WO2020087599A1 - 牵引变流器的中间直流回路以及牵引变流器 - Google Patents

牵引变流器的中间直流回路以及牵引变流器 Download PDF

Info

Publication number
WO2020087599A1
WO2020087599A1 PCT/CN2018/117029 CN2018117029W WO2020087599A1 WO 2020087599 A1 WO2020087599 A1 WO 2020087599A1 CN 2018117029 W CN2018117029 W CN 2018117029W WO 2020087599 A1 WO2020087599 A1 WO 2020087599A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
loop
resistor
traction converter
Prior art date
Application number
PCT/CN2018/117029
Other languages
English (en)
French (fr)
Inventor
张修同
田鹏刚
王雷
马连凤
张强强
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2020087599A1 publication Critical patent/WO2020087599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • Embodiments of the present invention relate to the field of traction converters, and in particular, to an intermediate DC loop of a traction converter and a traction converter.
  • the drive system of AC locomotives mainly uses AC traction motors.
  • the power supply mode is AC-DC-AC.
  • the power supply process is: the locomotive supplies power to the primary side of the traction transformer through the pantograph and main circuit breaker, and the secondary winding of the traction transformer The output is to the four-quadrant rectifier in the traction converter to realize the conversion of the power supply from AC to DC.
  • the converted DC power is output to the intermediate DC loop, and then through the traction inverter to realize the conversion of DC power to three-phase AC power, and finally output the three-phase AC power to the traction motor to provide electrical energy for the traction motor.
  • the intermediate DC loop has the functions of secondary filtering, DC support, overvoltage suppression, and discharge of the DC power passing through the four-quadrant rectifier.
  • the discharge function is mainly to release the electric energy in the intermediate DC circuit after the locomotive traction converter stops working, reduce the voltage of the intermediate DC circuit to a safe voltage range, and ensure the safety of maintenance personnel.
  • a fast discharge resistor and a slow discharge resistor are provided in the intermediate DC circuit.
  • the voltage of the intermediate DC link is detected by the voltage detection board, and the voltage detection indicator indicates whether the voltage of the intermediate DC link has fallen to the safe voltage range. When the voltage of the intermediate DC link is within the safe voltage range, the voltage detection indicator goes off.
  • the voltage detection board When the voltage detection board malfunctions, so that the voltage in the intermediate DC link is not within the safe voltage range, the voltage detection indicator goes out. In this case, the maintenance personnel opens the traction converter cabinet, which may cause a safety accident.
  • Embodiments of the present invention provide an intermediate DC loop of a traction converter and a traction converter, so as to avoid erroneous prompts to workers due to a failure of a voltage detection circuit in the prior art, and occurrence of safety accidents.
  • an embodiment of the present invention provides an intermediate DC loop of a traction converter, including: a ground switch discharge circuit, a ground detection circuit, a voltage detection circuit, a secondary filter circuit, and a DC support circuit; wherein, the ground switch One end of the discharge circuit is connected to the positive end of the intermediate DC loop, and the other end is connected to the negative end of the intermediate DC loop.
  • the grounding switch discharge circuit is connected to the ground detection circuit, the voltage detection circuit, and the second The secondary filter circuit and the DC support circuit are connected in parallel;
  • the grounding switch discharge circuit is used to short-circuit and ground the positive and negative ends of the intermediate DC loop to release the electrical energy of the intermediate DC loop when the traction converter stops working;
  • the grounding detection circuit is used to detect whether there is a grounding phenomenon in the main circuit of the traction converter when the traction converter is working; wherein the main circuit includes an input circuit, a rectifier circuit, an intermediate DC loop, and traction Inverter circuit;
  • the voltage detection circuit is used to indicate whether the voltage of the intermediate DC loop is within a safe range
  • the second filter circuit is used to remove the second harmonic in the voltage output by the rectifier circuit and store electrical energy
  • the DC support circuit is used for storing electrical energy, exchanging electrical energy, and smoothing the voltage output by the rectifier circuit.
  • the ground switch discharge circuit includes a ground switch
  • the ground detection circuit is a floating-point ground resistance voltage division detection circuit.
  • the floating-point grounding resistor divider detection circuit includes: a first resistor, a second resistor, a first voltage sensor, and a capacitor; one end of the first resistor and the intermediate DC loop Connected to the positive end of the first resistor, the other end of the first resistor is connected in series with one end of the second resistor, the other end of the second resistor is connected to the negative end of the intermediate DC loop, the capacitor, the first A voltage sensor is connected in parallel with the second resistor, and the connection point of the first resistor and the second resistor is grounded;
  • the capacitor is used to filter the voltage ripple between the negative terminal and the ground terminal of the intermediate DC loop;
  • the first voltage sensor is used to detect the voltage between the negative terminal and the ground terminal of the intermediate DC loop, if the absolute value of the difference between the voltage and the first preset voltage value is less than or equal to the first preset When the threshold is reached, it is determined that there is no grounding phenomenon in the main circuit of the traction converter. If the absolute value of the difference between the voltage and the voltage of the intermediate DC link is less than or equal to the second preset threshold, or the voltage is greater than Or equal to 0 and less than or equal to a third preset threshold, or the voltage fluctuates within a preset range, it is determined that there is a grounding phenomenon in the main circuit of the traction converter.
  • the intermediate DC loop further includes a second voltage sensor; wherein, one end of the second voltage sensor is connected to the positive end of the intermediate DC loop, and the other end is connected to the intermediate DC loop The negative terminal connection;
  • the second voltage sensor is used to detect the voltage of the intermediate DC link.
  • the resistance values of the first resistance and the second resistance are equal.
  • the intermediate DC circuit further includes: a chopping fast discharge circuit and a slow discharge circuit; one end of the chopping fast discharge circuit is connected to the positive end of the intermediate DC circuit, and the other end is connected to The negative end of the intermediate DC loop is connected; the chopper fast discharge circuit is connected in parallel with the slow discharge circuit.
