WO2020087397A1 - 一种麻醉呼吸装置及方法 - Google Patents

一种麻醉呼吸装置及方法 Download PDF

Info

Publication number
WO2020087397A1
WO2020087397A1 PCT/CN2018/113182 CN2018113182W WO2020087397A1 WO 2020087397 A1 WO2020087397 A1 WO 2020087397A1 CN 2018113182 W CN2018113182 W CN 2018113182W WO 2020087397 A1 WO2020087397 A1 WO 2020087397A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
patient
branch
pressure
circulation circuit
Prior art date
Application number
PCT/CN2018/113182
Other languages
English (en)
French (fr)
Inventor
陈培涛
蔡琨
罗才瑾
袁昇
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to EP18938519.8A priority Critical patent/EP3875135B1/en
Priority to CN201880099197.5A priority patent/CN112969487B/zh
Priority to PCT/CN2018/113182 priority patent/WO2020087397A1/zh
Publication of WO2020087397A1 publication Critical patent/WO2020087397A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0883Circuit type
    • A61M16/0891Closed circuit, e.g. for anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/1065Filters in a path in the expiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit

Definitions

  • the embodiments of the present invention relate to the technical field of medical devices, and in particular, to an anesthesia breathing device and method.
  • Anesthesia machine as a medical device that can provide oxygen, anesthesia and breathing support, has been widely used during the operation of patients.
  • the existing pneumatic anesthesia machine requires an external driving gas source to work, which limits the use of the anesthesia machine to a certain extent.
  • the embodiments of the present invention are expected to provide an anesthesia breathing device and method, which can work without an external driving gas source.
  • An embodiment of the present invention provides an anesthesia breathing device, the device including:
  • An external control branch that controls the internal circulation loop includes a driving branch, and the driving branch includes:
  • the fresh gas input port and the external control branch are respectively connected to the internal circulation circuit.
  • the boosting device is any one of a turbine, a booster pump, an air compressor, and a cylinder.
  • the internal circulation circuit includes:
  • the expiratory branch receiving the patient's exhaled gas through the patient interface
  • a reflection device connected to the exhalation branch and the driving branch, to store the patient's exhaled gas
  • An inspiratory branch connected to the reflection device and the fresh gas input port, and delivering the patient exhaled gas and the fresh gas stored in the reflection device to the patient through the patient interface;
  • the expiratory pressure control branch is connected with the reflective device to control the patient's exhaled gas pressure.
  • the driving branch further includes: a filter and / or a flow sensor;
  • the outlet of the filter is connected to the pressure increasing device
  • the flow sensor is connected between the boosting device and the internal circulation circuit.
  • the external control branch further includes:
  • a pressure-controlled gas supply branch is connected to the expiratory pressure control branch to provide pressure-controlled gas, and the expiratory pressure control branch is controlled to control the patient's exhaled gas pressure.
  • the pressure-controlled gas supply branch includes:
  • the pressure control device is connected to the expiratory pressure control branch.
  • the pressure control device is any one of a turbine, a booster pump, an air compressor, and a cylinder.
  • the pressure-controlled gas supply branch includes: a sequentially connected gas source interface and an electromagnetic proportional valve;
  • the outlet of the electromagnetic proportional valve is connected to the expiratory pressure control branch.
  • the pressure-control gas supply branch is connected between the pressure-increasing device and the exhalation pressure control branch.
  • the pressure-controlled gas supply branch includes:
  • a pressure sensor is connected between the pressure increasing device and the expiratory pressure control branch.
  • the driving branch further includes:
  • the on-off valve is connected between the boosting device and the reflecting device.
  • the expiratory pressure control branch includes: an expiratory valve and an air block;
  • the inlet of the exhalation valve is connected to the reflective device
  • the air resistance is connected to the valve of the exhalation valve.
  • An embodiment of the present invention provides an anesthesia breathing method, which is applied to the anesthesia breathing device described above.
  • the method includes:
  • the driving gas is delivered to the internal circulation circuit to push the patient exhaled gas stored in the internal circulation circuit, and the fresh gas input to the internal circulation circuit through the fresh gas input port is delivered to the patient together.
  • the driving gas is delivered to the internal circulation circuit to push the patient exhaled gas stored in the internal circulation circuit, and the fresh gas input to the internal circulation circuit through the fresh gas input port is jointly delivered to After the patient, the method further includes:
  • the patient exhaled gas is delivered to the internal circulation circuit and stored in the internal circulation circuit.
  • the method further includes:
  • the method further includes:
  • the patient exhaled gas pushes the driving gas from the internal circulation circuit to the outside of the internal circulation circuit for discharge, to The pressure of the patient's exhaled gas is equal to the control pressure.
  • the anesthesia breathing apparatus of the embodiment of the present invention includes: a fresh gas input port for inputting fresh gas; an internal circulation circuit for storing patient exhaled gas and supplying the fresh gas and the patient exhaled gas to the patient; controlling an internal circulation circuit
  • FIG. 1 is a schematic structural diagram 1 of an anesthesia breathing device according to an embodiment of the present invention.
  • FIG. 2 is a second schematic structural diagram of an anesthesia breathing device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram 3 of an anesthesia breathing device according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of an anesthesia breathing method according to an embodiment of the present invention.
  • An embodiment of the present invention provides an anesthesia breathing device, and a schematic structural diagram thereof is shown in FIG. 1.
  • the anesthetic breathing device includes:
  • the fresh gas inlet 1 and the external control branch 3 are connected to the internal circulation circuit 2 respectively.
  • the pressurizing device 311 for controlling the delivery of patient exhaled gas in the internal circulation circuit 2 to the patient is provided outside the internal circulation circuit 2, which can effectively avoid impurities such as the pressurized device 311 and the patient exhaled gas Direct contact to ensure the working performance and accuracy of the booster device 311.
  • the fresh gas input by the fresh gas input port 1 may be a mixed gas of oxygen and anesthetic gas.
  • the specific fresh gas embodiment of the present invention is not limited.
  • the booster device 311 may be any one of a turbine, a booster pump, an air compressor, and a cylinder.
  • the specific booster device 311 is not limited in the embodiment of the present invention.
  • the supercharging device 311 can generate driving gas.
  • the supercharging device 311 is a turbine. During the inhalation stage, the turbine can suck gas in the atmosphere to generate driving gas. The driving When the gas is delivered to the internal circulation circuit 2, the patient exhaled gas stored in the internal circulation circuit 2 and the fresh gas input to the internal circulation circuit 2 through the fresh gas input port 1 can be pushed to the patient.
  • the driving branch 31 may further include: a filter 312 and / or a flow sensor 313;
  • the outlet of the filter 312 is connected to the booster device 311;
  • the flow sensor 313 is connected between the pressure-increasing device 311 and the internal circulation circuit 2 and can measure the flow rate.
  • the flow sensor 313 can detect the gas flow output by the boosting device 311 in real time, which is convenient for adjusting the output of the boosting device 311 in real time.
  • the boosting device 311 is a turbine
  • the rotation speed of the turbine can be adjusted to adjust the flow of the output driving gas.
  • the internal circulation circuit 2 includes:
  • the expiratory branch 21 receives patient exhaled gas through the patient interface 4;
  • the reflective device 22 is connected to the exhalation branch 21 and the driving branch 31 to store the patient's exhaled gas;
  • the inhalation branch 23 is connected to the reflection device 22 and the fresh gas input port 1, and delivers the fresh gas and the patient exhaled gas stored in the reflection device 22 to the patient through the patient interface 4;
  • the expiratory pressure control branch 24 is connected to the reflective device 22 to control the patient's exhaled gas pressure.
  • the reflective device 22 may be any one of a volume reflector and a folded bag.
