WO2020087358A1 - 除湿机的无霜运行方法及除湿机 - Google Patents

除湿机的无霜运行方法及除湿机 Download PDF

Info

Publication number
WO2020087358A1
WO2020087358A1 PCT/CN2018/113067 CN2018113067W WO2020087358A1 WO 2020087358 A1 WO2020087358 A1 WO 2020087358A1 CN 2018113067 W CN2018113067 W CN 2018113067W WO 2020087358 A1 WO2020087358 A1 WO 2020087358A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
throttle
evaporator
dehumidifier
control module
Prior art date
Application number
PCT/CN2018/113067
Other languages
English (en)
French (fr)
Inventor
陈俊宇
Original Assignee
友隆电器工业(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友隆电器工业(深圳)有限公司 filed Critical 友隆电器工业(深圳)有限公司
Priority to PCT/CN2018/113067 priority Critical patent/WO2020087358A1/zh
Priority to CN201880043226.6A priority patent/CN111386432A/zh
Publication of WO2020087358A1 publication Critical patent/WO2020087358A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the present application belongs to the technical field of dehumidification equipment, and particularly relates to a frost-free operation method of a dehumidifier and a dehumidifier.
  • the temperature of the evaporator is about 10 ⁇ 15 °C lower than the room temperature.
  • the room temperature is lower than 15 °C, the surface of the evaporator will be frosted. If it continues to run, the frosting phenomenon will be more Serious, so it is necessary to defrost the evaporator in time.
  • the current defrosting operation it is necessary to stop the operation of the evaporator and increase the air volume, thereby achieving defrosting.
  • a heating device is added on the peripheral side of the evaporator to achieve defrosting by heating.
  • the high-temperature refrigerant of the evaporator can also be introduced into the evaporator to defrost frost by the residual heat of the high-temperature refrigerant.
  • the above-mentioned defrosting methods are carried out after defrosting, and the defrosting operation of the dehumidifier in a low-temperature environment cannot be achieved.
  • a frost-free operation method of a dehumidifier is provided to solve the technical problem that the dehumidifier in the prior art cannot achieve frost-free operation in a low-temperature environment.
  • a dehumidifier is provided to solve the technical problem that the surface of the evaporator is prone to frost during the operation of the dehumidifier in a low-temperature environment in the prior art.
  • a frost-free operation method of a dehumidifier which is characterized by comprising the following steps:
  • S100 Provide an adjustable flow device, install the adjustable flow device in the main body of the dehumidifier, and connect the adjustable flow device to the evaporator in the main body of the dehumidifier to adjust the entry into the evaporator The flow of high-temperature refrigerant;
  • S200 Provide a control module, install the control module in the main body of the dehumidifier, and electrically connect the control module and the adjustable flow device;
  • S300 Provide a temperature monitoring module, install the temperature monitoring module on the evaporator to monitor the surface temperature of the evaporator, and electrically connect the temperature monitoring module and the control module;
  • the temperature monitoring module feeds back the temperature information to the control module, and the control module drives and adjusts the temperature according to the temperature information.
  • the adjustable flow device increases the flow rate of the high-temperature refrigerant flowing into the evaporator.
  • step S400 further includes the following steps:
  • S410 Provide a delay module, install the delay module in the main body of the dehumidifier, electrically connect the delay module and the control module, and control the station through the delay module
  • the control module performs drive adjustment on the adjustable flow device every time period greater than or equal to 30 minutes.
  • the adjustable flow device includes a first throttle mechanism, the first throttle mechanism is connected to the evaporator and electrically connected to the control module.
  • the first throttle mechanism is an electronic throttle.
  • the adjustable flow device further includes a second throttle mechanism
  • the second throttle mechanism includes a normal temperature throttle, a low temperature throttle, a first control valve and a second control valve
  • the normal temperature throttle And the low-temperature restrictor are both connected to the evaporator
  • the first control valve is connected to the normal-temperature restrictor to control the on-off of the normal-temperature restrictor
  • the second control valve It is connected with the low-temperature throttle to control the on-off of the low-temperature throttle.
  • both the first control valve and the second control valve are solenoid valves, and both the first control valve and the second control valve are electrically connected to the control module;
  • the control module controls the first control valve to close the normal temperature throttle, and the second control valve turns on the low temperature throttle;
  • control module controls the second control valve to close the low-temperature throttle, and the first control valve turns on the normal-temperature throttle.
  • the normal temperature restrictor and the low temperature restrictor are both hardware restrictors.
  • the normal temperature throttle and the low temperature throttle are arranged in parallel.
  • the flow rate of the high-temperature refrigerant of the low-temperature throttle is greater than the flow rate of the high-temperature refrigerant of the normal-temperature throttle.
  • the adjustable flow device further includes a third throttle mechanism, the third throttle mechanism includes a first throttle, a second throttle, and a third control valve, the first throttle and The throttles are arranged in parallel and connected to the evaporator, and the third control valve is installed on the second throttle to control the on-off of the second throttle.
  • the third throttle mechanism includes a first throttle, a second throttle, and a third control valve, the first throttle and The throttles are arranged in parallel and connected to the evaporator, and the third control valve is installed on the second throttle to control the on-off of the second throttle.
  • the third control valve is electrically connected to the control module, and when the surface temperature of the evaporator is lower than or equal to minus 1 ° C, the control module controls the opening of the third control valve. Describe the second throttle;
  • control module controls the third control valve to close the second throttle.
  • the flow rate of the high-temperature refrigerant of the second throttle is greater than the flow rate of the high-temperature refrigerant of the first throttle.
  • the flow rate of the high-temperature refrigerant of the first throttle is equal to the flow rate of the high-temperature refrigerant of the second throttle.
  • a dehumidifier including a dehumidifier body, the dehumidifier further includes an adjustable flow device, a control module, and a temperature monitoring module for inputting high-temperature refrigerant into an evaporator in the dehumidifier body Group, the adjustable flow device is installed in the dehumidifier body and connected to the evaporator, the control module is installed in the dehumidifier body, the adjustable flow device and the control module Electrical connection, the temperature monitoring module is installed on the evaporator, and the temperature monitoring module is electrically connected to the control module.
  • the dehumidifier further includes a delay module installed in the body of the dehumidifier, and the delay module is electrically connected to the control module to control the control module
  • the group drive adjusts the time interval of the adjustable flow device.
  • the frost-free operation method of the dehumidifier provided by the embodiments of the present application, during operation, can first use the temperature monitoring module to sense and monitor the temperature change of the surface of the evaporator in the body of the dehumidifier, when the surface of the evaporator When the temperature is less than or equal to minus 1 °C, the surface of the evaporator will have frost tendency or slight frost.