  • the chopping fast discharge circuit includes two identical insulated gate bipolar transistors (Insulated Gate Bipolar Transistor referred to as IGBT), two identical diodes, a third resistor and a current sensor;
  • IGBT Insulated Gate Bipolar Transistor
  • the IGBT element is connected to the positive end of the intermediate DC loop, the IGBT element is connected in series with the diode, the diode is connected to the negative end of the intermediate DC loop, and one end of the current sensor is connected to the IGBT element Between the diode, the other end is connected to one end of the third resistor, and the other end of the third resistor is connected to the negative end of the intermediate DC loop.
  • the slow discharge circuit includes two identical resistors, and each is connected in parallel with one of the voltage detection circuits.
  • an embodiment of the present invention provides a traction converter, which includes the intermediate DC loop described in any one of the embodiments of the first aspect of the invention, and an input circuit, a rectifier circuit, and a traction inverter circuit.
  • the intermediate DC circuit and the input circuit, the rectifier circuit, and the traction inverter circuit are connected in series.
  • the embodiment of the present invention provides an intermediate DC loop of a traction converter and a traction converter.
  • a grounding switch discharge circuit in the intermediate DC loop of the traction converter, and making the positive end of the grounding switch discharge circuit, The negative terminal is respectively connected to the positive terminal and the negative terminal of the intermediate DC circuit.
  • the discharge circuit of the grounding switch is turned on, thereby short-circuiting the positive and negative terminals of the intermediate DC circuit And grounded to achieve the purpose of releasing electrical energy.
  • the discharge circuit of the grounding switch can also release the electrical energy of the intermediate DC link before the worker opens the traction converter cabinet, thereby further ensuring the safety of the worker.
  • Figure 1 is a circuit structure diagram of an intermediate DC loop in the prior art
  • FIG. 2 is a circuit structure diagram of an intermediate DC loop provided by an embodiment of the present invention.
  • FIG. 3 is a circuit structure diagram of an intermediate DC loop provided by another embodiment of the present invention.
  • the main circuit of the traction converter includes an input circuit, a rectifier circuit, an intermediate DC loop, and a traction inverter circuit, and the main circuit is concentrated in the traction converter cabinet.
  • the intermediate DC circuit 10 in the traction converter will store electrical energy. Therefore, when the locomotive traction converter stops working and the traction converter cabinet needs to be opened, the electrical energy stored in the intermediate DC circuit 10 must be fully released To avoid potential safety hazards.
  • FIG. 2 is a circuit structure diagram of an intermediate DC loop provided by an embodiment of the present invention.
  • the intermediate DC circuit 10 includes a ground switch discharge circuit 11, a ground detection circuit 12, a voltage detection circuit 13, a secondary filter circuit 14, and a DC support circuit 15. Among them, only the ground switch discharge circuit 11, the ground detection circuit 12, and the voltage detection circuit 13 are shown in FIG.
  • the intermediate DC link 100 includes other circuits, which are not shown in FIG. 2.
  • the intermediate DC circuit 10 has the ground switch discharge circuit 11, the ground detection circuit 12, the voltage detection circuit 13, the secondary filter circuit 14, and the DC support circuit 15 mentioned in the embodiment of the present invention. It may include other circuits. For details, please refer to the prior art, which will not be repeated here.
  • ground switch discharge circuit 11 One end of the ground switch discharge circuit 11 is connected to the positive end of the intermediate DC circuit 10, and the other end is connected to the negative end of the intermediate DC circuit 10, the ground switch discharge circuit 11 and the ground detection circuit 12, The voltage detection circuit 13, the secondary filter circuit 14, and the DC support circuit 15 are connected in parallel.
  • the grounding switch discharge circuit 11 is used for short-circuiting the positive end and the negative end of the intermediate DC loop 10 and grounding to release the electrical energy of the intermediate DC loop 10 when the traction converter stops working.
  • the ground detection circuit 12 is used to detect whether there is a ground phenomenon in the main circuit of the traction converter when the traction converter is working; wherein, the main circuit includes a rectifier circuit, an intermediate DC circuit, and a traction inverter ⁇ ⁇ Circuit.
  • the voltage detection circuit 13 is used to indicate whether the voltage of the intermediate DC link 10 is within a safe range.
  • the second filter circuit 14 is used to filter out the second harmonic in the voltage output by the rectifier circuit and store electrical energy.
  • the DC support circuit 15 is used for storing electrical energy, exchanging electrical energy, and smoothing the voltage output by the rectifier circuit.
  • the locomotive power supply system provides electrical energy to the locomotive
  • the traction converter is in a working state
  • the intermediate DC circuit 10 stores electrical energy.
  • the traction converter stops working.
  • the traction converter cabinet needs to be opened, it is necessary to ensure that the voltage of the intermediate DC circuit 10 is in a safe range. Therefore, before opening the traction converter cabinet, the electrical energy in the intermediate DC link 10 needs to be released to reduce the voltage of the intermediate DC link 10 to a safe range.
  • the intermediate DC circuit 10 is provided with a voltage detection circuit 13 that can detect the voltage of the intermediate DC circuit 10 and design two display states to indicate whether the voltage of the intermediate DC circuit 10 is within a safe range.
  • a voltage detection indicator may be designed in the voltage detection circuit 13. When the voltage detection circuit 13 detects that the voltage of the intermediate DC link 10 is higher than the maximum safe voltage, the voltage detection indicator is in a lit state; when the voltage detection circuit 13 detects When the voltage of the intermediate DC link 10 is within the safe range, the voltage detection indicator goes out.
  • the voltage detection circuit 13 may have a situation where the detection function cannot be used normally.
  • the voltage of the intermediate DC link 10 is higher than the maximum safe voltage, and the voltage of the intermediate DC link 10 detected by the voltage detection circuit 13 is in a safe range To turn off the voltage detection indicator. If the worker opens the traction converter cabinet at this time, it will threaten the personal safety of the worker. Therefore, in this embodiment, when the worker needs to open the traction converter cabinet, before opening the traction converter cabinet, regardless of whether the voltage in the intermediate DC loop 10 detected by the voltage detection circuit 13 is within a safe range, the grounding switch is turned on The discharge circuit 11 keeps the ground switch discharge circuit 11 on.