  • the specific reflective device 22 of the present invention is not limited.
  • the volume reflector is composed of a thin pipe, the driving gas and the patient exhaled gas can be effectively isolated, and the loss of anesthetic in the patient exhaled gas can be prevented.
  • the exhalation branch 21 includes an exhalation check valve 211
  • the inhalation branch 23 includes an inhalation check valve 231 and an absorption device 232 for absorbing carbon dioxide.
  • the inlet of the reflection device 22 is connected to the driving branch 31, the outlet is connected to the exhalation check valve 211 and the absorption device 232, and the inhalation check valve 231 is connected to the fresh gas input port 1 and the absorption device 232.
  • the absorption device 232 may also be provided between the fresh gas input port 1 and the intake check valve 231.
  • the pressurizing device 311 generates driving gas, which is delivered to the reflective device in the internal circulation circuit 2, and sends the patient exhaled gas stored in the reflective device 22 to the inspiratory branch 23 push, when the patient's exhaled gas flows through the absorption device 232, the absorption device 232 can absorb the carbon dioxide in the patient's exhaled gas, output re-breathing gas for the patient to inhale again, and the fresh gas input from the fresh gas input port 1, through The inspiratory check valve 231 is delivered to the patient interface 4 and finally delivered from the patient interface 4 to the patient.
  • the patient exhales the patient's exhaled gas, and the patient's exhaled gas is delivered to the reflective device 22 through the exhalation check valve 211.
  • the expiratory pressure control branch 24 includes: an expiratory valve 241 and an air resistance 242;
  • the inlet of the exhalation valve 241 is connected to the reflective device 22;
  • the air resistance 242 is connected to the valve of the exhalation valve 241.
  • the patient's exhaled gas pushes the driving gas input in the inhalation phase stored in the reflection device 22 to the inlet of the reflection device 22, and the excess driving gas is discharged through the exhalation valve 241.
  • the external control branch 3 further includes:
  • the pressure-controlled gas supply branch 32 is connected to the expiratory pressure control branch 24 to provide pressure-controlled gas, and the expiratory pressure control branch 24 controls the patient's exhaled gas pressure.
  • the pressure-controlled gas supply branch 32 can provide pressure-controlled gas, which is delivered to the air resistance 242 of the exhalation pressure control branch 24.
  • the exhalation valve 241 can be realized. Output gas pressure control.
  • the first pressure-controlled gas supply branch 32 includes:
  • the pressure control device 321 is connected to the expiratory pressure control branch 24.
  • a filter can also be connected to the pressure control gas supply branch 32 before the pressure control device 321 to prevent the input gas from polluting the internal devices, as shown in FIG. 1.
  • the pressure control device 321 is any one of a turbine, a booster pump, an air compressor, and a cylinder.
  • the specific pressure control device 321 is not limited in the embodiment of the present invention.
  • the pressure-increasing device 311 and the pressure-controlling device 321 are both turbines, and the turbine of the pressure-charging device 311 can be sucked into the atmosphere In order to generate driving gas, the turbine of the pressure control device 321 can also inhale the gas in the atmosphere to generate pressure control gas.
  • the second type of pressure-controlled gas supply branch 32 includes: a gas source interface 322 and an electromagnetic proportional valve 323 connected in sequence;
  • the outlet of the electromagnetic proportional valve 323 is connected to the expiratory pressure control branch 24.
  • the outlet of the electromagnetic proportional valve 323 is specifically connected to the air resistance 242 of the expiratory pressure control branch 24.
  • the gas source interface 322 can be externally connected to the wall end of a medical institution or a gas bottle, thereby providing a high-pressure gas source for the electromagnetic proportional valve 323.
  • the pressure-controlling gas that meets the actual needs, the pressure-controlling gas flows through the air resistance 242 and generates a control pressure on the exhalation valve 241.
  • the patient's exhalation gas pressure can be controlled.
  • FIG. 2 is a second schematic structural diagram of an anesthesia breathing device according to an embodiment of the present invention.
  • the pressure-increasing device 311 is a turbine
  • the pressure-controlled gas supply branch 32 includes: an air source interface 322 and an electromagnetic proportional valve 323 that are connected in sequence.
  • the turbine of the pressure-increasing device 311 can draw in the gas in the atmosphere to generate a drive Gas
  • the gas source interface 322 of the pressure-controlled gas supply branch 32 is connected to a high-pressure gas source
  • the electromagnetic proportional valve 323 controls the amount of gas flow that provides the pressure-controlled gas through the gas resistance 242.
  • the third pressure-control gas supply branch 32 is connected between the pressure-increasing device 311 and the expiratory pressure control branch 24, and the pressure-increasing device 311 passes the pressure-control gas supply branch 32 to exhale
  • the pressure control branch 24 provides pressure control gas.
  • the pressure-controlled gas supply branch 32 may further include:
  • the pressure sensor 324 is connected between the pressure increasing device 311 and the expiratory pressure control branch 24.
  • the driving branch 31 further includes: an on-off valve 314;
  • the on-off valve 314 is connected between the pressurizing device 311 and the reflecting device 22.
  • FIG. 3 is a schematic structural diagram 3 of an anesthesia breathing device according to an embodiment of the present invention.
  • the pressure sensor 324 is connected between the pressurizing device 311 and the expiratory pressure control branch 24, and the on-off valve 314 is connected between the pressurizing device 311 and the reflecting device 22.
  • the on-off valve 314 may also be a one-way valve, and the specific on-off valve is not limited in this embodiment of the present invention.
  • the third pressure control gas supply branch 32 two functions of generating driving gas and pressure control gas are realized by the pressurizing device 311, which can control the internal circulation circuit 2
  • the patient's exhaled gas is delivered to the patient, and the pressure of the patient's exhaled gas can also be controlled during the exhalation phase.
  • the supercharging device 311 that is, the turbine
  • the supercharging device 311 can adjust the rotation speed to a larger value and output gas at a larger flow rate, and the output is divided into two parts of gas.
  • a part of the gas flows into the atmosphere through the air resistance 242, thereby generating a valve sealing pressure to the exhalation valve 241.
  • the specific pressure can be detected in real time by the pressure sensor 324; the other part of the gas flows through the on-off valve 314, that is, the one-way valve, and then
  • the flow to the reflecting device 22 acts as a driving gas on the reflecting device 22 to push the patient's exhaled gas stored in the reflecting device 22 to be delivered to the patient through the inhalation branch 21.
  • the fresh gas inputted by the fresh gas input port 1 is also delivered to the patient through the suction branch 21.
  • the rotation speed of the pressure-increasing device 311, that is, the turbine may be gradually reduced, and the valve sealing pressure that bears against the exhalation valve 241 becomes smaller accordingly.
  • the patient ’s exhaled gas is discharged from the exhalation branch 21, the pressure on the right side of the check valve is greater than the pressure on the left side, and the check valve does not conduct .
  • the pressurizing device 311 is controlled to output a small flow of pressure-controlled gas to the air resistance 242, that is, to reduce the rotation speed of the turbine, and to control the pressure of the patient's exhaled gas discharged through the exhalation valve 241.
  • An embodiment of the present invention provides an anesthesia breathing device, including: a fresh gas input port for inputting fresh gas; an internal circulation circuit that stores patient exhaled gas and supplies the fresh gas and patient exhaled gas to the patient; an external control that controls the internal circulation circuit Branch; the external control branch includes a driving branch, and the driving branch includes: a pressurizing device that controls the delivery of patient exhaled gas in the internal circulation circuit to the patient; the fresh gas input port and the external control branch are respectively connected to the internal circulation circuit.
  • the anesthesia breathing apparatus places the pressurization device that controls the internal expiration of the patient's exhaled gas to be delivered to the patient in the external control branch outside the internal circulation circuit, to avoid the pressurization device and Impurities such as patient exhaled gas are in direct contact with each other, thereby ensuring the working performance and accuracy of the booster device.