  • the temperature monitoring module can send the corresponding electrical signal to the module module, and the control module can The electrical signal returned by the temperature monitoring module drives the adjustment of the adjustable flow device connected to the evaporator, so that the adjustable flow device increases the flow of high-temperature refrigerant flowing into the evaporator, so that the surface temperature of the evaporator will Because the residual heat of the high-temperature refrigerant in the evaporator is rapidly increased, this can timely remove the slight frost on the surface of the evaporator and avoid the occurrence of frost on the surface of the evaporator during subsequent operation. In this way, the dehumidifier operated according to the above method can work stably in a low-temperature environment with an ambient temperature of 8 ° C to 13 ° C without frost formation.
  • the beneficial effect of the dehumidifier provided by the embodiments of the present application is that, because the dehumidifier of the present application includes an adjustable flow device, a control module and a temperature monitoring module, the temperature monitoring module is convenient when working in a low-temperature environment The temperature of the evaporator surface in the dehumidifier can be monitored in real time.
  • the temperature monitoring module can be The corresponding electrical signal is returned to the control module, and the control module can drive the adjustable flow device to increase the high-temperature refrigerant flowing into the evaporator according to the electrical signal, thereby increasing the surface temperature of the evaporator, and then In the process of removing the slight frost on the surface of the evaporator and making the dehumidifier operate in a low-temperature environment, the surface of the evaporator avoids frost.
  • FIG. 1 is a flowchart of a frost-free operation method of a dehumidifier provided by an embodiment of this application;
  • FIG. 2 is a schematic structural diagram 1 of a dehumidifier provided by an embodiment of the present application.
  • FIG. 3 is a second schematic structural diagram of a dehumidifier provided by an embodiment of the present application.
  • FIG. 4 is a third structural diagram of a dehumidifier provided by an embodiment of the present application.
  • the second restrictor 223 The third control valve.
  • FIGS. 1 to 4 are exemplary, and are intended to explain the present application, and should not be construed as limiting the present application.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • installation can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • the defrosting operation method of the dehumidifier provided in this embodiment is used to enable the dehumidifier to achieve frost-free operation in a low-temperature environment.
  • the defrosting operation method of the dehumidifier includes the following steps:
  • S100 Provide an adjustable flow device 20, install the adjustable flow device 20 in the dehumidifier body 10, and connect the adjustable flow device 20 to the evaporator 30 in the dehumidifier body 10 to adjust the flow into the evaporator 30 The flow rate of the high-temperature refrigerant; wherein, the high-temperature refrigerant output of the adjustable flow device 20 is connected to the evaporator 30, and the high-temperature refrigerant input of the adjustable flow device 20 and the high-temperature refrigerant output of the compressor in the dehumidifier Connected.
  • S200 Provide a control module 40, install the control module 40 in the dehumidifier body 10, and electrically connect the control module 40 with the adjustable flow device 20;
  • S300 Provide a temperature monitoring module 50, install the temperature monitoring module 50 on the evaporator 30 to monitor the surface temperature of the evaporator 30, and electrically connect the temperature monitoring module 50 and the control module 40;
  • the present application sets the temperature detection point of the temperature monitoring module 50 at about minus 1 ° C. Meanwhile, when the surface temperature of the evaporator 30 is between 0 ° C and minus 1 ° C, the control module 40 can also drive the adjustable flow device 20 to appropriately increase the flow rate of the high-temperature refrigerant flowing into the evaporator 30. When the surface temperature of the evaporator 30 is higher than 0 ° C, the control module 40 does not need to intervene to adjust the adjustable flow device 20.
  • the adjustable throttle device 20 can flow into the evaporator 30 according to the preset flow parameters Normal input of high-temperature refrigerant.
  • the temperature monitoring module 50 can be used to sense and monitor the temperature change of the surface of the evaporator 30 in the main body 10 of the dehumidifier. When it is equal to minus 1 ° C, the surface of the evaporator 30 will tend to frost or slightly frost.
  • the temperature monitoring module 50 can send the corresponding electrical signal to the module module, and the control module 40 can The electrical signal returned by the temperature monitoring module 50 drives the adjustable flow device 20 connected to the evaporator 30 to operate, so that the adjustable flow device 20 increases the flow rate of the high-temperature refrigerant flowing into the evaporator 30, so that the evaporator
  • the surface temperature of 30 will be rapidly increased by the residual heat of the high-temperature refrigerant in the evaporator 30, so that the slight frost on the surface of the evaporator 30 can be eliminated in time and the frost on the surface of the evaporator 30 during subsequent operations can be avoided occur.
  • the dehumidifier operated according to the above method can work stably in a low-temperature environment with an ambient temperature of 8 ° C to 13 ° C without frost formation.
  • the temperature monitoring module 50 when the temperature monitoring module 50 senses that the surface temperature of the evaporator 30 has been between 0 ° C and minus 1 ° C, it can send a stop signal to the control module 40. After receiving the stop signal, the control module 40 The adjustable flow device 20 can be driven to restore the flow rate of the high-temperature refrigerant flowing into the evaporator 30 to a normal level.
  • step S400 further includes the following steps:
  • S410 Provide a delay module (not shown), install the delay module in the dehumidifier body 10, and electrically connect the delay module to the control module 40, and control the control module 40 through the delay module
  • the drive adjustment is performed on the adjustable flow device 20 every 30 minutes or more. Specifically, due to the existence of the delay module, it can effectively prevent the adjustable flow device 20 from performing the operation process of increasing the high-temperature refrigerant too frequently, thereby effectively ensuring the working life of the adjustable flow device 20.
  • the adjustable flow device 20 includes a first throttle mechanism (not shown).
  • the first throttle mechanism is connected to the evaporator 30 and electrically connected to the control module 40.
  • the first throttle mechanism is an electronic throttle.
  • the throttle accuracy of the throttle is significantly improved, and thus the flow rate of the high-temperature refrigerant entering the evaporator 30 is significantly improved The accuracy can thereby make the defrosting and frost prevention processes of the evaporator 30 more precise and controllable.
  • the adjustable flow device 20 includes a second throttle mechanism 21, and the second throttle mechanism 21 includes a normal temperature throttle 211, a low temperature throttle 212, and a A control valve 213 and a second control valve 214, the normal temperature restrictor 211 and the low temperature restrictor 212 are connected to the evaporator 30, and the first control valve 213 is connected to the normal temperature restrictor 211 to control the normal temperature restrictor 211 On and off, the second control valve 214 is connected to the low-temperature throttle 212 to control the on-off of the low-temperature throttle 212.