  • the grounding switch discharge circuit 11 When the grounding switch discharge circuit 11 is turned on, the positive and negative ends of the grounding switch discharge circuit 11 are short-circuited and grounded. At this time, the positive and negative ends of the grounding switch discharge circuit 11 and the positive end of the intermediate DC circuit 10 are respectively The negative terminal is connected. Therefore, through the grounding switch discharge circuit 11, the positive terminal and the negative terminal of the intermediate DC circuit 10 are short-circuited and grounded, so that the electrical energy stored in the intermediate DC circuit 10 can be released and the voltage of the intermediate DC circuit 10 can be reduced to a safe range.
  • the ground switch discharge circuit is designed in the intermediate DC circuit, and the positive and negative terminals of the ground switch discharge circuit are respectively connected to the positive terminal and the negative terminal of the intermediate DC circuit.
  • the discharge circuit of the grounding switch is turned on, so that the positive and negative ends of the intermediate DC loop are short-circuited and grounded, so as to achieve the purpose of releasing electrical energy.
  • the discharge circuit of the grounding switch can also release the electrical energy of the intermediate DC link before the worker opens the traction converter cabinet, thereby further ensuring the safety of the worker.
  • FIG. 3 is a circuit structure diagram of an intermediate DC loop provided by another embodiment of the present invention.
  • the ground switch discharge circuit 11 includes a ground switch 111;
  • two identical voltage detection circuits 131 and 132 are provided in the intermediate DC circuit 10, and two parallel voltage detection indicator lights, namely 131a, are provided in the voltage detection circuits 131 and 132, respectively And 131b, 131a and 132b.
  • the indicator lights 131a and 131b, 131a and 132b are on, and when the voltage in the intermediate DC link 10 is in the maximum safe range, the indicator lights 131a and 131b, 131a And 132b goes out.
  • the grounding switch 111 as the grounding switch discharge circuit 11, when the worker opens the traction converter cabinet and closes the grounding switch 111, the purpose of releasing the power of the intermediate DC loop can be achieved, and the operation is simple and the design cost is low.
  • the ground detection circuit 12 is a floating-point ground resistance voltage divider detection circuit 120.
  • the floating-point grounding resistor divider detection circuit 120 includes: a first resistor R1, a second resistor R2, a first voltage sensor V1, and a capacitor C; one end of the first resistor R1 is connected to The positive end of the intermediate DC loop 10 is connected, the other end of the first resistor R1 is connected in series with one end of the second resistor R2, and the other end of the second resistor R2 is connected to the negative end of the intermediate DC loop 10
  • the capacitor C, the first voltage sensor V1 and the second resistor R2 are connected in parallel, and the connection point of the first resistor R1 and the second resistor R2 is grounded.
  • the capacitor C is used to filter the voltage ripple between the negative terminal of the intermediate DC loop 10 and the ground terminal.
  • the first voltage sensor V1 is used to detect the voltage between the negative terminal and the ground terminal of the intermediate DC loop 10, if the absolute value of the difference between the voltage and the first preset voltage value is less than or equal to the first
  • a preset threshold it is determined that there is no grounding phenomenon in the main circuit of the traction converter, if the absolute value of the difference between the voltage and the voltage of the intermediate DC link is less than or equal to the second preset threshold, or the If the voltage is greater than or equal to 0 and less than or equal to the third preset threshold, or the voltage fluctuates within a preset range, it is determined that there is a grounding phenomenon in the main circuit of the traction converter.
  • the connection point of the first resistor R1 and the second resistor R2 is grounded, and the first voltage sensor V1 detects the voltage between the negative terminal of the intermediate DC loop 10 and the ground terminal, that is, measures the second The voltage across the resistor R2, where the voltage value detected by the first voltage sensor V1 is related to the resistance of the first resistor R1 and the second resistor R2.
  • the resistance of the first resistor R1 and the second resistor R2 Determine the size of the first preset voltage value, for example, when the resistance values of the first resistor R1 and the second resistor R2 are equal, the first preset voltage value is half of the intermediate DC link voltage; when the resistance value of the first resistor R1 is When the resistance of the second resistor R2 is half, the first preset voltage value is 2/3 of the intermediate DC link voltage.
  • the first preset threshold, the second preset threshold and the third preset threshold can be selected according to the actual circuit, and the embodiment of the present invention does not limit the first preset threshold, the second preset threshold and the third preset threshold the size of.
  • the resistance of the first resistor R1 and the second resistor R2 are equal.
  • the resistance of the first resistor R1 and the second resistor R2 are equal, the voltage of the intermediate DC circuit 10 is 2800V, and the voltage on the first voltage sensor V1 is close to 1/2 of the voltage of the intermediate DC circuit 10
  • the voltage on the first voltage sensor V1 is maintained within [1300V, 1500V], indicating that the intermediate DC link 10 is in a normal state; if the voltage on the first voltage sensor V1 The voltage is close to the voltage of the intermediate DC link 10, for example, the voltage on the first voltage sensor V1 is maintained within [2700V, 2800V], indicating that the positive terminal of the intermediate DC link is grounded; if the voltage on the first voltage sensor V1 is close to 0, such as The voltage on the voltage sensor V1 is maintained at [0V, 100V], indicating that the negative end of the intermediate DC link is grounded; if the voltage on the first voltage sensor V1 fluctuates within the voltage range of the positive and negative intermediate DC link
  • connection point of the first resistor and the second resistor is grounded, so that when a single point of the main circuit of the traction converter is grounded, a short circuit phenomenon can be avoided.
  • the capacitor C is connected in parallel with the first voltage sensor V1, which can filter out the voltage ripple between the negative terminal of the intermediate DC loop 10 and the ground terminal, and can reduce the fluctuation of the voltage value measured by the first voltage sensor V1, thereby More accurately measure the voltage across the second resistor R2.
  • the voltage across the first resistor may also be used to determine whether a ground fault has occurred in the main circuit of the traction converter and to detect the location of the ground fault.
  • connection point of the first resistor and the second resistor to ground, and according to the change of the voltage value across the second resistor, it can not only determine whether the main circuit of the traction converter has a ground fault, but also detect the occurrence of ground. The location of the fault.
  • the intermediate DC circuit 10 further includes a second voltage sensor V2; wherein, one end of the second voltage sensor V2 is connected to the positive terminal of the intermediate DC circuit 10, and the other end is connected to all The negative terminal of the intermediate DC link 10 is connected.