  • FIG. 4 is a schematic flowchart of an anesthesia breathing method according to an embodiment of the present invention. As shown in Figure 4, it mainly includes the following steps:
  • the pressurizing device of the driving branch in the external control branch sucks gas in the atmosphere to generate driving gas.
  • the anesthesia breathing device may inhale gas in the atmosphere through the pressurizing device 311 of the driving branch 31 in the external control branch 3 to generate driving gas.
  • the booster device 311 may be any one of a turbine, a booster pump, an air compressor, and a cylinder.
  • the specific booster device 311 is not limited in the embodiment of the present invention.
  • the supercharging device 311 is a turbine
  • the turbine can directly inhale the gas in the atmosphere to generate driving gas, and in particular, different gas flows can be generated by controlling the rotation speed of the turbine. Yes, different pressures will be generated inside the anesthesia breathing device to meet the needs of different ventilation methods.
  • S402 Send the driving gas to the internal circulation circuit to push the patient exhaled gas stored in the internal circulation circuit and the fresh gas input to the internal circulation circuit through the fresh gas input port to be jointly delivered to the patient.
  • the anesthesia breathing device delivers the driving gas to the internal circulation circuit 2 to push the previously exhaled patient exhaled gas stored in the internal circulation circuit 2 together with the fresh gas
  • the fresh gas input from the inlet 1 to the internal circulation circuit 2 is delivered to the patient.
  • the internal circulation circuit 2 includes: an expiratory branch 21, a reflective device 22, an inspiratory branch 23, and an expiratory pressure control branch 24.
  • the reflective device 22 stores the patient's exhaled gas from the patient's previous exhalation. Therefore, when the driving gas is delivered to the internal circulation circuit 2, specifically into the reflective device 2, the patient's exhaled gas is pushed through the inspiratory branch 23 delivered to the patient.
  • the inhalation branch 23 includes an inhalation check valve 231 and an absorption device 232 for absorbing carbon dioxide, wherein the absorption device 232 can absorb carbon dioxide in the patient's exhaled air,
  • the respiration gas which can be inhaled again by the patient, is output to the patient through the inhalation check valve 231.
  • the anesthesia breathing device delivers the driving gas to the internal circulation circuit to promote the patient exhaled gas stored in the internal circulation circuit, as well as the fresh gas input into the internal circulation circuit through the fresh gas input port.
  • the patient's exhaled gas can be received again and stored, including: receiving the patient's exhaled gas output from the patient interface 4 through the internal circulation circuit 2; delivering the patient's exhaled gas to the internal circulation circuit 2, and Stored in internal loop circuit 2.
  • the anesthesia breathing device may receive the patient exhaled gas output from the patient interface 4 through the internal circulation circuit 2.
  • the exhalation branch 21 in the internal circulation circuit 2 may receive the patient's exhaled gas from the patient interface 4.
  • the patient's exhaled gas can be repeatedly delivered to the patient after a certain absorption process during the inhalation phase, that is, recycled, so that during the exhalation phase, the patient's exhaled gas can be received to At the next inhalation phase, the patient is given again.
  • the anesthetic breathing device may store the patient exhaled gas in the internal circulation circuit 2.
  • the expiratory branch 21 receiving the patient's exhaled gas in the internal circulation circuit 2 is connected to the reflective device 22, and the patient's exhaled gas will be delivered to the reflective device 22, specifically stored in the reflective device Device 22.
  • the anesthesia breathing device can also control the patient's exhaled gas pressure through the external control branch 3.
  • the anesthesia breathing device needs to first generate a control pressure for the internal circulation circuit 2 through the external control branch 3, including: acquiring the pressure control gas through the external control branch 3; controlling the pressure control gas from the outside The branch 3 is delivered to the internal circulation circuit 2; when the pressure-controlled gas flows through the internal circulation circuit 2, a control pressure is generated on the internal circulation circuit 2.
  • the external control branch 3 includes a driving branch 31 and a pressure-controlled gas supply branch 32.
  • the pressure-controlled gas supply branch 32 includes three modes, which have been described in detail in the above embodiments. The description will not be repeated here.
  • the anesthesia breathing device can obtain the pressure-controlled gas through the pressure-controlled gas supply branch 32 of the external control branch 3, and the pressure-controlled gas will be delivered to the internal circulation circuit 2, specifically flowing through the internal circulation
  • the expiratory pressure in the circuit 2 controls the air resistance 242 of the branch 24, thereby generating a control pressure for the exhalation valve 241 to which the air resistance 242 is connected.
  • control pressure when the control pressure is generated on the internal circulation circuit 2 by the pressure control gas, that is, when the control pressure is generated at the exhalation valve 241, the control can be achieved during the exhalation phase. Control of patient's exhaled gas pressure.
  • the anesthesia breathing device when the anesthesia breathing device stores the patient's exhaled gas in the reflective device 22 during the exhalation phase, the driving gas delivered to the previous inhalation phase is stored in the reflective device 22 at this time .
  • There is a control pressure at the exhalation valve 241 when the patient's exhaled gas is greater than the control pressure, that is, the patient's exhaled gas pressure is enough to push the control pressure at the exhalation valve 241, the valve of the exhalation valve 241 is pushed open, so that the reflective device
  • the driving gas in 22 is discharged from the exhalation valve 241.
  • the anesthesia breathing device may not perform pressure control of the patient's exhaled gas, that is, there is no need to provide pressure control gas through the pressure control gas supply branch 32 of the external control branch 3. Therefore, During the exhalation phase, no control pressure is generated at the exhalation valve 241, and the driving gas can be directly discharged.
  • the embodiment of the present invention provides an anesthesia breathing method, which is applied to an anesthesia breathing device.
  • the anesthesia breathing device sucks gas in the atmosphere through a pressurizing device of a driving branch in an external control branch to generate driving gas;
  • the circulation circuit is used to drive the patient's exhaled gas stored in the internal circulation circuit and the fresh gas input into the internal circulation circuit through the fresh gas input port to be delivered to the patient.
  • the anesthesia breathing method provided by the embodiment of the present invention can generate driving gas through the pressurization device placed in the external control branch to control the delivery of patient exhaled gas stored in the internal circulation circuit to the patient, avoiding the pressurization device and Impurities such as patient exhaled gas are in direct contact with each other, thereby ensuring the working performance and accuracy of the booster device.
  • the anesthesia breathing apparatus of the embodiment of the present invention includes: a fresh gas input port for inputting fresh gas; an internal circulation circuit that stores patient exhaled gas and supplies the fresh gas and the patient exhaled gas to the patient; an external control branch that controls the internal circulation circuit
  • the external control branch includes a driving branch, and the driving branch includes: a pressurizing device that controls the delivery of patient exhaled gas in the internal circulation circuit to the patient; the fresh gas input port and the external control branch are respectively connected to the internal circulation circuit.
  • the anesthesia breathing apparatus places the pressurization device that controls the patient exhaled gas stored in the internal circulation circuit to be delivered to the patient in the external control branch outside the internal circulation circuit, to avoid the pressurization device and Impurities such as patient exhaled gas are in direct contact with each other, thereby ensuring the working performance and accuracy of the booster device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种麻醉呼吸装置,该装置包括:输入新鲜气体的新鲜气体输入口(1);存储患者呼出气体,将新鲜气体和患者呼出气体提供给患者的内部循环回路(2);控制内部循环回路(2)的外部控制支路(3);外部控制支路(3)包括驱动支路(31),驱动支路(31)包括:控制将内部循环回路(2)中患者呼出气体输送给患者的增压器件(311);新鲜气体输入口(1)和外部控制支路(3)分别与内部循环回路(2)连接。

