps are:
  • Step 101 The relay node determines the time position of periodically sending the SSB signal of the synchronization sequence block according to the hop number of the relay node.
  • FIG. 2 is a schematic diagram of a location where a 4-hop relay node according to an embodiment of the present application sends an SSB signal in a basic period.
  • a cycle of 20 ms is used.
  • the first time position is used for a relay node with a hop count of 1 (1st hop RN: 1st hop Relay) Node to send SSB signals
  • the second time position is used
  • the relay node with 2 hops (2st hop RN) sends the SSB signal
  • the third time position is used for the relay node with 3 hops (3st hop RN) to send the SSB signal
  • the fourth time position is used for the hop number Send the SSB signal for the 4 relay node (4st hop RN).
  • FIG. 3 is a schematic diagram of a location where a 4-hop relay node according to an embodiment of the present application sends an SSB signal at a base period of 3 times.
  • a cycle of 60ms is used.
  • the first time position is used for a relay node with a hop count of 1 (1st hop RN) to send an SSB signal
  • the fourth time position is used for a hop number of 2
  • the relay node (2st hop RN) sends the SSB signal
  • the seventh time position is used for the relay node with 3 hops (3st hop RN) to send the SSB signal
  • the 10th time position is used for the relay with 4 hops
  • the node (4st hop RN) sends the SSB signal.
  • Step 102 The relay node uses the same SSB block at the same time position as the first node to send the SSB signal; wherein, the first node is a relay node with the same hop count as the relay node.
  • FIG. 4 is a schematic diagram of sending SSB signals on different SSB blocks at the same time position according to an embodiment of the present application.
  • FIG. 4 takes the first hop relay node in FIG. 1B as an example to select the SSB block at the first time position in the third cycle, assuming that the number of relay nodes at the first hop is 4, which are RN1 and RN2, respectively. , RN3 and RN4.
  • the SSB block at the first time position in the third cycle from left to right, it is represented by two sets of labels, from left to right: the first group and the second group.
  • RN1 selects the first group of SSB blocks with labels 2 and 3 to send SSB signals
  • RN2 selects the first group of SSB blocks with labels 4 and 5 to send SSB signals
  • RN3 selects the second group of SSB blocks with labels 1 and 2 to send SSB signals SSB signal sent
  • RN4 selects the second group of SSB blocks labeled 3 and 4 to send the SSB signal.
  • the orthogonality of the transmitted SSB signal can be guaranteed, thereby avoiding interference.
  • the specific implementation of the relay node sending the SSB signal on different SSB blocks at the same time position as the first node may be:
  • a spreading codeword different from the first node is used to select the position of the SSB block in the time position at which the SSB signal is sent.
  • the number of first hop relay nodes is 4, each relay node selects a different spreading codeword, RN1 selects [1000], and only transmits on SSB block 1, and RN2 selects [0100] It is only sent on SSB block 2, RN3 selects [0010], it only sends on SSB block 3, and RN4 selects [0001], it only sends on SSB block 4.
  • the relay node uses SSB blocks at different positions or SSB blocks at the same position to send SSB signals in different transmission cycles.
  • Relay nodes with the same hop count use different location SSB blocks to send SSB signals in different transmission cycles.
  • the relay node can obtain hierarchical characteristics when it uses different SSB blocks to send SSB signals in different transmission cycles.
  • FIG. 4 is a schematic diagram of SSB blocks sent by four relay nodes at the first time position in the third cycle. If the SSB signal of RN3 can be sent on the SSB block sending RN1 at the first time position in the third cycle, the SSB signal of RN4 can be sent on the SSB block sending RN2; the SSB of RN1 can be sent on the SSB block sending RN3 Signal; the SSB signal of RN2 can be sent on the SSB block of RN4.
  • FIG. 5 is a schematic structural diagram of a reference signal sending apparatus according to an embodiment of the present application.
  • the device includes: a determining unit 501 and a sending unit 502;
  • the determining unit 501 is configured to determine the time position of periodically sending the SSB signal of the synchronization sequence block according to the hop number of the relay node;
  • the sending unit 502 is configured to send the SSB signal on a different SSB block at the same time position determined by the sending unit 502 as the first node; wherein, the first node is a relay node with the same hop number as the current relay node.
  • the determining unit 501 is further configured to use a spreading codeword different from the first node for selecting the position of the SSB block in the time position of sending the SSB signal;
  • the sending unit 502 is further used to send SSB signals using SSB blocks at different positions in different sending cycles.
  • the units in the above embodiments may be integrated into one, or may be deployed separately; they may be combined into one unit, or may be further split into multiple subunits.
  • the relay node determines the time position of periodically sending the SSB signal of the synchronization sequence block according to its own hop count; and the relay nodes with the same hop count send the SSB signal in different SSB blocks.
  • This scheme guarantees the orthogonality of the SSB signal sent by the relay node to avoid the interference of the transmitted and received signals.
  • FIG. 6 is a schematic structural diagram of a computing device according to an embodiment of the present application.
  • the computing device may be a base station or a terminal, including a power supply, various types of housings, and other structures.
  • the server may further include: at least one processor 601, an input interface 603, and an output interface 604.
  • the input interface 603 may be some network interfaces or user interfaces.
  • the storage device 605 may include volatile memory (volatile memory), such as random-access memory (RAM); the storage device 605 may also include non-volatile memory (non-volatile memory), such as fast A flash memory (flash memory), a solid-state drive (SSD), etc .; the storage device 605 may also include a combination of the aforementioned types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • SSD solid-state drive
  • the processor 601 may be a central processing unit (central processing unit, CPU). In one embodiment, the processor 601 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (programmable logic device, PLD), or the like.
  • the PLD can be a field-programmable gate array (field-programmable gate array, FPGA), a general-purpose array logic (generic array logic, GAL), and so on.
  • the storage device 605 is also used to store program instructions.
  • the processor 601 can call the program instructions to implement the various methods and steps mentioned above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参考信号的发送方法,该方法包括:根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置;使用与第一节点在同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为同本中继节点跳数相同的中继节点。

