WO2020087334A1 - 一种无人机的仿真方法、终端设备及计算机可读存储介质 - Google Patents

一种无人机的仿真方法、终端设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2020087334A1
WO2020087334A1 PCT/CN2018/112943 CN2018112943W WO2020087334A1 WO 2020087334 A1 WO2020087334 A1 WO 2020087334A1 CN 2018112943 W CN2018112943 W CN 2018112943W WO 2020087334 A1 WO2020087334 A1 WO 2020087334A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulated flight
flight environment
configuration parameters
configuration
drone
Prior art date
Application number
PCT/CN2018/112943
Other languages
English (en)
French (fr)
Inventor
陈超彬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880037921.1A priority Critical patent/CN110770659A/zh
Priority to PCT/CN2018/112943 priority patent/WO2020087334A1/zh
Publication of WO2020087334A1 publication Critical patent/WO2020087334A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the present invention relates to the field of communication technology, and in particular, to a simulation method of a drone, terminal equipment, and a computer-readable storage medium.
  • the flight control equipment (such as flight controller) of the drone is generally configured with a flight simulator, which is used to support the simulation of the drone. Users can familiarize themselves with the basic functions of the drone through the flight simulator, as well as exercise flight technology, etc. The developer of the drone can also verify certain preset functions of the drone through the flight simulator.
  • the embodiments of the present invention provide a simulation method, terminal device and computer-readable storage medium for a drone, which can dynamically configure the simulation environment of the drone, and can improve the development efficiency of the drone.
  • an embodiment of the present invention provides a simulation method for a drone, including:
  • Detecting the configuration operation of the user wherein the configuration operation is used to configure the characteristics of the simulated flight environment in the simulated flight environment of the drone;
  • the configuration parameters of the simulated flight environment characteristics include type information and attribute parameters of the simulated flight environment characteristics
  • the simulated flight environment characteristics are generated and displayed according to the configuration parameters of the simulated flight environment characteristics, wherein the simulated flight environment characteristics constitute the simulated flight environment of the drone.
  • an embodiment of the present invention provides a simulation device for a drone, including:
  • a detection unit configured to detect a user's configuration operation, wherein the configuration operation is used to configure a simulated flight environment feature in the simulated flight environment of the drone;
  • a processing unit configured to determine configuration parameters of the simulated flight environment characteristics according to the configuration operation detected by the detection unit, wherein the configuration parameters of the simulated flight environment characteristics include type information and attribute parameters of the simulated flight environment characteristics;
  • the processing unit is further configured to generate and display simulated flight environment characteristics according to the configuration parameters of the simulated flight environment characteristics, wherein the simulated flight environment characteristics constitute the simulated flight environment of the drone.
  • an embodiment of the present invention provides a terminal device, including a processor and a memory, the processor and the memory are connected, the memory stores a computer program, the computer program includes program instructions, and the processor calls the The program instructions are used to execute:
  • Detecting the configuration operation of the user wherein the configuration operation is used to configure the characteristics of the simulated flight environment in the simulated flight environment of the drone;
  • the configuration parameters of the simulated flight environment characteristics include type information and attribute parameters of the simulated flight environment characteristics
  • the simulated flight environment characteristics are generated and displayed according to the configuration parameters of the simulated flight environment characteristics, wherein the simulated flight environment characteristics constitute the simulated flight environment of the drone.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium storing computer program instructions, which when executed are used to implement the Human-machine simulation method.
  • the terminal device determines the configuration parameter of the simulated flight environment feature when detecting the user's configuration operation for the simulated flight environment feature, and then generates and displays the simulation according to the configuration parameter of the simulated flight environment feature
  • the characteristics of the flight environment in order to form the simulated flight environment of the drone according to the characteristics of the simulated flight environment, so that the influence of environmental factors on the flight of the drone can be simulated in the flight simulator, which expands the range of use of the flight simulator and provides Developers verify the convenience of the functions of the developed UAV, further improving development efficiency.
  • FIG. 1 is a schematic diagram of a simulation principle of a drone provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a simulation scenario of a drone provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a simulation method of a drone provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of a simulation method of a drone provided by the implementation of the present invention.