Description

一种麻醉呼吸装置及方法 技术领域
本发明实施例涉及医疗器械技术领域,尤其涉及一种麻醉呼吸装置及方法。
背景技术
麻醉机作为可以提供氧气、麻醉和呼吸支持的医疗设备,已普遍应用于病人手术期间。但现有气动麻醉机需要外接驱动气体气源才能工作,这就在一定程度上限制了麻醉机的使用。
发明内容
为解决上述技术问题,本发明实施例期望提供一种麻醉呼吸装置及方法,不需要外接驱动气体气源即能工作。
本发明实施例的技术方案可以如下实现:
本发明实施例提供了一种麻醉呼吸装置,所述装置包括:
输入新鲜气体的新鲜气体输入口;
存储患者呼出气体,将所述新鲜气体和所述患者呼出气体提供给患者的内部循环回路;
控制所述内部循环回路的外部控制支路;所述外部控制支路包括驱动支路,所述驱动支路包括:
控制将所述内部循环回路中所述患者呼出气体输送给患者的增压器件;
所述新鲜气体输入口和所述外部控制支路分别与所述内部循环回路连接。
在上述装置中,所述增压器件为涡轮、增压泵、空气压缩机和气缸中任意一种。
在上述装置中,所述内部循环回路包括:
呼气支路,通过患者接口接收所述患者呼出气体;
反射器件,与所述呼气支路和所述驱动支路连接,存储所述患者呼出气体;
吸气支路,与所述反射器件和新鲜气体输入口连接,通过所述患者接口,将所述反射器件中存储的所述患者呼出气体和所述新鲜气体输送给患者;
呼气压力控制支路,与所述反射器件连接,控制患者呼出气体压力。
在上述装置中,所述驱动支路还包括:过滤器和/或流量传感器;
所述过滤器的出口与所述增压器件连接;
所述流量传感器,连接于所述增压器件与所述内部循环回路之间。
在上述装置中,所述外部控制支路还包括:
控压气体供给支路,与所述呼气压力控制支路连接,提供控压气体,控制所述呼气压力控制支路进行所述患者呼出气体压力控制。
在上述装置中,所述控压气体供给支路包括:
控压器件,与所述呼气压力控制支路连接。
在上述装置中,所述控压器件为涡轮、增压泵、空气压缩机、气缸中任意一种。
在上述装置中,所述控压气体供给支路包括:顺序连接的气源接口和电磁比例阀;
所述电磁比例阀的出口与所述呼气压力控制支路连接。
在上述装置中,
所述控压气体供给支路连接于所述增压器件与所述呼气压力控制支路之间。
在上述装置中,所述控压气体供给支路包括:
压力传感器,连接于所述增压器件和所述呼气压力控制支路之间。
在上述装置中,所述驱动支路还包括:
开关阀,连接于所述增压器件与所述反射器件之间。
在上述装置中,所述呼气压力控制支路包括:呼气阀和气阻;
所述呼气阀的入口与所述反射器件连接;
所述气阻与所述呼气阀的阀门连接。
本发明实施例提供了一种麻醉呼吸方法,应用于上述麻醉呼吸装置中,所述方法包括:
通过外部控制支路中驱动支路的增压器件吸入大气中的气体,产生驱动气体;
将所述驱动气体输送至内部循环回路,以推动所述内部循环回路存储的患者呼出气体,以及通过新鲜气体输入口输入至所述内部循环回路的新鲜气体共同输送给患者。
在上述方法中,所述将所述驱动气体输送至内部循环回路,以推动所述内部循环回路存储的患者呼出气体,以及通过新鲜气体输入口输入至所述内部循环回路的新鲜气体共同输送给患者之后,所述方法还包括:
通过所述内部循环回路接收从患者接口输出的所述患者呼出气体;
将所述患者呼出气体输送至所述内部循环回路,并存储在所述内部循环回路。
在上述方法中,所述方法还包括:
通过所述外部控制支路获取控压气体;
将所述控压气体从所述外部控制支路输送至所述内部循环回路;
当所述控压气体流经所述内部循环回路时,对所述内部循环回路产生控制压力。
在上述方法中,所述当所述控压气体流经所述内部循环回路时,对所述内部循环回路产生控制压力之后,所述方法还包括:
当所述内部循环回路中,所述患者呼出气体的压力大于所述控制压力 时,所述患者呼出气体将所述驱动气体从所述内部循环回路推动至所述内部循环回路外进行排出,至所述患者呼出气体的压力等于所述控制压力。
由此可见,在本发明实施例的麻醉呼吸装置中,包括:输入新鲜气体的新鲜气体输入口;存储患者呼出气体,将新鲜气体和患者呼出气体提供给患者的内部循环回路;控制内部循环回路的外部控制支路;外部控制支路包括驱动支路,驱动支路包括:控制将内部循环回路中患者呼出气体输送给患者的增压器件;新鲜气体输入口和外部控制支路分别与内部循环回路连接。也就是说,本发明实施例提供的麻醉呼吸装置,增压器件不与患者呼出气体等杂质直接接触,从而保证增压器件的工作性能和精确度。
附图说明
图1为本发明实施例提供的一种麻醉呼吸装置的结构示意图一;
图2为本发明实施例提供的一种麻醉呼吸装置的结构示意图二;
图3为本发明实施例提供的一种麻醉呼吸装置的结构示意图三;
图4为本发明实施例提供的一种麻醉呼吸方法的流程示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供了一种麻醉呼吸装置,其结构示意图如图1所示。该麻醉呼吸装置包括:
输入新鲜气体的新鲜气体输入口1;
存储患者呼出气体,将新鲜气体和患者呼出气体提供给患者的内部循环回路2;
控制内部循环回路2的外部控制支路3;外部控制支路3包括驱动支路 31,驱动支路31包括:
控制将内部循环回路2中患者呼出气体输送给患者的增压器件311;
新鲜气体输入口1和外部控制支路3分别与内部循环回路2连接。
在本发明实施例中,用于控制将内部循环回路2中患者呼出气体输送给患者的增压器件311,设置在内部循环回路2的外部,可以有效避免增压器件311与患者呼出气体等杂质直接接触,从而保证增压器件311的工作性能和精确度。
需要说明的是,在本发明实施例中,新鲜气体输入口1输入的新鲜气体可以为氧气和麻醉气体的混合气体。具体的新鲜气体本发明实施例不作限定。
具体的,在本发明实施例中,增压器件311可以为涡轮、增压泵、空气压缩机和气缸中任意一种,具体的增压器件311本发明实施例不作限定。
需要说明的是,在本发明实施例中,增压器件311可以产生驱动气体,例如,增压器件311为涡轮,在吸气阶段,涡轮可以吸入大气中的气体,从而产生驱动气体,该驱动气体输送至内部循环回路2时,即可推动内部循环回路2中存储的患者呼出气体,以及通过新鲜气体输入口1输入至内部循环回路2的新鲜气体共同输送给患者。
具体的,在本发明实施例中,驱动支路31还可以包括:过滤器312和/或流量传感器313;
过滤器312的出口与增压器件311连接;
流量传感器313,连接于增压器件311与内部循环回路2之间,可测量流量。
可以理解的是,在本发明实施例中,大气中的气体在被增压器件311吸入,产生驱动气体之前,可以先通过过滤器312进行一定的过滤处理,避免对增压器件311的污染,而流量传感器313可以实时检测增压器件311输出的气体流量,便于实时调整增压器件311的输出,例如,增压器件311 为涡轮,可以调节涡轮的转速,从而调整输出的驱动气体的流量。