  • the second voltage sensor V2 is used to detect the voltage of the intermediate DC link 10.
  • the intermediate DC circuit 10 further includes: a chopping fast discharge circuit 16 and a slow discharge circuit 17; one end of the chopping fast discharge circuit 16 and the positive end of the intermediate DC circuit 10 The other end is connected to the negative end of the intermediate DC loop 10; the chopping fast discharge circuit 16 is connected in parallel with the slow discharge circuit 17.
  • the chopping fast discharge circuit 16 includes two identical IGBT elements 161a and 161b, two identical diodes 162a and 162b, a third resistor R3 and a current sensor I1; the IGBT element 161a and 161b are respectively connected to the positive end of the intermediate DC circuit 10, the IGBT elements 161a and 161b are respectively connected in series with the diodes 161a and 162b, and the diodes 162a and 162b are connected to the negative terminal of the intermediate DC circuit 10 , One end of the current sensor I1 is connected between the IGBT element 161a and the diode 161a and the IGBT element 161b and the diode 161b, and the other end is connected to one end of the third resistor R3, the first The other end of the three resistors is connected to the negative end of the intermediate DC link 10.
  • the slow discharge battery 17 includes two identical resistors R4 and R5, and is connected in parallel with one of the voltage detection circuits 13, respectively.
  • the working principle of the chopping fast discharge circuit 16 and the slow discharge circuit 17 can refer to the prior art, and will not be repeated here.
  • the intermediate DC circuit 10 in any of the above embodiments can be applied to the traction converter 100.
  • the main circuit of the traction converter 100 includes the intermediate DC circuit 10 and the input circuit 20, the rectifier circuit 30, and the traction reverse Variator circuit 40.
  • the traction converter 100 may also include other components, not shown in FIG. 3.
  • the intermediate DC circuit and the input circuit, the rectifier circuit, and the traction inverter circuit are connected in series.
  • the first alternating current flows to the rectifier circuit 30 through the input circuit 20, and the rectifier circuit 30 rectifies the first alternating current into the first direct current, and the first direct current flows to the intermediate direct current circuit 10 through the
  • the intermediate DC loop 10 is filtered to obtain a second DC power, and the first DC current is directed to the traction inverter circuit 40, and the traction inverter circuit 40 converts the second DC power inverter to a second AC power.
  • the working principle of the main circuit of the traction converter 100 can refer to the prior art, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种牵引变流器的中间直流回路(10)以及牵引变流器。牵引变流器的中间直流回路包括接地开关放电电路(11)、接地检测电路(12)、电压检测电路(13)、二次滤波电路(14)以及直流支撑电路(15)。接地开关放电电路的一端与中间直流回路的正端连接,另一端与中间直流回路的负端连接。接地开关放电电路与接地检测电路、电压检测电路、二次滤波电路、直流支撑电路并联,从而使中间直流回路的正端和负端短路并接地,达到释放电能的目的。在牵引变流柜打开前,通过接地开关放电电路释放中间直流回路的电能,可使工作人员不受电压检测电路故障的影响,进一步确保工作人员的安全。