  • both the first control valve 213 and the second control valve 214 are solenoid valves, and the first control valve 213 and the second control valve 214 are electrically connected to the control module 40; when the surface temperature of the evaporator 30 is less than or equal to minus zero At 1 ° C, the control module 40 controls the first control valve 213 to close the normal temperature restrictor 211, and the second control valve 214 opens the low temperature restrictor 212; when the surface temperature of the evaporator 30 is greater than or equal to 0 ° C, the control module 40 controls the second control valve 214 to close the low-temperature throttle 212, and the first control valve 213 opens the normal-temperature throttle 211.
  • the flow rate of the high-temperature refrigerant in the low-temperature restrictor 212 is greater than the flow rate of the high-temperature refrigerant in the normal-temperature restrictor 211. In this way, due to the existence of the normal temperature restrictor 211 and the low temperature restrictor 212, when the surface temperature of the evaporator 30 is less than or equal to minus 1 ° C, the control module 40 can control the operation of the low temperature restrictor 212.
  • the flow rate of the restrictor 212 is greater than the flow rate of the normal temperature restrictor 211, wherein the normal temperature restrictor 211 may be a standard restrictor (refer to the design of the ambient temperature of 27 ° C and 60% humidity), and the low temperature restrictor 212 may be based on
  • the ambient temperature is 8 ⁇ 10 °C
  • the parameter index of 80% humidity is used to design the flow rate of the high-temperature refrigerant, so that at the above ambient temperature and humidity level, the low-temperature restrictor 212 can input enough high-temperature refrigerant to the evaporation In the evaporator 30, the frost formed on the surface of the evaporator 30 is removed, and when the dehumidifier is operated in a low-temperature environment, the evaporator 30 therein avoids frost formation.
  • the control module 40 can control the operation of the normal temperature restrictor 211, thereby saving the operating cost of the dehumidifier. According to the actual test results, when the dehumidifier is operated in a low-temperature environment, the use of the low-temperature restrictor 212 can increase the amount of dehumidification by 60%, and the power consumption can be reduced by 10%.
  • the normal temperature restrictor 211 and the low temperature restrictor 212 are both hardware restrictors. Specifically, by setting both the normal-temperature restrictor 211 and the low-temperature restrictor 212 as hardware restrictors, the frost-free operation method of the above-mentioned dehumidifier can be benefited from the advantage of low support cost of the hardware restrictor Used in the operation of general household refrigeration equipment.
  • the normal temperature restrictor 211 and the low temperature restrictor 212 are provided in parallel. Specifically, by setting the normal-temperature restrictor 211 and the low-temperature restrictor 212 in parallel, this facilitates the assembly of the normal-temperature restrictor 211 and the low-temperature restrictor 212 in the dehumidifier body 10 on the one hand, and facilitates the normal-temperature saving on the other hand
  • the flow restrictor 211 and the low-temperature restrictor 212 are connected to the installation of the first control valve 213 and the second control valve 214.
  • the adjustable flow device 20 further includes a third throttle mechanism 22, and the third throttle mechanism 22 includes a first throttle 221 and a second throttle 222 and the third control valve 223, the first throttle 221 and the throttle are arranged in parallel and are connected to the evaporator 30, the third control valve 223 is installed on the second throttle 222 to control the second throttle 222 On and off.
  • the third control valve 223 is electrically connected to the control module 40.
  • the control module 40 controls the third control valve 223 to open the second throttle 222;
  • the control module 40 controls the third control valve 223 to close the second throttle 222.
  • the flow rate of the high-temperature refrigerant in the second throttle 221 is greater than the flow rate of the high-temperature refrigerant in the first throttle 222.
  • the third throttle mechanism 22 include the first throttle 221, the second throttle 222, and the third control valve 223, and making the flow rate of the high-temperature refrigerant of the first throttle 221 smaller than the second The flow rate of the high-temperature refrigerant in the restrictor 222.
  • the first throttle 221 can maintain the flow rate of the high-temperature refrigerant entering the evaporator 30 unchanged, and the control module 40 can control the third control at this time
  • the valve 223 opens the second restrictor 222, so that the second restrictor 222 further inputs high-temperature refrigerant into the evaporator 30, thereby causing the surface temperature of the evaporator 30 to rise, eliminating and preventing frost.
  • the difference between this embodiment and Embodiment 3 is that the flow rate of the high-temperature refrigerant in the first throttle 221 is equal to the flow rate of the high-temperature refrigerant in the second throttle 222.
  • this is equivalent to being an evaporator when the surface temperature of the evaporator 30 is lower than or equal to minus 1 ° C 30 inputs double-flow high-temperature refrigerant, which significantly improves the defrosting efficiency of the evaporator 30, and also ensures that the surface of the evaporator 30 is not frosted when it is operated in a long-term low-temperature environment.
  • this embodiment provides a dehumidifier, which includes a dehumidifier body 10.
  • the dehumidifier further includes an adjustable flow device 20 for inputting high-temperature refrigerant into the evaporator 30 in the dehumidifier body 10.
  • the control module 40 and the temperature monitoring module 50, the adjustable flow device 20 is installed in the dehumidifier body 10 and connected to the evaporator 30, the control module 40 is installed in the dehumidifier body 10, the adjustable flow device 20 and the control
  • the module 40 is electrically connected, the temperature monitoring module 50 is installed on the evaporator 30, and the temperature monitoring module 50 and the control module 40 are electrically connected.
  • the temperature monitoring module 50 can control the temperature in the dehumidifier when working in a low-temperature environment.
  • the temperature of the surface of the evaporator 30 is monitored in real time.
  • the temperature monitoring module 50 can respond accordingly
  • the electrical signal is returned to the control module 40, and the control module 40 can drive the adjustable flow device 20 to increase the high-temperature refrigerant flowing into the evaporator 30 according to the electrical signal, thereby making the surface temperature of the evaporator 30 Lifting, thereby eliminating the slight frost on the surface of the evaporator 30 and making the dehumidifier operate in a low temperature environment, the surface of the evaporator 30 avoids frost.
  • the dehumidifier further includes a delay module (not shown), the delay module is installed in the dehumidifier body 10, and the delay module is electrically connected to the control module 40 to control the control module 40
  • the drive adjustment can adjust the time interval of the flow device 20. Specifically, due to the existence of the delay module, it can effectively prevent the adjustable flow device 20 from performing the operation process of increasing the high-temperature refrigerant too frequently, thereby effectively ensuring the working life of the adjustable flow device 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