具体的,在本发明实施例中,内部循环回路2包括:
呼气支路21,通过患者接口4接收患者呼出气体;
反射器件22,与呼气支路21和驱动支路31连接,存储患者呼出气体;
吸气支路23,与反射器件22和新鲜气体输入口1连接,通过患者接口4,将新鲜气体和反射器件中22中存储的患者呼出气体输送给患者;
呼气压力控制支路24,与反射器件22连接,控制患者呼出气体压力。
需要说明的是,在本发明实施例中,反射器件22,可以为容量反射器、折叠囊中任意一种。具体的反射器件22本发明实施例不作限定。
可以理解的是,在本发明实施例中,由于容量反射器由细小管路组成,从而可以有效隔离驱动气体和患者呼出气体,防止患者呼出气体中的麻药的损失。
需要说明的是,在本发明实施例中,呼气支路21包括呼气单向阀211,吸气支路23包括吸气单向阀231和用于吸收二氧化碳的吸收器件232。反射器件22的入口与驱动支路31连接,出口与呼气单向阀211和吸收器件232连接,吸气单向阀231与新鲜气体输入口1,以及吸收器件232连接。当然,吸收器件232也可以设置在新鲜气体输入口1与吸气单向阀231之间。
需要说明的是,在本发明实施例中,在吸气阶段,增压器件311产生驱动气体,输送至内部循环回路2中的反射器件,将反射器件22存储的患者呼出气体向吸气支路23推动,当患者呼出气体流经吸收器件232时,吸收器件232可以吸收患者呼出气体中的二氧化碳,输出可供患者再次吸入的再呼吸气体,与从新鲜气体输入口1输入的新鲜气体,通过吸气单向阀231输送至患者接口4,最终从患者接口4输送给患者。
需要说明的是,在本发明实施例中,在呼气阶段,患者呼出患者呼出气体,患者呼出气体通过呼气单向阀211输送至反射器件22。
具体的,在本发明实施例中,呼气压力控制支路24包括:呼气阀241个气阻242;
呼气阀241的入口与反射器件22连接;
气阻242与呼气阀241的阀门连接。
在呼气阶段,患者呼出气体推动反射器件22中存储的吸气阶段输入的驱动气体往反射器件22入口移动,多余的驱动气体通过呼气阀241排出。
具体的,在本发明实施例中,外部控制支路3还包括:
控压气体供给支路32,与呼气压力控制支路24连接,提供控压气体,控制呼气压力控制支路24进行患者呼出气体压力控制。
需要说明的是,控压气体供给支路32可以提供控压气体,输送至呼气压力控制支路24的气阻242,在控压气体流经气阻242时,能实现对呼气阀241输出气体的压力控制。
具体的,在本发明实施例中,第一种控压气体供给支路32包括:
控压器件321,与呼气压力控制支路24连接。
需要说明的是,在本发明实施例中,控压气体供给支路32中同样可以在控压器件321之前,连接一个过滤器,避免输入的气体对内部器件的污染,如图1所示。
具体的,在本发明实施例中,控压器件321为涡轮、增压泵、空气压缩机、气缸中任意一种,具体的控压器件321本发明实施例不作限定。
具体的,在本发明实施例中,对于第一种控压气体供给支路32,如图1所示,增压器件311和控压器件321均为涡轮,增压器件311的涡轮可以吸入大气中的气体以产生驱动气体,控压器件321的涡轮,同样也可以吸入大气中的气体以产生控压气体。
具体的,在本发明另一实施例中,第二种控压气体供给支路32包括:顺序连接的气源接口322和电磁比例阀323;
电磁比例阀323的出口与呼气压力控制支路24连接。
需要说明的是,在本发明实施例中,电磁比例阀323的出口具体是与呼气压力控制支路24的气阻242连接。
需要说明的是,在本发明实施例中,气源接口322可以外接医疗机构墙端或气瓶,从而为电磁比例阀323提供高压气源,电磁比例阀323可以控制输入气体流量的大小,产生符合实际需求的控压气体,同理,控压气体流经气阻242,对呼气阀241产生控制压力,在呼气阶段时,可以实现患者呼出气体压力的控制。
图2为本发明实施例提供的一种麻醉呼吸装置的结构示意图二。如图2所示,增压器件311为涡轮,控压气体供给支路32包括:顺序连接的气源接口322和电磁比例阀323,增压器件311的涡轮可以吸入大气中的气体以产生驱动气体,控压气体供给支路32的气源接口322接高压气源,电磁比例阀323控制提供控压气体流经气阻242的气体流量的大小。
在另一实施例中,第三种控压气体供给支路32连接于增压器件311与呼气压力控制支路24之间,由增压器件311通过控压气体供给支路32向呼气压力控制支路24提供控压气体。
进一步地,控压气体供给支路32还可以包括:
压力传感器324,连接于增压器件311和呼气压力控制支路24之间。
具体的,在本发明实施例中,在设置第三种控压气体供给支路32时,驱动支路31还包括:开关阀314;
开关阀314,连接于增压器件311与反射器件22之间。
图3为本发明实施例提供的一种麻醉呼吸装置的结构示意图三。如图3所示,压力传感器324连接于增压器件311和呼气压力控制支路24之间,并且,增压器件311与反射器件22之间连接有开关阀314。开关阀314还可以为单向阀,具体的开关阀本发明实施例不作限定。
需要说明的是,在本发明实施例中,对于第三种控压气体供给支路32,通过增压器件311实现了产生驱动气体和控压气体两部分功能,既可控制 内部循环回路2中的患者呼出气体输送给患者,还可以在呼气阶段控制患者呼出气体的压力。
具体的,在本发明实施例中,如图3所示,在吸气阶段,增压器件311,即涡轮可以将转速调节至较大,以较大流量输出气体,输出分成两部分气体。一部分气体流经气阻242排入大气,从而对呼气阀241产生封阀压力,具体的压力大小通过压力传感器324即可实时检测;另一部分气体流经开关阀314,即单向阀,再流向反射器件22,作为驱动气体作用于反射器件22,推动反射器件22内部存储的患者呼出气体,经过吸气支路21输送给患者。同时,新鲜气体输入口1输入的新鲜气体也经过吸气支路21输送给患者。需要说明的是,在需要降低封阀压力时,也可以将增压器件311,即涡轮的转速逐渐减小,产生顶住呼气阀241的封阀压力随之变小。
具体的,在本发明实施例中,如图3所示,在呼气阶段,患者呼出气体从呼气支路21排出,单向阀的右侧压力大于左侧压力,单向阀不导通。控制增压器件311输出较小流量的控压气体到气阻242,即降低涡轮的转速,控制经呼气阀241排出的患者呼出气体的压力。当然,也可以直接关闭增压器件311,即涡轮,这种情况下没有气体流经气阻242,即作用于呼气阀241的控制压力为零,呼气阀241完全导通,不进行患者呼出气体的压力控制。