Description

牵引变流器的中间直流回路以及牵引变流器 技术领域
本发明实施例涉及牵引变流器领域,尤其涉及一种牵引变流器的中间直流回路以及牵引变流器。
背景技术
目前,交流机车的传动系统主要采用的是交流牵引电机,其供电方式为交-直-交,供电过程为:机车通过受电弓、主断路器向牵引变压器原边供电,牵引变压器次级绕组输出给牵引变流器中的四象限整流器,实现电源从交流到直流的变换。变换后的直流电输出至中间直流回路,然后通过牵引逆变器,实现直流电到三相交流电的变换,最后将三相交流电输出至牵引电机为牵引电机提供电能。
中间直流回路具有对经过四象限整流器的直流电进行二次滤波、直流支撑、过压抑制、放电等功能。其中,放电功能主要是为了当机车牵引变流器停止工作后,需要释放掉中间直流回路中的电能,将中间直流回路的电压降至安全电压范围,确保检修人员的安全。现有技术中,如图1所示,为了实现中间直流回路的放电功能,在中间直流回路中设置快速放电电阻和慢放电电阻。通过电压检测板检测中间直流回路的电压,并通过电压检测指示灯指示中间直流回路的电压是否降至安全电压范围,当中间直流回路的电压处于安全电压范围时,电压检测指示灯熄灭。
当电压检测板出现功能失常,使得在中间直流回路的电压未处于安全电压范围时,电压检测指示灯熄灭,在此情况下,检修人员打开牵引变流柜,可能导致安全事故的发生。
发明内容
本发明实施例提供一种牵引变流器的中间直流回路以及牵引变流 器,以避免现有技术中因电压检测电路故障导致给工作人员错误的提示,发生安全事故情况的发生。
第一方面,本发明实施例提供一种牵引变流器的中间直流回路,包括:接地开关放电电路、接地检测电路、电压检测电路、二次滤波电路、直流支撑电路;其中,所述接地开关放电电路的一端与所述中间直流回路的正端连接,另一端与所述中间直流回路的负端连接,所述接地开关放电电路与所述接地检测电路、所述电压检测电路、所述二次滤波电路、所述直流支撑电路并联;
所述接地开关放电电路,用于在牵引变流器停止工作时,使中间直流回路的正端和负端短路并接地以释放所述中间直流回路的电能;
所述接地检测电路,用于在牵引变流器工作时,检测所述牵引变流器的主电路中是否存在接地现象;其中,所述主电路包括输入电路、整流器电路、中间直流回路、牵引逆变器电路;
所述电压检测电路,用于指示所述中间直流回路的电压是否处于安全范围;
所述二次滤波电路,用于去除所述整流器电路输出的电压中的二次谐波,以及存储电能;
所述直流支撑电路,用于存储电能、交换电能以及对所述整流器电路输出的电压进行平滑滤波。
在一种可能的实施方式中,所述接地开关放电电路包括接地开关;
所述接地开关在闭合时,使得所述接地开关电路接地。
在一种可能的实施方式中,所述接地检测电路为浮点接地电阻分压检测电路。
在一种可能的实施方式中,所述浮点接地电阻分压检测电路,包括:第一电阻、第二电阻、第一电压传感器和电容;所述第一电阻的一端与所述中间直流回路的正端连接,所述第一电阻的另一端与所述第二电阻的一端串联,所述第二电阻的另一端与所述中间直流回路的负端连接,所述电容、所述第一电压传感器与所述第二电阻并联,所述第一电阻与所述第二电阻的连接点接地;
所述电容,用于滤除所述中间直流回路的负端与接地端之间电压的纹波;
所述第一电压传感器,用于检测所述中间直流回路的负端与接地端之间的电压,若所述电压与第一预设电压值的差值的绝对值小于或等于第一预设阈值时,则确定所述牵引变流器的主电路中不存在接地现象,若所述电压与中间直流回路的电压的差值的绝对值小于或等于第二预设阈值,或所述电压大于或等于0且小于或等于第三预设阈值,或所述电压在预设范围内波动,则确定所述牵引变流器的主电路中存在接地现象。
在一种可能的实施方式中,所述中间直流回路还包括第二电压传感器;其中,所述第二电压传感器的一端与所述中间直流回路的正端连接,另一端与所述中间直流回路的负端连接;
所述第二电压传感器,用于检测所述中间直流回路的电压。
在一种可能的实施方式中,所述第一电阻与所述第二电阻的阻值相等。
在一种可能的实施方式中,所述中间直流回路还包括:斩波快放电路、慢放电电路;所述斩波快放电路的一端与所述中间直流回路的正端连接,另一端与所述中间直流回路的负端连接;所述斩波快放电路与所述慢放电电路并联。
在一种可能的实施方式中,所述斩波快放电路包括两个相同的绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor简称IGBT),两个相同的二极管、第三电阻和电流传感器;所述IGBT元件与所述中间直流回路的正端连接,所述IGBT元件与所述二极管串联,所述二极管与所述中间直流回路的负端连接,所述电流传感器的一端连接在所述IGBT元件与所述二极管之间,另一端与所述第三电阻的一端连接,所述第三电阻的另一端与所述中间直流回路的负端连接。
在一种可能的实施方式中,所述慢放电电路包括两个相同的电阻,并分别与一个所述电压检测电路并联。
第二方面,本发明实施例提供一种牵引变流器,包括第一方面发明实施例任一项所述的中间直流回路以及输入电路、整流器电路、牵 引逆变器电路。
所述中间直流回路以及所述输入电路、所述整流器电路、所述牵引逆变器电路串联。
本发明实施例提供了一种牵引变流器的中间直流回路以及牵引变流器,通过在牵引变流器的中间直流回路中设计了接地开关放电电路,并使接地开关放电电路的正端、负端分别与中间直流回路的正端、负端连接,当中间直流回路的电能需要释放以使电压处于安全范围时,导通接地开关放电电路,从而使中间直流回路的正端和负端短路并接地,达到释放电能的目的。更重要的是,在牵引变流柜打开前,通过接地开关放电电路释放中间直流回路的电能,可使工作人员不受电压检测电路的影响,即电压检测电路故障,不能向工作人员显示正确的中间直流回路的电压是否处于安全范围时,接地开关放电电路也可以在工作人员打开牵引变流柜前,释放中间直流回路的电能,从而进一步确保工作人员的安全。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中中间直流回路的电路结构图;
图2为本发明一实施例提供的中间直流回路的电路结构图;
图3为本发明另一实施例提供的中间直流回路的电路结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的 实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在机车中,牵引变流器的主电路包括输入电路、整流器电路、中间直流回路以及牵引逆变器电路,其主电路集中在牵引变流柜中。
在机车运行时,牵引变流器中的中间直流回路10会储存电能,因此,当机车牵引变流器停止工作后,需要打开牵引变流柜时,要充分释放中间直流回路10中存储的电能,避免存在安全隐患。
图2为本发明一实施例提供的中间直流回路的电路结构图。如图2所示,中间直流回路10中包括接地开关放电电路11、接地检测电路12、电压检测电路13、二次滤波电路14、直流支撑电路15。其中,图2中仅示出了接地开关放电电路11、接地检测电路12、电压检测电路13。可选的,中间直流回路100中该包括其他电路,图2中未示出。
在此需要说明的是,中间直流回路10出了本发明实施例中提到的接地开关放电电路11、接地检测电路12、电压检测电路13、二次滤波电路14以及直流支撑电路15外,还可能包括其他电路,具体可参考现有技术,此处不再赘述。