  • FIG. 5 is a schematic structural diagram of a simulation device for a drone provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • An embodiment of the present invention proposes a simulation method for a drone.
  • the simulation method for a drone is applied to a terminal device, the terminal device is connected to a flight control device, and the flight control device may be equipped with a flight A simulator, the flight simulator is used to simulate the flight of a drone, and the terminal device is responsible for providing a simulated flight environment for the flight of the simulated drone.
  • the flying environment is an important factor that affects the safe flight of the drone. Therefore, in order to fly safely, in addition to ensuring that the basic functions of the drone are normal, it is also necessary to ensure the drone It can adjust the flight status according to the changes of the flight environment, and also requires the operator to be able to skillfully control the drone flight in various environments.
  • most drones have developed functions such as autonomous obstacle avoidance and advanced assisted flight, so that the drones can adjust the flight status as the environment changes, but for safety reasons, before the drones are officially used, they still need Verify various functions in the drone.
  • the method of simulating drone flight in a flight simulator is used to verify the various functions of the drone.
  • the flight simulator in the existing technology can simulate the basic functions of the drone, exercise flight operation technology, and develop Personnel can also test the flight performance of the drone through a flight simulator.
  • the flight environment of the drone is considered ideal, that is, the influence of environmental factors on the flight of the drone is not considered, so that the environment cannot be determined through simulation
  • the unmanned flight control device perform response operations to changes in environmental factors, such as when the obstacle occurs in the environment, whether the flight control device controls the activation of the autonomous obstacle avoidance function of the drone, etc.
  • the embodiments of the present invention provide a simulation method, terminal device and computer-readable storage medium of a drone to realize the simulation of a drone in the case of dynamically configuring the characteristics of the simulated flight environment in the simulated flight environment flight.
  • the flight simulator may be configured in the flight control device of the drone.
  • the terminal device may display identification information corresponding to various simulated flight environment characteristics that constitute the simulated flight environment to the user.
  • the identification information includes icons corresponding to the characteristics of the simulated flight environment or text that can represent the characteristics of the simulated flight environment, etc.
  • the user Before the flight simulator runs, the user performs configuration operations for multiple simulated flight environment features (such as the user manually dragging the simulated flight The icon corresponding to the environment feature to the specified position, and then the user can also set the attributes, position, time, size and other attributes of the simulated flight environment feature in the form of a script) instruct the terminal device to generate configuration parameters of the simulated flight environment feature, and then The configuration parameters generate and display the simulated flight environment characteristics constituting the simulated flight environment of the drone, and send the configuration parameters of the simulated flight environment characteristics to the flight control device of the drone, so that the drone can operate in the simulated flight environment Flight to verify the drone Autonomous obstacle avoidance, and other advanced auxiliary flight preset function, at the same time exercise the user to manipulate technology to UAV.
  • simulated flight environment features such as the user manually dragging the simulated flight
  • the icon corresponding to the environment feature to the specified position, and then the user can also set the attributes, position, time, size and other attributes of the simulated flight environment feature in the form of a script
  • the simulation model of the drone includes at least a physical model 101 of the drone and a simulated flight environment 102.
  • the physical model 101 of the drone is a software module that represents the physical modalities of the drone.
  • the physical model 101 of the drone receives a power signal, where the power signal may be a pulse width modulation (Pulse Width Modulation, PWM) signal, and the physical model 101 of the drone responds to the received power signal to output a simulated flight state Data true value, the simulated flight state data true value can represent the flight state of the drone after the influence of the power signal on the drone physical model 101.
  • the physical model 101 of the drone can also include a motor-propeller model, a dynamic model, a kinematics model, and an object model (this object model is used to characterize the physical structure of the drone, such as power, structure, weight, electromechanical, etc.) One or more.
  • the simulated flight environment 102 is used to provide a simulated flight environment for the simulated flight of the UAV.
  • the simulated flight environment 102 is composed of at least one simulated flight environment feature.
  • the simulated flight environment feature may include configuration parameters, and the configuration parameters include simulation.