本发明实施例提供了一种麻醉呼吸装置,包括:输入新鲜气体的新鲜气体输入口;存储患者呼出气体,将新鲜气体和患者呼出气体提供给患者的内部循环回路;控制内部循环回路的外部控制支路;外部控制支路包括驱动支路,驱动支路包括:控制将内部循环回路中患者呼出气体输送给患者的增压器件;新鲜气体输入口和外部控制支路分别与内部循环回路连接。也就是说,本发明实施例提供的麻醉呼吸装置,将控制内部循环内部存储的患者呼出气体输送给患者的增压器件置于内部循环回路之外的外部控制支路中,避免增压器件与患者呼出气体等杂质直接接触,从而保证增压器 件的工作性能和精确度。
本发明另一实施例提供了一种麻醉呼吸方法,应用于上述麻醉呼吸装置中。图4为本发明实施例提供的一种麻醉呼吸方法的流程示意图。如图4所示,主要包括以下步骤:
S401、通过外部控制支路中驱动支路的增压器件吸入大气中的气体,产生驱动气体。
在本发明实施例中,在吸气阶段,麻醉呼吸装置可以通过外部控制支路3中驱动支路31的增压器件311吸入大气中的气体,产生驱动气体。
需要说明的是,在本发明实施例中,增压器件311可以为涡轮、增压泵、空气压缩机和气缸中任意一种,具体的增压器件311本发明实施例不作限定。
可以理解的是,在本发明实施例中,增压器件311为涡轮,则该涡轮可以直接吸入大气中的气体来产生驱动气体,具体还可以通过控制该涡轮的转速产生不同的气体流量,相应的,对于麻醉呼吸装置内部也将产生不同的压力,以满足不同通气方式的需求。
S402、将驱动气体输送至内部循环回路,以推动内部循环回路存储的患者呼出气体,以及通过新鲜气体输入口输入至内部循环回路的新鲜气体共同输送给患者。
在本发明实施例中,增压器件311产生驱动气体之后,麻醉呼吸装置将驱动气体输送至内部循环回路2,用来推动内部循环回路2中存储的之前患者呼出的患者呼出气体,连同新鲜气体输入口1输入至内部循环回路2的新鲜气体输送给患者。
需要说明的是,在本发明实施例中,内部循环回路2包括:呼气支路21、反射器件22、吸气支路23和呼气压力控制支路24。在反射器件22中存储有患者前一次呼气时的患者呼出气体,因此,当驱动气体输送至内部循环回路2时,具体输送至反射器件2中,从而推动患者呼出气体流经吸 气支路23输送给患者。
可以理解的是,在本发明实施例中,吸气支路23中包括吸气单向阀231和用于吸收二氧化碳的吸收器件232,其中,吸收器件232可以将患者呼出气体中的二氧化碳吸收,输出可供患者再次吸入的再呼气气体,在流经吸气单向阀231提供给患者。
需要说明的是,在本发明实施例中,麻醉呼吸装置将驱动气体输送至内部循环回路,以推动内部循环回路存储的患者呼出气体,以及通过新鲜气体输入口输入至内部循环回路的新鲜气体共同输送给患者之后,还可以再次接收到患者呼出气体,并存储患者呼出气体,包括:通过内部循环回路2接收从患者接口4输出的患者呼出气体;将患者呼出气体输送至内部循环回路2,并存储在内部循环回路2。
在本发明实施例中,在呼气阶段,麻醉呼吸装置可以通过内部循环回路2接收从患者接口4输出的患者呼出气体。
具体的,在本发明实施例中,在呼气阶段,内部循环回路2中的呼气支路21可以从患者接口4处接收到患者呼出气体。
可以理解的是,在本发明实施例中,在吸气阶段可以将患者呼出气体进行一定的吸收处理之后重复输送给患者,即循环使用,因此,在呼气阶段,可以接收患者呼出气体,以在下一次吸气阶段时,再次重复提供给患者。
在本发明实施例中,麻醉呼吸装置在通过内部循环回路2接收从患者接口4输出的患者呼出气体之后,可以将患者呼出气体存储在内部循环回路2中。
具体的,在本发明实施例中,麻醉呼吸装置中,内部循环回路2中接收患者呼出气体的呼气支路21与反射器件22连接,患者呼出气体将输送至反射器件22,具体存储在反射器件22中。
需要说明的是,在本发明实施例中,在呼气阶段,麻醉呼吸装置还可 以通过外部控制支路3实现患者呼出气体压力的控制。
具体的,在本发明实施例中,麻醉呼吸装置需要通过外部控制支路3先对内部循环回路2产生控制压力,包括:通过外部控制支路3获取控压气体;将控压气体从外部控制支路3输送至内部循环回路2;当控压气体流经内部循环回路2时,对内部循环回路2产生控制压力。
可以理解的是,在本发明实施例中,外部控制支路3包括驱动支路31和控压气体供给支路32,控压气体供给支路32包括三种方式,在上述实施例中已经详细描述,在此不再赘述,麻醉呼吸装置通过外部控制支路3的控压气体供给支路32可以获得控压气体,而控压气体将输送至内部循环回路2中,具体将流经内部循环回路2中呼气压力控制支路24的气阻242,从而对于气阻242连接的呼气阀241产生控制压力。
需要说明的是,在本发明实施例中,麻醉呼吸装置中,通过控压气体对内部循环回路2产生控制压力,即呼气阀241处产生控制压力时,在呼气阶段,即可实现对患者呼出气体压力的控制。
可以理解的是,在本发明实施例中,在呼气阶段,麻醉呼吸装置将患者呼出气体存储在反射器件22中时,在反射器件22中存储之前吸气阶段输送到的驱动气体,此时,呼气阀241处存在控制压力,当患者呼出气体大于该控制压力,即患者呼出气体压力足以推开呼气阀241处的控制压力,将呼气阀241的阀门推开,从而将反射器件22中的驱动气体从呼气阀241排出。
需要说明的是,在本发明实施例中,麻醉呼吸装置也可以不进行患者呼出气体压力控制,即不需要通过外部控制支路3的控压气体供给支路32提供控压气体,因此,在呼气阶段,呼气阀241处并未产生控制压力,驱动气体可以直接全部排出。
本发明实施例提供了一种麻醉呼吸方法,应用于麻醉呼吸装置,麻醉呼吸装置通过外部控制支路中驱动支路的增压器件吸入大气中的气体,产 生驱动气体;将驱动气体输送至内部循环回路,以推动内部循环回路存储的患者呼出气体,以及通过新鲜气体输入口输入至内部循环回路的新鲜气体共同输送给患者。也就是说,本发明实施例提供的麻醉呼吸方法,可以通过置于外部控制支路的增压器件产生驱动气体,以控制内部循环回路中存储的患者呼出气体输送给患者,避免增压器件与患者呼出气体等杂质直接接触,从而保证增压器件的工作性能和精确度。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
在本发明实施例的麻醉呼吸装置中,包括:输入新鲜气体的新鲜气体输入口;存储患者呼出气体,将新鲜气体和患者呼出气体提供给患者的内部循环回路;控制内部循环回路的外部控制支路;外部控制支路包括驱动支路,驱动支路包括:控制将内部循环回路中患者呼出气体输送给患者的增压器件;新鲜气体输入口和外部控制支路分别与内部循环回路连接。也就是说,本发明实施例提供的麻醉呼吸装置,将控制内部循环回路存储的患者呼出气体输送给患者的增压器件置于内部循环回路之外的外部控制支路中,避免增压器件与患者呼出气体等杂质直接接触,从而保证增压器件的工作性能和精确度。