本申请属于除湿设备技术领域,尤其涉及一种除湿机的无霜运行方法及除湿机,除湿机的无霜运行方法包括以下步骤:S100:提供可调节流装置(20),安装于除湿机主体(10)内并连接于除湿机主体(10)的蒸发器(30);S200:提供控制模组(40),安装于除湿机主体(10)内且与可调节流装置(20)电连接;S300:提供温度监测模组(50),安装于蒸发器(30)且与控制模组(40)电连接;S400:当蒸发器(30)表面温度小于或等于零下1℃时,控制模组(40)调节可调节流装置(20)增大高温制冷剂流量。蒸发器(30)温度提升,及时化除蒸发器(30)轻微结霜并避免后续运行中蒸发器(30)结霜现象的发生。

Description

除湿机的无霜运行方法及除湿机 技术领域
本申请属于除湿设备技术领域,尤其涉及一种除湿机的无霜运行方法及除湿机。
背景技术
除湿机在工作时,其内蒸发器的温度相比室温要低10~15℃左右,在室温低于15℃时,蒸发器表面将会结霜,如果持续运行,则结霜现象会更为严重,因此便需要及时对蒸发器进行化霜作业。
在现有的化霜作业中,需要停止蒸发器的运行,并加大风量,进而实现化霜。或者是在蒸发器周侧加设加热器件,通过加热实现融霜。还可通过将蒸发器的高温制冷剂引流入蒸发器,通过高温制冷剂的余热进行融霜。然而,上述的化霜方法均是在结霜后进行化霜的,无法实现除湿机在低温环境中的无霜化运行。
技术问题
本申请实施例的目的在于:第一方面,提供一种除湿机的无霜运行方法,用以解决现有技术中除湿机在低温环境中无法实现无霜化运行的技术问题。
第二方面,提供一种除湿机,用以解决现有技术中除湿机在低温环境中运行的过程中,其蒸发器的表面易结霜的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种除湿机的无霜运行方法,其特征在于:包括以下步骤:
S100:提供可调节流装置,将所述可调节流装置安装于除湿机主体内,并将所述可调节流装置连接于所述除湿机主体内的蒸发器上以调节进入所述蒸发器内的高温制冷剂的流量;
S200:提供控制模组,将所述控制模组安装于所述除湿机主体内,且将所述控制模组与所述可调节流装置电连接;
S300:提供温度监测模组,将所述温度监测模组安装于所述蒸发器上以监测所述蒸发器的表面温度,并将所述温度监测模组与所述控制模组电连接;
S400:当所述蒸发器的表面温度小于或等于零下1℃时,所述温度监测模组将该温度信息反馈至所述控制模组,所述控制模组根据所述温度信息驱动调节所述可调节流装置增大流入所述蒸发器内的高温制冷剂的流量。
优选地,步骤S400还包括以下步骤:
S410:提供延时模组,将所述延时模组安装于所述除湿机主体内,并将所述延时模组与所述控制模组电连接,通过所述延时模组控制所述控制模组每隔大于或等于30min的时间段对所述可调节流装置进行一次驱动调节。
优选地,所述可调节流装置包括第一节流机构,所述第一节流机构连接于所述蒸发器并与所述控制模组电连接。
优选地,所述第一节流机构为电子节流器。
优选地,所述可调节流装置还包括第二节流机构,所述第二节流机构包括常温节流器、低温节流器、第一控制阀和第二控制阀,所述常温节流器和所述低温节流器均连接于所述蒸发器上,所述第一控制阀与所述常温节流器相连接以控制所述常温节流器的通断,所述第二控制阀与所述低温节流器相连接以控制所述低温节流器的通断。
优选地,所述第一控制阀和所述第二控制阀均为电磁阀,且所述第一控制阀和所述第二控制阀均与所述控制模组电连接;
当所述蒸发器的表面温度小于或等于零下1℃时,所述控制模组控制所述第一控制阀关闭所述常温节流器,所述第二控制阀开启所述低温节流器;
当所述蒸发器的表面温度大于或等于0℃时,所述控制模组控制所述第二控制阀关闭所述低温节流器,所述第一控制阀开启所述常温节流器。
优选地,所述常温节流器和所述低温节流器均为五金节流器。
优选地,所述常温节流器和所述低温节流器并联设置。
优选地,所述低温节流器的高温制冷剂的通过流量大于所述常温节流器的高温制冷剂的通过流量。
优选地,所述可调节流装置还包括第三节流机构,所述第三节流机构包括第一节流器、第二节流器和第三控制阀,所述第一节流器和所述节流器并联设置并均连接于所述蒸发器,所述第三控制阀安装于所述第二节流器上以控制所述第二节流器的通断。
优选地,所述第三控制阀与所述控制模组电性连接,当所述蒸发器的表面温度低于或等于零下1℃时,所述控制模组控制所述第三控制阀开启所述第二节流器;
当所述蒸发器的表面温度大于或等于0℃时,所述控制模组控制所述第三控制阀关闭所述第二节流器。
优选地,所述第二节流器的高温制冷剂的通过流量大于所述第一节流器的高温制冷剂的通过流量。
优选地,所述第一节流器的高温制冷剂的通过流量等于所述第二节流器的高温制冷剂的通过流量。
第二方面,提供了一种除湿机,包括除湿机主体,所述除湿机还包括用于向除湿机主体内的蒸发器内输入高温制冷剂的可调节流装置、控制模组和温度监测模组,所述可调节流装置安装于所述除湿机主体内并连接于所述蒸发器上,所述控制模组安装于所述除湿机主体内,所述可调节流装置与所述控制模组电连接,所述温度监测模组安装于所述蒸发器上,且所述温度监测模组与所述控制模组电连接。
优选地,所述除湿机还包括延时模组,所述延时模组安装于所述除湿机主体内,且所述延时模组与所述控制模组电连接以控制所述控制模组驱动调节所述可调节流装置的时间间隔。
有益效果