  • Type information and attribute parameters of flight environment characteristics include one or more of obstacles, ground, magnetic field interference, wind, rain, and attribute parameters may include one of position, size, intensity, time parameter, angle, attitude, temperature, humidity, speed, or
  • the above time parameters may refer to the appearance time, duration and end time of the characteristics of the simulated flight environment.
  • the simulated flight environment feature can be an obstacle with a height of 500 meters and a latitude and longitude of (23,24), or the simulated flight environment feature can be a level 5 gale with a duration of 2 minutes, or the simulated flight environment feature can also be The combination of the above two simulated flight environment characteristics.
  • the simulated flight environment 102 will act on the physical model 101 of the drone.
  • the simulated flight environment 102 includes a level 5 wind with a duration of 2 minutes.
  • the physical model 101 of the drone The simulated flight environment 102 responds to output the true value of the simulated flight state data.
  • the simulation model of the UAV of FIG. 1 may further include a sensor model 103.
  • the sensor model 103 determines and outputs the simulated sensor data after receiving the true value of the simulated flight status data of the physical model 101 of the drone.
  • the sensor model 103 can also be combined with the simulation
  • the flight environment 102 determines and outputs simulated sensor data.
  • the real sensor can determine the real sensor data in combination with the real flight environment.
  • the simulation model of the drone described in FIG. 1 may further include a fusion module 104.
  • the simulated sensor data output by the sensor model 103 may be output to the fusion module 104
  • the fusion module 104 can determine the simulated flight state data according to the simulated sensor data, that is, the fusion module 104 can perform fusion calculation on the simulated sensor data to determine the simulated flight state data.
  • the fusion module 104 may be a software model.
  • the fusion module 104 may receive the real sensor data output by the real sensor and fuse the real sensor data to determine the real flight state data.
  • the simulated sensor data output by the sensor model 103 may not be output to the fusion module, that is, the simulated sensor data output by the sensor model 103 is directly determined as simulated flight state data.
  • the real sensor data can be determined as the real flight state data.
  • the simulated flight status data can be output to the terminal device 106, and the terminal device 106 can display the simulated flight status data through a display screen or the like to facilitate developers to verify the UAV ’s Whether certain preset functions are normal, and developers or users can also input control operations on the drone based on simulated flight status data to adjust or control the simulated flight of the drone.
  • the simulated flight state data can also be output to the controller 105, which is an important component or software module of the flight control device.
  • the controller 105 can also receive the control rod amount of the terminal device 106, the control rod amount is a control command determined by the terminal device 106 by detecting a user's drone control operation, and the controller 105 can be based on simulated flight status data and / or control
  • the lever generates a power signal, and the physical model 101 of the drone receives the power signal output by the controller 105. In this way, the simulation of the drone can be continued.
  • the controller 105 can receive real flight status data, and can generate a power signal according to the real status data and / or the amount of control rod output by the terminal device 105, the real power of the drone
  • the system can receive the power signal and perform the corresponding operation.
  • the terminal device 105 may detect the configuration operation of the user, where the configuration operation is used to configure the simulated flight environment characteristics of the drone; the terminal The device 105 may determine the configuration parameters of the simulated flight environment characteristics according to the detected configuration operation, wherein the configuration parameters of the simulated flight environment characteristics include type information and attribute parameters of the simulated flight environment characteristics, wherein The type information includes one or more of obstacles, ground, magnetic field interference, wind, and rain; the attribute parameters of the simulated flight environment characteristics include position, size, intensity, time parameters, angle, attitude, temperature, humidity, and speed. One or more. Further, the terminal device 105 generates and displays the simulated flight environment characteristics according to the configuration parameters of the simulated flight environment characteristics, and then the terminal device 105 may combine multiple simulated flight environment characteristics into a simulated flight environment.
  • the user can adjust the characteristics of the simulated flight environment, and then adjust the simulated flight environment.
  • the terminal device 106 may detect the adjustment operation of the user, and then adjust the characteristics of the simulated flight environment according to the adjustment operation. In this way, the dynamic configuration of the simulated flight environment is realized.