Description

一种参考信号的发送方法、装置以及存储介质
本申请要求于2018年11月02日提交中国专利局、申请号为201811299329.7、名称为“一种参考信号的发送方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术.域,特别涉及一种参考信号的发送方法、装置以及存储介质。
背景
支持无线回传中继链路能够实现更加灵活和密集的小区部署。由于未来移动通信系统可提供的带宽更大,同时还能够部署大规模多输入多输出(MIMO:Multiple-Input Multiple-Output)系统或者多波束系统,给部署统一的接入和回传链路提供了机会,使得密集网络部署变得更加简单容易。
中继节点可以在时间,频率或者空间上复用接入和回传链路。接入和回传链路可能是在相同的频段或者在不同频段上,当接入和回传链路在同频上时,要求更加紧凑的互操作来配置双工限制避免干扰。
在中继节点的发现过程中,一个中继节点需要检测参考信号,即同步序列块(SSB:Synchronous sequence block)信号,来发现新的中继节点,同时也需要发送参考信号用来其他中继节点发现本中继节点。受限于双工的限制,中继节点不能同时接收和发送参考信号,因此,中继节点要协调好参考信号的收发关系。
技术内容
本申请实施例提供一种参考信号的发送方法,应用于任一中继节点上,该方法包括:
根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置;
使用与第一节点在同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为同本中继节点跳数相同的中继节点。
本申请实施例还提供一种参考信号的发送装置,应用于任一中继节点上,该装置包括:确定单元和发送单元;
所述确定单元,用于根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置;
所述发送单元,用于使用与第一节点在所述发送单元确定的同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为同本中继节点跳数相同的中继节点。
相应地,本申请实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有程序指令,所述程序指令被执行时,用于实现上述参考信号的发送方法。
附图说明
图1A为本申请实施例提供的参考信号的发送方法的应用场景的系统结构示意图;
图1B为本申请实施例提供的参考信号的发送方法的流程示意图;
图2为本申请实施例所述的4跳中继节点在基础周期发送SSB信号的位置示意图;
图3为本申请实施例所述的4跳中继节点在3倍基础周期发送 SSB信号的位置示意图;
图4为本申请实施例所述的同一时间位置的不同SSB块上发送SSB信号的示意图;
图5为本申请实施例提供的参考信号的发送装置的结构示意图;以及
图6为本申请实施例提供的一种计算设备的结构示意图。
实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图并举实施例,对本发明的技术方案进行详细说明。
本申请实施例提供一种参考信号的发送方法,应用于任一中继节点上,该中继节点根据自身的跳数确定周期性发送同步序列块SSB信号的时间位置;并且相同跳数的中继节点发送SSB信号的SSB块均不相同。该方案保证中继节点发送SSB信号的正交性,以避免收发信号的干扰。
通常情况下,在无线通信中,信息不是直接从基站到终端的一次传输,而是经过从基站到终端之间的多个中继节点的转发,即信息的传输是通过链路上的多个中继节点的转发完成的。
在一些实施例中,一个中继节点位于基站到终端之间的位置,也即位于基站到终端之间的第几跳,就是该中继节点的跳数,这里,多跳就是多次转发。
本申请实施例中,在确定中继节点的跳数,以及确定发送SSB信号的位置时,存在两种实现方式,具体如下:
第一种;通过检测其它中继节点发送的SSB信号实现,具体为:
通过检测上一跳中继节点发送的SSB信号,确定上一跳中继节点 发送SSB信号的周期性时间位置;