所述接地开关放电电路11的一端与所述中间直流回路10的正端连接,另一端与所述中间直流回路10的负端连接,所述接地开关放电电路11与所述接地检测电路12、所述电压检测电路13、所述二次滤波电路14、所述直流支撑电路15并联。
所述接地开关放电电路11,用于在牵引变流器停止工作时,使中间直流回路10的正端和负端短路并接地以释放所述中间直流回路10的电能。
所述接地检测电路12,用于在牵引变流器工作时,检测所述牵引变流器的主电路中是否存在接地现象;其中,所述主回路包括整流器电路、中间直流回路、牵引逆变器电路。
所述电压检测电路13,用于指示所述中间直流回路10的电压是否处于安全范围。
所述二次滤波电路14,用于滤除所述整流器电路输出的电压中的二次谐波,以及存储电能。
所述直流支撑电路15,用于存储电能、交换电能以及对所述整流器电路输出的电压进行平滑滤波。
本实施例中,在机车供电系统为机车提供电能时,牵引变流器处于工作状态,中间直流回路10会存储电能。当工作人员对机车进行检修,则牵引变流器停止工作,在需要打开牵引变流柜时,要确保中间直流回路10的电压处于安全范围。因此,在打开牵引变流柜之前,需要释放中间直流回路10中的电能,以使中间直流回路10的电压降低到安全范围。
中间直流回路10中设置有电压检测电路13,电压检测电路13可以检测中间直流回路10的电压,并设计两种显示状态来表示中间直流回路10的电压是否处于安全范围。例如,可以在电压检测电路13设计电压检测指示灯,当电压检测电路13检测到中间直流回路10的电压高于最大安全电压时,电压检测指示灯处于点亮状态;当电压检测电路13检测到中间直流回路10的电压处于安全范围时,电压检测指示灯熄灭。
在实际中,电压检测电路13可能会出现检测功能无法正常使用的状况,例如,中间直流回路10的电压高于最大安全电压,而电压检测电路13检测到的中间直流回路10的电压处于安全范围,使电压检测指示灯熄灭。如果此时工作人员打开牵引变流柜,则会威胁工作人员的人身安全。因此,本实施例中,当工作人员需要打开牵引变流柜时,在打开牵引变流柜前,无论电压检测电路13检测到的中间直流回路10中的电压是否处于安全范围,导通接地开关放电电路11并使接地开关放电电路11保持导通状态。当接地开关放电电路11导通时,接地开关放电电路11的正端和负端为短路且接地,此时由于接地开关放电电路11的正端、负端分别与中间直流回路10的正端、负端连接,因此,通过接地开关放电电路11,中间直流回路10的正端、负端短路且接地,从而可以释放中间直流回路10储存的电能,使中间直流回路10的电压降低到安全范围。
本实施例,通过在中间直流回路中设计了接地开关放电电路,并使接地开关放电电路的正端、负端分别与中间直流回路的正端、负端连接,当中间直流回路的电能需要释放以使电压处于安全范围时,导通接地开关放电电路,从而使中间直流回路的正端和负端短路并接地,达到 释放电能的目的。更重要的是,在牵引变流柜打开前,通过接地开关放电电路释放中间直流回路的电能,可使工作人员不受电压检测电路的影响,即电压检测电路故障,不能向工作人员显示正确的中间直流回路的电压是否处于安全范围时,接地开关放电电路也可以在工作人员打开牵引变流柜前,释放中间直流回路的电能,从而进一步确保工作人员的安全。
图3为本发明另一实施例提供的中间直流回路的电路结构图。如图3所示,在图2所示实施例的基础上,可选的,所述接地开关放电电路11包括接地开关111;
所述接地开关111在闭合时,使得所述接地开关电路11接地。
本实施例中,如图3所示,中间直流回路10中设置有两个相同的电压检测电路131和132,电压检测电路131和132中分别设置有两个并联的电压检测指示灯,即131a和131b、131a和132b。当中间直流回路10中的电压高于最大安全电压时,指示灯131a和131b、131a和132b处于点亮状态,当中间直流回路10中的电压处于最大安全范围时,指示灯131a和131b、131a和132b熄灭。
通过将接地开关111设计为接地开关放电电路11,当工作人员打开牵引变流柜前,闭合接地开关111,就可以达到释放中间直流回路电能的目的,且操作简单,设计成本低。
可选的,所述接地检测电路12为浮点接地电阻分压检测电路120。
可选的,依然参照图3,所述浮点接地电阻分压检测电路120包括:第一电阻R1、第二电阻R2、第一电压传感器V1和电容C;所述第一电阻R1的一端与所述中间直流回路10的正端连接,所述第一电阻R1的另一端与所述第二电阻R2的一端串联,所述第二电阻R2的另一端与所述中间直流回路10的负端连接,所述电容C、所述第一电压传感器V1与所述第二电阻R2并联,所述第一电阻R1与所述第二电阻R2的连接点接地。
所述电容C,用于滤除所述中间直流回路10的负端与接地端之间电压的纹波。
所述第一电压传感器V1,用于检测所述中间直流回路10的负端与 接地端之间的电压,若所述电压与第一预设电压值的差值的绝对值小于或等于第一预设阈值时,则确定所述牵引变流器的主电路中不存在接地现象,若所述电压与中间直流回路的电压的差值的绝对值小于或等于第二预设阈值,或所述电压大于或等于0且小于或等于第三预设阈值,或所述电压在预设范围内波动,则确定所述牵引变流器的主电路中存在接地现象。
本实施例中,如图3所示,第一电阻R1与第二电阻R2的连接点接地,第一电压传感器V1检测中间直流回路10的负端与接地端之间的电压,即测量第二电阻R2两端的电压,其中,第一电压传感器V1检测得到的电压值与第一电阻R1与第二电阻R2的阻值大小有关,根据第一电阻R1与第二电阻R2的阻值大小,可确定第一预设电压值的大小,例如当第一电阻R1与第二电阻R2的阻值相等时,第一预设电压值为中间直流回路电压的一半;当第一电阻R1的阻值是第二电阻R2的阻值的一半时,则第一预设电压值为中间直流回路电压的2/3。其中,第一预设阈值、第二预设阈值以及第三预设阈值可根据实际电路选择,并且,本发明实施例不限制第一预设阈值、第二预设阈值以及第三预设阈值的大小。根据第一预设电压值、第一预设阈值、第二预设阈值、第三预设阈值以及第一电压传感器V1检测得到的电压、中间直流回路10的电压判断牵引变流器主电路中是否存在接地现象。
可选的,所述第一电阻R1与所述第二电阻R2的阻值相等。
本实施例中,举例说明:第一电阻R1与第二电阻R2的阻值相等,中间直流回路10的电压为2800V,则第一电压传感器V1上的电压接近中间直流回路10电压的1/2时,即该电压在中间直流回路电压的一半上下波动,例如第一电压传感器V1上的电压维持在[1300V,1500V]内,说明中间直流回路10处于正常状态;若第一电压传感器V1上的电压接近中间直流回路10的电压,例如第一电压传感器V1上的电压维持在[2700V,2800V]内,说明中间直流回路正端接地;若第一电压传感器V1上的电压接近0,例如第一电压传感器V1上的电压维持在[0V,100V]内,说明中间直流回路负端接地;若第一电压传感器V1上的电压在正负中间直流回路10电压范围内波动时,说明牵引变流器的输入端和\或 输出端接地。其中,本例中第一预设阈值、第二预设阈值、第三预设阈值均设置为100。
另外,第一电阻和第二电阻的连接点接地,可以使得在牵引变流器主电路出现单点接地时,避免出现短路现象。