  • the adjustment operation may include a user's editing operation and adding operation of the current simulated flight environment feature, the editing operation is used to adjust the attribute parameters of the current simulated flight environment feature in the simulated flight environment during the simulation process, the adding The operation is used to add a new simulated flight environment feature to the currently described simulated flight environment during the simulation process.
  • the terminal device 106 After the terminal device 106 adjusts the characteristics of the simulated flight environment, it can receive the simulated flight state data output by the sensor model 103 after adjusting the simulated flight environment.
  • the terminal device 106 displays the simulated flight state data to facilitate the user to verify certain Preset function. For example, the current simulated environment feature is an ideal environment, and an obstacle with a height of 600 meters is added to the simulated flight environment feature adjusted by the terminal device 106. If the simulated flight status data output again shows the flight speed of the drone and other The status data changes, indicating that the autonomous obstacle avoidance function of the UAV is normal.
  • the simulation model may be built into a flight control device (such as a flight controller).
  • a flight control device such as a flight controller
  • FIG. 2 it is a schematic diagram of a simulation scenario of a drone provided by an embodiment of the present invention.
  • the drone 200 may include a flight control device 2001, and the simulation model 2002 may be built into the flight control device 2001.
  • the flight control device 2001 may pass through the flight control device.
  • the data link or the external data link acquires the power signal generated by the controller, and runs the simulation model 2002 according to the power signal.
  • the flight control device 2001 may transmit the simulated flight status data output by the simulation model 2002 to the controller of the flight control device 2001 through the internal data link or the external data link of the flight control device.
  • the control rod quantity and / or the simulated flight status data generates a power signal, and transmits the power signal to the simulation model 2002 through an internal data link or an external data link of the flight control device 2001.
  • the physical model of the drone outputs the true value of the simulated flight state data according to the power signal
  • the sensor model obtains the true value of the simulated flight state data
  • combines the simulated environment flight determines and outputs the simulated sensor data
  • the flight control device 2001 transmits the simulated flight state data to the terminal device 201, and the terminal device 201 acquires the simulated flight state data and displays the simulated flight state data through a display device, where the display device may include a display screen, or other A device that can display data. As can be seen from FIG.
  • the terminal device 201 can display the drone image 2012 through the display device, and can also display the current posture, position, battery power, and other information of the drone 200, and can also display the current environment of the drone 200 in the simulation environment. Images of other objects, such as tree images 2011 and building images 2013, etc., thereby facilitating users to further operate the drone 200 according to the simulated flight environment.
  • FIG. 3 is a schematic flowchart of a drone simulation method provided by an embodiment of the present invention.
  • the simulation method shown in FIG. 3 may be applied to the drone simulation shown in FIGS. 1 and 2.
  • the simulation method of the UAV is performed by a terminal device, and the terminal device may include one or more of a remote controller, a smart phone, a tablet computer, a laptop computer, a desktop computer, and a wearable device.
  • the simulation method of the drone shown in FIG. 3 is mainly used to provide a simulated flight environment for the simulation of the drone shown in FIGS. 1 and 2, so that the drone can simulate flight in the presence of the simulated flight environment.
  • the simulation method of UAV shown in 3 may include the following steps:
  • Step S301 Detect the user's configuration operation.
  • the user's configuration operation is used to configure simulated flight environment features in the simulated flight environment of the drone.
  • the configuration operation includes one or more of operations such as clicking, sliding, pressing, and dragging.
  • the purpose of detecting the user's configuration operation described in step S301 is to detect which simulated flight environment features the user has selected to form a simulated flight environment.
  • the terminal device may store at least one simulated flight environment feature, and the terminal device is responsible for managing the type information, attribute parameters, and configuration authority of each simulated flight environment feature.