根据上一跳中继节点发送SSB信号的周期性时间位置确定上一跳中继节点的跳数,进一步确定本中继节点的跳数。
根据配置信息确定本中继节点所处跳数对应的发送SSB信号的周期性时间位置;
通过检测周期性时间位置上的SSB块被占用的情况,使用未被占用的SSB块发送SSB信号;或,在确定的周期性时间位置上随机选择SSB块发送SSB信号。
第二种:通过网络设备发送的公共控制信令和专用信令实现,具体为:
网络设备向中继节点发送公共控制信令和专用信令;其中,所述公共控制信令中携带每个中继节点的跳数;所述公共控制信令携带每一跳中继节点周期性发送SSB信号的时间位置;所述专用信令携带正交扩频码信息。
中继点接收网络设备发送的公共控制信令;根据接收到的公共控制信令确定本中继节点的跳数;根据接收到的公共控制信令确定每一跳中继节点周期性发送SSB信号的时间位置。
中继节点接收网络设备发送的专用信令;根据所述专用信令确定与本节点相同跳数的中继节点发送SSB信号的SSB块的位置。
网络设备发送公共信令时,周期性发送,或者中继节点的跳数变化时发送。
图1A为本申请实施例提供的参考信号的发送方法的应用场景的系统结构示意图,在本发明本申请实施例的应用场景中,包括基站11、中继节点12以及终端13。
其中,基站11可以发送回传链路的下行数据;以及接收回传链 路的上行数据。中继节点12,根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置;并使用与第一节点在同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为同所述本中继节点跳数相同的中继节点;
终端13,发送接入链路的上行数据;并接收接入链路的下行数据。更进一步的,终端13还可以接收各自的OCC信息,用于找到发送SSB的时间位置。
下面结合附图,详细说明本申请实施例中参考信号的发送过程。
参见图1B,图1B为本申请实施例提供的参考信号的发送方法的流程示意图。具体步骤为:
步骤101,中继节点根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置。
参见图2,图2为本申请实施例所述的4跳中继节点在基础周期发送SSB信号的位置示意图。
图2中以20ms为一周期,在每个周期中第一个时间位置用于跳数为1的中继节点(1st hop RN:1st hop Relay Node)发送SSB信号,第二个时间位置用于跳数为2的中继节点(2st hop RN)发送SSB信号;第三个时间位置用于跳数为3的中继节点(3st hop RN)发送SSB信号;第四个时间位置用于跳数为4的中继节点(4st hop RN)发送SSB信号。
参见图3,图3为本申请实施例所述的4跳中继节点在3倍基础周期发送SSB信号的位置示意图。
图3中以60ms为一周期,在每个周期中第一个时间位置用于跳数为1的中继节点(1st hop RN)发送SSB信号,第四个时间位置用于跳数为2的中继节点(2st hop RN)发送SSB信号;第七个时间位 置用于跳数为3的中继节点(3st hop RN)发送SSB信号;第10个时间位置用于跳数为4的中继节点(4st hop RN)发送SSB信号。
步骤102,该中继节点使用与第一节点在同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为同本中继节点跳数相同的中继节点。
参见图4、图4为本申请实施例所述的同一时间位置的不同SSB块上发送SSB信号的示意图。图4以图1B中的第一跳中继节点在第三周期的第一时间位置上选择SSB块为例,假设处于第一跳的中继节点的节点个数为4,分别为RN1、RN2、RN3和RN4。
针对第三周期第一时间位置上的SSB块从左到右,以两组标号表示,从左到右分别为:第一组、第二组。
RN1选择第一组标号为2和3组成的SSB块发送SSB信号,RN2选择第一组标号为4和5组成的SSB块发送SSB信号;RN3选择第二组标号为1和2组成的SSB块发送的SSB信号;RN4选择第二组标号为3和4组成的SSB块发送SSB信号。
通过上述实现,可以保证发送SSB信号的正交性,进而避免干扰。