与现有技术相比,本申请实施例提供的除湿机的无霜运行方法,操作时,首先可利用温度监测模组感知监测除湿机主体内的蒸发器表面的温度变化,当蒸发器的表面温度小于或等于零下1℃时,蒸发器的表面便会发生结霜倾向或轻微的结霜,此时温度监测模组即可将模组模组传送相应的电信号,而控制模组可根据温度监测模组所回传的电信号驱动调节与蒸发器相连接的可调节流装置运行,使得可调节流装置增大流入蒸发器内的高温制冷剂的流量,如此蒸发器的表面温度便会因为蒸发器内的高温制冷剂的余热而迅速提升,这样便能够及时化除蒸发器表面的轻微结霜并避免了后续运行过程中蒸发器表面结霜现象的发生。如此,根据上述方法运行的除湿机便能够在环境温度为8℃~13℃的低温环境内稳定工作而不发生结霜现象。
本申请实施例提供的除湿机的有益效果在于:本申请的除湿机,由于包括有可调节流装置、控制模组和温度监测模组,那么其在低温环境中工作时,温度监测模组便能够对除湿机内的蒸发器表面的温度进行实时监测,当蒸发器表面的温度低于预设的温度值时,蒸发器的表面发生结霜倾向或轻微结霜时,温度监测模组即可将相应的电信号回传至控制模组,而控制模组则可根据该电信号来驱动调节可调节流装置增大流入蒸发器内的高温制冷剂,进而使得蒸发器的表面温度提升,进而化除蒸发器表面的轻微结霜并使得除湿机在低温环境中运行的过程中,蒸发器的表面避免发生结霜。
附图说明
图1为本申请实施例提供的除湿机的无霜运行方法的流程图;
图2为本申请实施例提供的除湿机的结构示意图一;
图3为本申请实施例提供的除湿机的结构示意图二;
图4为本申请实施例提供的除湿机的结构示意图三。
附图标记包括:
10—除湿机主体          20—可调节流装置        21—第二节流机构
22—第三节流机构        30—蒸发器              40—控制模组
50—温度监测模组        211—常温节流器        212—低温节流器
213—第一控制阀        214—第二控制阀         221—第一节流器
222—第二节流器         223—第三控制阀。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图1~4描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
实施例一
如图1所示,本实施例提供的除湿机的无霜运行方法,其用于使得除湿机在低温环境中实现无霜化运行,具体地,除湿机的无霜运行方法包括以下步骤:
S100:提供可调节流装置20,将可调节流装置20安装于除湿机主体10内,并将可调节流装置20连接于除湿机主体10内的蒸发器30上以调节进入蒸发器30内的高温制冷剂的流量;其中,可调节流装置20的高温制冷剂输出端与蒸发器30相连接,可调节流装置20的高温制冷剂输入端与除湿机内的压缩机的高温制冷剂输出端相连接。
S200:提供控制模组40,将控制模组40安装于除湿机主体10内,且将控制模组40与可调节流装置20电连接;
S300:提供温度监测模组50,将温度监测模组50安装于蒸发器30上以监测蒸发器30的表面温度,并将温度监测模组50与控制模组40电连接;
S400:当蒸发器30的表面温度小于或等于零下1℃时,温度监测模组50将该温度信息反馈至控制模组40,控制模组40根据该温度信息驱动调节可调节流装置20增大流入蒸发器30内的高温制冷剂的流量。在实际工况条件下,当环境温度低于10℃(低温环境)时,除湿机的蒸发器30的温度多会落0℃以下,当蒸发器30温度低于零下1℃时,会开始出现结霜现象,而当蒸发器30温度低于零下1℃时,结霜现象尤甚。故本申请将温度监测模组50的温度探测点设置在零下1℃左右。同时,当蒸发器30的表面温度介于0℃和零下1℃之间时,控制模组40还可驱动调节可调节流装置20适度地增大流入蒸发器30内的高温制冷剂的流量。而当蒸发器30的表面温度高于0℃后,则控制模组40无需介入对可调节流装置20的调控,可调节节流装置20可依照预先设定好的流量参数向蒸发器30内正常输入高温制冷剂。
本申请实施例提供的除湿机的无霜运行方法,操作时,首先可利用温度监测模组50感知监测除湿机主体10内的蒸发器30表面的温度变化,当蒸发器30的表面温度小于或等于零下1℃时,蒸发器30的表面便会发生结霜倾向或轻微的结霜,此时温度监测模组50即可将模组模组传送相应的电信号,而控制模组40可根据温度监测模组50所回传的电信号驱动调节与蒸发器30相连接的可调节流装置20运行,使得可调节流装置20增大流入蒸发器30内的高温制冷剂的流量,如此蒸发器30的表面温度便会因为蒸发器30内的高温制冷剂的余热而迅速提升,这样便能够及时化除蒸发器30表面的轻微结霜并避免了后续运行过程中蒸发器30表面结霜现象的发生。如此,根据上述方法运行的除湿机便能够在环境温度为8℃~13℃的低温环境内稳定工作而不发生结霜现象。
进一步地,当温度监测模组50感测到蒸发器30表面温度已处于0℃~零下1℃之间时,即可向控制模组40发出停止信号,控制模组40在收到停止信号后可驱动可调节流装置20将流入蒸发器30内的高温制冷剂的流量回复至正常水平。
在本实施例中,步骤S400还包括以下步骤:
S410:提供延时模组(图未示),将延时模组安装于除湿机主体10内,并将延时模组与控制模组40电连接,通过延时模组控制控制模组40每隔大于或等于30min的时间段对调节可调节流装置20进行一次驱动调节。具体地,由于延时模组的存在,这样其便能够有效避免可调节流装置20过于频繁地进行增大高温制冷剂的操作过程,进而能够有效地保证可调节流装置20的工作寿命。
在本实施例中,如图2所示,可调节流装置20包括第一节流机构(图未示),第一节流机构连接于蒸发器30并与控制模组40电连接。且第一节流机构为电子节流器。具体地,通过将第一节流机构设定为电子节流器,这样便显著提升了节流器的节流精确度,进而便显著提升了进入到蒸发器30内的高温制冷剂的流量的精确度,由此便能够使得蒸发器30的化霜和预防结霜的过程变的更为精确可控。
实施例二