所述电容C与第一电压传感器V1并联,可以滤除中间直流回路10的负端与接地端之间电压的纹波,可以使第一电压传感器V1测量得到的电压值的波动减小,从而更准确的测量第二电阻R2两端的电压。
在此需要说明的是,本实施例也可以通过第一电阻两端的电压判断牵引变流器主电路是否出现接地故障以及检测发生接地故障的位置。
本实施例,通过使第一电阻和第二电阻的连接点接地,并根据第二电阻两端的电压值的变化,不仅可以判断出牵引变流器主电路是否出现接地故障,还可以检测发生接地故障的位置。
可选的,继续参照图3,所述中间直流回路10还包括第二电压传感器V2;其中,所述第二电压传感器V2的一端与所述中间直流回路10的正端连接,另一端与所述中间直流回路10的负端连接。
所述第二电压传感器V2,用于检测所述中间直流回路10的电压。
通过比较第一电压传感器V1和第二电压传感器V2上检测到的电压值确定牵引变流器是否出现接地故障,以及判断发生接地故障的位置。
可选的,继续参照图3,所述中间直流回路10还包括:斩波快放电路16、慢放电电路17;所述斩波快放电路16的一端与所述中间直流回路10的正端连接,另一端与所述中间直流回路10的负端连接;所述斩波快放电路16与所述慢放电电路17并联。
本实施例中,可选的,所述斩波快放电路16包括两个相同的IGBT元件161a和161b,两个相同的二极管162a和162b、第三电阻R3和电流传感器I1;所述IGBT元件161a、161b分别与所述中间直流回路10的正端连接,所述IGBT元件161a、161b分别与所述二极管161a和162b串联,所述二极管162a和162b与所述中间直流回路10的负端连接,所述电流传感器I1的一端连接在所述IGBT元件161a与所述二极管161a以及所述IGBT元件161b与所述二极管161b之间,另一端与所述第三电阻R3的一端连接,所述第三电阻的另一端与所述中间直流回路10的负 端连接。
可选的,继续参照图3,慢放电电17包括两个相同的电阻R4和R5,并分别与一个所述电压检测电路13并联。
本实施例中,所述斩波快放电路16和慢放电电路17的工作原理可参考现有技术,此处不再赘述。
可将上述任一实施例中的中间直流回路10应用到牵引变流器100中,继续参照图3,牵引变流器100主电路包括中间直流回路10以及输入电路20、整流器电路30、牵引逆变器电路40。可选地,牵引变流器100还可以包括其它部件,图3中未示出。
所述中间直流回路以及所述输入电路、所述整流器电路、所述牵引逆变器电路串联。其中,第一交流电通过所述输入电路20流向所述整流器电路30,所述整流器电路30将所述第一交流电整流为第一直流电,所述第一直流电流向所述中间直流回路10,经所述中间直流回路10滤波后获得第二直流电,所述第一直流电流向所述牵引逆变器电路40,所述牵引逆变器电路40将所述第二直流电逆变器为第二交流电
本实施例中,所述牵引变流器100主电路的工作原理可参考现有技术,此处不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种牵引变流器的中间直流回路,其特征在于,包括:接地开关放电电路、接地检测电路、电压检测电路、二次滤波电路、直流支撑电路;其中,所述接地开关放电电路的一端与所述中间直流回路的正端连接,另一端与所述中间直流回路的负端连接,所述接地开关放电电路与所述接地检测电路、所述电压检测电路、所述二次滤波电路、所述直流支撑电路并联;
    所述接地开关放电电路,用于在牵引变流器停止工作时,使中间直流回路的正端和负端短路并接地以释放所述中间直流回路的电能;
    所述接地检测电路,用于在牵引变流器工作时,检测所述牵引变流器的主电路中是否存在接地现象;其中,所述主电路包括输入电路、整流器电路、中间直流回路、牵引逆变器电路;
    所述电压检测电路,用于指示所述中间直流回路的电压是否处于安全范围;
    所述二次滤波电路,用于去除所述整流器电路输出的电压中的二次谐波,以及存储电能;
    所述直流支撑电路,用于存储电能、交换电能以及对所述整流器电路输出的电压进行平滑滤波。
  2. 根据权利要求1所述的中间直流回路,其特征在于,所述接地开关放电电路包括接地开关;
    所述接地开关在闭合时,使得所述接地开关电路接地。
  3. 根据权利要求1所述的中间直流回路,其特征在于,所述接地检测电路为浮点接地电阻分压检测电路。
  4. 根据权利要求2所述的中间直流回路,其特征在于,所述浮点接地电阻分压检测电路,包括:第一电阻、第二电阻、第一电压传感器和电容;所述第一电阻的一端与所述中间直流回路的正端连接,所述第一电阻的另一端与所述第二电阻的一端串联,所述第二电阻的另一端与所述中间直流回路的负端连接,所述电容、所述第一电压传感器与所述第二电阻并联,所述第一电阻与所述第二电阻的连接点接地;
    所述电容,用于滤除所述中间直流回路的负端与接地端之间电压的 纹波;
    所述第一电压传感器,用于检测所述中间直流回路的负端与接地端之间的电压,若所述电压与第一预设电压值的差值的绝对值小于或等于第一预设阈值时,则确定所述牵引变流器的主电路中不存在接地现象,若所述电压与中间直流回路的电压的差值的绝对值小于或等于第二预设阈值,或所述电压大于或等于0且小于或等于第三预设阈值,或所述电压在预设范围内波动,则确定所述牵引变流器的主电路中存在接地现象。
  5. 根据权利要求4所述的中间直流回路,其特征在于,所述中间直流回路还包括第二电压传感器;其中,所述第二电压传感器的一端与所述中间直流回路的正端连接,另一端与所述中间直流回路的负端连接;
    所述第二电压传感器,用于检测所述中间直流回路的电压。
  6. 根据权利要求4所述的中间直流回路,其特征在于,所述第一电阻与所述第二电阻的阻值相等。
  7. 根据权利要求1-6任一项所述的中间直流回路,其特征在于,所述中间直流回路还包括:斩波快放电路、慢放电电路;所述斩波快放电路的一端与所述中间直流回路的正端连接,另一端与所述中间直流回路的负端连接;所述斩波快放电路与所述慢放电电路并联。
  8. 根据权利要求7所述的中间直流回路,其特征在于,所述斩波快放电路包括两个相同的IGBT元件,两个相同的二极管、第三电阻和电流传感器;所述IGBT元件与所述中间直流回路的正端连接,所述IGBT元件与所述二极管串联,所述二极管与所述中间直流回路的负端连接,所述电流传感器的一端连接在所述IGBT元件与所述二极管之间,另一端与所述第三电阻的一端连接,所述第三电阻的另一端与所述中间直流回路的负端连接。
  9. 根据权利要求7所述的中间直流回路,其特征在于,所述慢放电电路包括两个相同的电阻,并分别与一个所述电压检测电路并联。
  10. 一种牵引变流器,其特征在于,包括权利要求1-9任一项所述的中间直流回路以及输入电路、整流器电路、牵引逆变器电路;
    所述中间直流回路以及所述输入电路、所述整流器电路、所述牵引逆变器电路串联。
PCT/CN2018/117029 2018-10-31 2018-11-22 牵引变流器的中间直流回路以及牵引变流器 WO2020087599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811291900.0A CN111130329A (zh) 2018-10-31 2018-10-31 牵引变流器的中间直流回路以及牵引变流器