Claims (15)

  1. 一种麻醉呼吸装置,其特征在于,所述装置包括:
    输入新鲜气体的新鲜气体输入口;
    存储患者呼出气体,将所述新鲜气体和所述患者呼出气体提供给患者的内部循环回路;
    控制所述内部循环回路的外部控制支路;所述外部控制支路包括驱动支路,所述驱动支路包括:
    控制将所述内部循环回路中所述患者呼出气体输送给患者的增压器件;
    所述新鲜气体输入口和所述外部控制支路分别与所述内部循环回路连接。
  2. 根据权利要求1所述的装置,其特征在于,所述增压器件为涡轮、增压泵、空气压缩机和气缸中任意一种。
  3. 根据权利要求1所述的装置,其特征在于,所述内部循环回路包括:
    呼气支路,通过患者接口接收所述患者呼出气体;
    反射器件,与所述呼气支路和所述驱动支路连接,存储所述患者呼出气体;
    吸气支路,与所述反射器件和新鲜气体输入口连接,通过所述患者接口,将所述新鲜气体和所述反射器件中存储的所述患者呼出气体输送给患者;
    呼气压力控制支路,与所述反射器件连接,控制患者呼出气体压力。
  4. 根据权利要求1所述的装置,其特征在于,所述驱动支路还包括:过滤器和/或流量传感器;
    所述过滤器的出口与所述增压器件连接;
    所述流量传感器,连接于所述增压器件与所述内部循环回路之间。
  5. 根据权利要求3所述的装置,其特征在于,所述外部控制支路还包 括:
    控压气体供给支路,与所述呼气压力控制支路连接,提供控压气体,控制所述呼气压力控制支路进行所述患者呼出气体压力控制。
  6. 根据权利要求5所述的装置,其特征在于,所述控压气体供给支路包括:
    控压器件,与所述呼气压力控制支路连接。
  7. 根据权利要求6所述的装置,其特征在于,所述控压器件为涡轮、增压泵、空气压缩机、气缸中任意一种。
  8. 根据权利要求5所述的装置,其特征在于,所述控压气体供给支路包括:顺序连接的气源接口和电磁比例阀;
    所述电磁比例阀的出口与所述呼气压力控制支路连接。
  9. 根据权利要求5所述的装置,其特征在于,
    所述控压气体供给支路连接于所述增压器件与所述呼气压力控制支路之间。
  10. 根据权利要求9所述的装置,其特征在于,所述控压气体供给支路包括:
    压力传感器,连接于所述增压器件和所述呼气压力控制支路之间。
  11. 根据权利要求9所述的装置,其特征在于,所述驱动支路还包括:
    开关阀,连接于所述增压器件与所述反射器件之间。
  12. 根据权利要求3所述的装置,其特征在于,所述呼气压力控制支路包括:呼气阀和气阻;
    所述呼气阀的入口与所述反射器件连接;
    所述气阻与所述呼气阀的阀门连接。
  13. 一种麻醉呼吸方法,应用于如权利要求1至12任一项所述的麻醉呼吸装置中,其特征在于,所述方法包括:
    通过外部控制支路中驱动支路的增压器件吸入大气中的气体,产生驱 动气体;
    将所述驱动气体输送至内部循环回路,以推动所述内部循环回路存储的患者呼出气体,以及通过新鲜气体输入口输入至所述内部循环回路的新鲜气体共同输送给患者。
  14. 根据权利要求13所述的方法,其特征在于,所述将所述驱动气体输送至内部循环回路,以推动所述内部循环回路存储的患者呼出气体,以及通过新鲜气体输入口输入至所述内部循环回路的新鲜气体共同输送给患者之后,所述方法还包括:
    通过所述内部循环回路接收从患者接口输出的所述患者呼出气体;
    将所述患者呼出气体输送至所述内部循环回路,并存储在所述内部循环回路。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    通过所述外部控制支路获取控压气体;
    将所述控压气体从所述外部控制支路输送至所述内部循环回路;
    当所述控压气体流经所述内部循环回路时,对所述内部循环回路产生控制压力。
PCT/CN2018/113182 2018-10-31 2018-10-31 一种麻醉呼吸装置及方法 WO2020087397A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18938519.8A EP3875135B1 (en) 2018-10-31 2018-10-31 Anesthesia respiration device
CN201880099197.5A CN112969487B (zh) 2018-10-31 2018-10-31 一种麻醉呼吸装置及方法
PCT/CN2018/113182 WO2020087397A1 (zh) 2018-10-31 2018-10-31 一种麻醉呼吸装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113182 WO2020087397A1 (zh) 2018-10-31 2018-10-31 一种麻醉呼吸装置及方法