如图3所示,本实施例与实施例一的区别在于:可调节流装置20包括第二节流机构21,第二节流机构21包括常温节流器211、低温节流器212、第一控制阀213和第二控制阀214,常温节流器211和低温节流器212均连接于蒸发器30上,第一控制阀213与常温节流器211相连接以控制常温节流器211的通断,第二控制阀214与低温节流器212相连接以控制低温节流器212的通断。同时,第一控制阀213和第二控制阀214均为电磁阀,且第一控制阀213和第二控制阀214均与控制模组40电连接;当蒸发器30的表面温度小于或等于零下1℃时,控制模组40控制第一控制阀213关闭常温节流器211,第二控制阀214开启低温节流器212;当蒸发器30的表面温度大于或等于0℃时,控制模组40控制第二控制阀214关闭低温节流器212,第一控制阀213开启常温节流器211。低温节流器212的高温制冷剂的通过流量大于常温节流器211的高温制冷剂的通过流量。如此,由于常温节流器211和低温节流器212的存在,那么当蒸发器30的表面温度小于或等于零下1℃时,控制模组40即可控制低温节流器212运行,而由于低温节流器212的流量大于常温节流器211的流量,其中,常温节流器211可为标准节流器(参照环境温度27℃,60%湿度设计),而低温节流器212可为根据环境温度在8~10℃,80%湿度的参数指标来设计高温制冷剂的通过流量,进而使得在上述环境温度和湿度水平下,低温节流器212即可将足够的高温制冷剂输入于蒸发器30内,从而使得蒸发器30表面形成的霜化除,并使得除湿机在低温环境中运行时,其内的蒸发器30避免结霜。而当蒸发器30的表面温度大于或等于0℃时,控制模组40即可控制常温节流器211运行,从而节省除湿机的运行成本。而根据实际测试结果来看,当除湿机在低温环境中运行时,采用低温节流器212可使得除湿量提升60%,而消耗功率则能够降低10%。
在本实施例中,常温节流器211和低温节流器212均为五金节流器。具体地,通过将常温节流器211和低温节流器212均设定为五金节流器,那么得益于五金节流器支撑成本低的优点,上述的除湿机的无霜运行方法便可应用于一般的家用制冷设备的运行中。
在本实施例中,常温节流器211和低温节流器212并联设置。具体地,通过将常温节流器211和低温节流器212并联设置,这样一方面方便常温节流器211和低温节流器212在除湿机主体10内的装配,另一方面也便于常温节流器211和低温节流器212与第一控制阀213和第二控制阀214的安装连接。
本实施例的其余部分与实施例一相同,在本实施例中未解释的特征,均采用实施例一的解释,这里不再进行赘述。
实施例三
如图4所示,本实施例与实施例二的区别在于:可调节流装置20还包括第三节流机构22,第三节流机构22包括第一节流器221、第二节流器222和第三控制阀223,第一节流器221和节流器并联设置并均连接于蒸发器30,第三控制阀223安装于第二节流器222上以控制第二节流器222的通断。第三控制阀223与控制模组40电性连接,当蒸发器30的表面温度低于或等于零下1℃时,控制模组40控制第三控制阀223开启第二节流器222;当蒸发器30的表面温度大于或等于0℃时,控制模组40控制第三控制阀223关闭第二节流器222。第二节流器221的高温制冷剂的通过流量大于第一节流器222的高温制冷剂的通过流量。具体地,通过使得第三节流机构22包括第一节流器221、第二节流器222和第三控制阀223,并使得第一节流器221的高温制冷剂的通过流量小于第二节流器222的高温制冷剂的通过流量。那么当蒸发器30的表面温度低于或等于零下1℃时,第一节流器221可维持进入蒸发器30的高温制冷剂的流量不变,而控制模组40此时可控制第三控制阀223开启第二节流器222,进而使得第二节流器222进一步向蒸发器30内输入高温制冷剂,进而使得蒸发器30表面温度上升,化除和防止结霜。
本实施例的其余部分与实施例二相同,在本实施例中未解释的特征,均采用实施例二的解释,这里不再进行赘述。
实施例四
如图4所示,本实施例与实施例三的区别在于:第一节流器221的高温制冷剂的通过流量等于第二节流器222的高温制冷剂的通过流量。具体地,通过使得第一节流器221和第二节流器222的高温制冷剂的通过流量相同,这样便相当于在蒸发器30的表面温度低于或等于零下1℃时,为蒸发器30输入了双倍流量的高温制冷剂,进而显著提升了蒸发器30的化除结霜的效率,同时也保证了蒸发器30在长期低温环境中运行时,表面不结霜。
实施例五
如图2所示,本实施例提供了一种除湿机,包括除湿机主体10,除湿机还包括用于向除湿机主体10内的蒸发器30内输入高温制冷剂的可调节流装置20、控制模组40和温度监测模组50,可调节流装置20安装于除湿机主体10内并连接于蒸发器30上,控制模组40安装于除湿机主体10内,可调节流装置20与控制模组40电连接,温度监测模组50安装于蒸发器30上,且温度监测模组50与控制模组40电连接。
本申请实施例提供的除湿机,由于包括有可调节流装置20、控制模组40和温度监测模组50,那么其在低温环境中工作时,温度监测模组50便能够对除湿机内的蒸发器30表面的温度进行实时监测,当蒸发器30表面的温度低于预设的温度值时,蒸发器30的表面发生结霜倾向或轻微结霜时,温度监测模组50即可将相应的电信号回传至控制模组40,而控制模组40则可根据该电信号来驱动调节可调节流装置20增大流入蒸发器30内的高温制冷剂,进而使得蒸发器30的表面温度提升,进而化除蒸发器30表面的轻微结霜并使得除湿机在低温环境中运行的过程中,蒸发器30的表面避免发生结霜。