该中继节点使用与第一节点在同一时间位置的不同SSB块上发送SSB信号的具体实现可以为:
使用与第一节点不同的扩频码字,用于选择发送所述SSB信号的时间位置中的SSB块的位置。
如图4中第一跳中继节点个数是4,每个中继节点选择不同的扩频码字,RN1选择[1000],就只在SSB块1上发送,而RN2选择[0100],就只在SSB块2上发送,RN3选择[0010],就只在SSB块3上发送,RN4选择[0001],就只在SSB块4上发送。
上述给出一种实现正交性的一种具体实现方式,具体实现正交性的方式不限于上述给出的实现方式。
中继节点在不同的发送周期使用不同位置的SSB块,或相同位置的SSB块发送SSB信号。
相同跳数中继节点在不同的发送周期内使用不同位置SSB块发送SSB信号。中继节点在不同的发送周期使用不同位置的SSB块发送SSB信号时,可以获得分级特性。
图4中给出的是第三周期第一时间位置上四个中继节点发送SSB信号的SSB块的示意图。如果在第三周期第一时间位置上可以在发送RN1的SSB块上发送RN3的SSB信号,可以在发送RN2的SSB块上发送RN4的SSB信号;可以在发送RN3的SSB块上发送RN1的SSB信号;可以在发送RN4的SSB块上发送RN2的SSB信号。
这仅仅是一种举例,具体实现时不限于上述实现,只要保证在不同的发送周期使用不同的SSB块发送SSB信号即可。
基于同样的发明构思,本申请实施例中还提供一种参考信号的发送装置,应用于任一中继节点上。参见图5,图5为本申请实施例提供的参考信号的发送装置的结构示意图。该装置包括:确定单元501和发送单元502;
确定单元501,用于根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置;
发送单元502,用于使用与第一节点在发送单元502确定的同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为同本中继节点跳数相同的中继节点。
较佳地,
确定单元501,进一步用于使用与第一节点不同的扩频码字,用于选择发送所述SSB信号的时间位置中的SSB块的位置;
发送单元502,进一步用于在不同的发送周期使用不同位置的SSB块发送SSB信号。
上述实施例的单元可以集成于一体,也可以分离部署;可以合并为一个单元,也可以进一步拆分成多个子单元。
综上所述,本申请通过中继节点根据自身的跳数确定周期性发送同步序列块SSB信号的时间位置;并且相同跳数的中继节点发送SSB信号的SSB块均不相同。该方案保证中继节点发送SSB信号的正交性,以避免收发信号的干扰。
请参见图6,为本申请实施例提供的一种计算设备的结构示意图。如图6所示,该计算设备可以是基站,也可以是终端,包括供电电源、各类壳体等结构,所述服务器还可以包括:至少一个处理器601,输入接口603,输出接口604,存储装置605。
在一个实施例中,输入接口603可以是一些网络接口或者用户接口。
所述存储装置605可以包括易失性存储器(volatile memory),如随机存取存储器(random-access memory,RAM);存储装置605也可以包括非易失性存储器(non-volatile memory),如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储装置605还可以包括上述种类的存储器的组合。
所述处理器601可以是中央处理器(central processing unit,CPU)。在一个实施例中,所述处理器601还可以包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD) 等。上述PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。
在一个实施例中,所述存储装置605还用于存储程序指令。所述处理器601可以调用所述程序指令,实现上述提及的各种方法和步骤。
本申请实施例的所述处理器601的具体功能实现可参考前述各个实施例中相关内容的描述,在此不赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (15)