  • the type information of simulated flight environment characteristics may include one or more of obstacles (such as trees, walls, tables, etc.), ground (such as mountains, plains, lakes, etc.), magnetic field interference, wind, and rain; Attribute parameters can refer to one or more of parameters such as position, size, time parameters, speed, humidity, temperature, etc .; the configuration authority for the characteristics of the simulated flight environment refers to the use rights of different users for the characteristics of the simulated flight environment. In general, Different developers or different users have different requirements for the configuration of the simulated flight environment, and accordingly their configuration permissions are also different. For example, the characteristics of a simulated flight environment are available for developers to configure, and the user does not have configuration rights for it.
  • obstacles such as trees, walls, tables, etc.
  • ground such as mountains, plains, lakes, etc.
  • magnetic field interference wind, and rain
  • Attribute parameters can refer to one or more of parameters such as position, size, time parameters, speed, humidity, temperature, etc .
  • the terminal device may display identification information corresponding to at least one simulated flight environment feature that matches the current simulation of the drone to the user, and the user's configuration operation may be Refers to any one of the user's click operation, drag operation, and slide operation on the identification information of at least one simulated flight environment feature.
  • the simulated flight environment feature that matches the current UAV simulation means that it can be configured to the current The characteristics of the simulated flight environment that can be operated by users in the simulation of man-machine.
  • the specific implementation manner of the S301 may be: acquiring the user's authority; determining and displaying the identification information of the target simulated flight environment characteristics matching the authority according to the user's authority; detecting that the user targets the target simulated flight Configuration operation of identification information of environmental characteristics.
  • a variety of simulated flight environment features and identification information corresponding to the multiple simulated flight environment features are stored in the terminal device, and different users or developers have different rights to use multiple simulated flight environment features, for example, a certain simulated flight environment
  • the feature can only be operated or configured by the developer, then the user does not have the right to use the simulated flight environment feature; for another example, a simulated flight environment feature is open for advanced users, ordinary users will not use the simulated flight environment Feature permissions.
  • the terminal device may pre-store the correspondence between the user's authority and the simulated flight environment features, for example, advanced users correspond to the first simulated flight environment feature set, and ordinary users correspond to the second simulated flight environment feature set. Before the user inputs the configuration operation to the terminal device, the terminal device can first determine the user's authority, find and display the identification information of the simulated flight environment characteristics corresponding to the user's authority, for the user to operate.
  • the terminal device can determine the user's authority by acquiring the user identification, which can include the user's identity information, user registration information in the terminal device, and so on. After determining the user's authority, the terminal device finds the target simulated flight environment feature corresponding to the user's authority, and displays the identification information corresponding to the target simulated flight environment feature to the user, so that the user can select the target simulated flight environment feature.
  • the identification information of the characteristics of the target simulated flight environment may be an icon capable of representing the characteristics of the target simulated flight environment, or may be text capable of representing the target simulated flight environment, or may be other identifications capable of representing the characteristics of the target simulated flight environment, It is not specifically limited in the embodiments of the present invention.
  • the configuration operation of the target simulated flight environment feature by the user may refer to dragging, sliding, or clicking the identification information of the target simulated flight environment feature.
  • Step S302 Determine the configuration parameters of the simulated flight environment characteristics according to the detected configuration operation.
  • the configuration parameters of the simulated flight environment features include type information and attribute parameters.
  • the configuration operation of the simulated flight environment feature by the user may include: dragging the identification information of a certain simulated flight environment feature to a preset position, adjusting the size or other attribute parameters of the simulated flight environment feature, and the terminal device may be obtained through the user's configuration operation To the following information: which simulated flight environment feature the user wants to choose as the environmental factor in the simulation of the UAV; what are the specific attribute parameters of the selected simulated flight environment feature; further, the terminal device obtains the above information through , Generate and display the characteristics of the simulated flight environment, so that the characteristics of the simulated flight environment can constitute the simulated flight environment of the UAV.
  • the terminal device before determining the configuration parameters of the simulated flight environment characteristics according to the detected configuration operation, the terminal device further includes: determining whether the user has the authority of the simulated flight environment characteristic; when the user does not have the authority , Refuse to generate and display the simulated flight environment characteristics according to the configuration parameters of the simulated flight environment characteristics, and generate and display prompt information; when the user has the authority, determine the simulated flight environment characteristics according to the detected configuration operation Configuration parameters.