在本实施例中,除湿机还包括延时模组(图未示),延时模组安装于除湿机主体10内,且延时模组与控制模组40电连接以控制控制模组40驱动调节可调节流装置20的时间间隔。具体地,由于延时模组的存在,这样其便能够有效避免可调节流装置20过于频繁地进行增大高温制冷剂的操作过程,进而能够有效地保证可调节流装置20的工作寿命。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的思想和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种除湿机的无霜运行方法,其特征在于:包括以下步骤:
    S100:提供可调节流装置,将所述可调节流装置安装于除湿机主体内,并将所述可调节流装置连接于所述除湿机主体内的蒸发器上以调节进入所述蒸发器内的高温制冷剂的流量;
    S200:提供控制模组,将所述控制模组安装于所述除湿机主体内,且将所述控制模组与所述可调节流装置电连接;
    S300:提供温度监测模组,将所述温度监测模组安装于所述蒸发器上以监测所述蒸发器的表面温度,并将所述温度监测模组与所述控制模组电连接;
    S400:当所述蒸发器的表面温度小于或等于零下1℃时,所述温度监测模组将该温度信息反馈至所述控制模组,所述控制模组根据所述温度信息驱动调节所述可调节流装置增大流入所述蒸发器内的高温制冷剂的流量。
  2. 根据权利要求1所述的除湿机的无霜运行方法,其特征在于:步骤S400还包括以下步骤:
    S410:提供延时模组,将所述延时模组安装于所述除湿机主体内,并将所述延时模组与所述控制模组电连接,通过所述延时模组控制所述控制模组每隔大于或等于30min的时间段对所述可调节流装置进行一次驱动调节。
  3. 根据权利要求1所述的除湿机的无霜运行方法,其特征在于:所述可调节流装置包括第一节流机构,所述第一节流机构连接于所述蒸发器并与所述控制模组电连接。
  4. 根据权利要求3所述的除湿机的无霜运行方法,其特征在于:所述第一节流机构为电子节流器。
  5. 根据权利要求1~4任一项所述的除湿机的无霜运行方法,其特征在于:所述可调节流装置还包括第二节流机构,所述第二节流机构包括常温节流器、低温节流器、第一控制阀和第二控制阀,所述常温节流器和所述低温节流器均连接于所述蒸发器上,所述第一控制阀与所述常温节流器相连接以控制所述常温节流器的通断,所述第二控制阀与所述低温节流器相连接以控制所述低温节流器的通断。
  6. 根据权利要求5所述的除湿机的无霜运行方法,其特征在于:所述第一控制阀和所述第二控制阀均为电磁阀,且所述第一控制阀和所述第二控制阀均与所述控制模组电连接;
    当所述蒸发器的表面温度小于或等于零下1℃时,所述控制模组控制所述第一控制阀关闭所述常温节流器,所述第二控制阀开启所述低温节流器;
    当所述蒸发器的表面温度大于或等于0℃时,所述控制模组控制所述第二控制阀关闭所述低温节流器,所述第一控制阀开启所述常温节流器。
  7. 根据权利要求5所述的除湿机的无霜运行方法,其特征在于:所述常温节流器和所述低温节流器均为五金节流器。
  8. 根据权利要求5所述的除湿机的无霜运行方法,其特征在于:所述常温节流器和所述低温节流器并联设置。
  9. 根据权利要求5所述的除湿机的无霜运行方法,其特征在于:所述低温节流器的高温制冷剂的通过流量大于所述常温节流器的高温制冷剂的通过流量。
  10. 根据权利要求1~4任一项所述的除湿机的无霜运行方法,其特征在于:所述可调节流装置还包括第三节流机构,所述第三节流机构包括第一节流器、第二节流器和第三控制阀,所述第一节流器和所述节流器并联设置并均连接于所述蒸发器,所述第三控制阀安装于所述第二节流器上以控制所述第二节流器的通断。
  11. 根据权利要求10所述的除湿机的无霜运行方法,其特征在于:所述第三控制阀与所述控制模组电性连接,当所述蒸发器的表面温度低于或等于零下1℃时,所述控制模组控制所述第三控制阀开启所述第二节流器;
    当所述蒸发器的表面温度大于或等于0℃时,所述控制模组控制所述第三控制阀关闭所述第二节流器。
  12. 根据权利要求10所述的除湿机的无霜运行方法,其特征在于:所述第二节流器的高温制冷剂的通过流量大于所述第一节流器的高温制冷剂的通过流量。
  13. 根据权利要求10所述的除湿机的无霜运行方法,其特征在于:所述第一节流器的高温制冷剂的通过流量等于所述第二节流器的高温制冷剂的通过流量。
  14. 一种除湿机,包括除湿机主体,其特征在于:所述除湿机还包括用于向所述除湿机主体内的蒸发器内输入高温制冷剂的可调节流装置、控制模组和温度监测模组,所述可调节流装置安装于所述除湿机主体内并连接于所述蒸发器上,所述控制模组安装于所述除湿机主体内,所述可调节流装置与所述控制模组电连接,所述温度监测模组安装于所述蒸发器上,且所述温度监测模组与所述控制模组电连接。
  15. 根据权利要求14所述的除湿机,其特征在于:所述除湿机还包括延时模组,所述延时模组安装于所述除湿机主体内,且所述延时模组与所述控制模组电连接以控制所述控制模组驱动调节所述可调节流装置的时间间隔。
PCT/CN2018/113067 2018-10-31 2018-10-31 除湿机的无霜运行方法及除湿机 WO2020087358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/113067 WO2020087358A1 (zh) 2018-10-31 2018-10-31 除湿机的无霜运行方法及除湿机
CN201880043226.6A CN111386432A (zh) 2018-10-31 2018-10-31 除湿机的无霜运行方法及除湿机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113067 WO2020087358A1 (zh) 2018-10-31 2018-10-31 除湿机的无霜运行方法及除湿机