  1. 一种参考信号的发送方法,应用于任一中继节点上,所述方法包括:
    根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置;
    使用与第一节点在同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为同所述本中继节点跳数相同的中继节点。
  2. 根据权利要求1所述的方法,进一步包括:
    使用与第一节点不同的扩频码字,用于选择发送所述SSB信号的时间位置中的SSB块的位置。
  3. 根据权利要求1所述的方法,进一步包括:
    在不同的发送周期使用不同的SSB块,或相同的SSB块发送SSB信号。
  4. 根据权利要求1-3任一项所述的方法,进一步包括:
    通过检测上一跳中继节点发送的SSB信号,确定上一跳中继节点发送SSB信号的周期性时间位置;
    根据上一跳中继节点发送SSB信号的周期性时间位置确定上一跳中继节点的跳数,进一步确定本中继节点的跳数。
  5. 根据权利要求4所述的方法,进一步包括:
    根据配置信息确定本中继节点所处跳数对应的发送SSB信号的周期性时间位置;
    通过检测周期性时间位置上的SSB块被占用的情况,使用未被占用的SSB块发送SSB信号;或,在确定的周期性时间位置上随机选择SSB块发送SSB信号。
  6. 根据权利要求1-3任一项所述的方法,进一步包括:
    接收网络设备发送的公共控制信令;其中,所述公共控制信令中携带每个中继节点的跳数;
    根据接收到的公共控制信令确定本中继节点的跳数。
  7. 根据权利要求6所述的方法,进一步包括:
    根据接收到的公共控制信令确定每一跳中继节点周期性发送SSB信号的时间位置;其中,所述公共控制信令携带每一跳中继节点周期性发送SSB信号的时间位置;
    接收网络设备发送的专用信令;其中,所述专用信令携带正交扩频码信息。
    根据所述专用信令确定与本节点相同跳数的中继节点发送SSB信号的SSB块的位置。
  8. 根据权利要求6所述的方法,其特征在于,所述公共信令进行周期发送,或者在中继节点的跳数变化时发送。
  9. 一种参考信号的发送装置,应用于任一中继节点上,包括:确定单元和发送单元;
    所述确定单元,用于根据本中继节点的跳数确定周期性发送同步序列块SSB信号的时间位置;
    所述发送单元,用于使用与第一节点在所述发送单元确定的同一时间位置的不同SSB块上发送SSB信号;其中,所述第一节点为所述同本中继节点跳数相同的中继节点。
  10. 根据权利要求9所述的装置,其中,所述确定单元,进一步用于使用与第一节点不同的扩频码字,用于选择发送所述SSB信号的时间位置中的SSB块的位置;
    所述发送单元,进一步用于在不同的发送周期使用不同的SSB块,或相同的SSB块发送SSB信号。
  11. 根据权利要求9-10任一项所述的装置,其中,所述确定单元,进一步通过检测上一跳中继节点发送的SSB信号,确定上一跳中继节点发送SSB信号的周期性时间位置;并根据上一跳中继节点发送SSB信号的周期性时间位置确定上一跳中继节点的跳数,进一步确定本中继节点的跳数。
  12. 根据权利要求11所述的装置,其中,所述确定单元,进一步根据配置信息确定本中继节点所处跳数对应的发送SSB信号的周期性时间位置;
    所述发送单元,进一步通过检测周期性时间位置上的SSB块被占用的情况,使用未被占用的SSB块发送SSB信号;或,在确定的周期性时间位置上随机选择SSB块发送SSB信号。
  13. 根据权利要求9-10任一项所述的装置,其中,所述确定单元进一步接收网络设备发送的公共控制信令;其中,所述公共控制信令中携带每个中继节点的跳数;并根据接收到的公共控制信令确定本中继节点的跳数。
  14. 根据权利要求13所述的装置,其中,所述确定单元,进一步根据接收到的公共控制信令确定每一跳中继节点周期性发送SSB信号的时间位置;其中,所述公共控制信令携带每一跳中继节点周期性发送SSB信号的时间位置;并接收网络设备发送的专用信令;其中,所述专用信令携带正交扩频码信息。
    所述发送单元,进一步根据所述专用信令确定与本节点相同跳数的中继节点发送SSB信号的SSB块的位置。
  15. 一种计算机存储介质,所述计算机存储介质中存储有程序指令,所述程序指令被执行时,实现如权利要求1-8任一项所述的参考信号的发送方法。
PCT/CN2019/078681 2018-11-02 2019-03-19 一种参考信号的发送方法、装置以及存储介质 WO2020087839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811299329.7A CN111147200B (zh) 2018-11-02 2018-11-02 一种参考信号的发送方法和装置
CN201811299329.7 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020087839A1 true WO2020087839A1 (zh) 2020-05-07