Publications (1)

Publication Number Publication Date
WO2020087397A1 true WO2020087397A1 (zh) 2020-05-07

Family

ID=70463561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113182 WO2020087397A1 (zh) 2018-10-31 2018-10-31 一种麻醉呼吸装置及方法

Country Status (3)

Country Link
EP (1) EP3875135B1 (zh)
CN (1) CN112969487B (zh)
WO (1) WO2020087397A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116710167A (zh) * 2020-12-31 2023-09-05 深圳迈瑞动物医疗科技股份有限公司 麻醉机、兽用麻醉机及风机组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337101A (zh) 2007-07-06 2009-01-07 深圳迈瑞生物医疗电子股份有限公司 麻醉机和呼吸机的通气系统及压力监控方法
CN202909243U (zh) * 2012-11-12 2013-05-01 北京航天长峰股份有限公司 一种具有压力控制功能的麻醉呼吸机气路
CN103071219A (zh) * 2011-10-25 2013-05-01 北京航天长峰股份有限公司 一种麻醉呼吸机的气路结构
US8776791B2 (en) 2007-04-18 2014-07-15 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Respirator and method for calibrating flow rate measuring component thereof
CN105517615A (zh) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 麻醉机及其麻醉机呼吸系统
CN105517613A (zh) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 一种电动麻醉呼吸装置
CN105517612A (zh) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 麻醉机呼吸系统及麻醉机
WO2017193007A1 (en) * 2016-05-06 2017-11-09 University Of Utah Research Foundation Systems and methods for sensing inhalational anesthetic agents

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006499A1 (fr) * 1992-09-18 1994-03-31 Pierre Medical S.A. Dispositif d'aide a la respiration
FI982652A (fi) * 1998-12-08 2000-06-09 Instrumentarium Oyj Sovitelma potilaan hoitotyössä käytettävän laitteiston yhteydessä
US8960193B2 (en) * 2007-02-16 2015-02-24 General Electric Company Mobile medical ventilator
WO2009006932A1 (en) * 2007-07-06 2009-01-15 Maquet Critical Care Ab Expiratory valve of an anesthetic breathing apparatus having safety backup
CN101896216B (zh) * 2007-11-14 2013-07-31 马奎特紧急护理公司 带有可变患者回路容量的患者盒
EP2168623B1 (en) * 2008-09-26 2011-09-21 General Electric Company Arrangement for detecting a leak in anesthesia system
EP2201979A1 (en) * 2008-12-23 2010-06-30 General Electric Company Arrangement and method for supplying breathing gas for respiration
EP2767302B1 (en) * 2009-05-13 2018-09-26 Maquet Critical Care AB Anesthetic breathing apparatus having volume reflector unit with controllable penetration
EP2431065B1 (en) * 2010-09-15 2020-04-22 General Electric Company Arrangement for ventilating lungs
US20150114395A1 (en) * 2013-10-29 2015-04-30 General Electric Company Method and arrangement for determining a ventilation need specific for a patient

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8776791B2 (en) 2007-04-18 2014-07-15 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Respirator and method for calibrating flow rate measuring component thereof
CN101337101A (zh) 2007-07-06 2009-01-07 深圳迈瑞生物医疗电子股份有限公司 麻醉机和呼吸机的通气系统及压力监控方法
CN103071219A (zh) * 2011-10-25 2013-05-01 北京航天长峰股份有限公司 一种麻醉呼吸机的气路结构
CN202909243U (zh) * 2012-11-12 2013-05-01 北京航天长峰股份有限公司 一种具有压力控制功能的麻醉呼吸机气路
CN105517615A (zh) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 麻醉机及其麻醉机呼吸系统
CN105517613A (zh) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 一种电动麻醉呼吸装置
CN105517612A (zh) * 2014-12-02 2016-04-20 深圳迈瑞生物医疗电子股份有限公司 麻醉机呼吸系统及麻醉机
WO2016086347A1 (zh) 2014-12-02 2016-06-09 深圳迈瑞生物医疗电子股份有限公司 一种电动麻醉呼吸装置
WO2017193007A1 (en) * 2016-05-06 2017-11-09 University Of Utah Research Foundation Systems and methods for sensing inhalational anesthetic agents

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116710167A (zh) * 2020-12-31 2023-09-05 深圳迈瑞动物医疗科技股份有限公司 麻醉机、兽用麻醉机及风机组件
EP4272789A4 (en) * 2020-12-31 2024-04-10 Shenzhen Mindray Animal Medical Technology Co., Ltd. ANESTHESIA DEVICE, VETERINARY ANESTHESIA DEVICE AND FAN ARRANGEMENT

Also Published As

Publication number Publication date
CN112969487A (zh) 2021-06-15
CN112969487B (zh) 2024-04-26
EP3875135A1 (en) 2021-09-08
EP3875135B1 (en) 2023-08-23
EP3875135A4 (en) 2021-11-24
EP3875135C0 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US8667963B2 (en) Ventilator circuit for oxygen generating system
JP4316138B2 (ja) ピストン換気装置酸素混合
JP3130026B2 (ja) 呼吸補助装置
US10195381B2 (en) Patient interface assembly for respiratory therapy
US6990977B1 (en) Substance delivery apparatus
JP3222405B2 (ja) 呼吸装置
US20020046753A1 (en) Breathing aid device
US20080230059A1 (en) System and method for a collapsible reservoir with an auxillary fluid channel
CN102500021A (zh) 一种先导式控制带智能peep呼吸机气路系统
CN102500020A (zh) 一种先导式控制呼吸机气路系统
CN110464950B (zh) 一种高频呼吸机系统及通气控制方法
WO2020087397A1 (zh) 一种麻醉呼吸装置及方法
WO2021203189A1 (en) Portable piston icu ventilator
CN106860992A (zh) 可雾化给药的呼吸支持设备用呼吸系统
WO2016193649A1 (en) Respiratory therapy apparatus and system
WO2016086347A1 (zh) 一种电动麻醉呼吸装置
US20220241545A1 (en) Apparatus for supplying therapeutic gas to a patient, with control of the pressure at the mask
US20220211970A1 (en) Installation for supplying therapeutic gas to a patient while taking account of the losses of leaktightness at the mask
CN213374816U (zh) 一种高原用供氧调节器
EP1364671A1 (en) Breathing device with nebuliser
JP6944621B1 (ja) 漏れ試験用閉鎖プラグおよび麻酔器並びに循環式呼吸回路の漏れ試験方法
CN110464949B (zh) 一种高频呼吸机系统
CN113413529A (zh) 适应野外环境的便携式通用生命支持系统用机械通气模块
WO2020135062A1 (zh) 使进入呼吸道气体浓度恒定且无呼吸阻力的气体吸入装置
CN207804731U (zh) 可雾化给药的呼吸支持设备用呼吸系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938519

Country of ref document: EP

Effective date: 20210531