Publications (1)

Publication Number Publication Date
WO2020087358A1 true WO2020087358A1 (zh) 2020-05-07

Family

ID=70461984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113067 WO2020087358A1 (zh) 2018-10-31 2018-10-31 除湿机的无霜运行方法及除湿机

Country Status (2)

Country Link
CN (1) CN111386432A (zh)
WO (1) WO2020087358A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180835A (ja) * 2003-12-22 2005-07-07 Mitsubishi Electric Corp 除湿機及び除湿機の運転方法
CN101910753A (zh) * 2007-11-29 2010-12-08 易路卡夫公司 正低温冷却装置以及使用该装置的设备
CN102788462A (zh) * 2012-07-25 2012-11-21 广东美的暖通设备有限公司 空调除霜方法及空调系统
CN104879836A (zh) * 2015-04-24 2015-09-02 广东美的制冷设备有限公司 变频除湿机的控制方法、装置以及除湿机
CN105042786A (zh) * 2015-07-30 2015-11-11 广东美的制冷设备有限公司 除湿机及除湿机的控制方法和装置
CN105588182A (zh) * 2014-11-25 2016-05-18 海信(山东)空调有限公司 一种空调室内机及其除湿方法、除湿装置
CN206817647U (zh) * 2017-04-14 2017-12-29 北京金茂绿建科技有限公司 一种除湿装置
CN207350733U (zh) * 2017-06-07 2018-05-11 四川省艾耳能科技有限公司 空调机组及空调系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307800B (zh) * 2012-03-06 2016-05-25 俞绍明 热泵系统
CN207299259U (zh) * 2017-10-16 2018-05-01 广东美的暖通设备有限公司 空调系统及其室外机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180835A (ja) * 2003-12-22 2005-07-07 Mitsubishi Electric Corp 除湿機及び除湿機の運転方法
CN101910753A (zh) * 2007-11-29 2010-12-08 易路卡夫公司 正低温冷却装置以及使用该装置的设备
CN102788462A (zh) * 2012-07-25 2012-11-21 广东美的暖通设备有限公司 空调除霜方法及空调系统
CN105588182A (zh) * 2014-11-25 2016-05-18 海信(山东)空调有限公司 一种空调室内机及其除湿方法、除湿装置
CN104879836A (zh) * 2015-04-24 2015-09-02 广东美的制冷设备有限公司 变频除湿机的控制方法、装置以及除湿机
CN105042786A (zh) * 2015-07-30 2015-11-11 广东美的制冷设备有限公司 除湿机及除湿机的控制方法和装置
CN206817647U (zh) * 2017-04-14 2017-12-29 北京金茂绿建科技有限公司 一种除湿装置
CN207350733U (zh) * 2017-06-07 2018-05-11 四川省艾耳能科技有限公司 空调机组及空调系统

Also Published As

Publication number Publication date
CN111386432A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN105627524B (zh) 空调器防冻结控制方法及空调器
CN110671777B (zh) 一种空调器的控制方法、装置和空调器
WO2018094844A1 (zh) 一种空调系统及控制方法
CN111141008B (zh) 一种空调化霜的控制方法、控制装置、存储介质及空调
CN102226608B (zh) 空调器除霜系统、空调器、和空调器除霜方法
CN106642509B (zh) 一种预防辐射式空调室内机中换热器结霜的控制方法
CN109489217A (zh) 一种防止变频空调器达温停机的控制方法
CN104236010A (zh) 空调器的控制方法
CN103486782B (zh) 制冷设备及其化霜控制方法
CN106801972B (zh) 一种变频空调器保护控制方法和变频空调器
CN114459133A (zh) 一种中央空调系统节能控制方法及节能控制系统
CN108917083A (zh) 一种空调器的控制方法、装置、存储介质
CN104791955A (zh) 移动空调控制方法
CN108050719A (zh) 一种基于温差计算制冷剂泵能力的自然冷却系统及其控制方法
CN113915901A (zh) 一种冰箱及其恒温制冷方法
CN104930597A (zh) 一种空调器装置及应用该装置的控制方法
JP2017067318A (ja) 空気調和装置
WO2020087358A1 (zh) 除湿机的无霜运行方法及除湿机
CN103759395A (zh) 一种适应空调工况变化的调节系统
JP5289395B2 (ja) 直膨式空調装置
CN108548254B (zh) 住宅智能风冷空调系统
CN105465975A (zh) 空调器和空调器的控制方法
CN203719044U (zh) 一种适应空调工况变化的调节系统
CN109028666B (zh) 一种调控精准的粮库内环路控温管道装置
CN108561989B (zh) 住宅智能风冷空调系统的运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938368

Country of ref document: EP

Kind code of ref document: A1