CN201811291900.0 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020087599A1 true WO2020087599A1 (zh) 2020-05-07

Family

ID=70463551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117029 WO2020087599A1 (zh) 2018-10-31 2018-11-22 牵引变流器的中间直流回路以及牵引变流器

Country Status (2)

Country Link
CN (1) CN111130329A (zh)
WO (1) WO2020087599A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379305B (zh) * 2020-10-29 2024-04-19 中车大连电力牵引研发中心有限公司 一种牵引变流器的接地检测电路及其控制方法
CN112731192B (zh) * 2020-12-14 2024-04-19 中车永济电机有限公司 一种机车牵引变流器有功功率的保护方法及试验验证方法
CN113014118A (zh) * 2021-04-21 2021-06-22 株洲中车时代电气股份有限公司 一种变流器
CN113193597B (zh) * 2021-05-27 2024-05-14 阳光电源股份有限公司 光伏逆变器系统的接地控制方法、装置及光伏发电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833422B1 (de) * 1996-09-25 2002-05-08 DaimlerChrysler Rail Systems GmbH Stromrichterschaltung
CN201252488Y (zh) * 2008-08-14 2009-06-03 铁道部运输局 大功率牵引变流器
CN103124132A (zh) * 2011-11-18 2013-05-29 永济新时速电机电器有限责任公司 机车牵引变流器
CN103129564A (zh) * 2011-11-29 2013-06-05 永济新时速电机电器有限责任公司 电力机车牵引系统
CN203205867U (zh) * 2013-05-02 2013-09-18 南车戚墅堰机车有限公司 交流传动机车主电路中间回路放电电路
CN104730407A (zh) * 2015-02-03 2015-06-24 南车株洲电力机车研究所有限公司 一种接地检测电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207251A (ja) * 2008-02-27 2009-09-10 Fuji Electric Systems Co Ltd 負荷駆動システム
CN105720893A (zh) * 2014-12-02 2016-06-29 永济新时速电机电器有限责任公司 带二次滤波电路的牵引变流器
CN105790597A (zh) * 2016-03-29 2016-07-20 中车永济电机有限公司 一种动车用永磁同步电机牵引变流器主电路
CN206321736U (zh) * 2016-11-21 2017-07-11 中车大连电力牵引研发中心有限公司 接地检测电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833422B1 (de) * 1996-09-25 2002-05-08 DaimlerChrysler Rail Systems GmbH Stromrichterschaltung
CN201252488Y (zh) * 2008-08-14 2009-06-03 铁道部运输局 大功率牵引变流器
CN103124132A (zh) * 2011-11-18 2013-05-29 永济新时速电机电器有限责任公司 机车牵引变流器
CN103129564A (zh) * 2011-11-29 2013-06-05 永济新时速电机电器有限责任公司 电力机车牵引系统
CN203205867U (zh) * 2013-05-02 2013-09-18 南车戚墅堰机车有限公司 交流传动机车主电路中间回路放电电路
CN104730407A (zh) * 2015-02-03 2015-06-24 南车株洲电力机车研究所有限公司 一种接地检测电路

Also Published As

Publication number Publication date
CN111130329A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2020087599A1 (zh) 牵引变流器的中间直流回路以及牵引变流器
JP5101881B2 (ja) 系統連系インバータ装置
CN103419643B (zh) 一种高压配电控制方法及其装置
US9787214B2 (en) Power conversion device with overvoltage suppression
JP6153663B1 (ja) リレーの異常検出装置及びパワーコンディショナ
JP2014038023A (ja) 地絡検出回路、電源装置
CN104283441A (zh) 一种直流电源及提供直流电源的方法
CN103746570B (zh) 整流器及电力设备
CN103499728A (zh) 一种串联电容组电压不均衡检测方法及系统
CN206673559U (zh) 一种缺相监测保护电路
WO2016176998A1 (zh) 具有多重保护的辅助变流器
JP5588774B2 (ja) 電力変換装置の保護装置
WO2006016438A1 (ja) 電気車制御装置
CN203543694U (zh) 一种高压配电控制装置
CN111413545B (zh) 车载充电机的绝缘阻抗检测电路和绝缘阻抗检测方法
JP5231892B2 (ja) 電気車用電源装置
JP4766241B2 (ja) 直流電圧降圧回路および電力変換装置
CN110661331B (zh) 一种交直变换器
CN111186449B (zh) 电传动系统
CN106300346B (zh) 一种带有保护的变频器维修用电源装置
KR101158414B1 (ko) 디지털식 배터리충전장치
TWI545862B (zh) 應用於變壓器的差動電驛的故障電流判斷方法及系統
KR101478082B1 (ko) 철도차량용 siv의 출력전압 이상 검지장치 및 그 철도차량
CN216390590U (zh) 电梯应急电源电路及装置
CN207703992U (zh) 一种实时检测电压互感器二次空气开关系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938854

Country of ref document: EP

Kind code of ref document: A1