Family

ID=70463627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078681 WO2020087839A1 (zh) 2018-11-02 2019-03-19 一种参考信号的发送方法、装置以及存储介质

Country Status (2)

Country Link
CN (1) CN111147200B (zh)
WO (1) WO2020087839A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128410A1 (ko) * 2017-01-06 2018-07-12 엘지전자 (주) 무선 통신 시스템에서의 참조 신호 수신 방법 및 이를 위한 장치
CN108353318A (zh) * 2017-10-19 2018-07-31 北京小米移动软件有限公司 物理广播信道pbch带宽的处理方法及装置和基站
WO2018144337A1 (en) * 2017-02-03 2018-08-09 Idac Holdings, Inc. Broadcast channel transmission and demodulation
US20180279387A1 (en) * 2017-03-24 2018-09-27 Electronics And Telecommunications Research Institute Method and apparatus for transmitting ra preamble in nr system
WO2018172987A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Quasi-colocation of system access and control signals
CN108702721A (zh) * 2018-05-11 2018-10-23 北京小米移动软件有限公司 寻呼同步方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105786948A (zh) * 2015-12-29 2016-07-20 国网冀北电力有限公司技能培训中心 一种基于gpu的olap系统
US10548153B2 (en) * 2017-04-04 2020-01-28 Qualcomm Incorporated Methods and apparatus for supporting frequency division multiplexing of multiple waveforms
CN107992449B (zh) * 2017-12-05 2021-04-30 北京工业大学 一种基于低秩表示的地铁异常流量检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128410A1 (ko) * 2017-01-06 2018-07-12 엘지전자 (주) 무선 통신 시스템에서의 참조 신호 수신 방법 및 이를 위한 장치
WO2018144337A1 (en) * 2017-02-03 2018-08-09 Idac Holdings, Inc. Broadcast channel transmission and demodulation
US20180279387A1 (en) * 2017-03-24 2018-09-27 Electronics And Telecommunications Research Institute Method and apparatus for transmitting ra preamble in nr system
WO2018172987A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Quasi-colocation of system access and control signals
CN108353318A (zh) * 2017-10-19 2018-07-31 北京小米移动软件有限公司 物理广播信道pbch带宽的处理方法及装置和基站
CN108702721A (zh) * 2018-05-11 2018-10-23 北京小米移动软件有限公司 寻呼同步方法及装置

Also Published As

Publication number Publication date
CN111147200B (zh) 2021-05-14
CN111147200A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
JP2020191640A5 (zh)
US20220272699A1 (en) Time domain resource format configuration method, communication apparatus, and communication system
JP5367163B2 (ja) リモート無線周波数ユニットの発見及びトポロジ構成の建立のシステム及び方法
CN106385708B (zh) 一种数据传输方法及无线链路机
EP3739825B1 (en) Relay routing method and communication node
CN113259864A (zh) 窄带通信方法、对讲机、设备、存储介质及自组网系统
CN113746585A (zh) 授时方法和通信装置
JP5366920B2 (ja) 無線通信システム、無線通信方法及び無線通信プログラム
JP2016005215A (ja) 中継装置、中継方法、およびコンピュータ・プログラム
JP7382168B2 (ja) ユニキャストトラフィックの同期
WO2019028903A1 (zh) 一种上行信号的传输方法及设备
WO2020087839A1 (zh) 一种参考信号的发送方法、装置以及存储介质
TW202005321A (zh) 傳輸信號的方法、中繼設備和網路設備
CN106851853B (zh) 用于多跳无中心网络的多址接入控制方法及控制装置
WO2018143338A1 (ja) ユーザ装置、及び基地局
JP5561646B2 (ja) 無線通信端末、無線通信方法
CN110971600A (zh) 全自组Mesh网调节方法、装置及设备
JP7477566B2 (ja) アクセス方法及び伝送ポイント
JP2019153844A (ja) 通信装置、通信方法およびプログラム
US11272348B2 (en) Radio communication apparatus and communication system
CN113365325B (zh) 数据传输方法、装置、存储介质及电子设备
JP6890334B2 (ja) 通信装置、制御方法、および、プログラム
JP5549831B2 (ja) 無線通信装置、マルチホップ無線通信システム、無線通信方法およびマルチホップ無線通信方法
JP6728263B2 (ja) 通信システムにおける発見
JP2006238028A (ja) 通信チャネル決定装置及び方法、無線アクセス装置、および、無線ネットワーク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879175

Country of ref document: EP

Kind code of ref document: A1