  • the terminal device not only sets the selection authority for the characteristics of the simulated flight environment for different users, but also sets the authorization for the characteristics of the simulated flight environment for different users. It can also be understood as the configuration authority, which indicates whether the user can use 3. Change or configure the configuration parameters of the simulated flight environment features.
  • the terminal device performs step S302; if the user does not have the authority, the terminal device may refuse to perform step S302, and may generate and display a prompt message
  • the prompt information can be used to remind the user that the current operation cannot exceed the scope of authority.
  • Step S303 Generate and display the simulated flight environment characteristics according to the configuration parameters of the simulated flight environment characteristics.
  • the terminal device generates multiple simulated flight environment features according to the user's configuration operation and the configuration parameters of the simulated flight environment features corresponding to the configuration operation, and the multiple simulated flight environment features constitute the simulated flight environment.
  • the terminal device before the terminal device generates and displays the simulated flight environment characteristics according to the configuration parameters of the simulated flight environment characteristics, it is also necessary to determine whether the configuration parameters of the simulated flight environment characteristics in the configuration operation selected by the user are legal.
  • the terminal device performs the steps of generating and displaying the characteristics of the simulated flight environment according to the configuration parameters of the characteristics of the simulated flight environment. In other words, the simulation method of the UAV shown in FIG.
  • 3 further includes: determining whether the configuration parameters of the simulated flight environment characteristics are legal; when the configuration parameters are illegal, rejecting the configuration parameters based on the simulated flight environment characteristics Generate and display simulated flight environment characteristics, generate and display prompt information; when the configuration parameters are legal, generate and display simulated flight environment characteristics according to the configuration parameters of the simulated aircraft environment characteristics.
  • whether the configuration parameters for determining the characteristics of the simulated flight environment are legal can be understood as: determining whether the configuration parameters for each of the characteristics of the simulated flight environment meet the corresponding preset parameter configuration rules, and if so, then It is legal to determine the characteristics of the simulated flight environment; if it is not satisfied, it can be determined that the characteristics of the simulated flight environment are illegal.
  • the type information of the characteristics of the simulated flight environment is a tree.
  • the height range is 10-30 meters, and if the configuration parameter of the tree indicated in the user's configuration operation is a height of 45 meters , The above parameter configuration rules are OK, the configuration parameters do not satisfy the parameter configuration rules, that is, the configuration parameters are illegal; if the configuration parameter of the tree indicated by the user's configuration operation is 28 meters in height, it means that the configuration parameter is legal .
  • determining whether the configuration parameters of the simulated flight environment features are legal may include determining whether the configuration parameters of each simulated flight environment feature in the simulated flight environment features are legal. Specifically, whether the configuration parameters for determining the characteristics of the simulated flight environment are legal includes: determining whether each of the configuration parameters for the characteristics of the simulated flight environment conforms to the corresponding first parameter configuration rule; if they all match, then determine The configuration parameters of the characteristics of the simulated flight environment are legal. If any one of the configuration parameters of the simulated flight environment feature does not comply with its corresponding first parameter configuration rule, it is determined that the configuration parameter of the simulated flight environment feature is illegal.
  • the first parameter configuration rule is a parameter configuration rule of a simulated flight environment feature when a certain simulated flight environment feature can exist alone.
  • the terminal device can first determine whether the configuration parameters of each simulated flight environment feature are It is legal. If they are all legal, step S303 is executed; if there is one illegal, the terminal device can generate and output a prompt message to notify the user that the configuration parameters of a certain simulated flight environment feature are not legal.
  • the configuration parameters of the simulated flight environment characteristics can be reconfigured according to the prompt information, or the user can also delete the simulated flight environment characteristics.
  • the types of the two different simulated flight environment features are tree and wind
  • the configuration parameters of the two simulated flight environment features are the tree height of 30 meters.
  • the speed of the wind is 8 meters / second, assuming that the first parameter of the tree is configured with a height between 20 meters and 30 meters, and the first parameter of the wind is configured with a speed between 0.5 meters / second and 10.7 meters / second, It can be seen that the above two simulated flight environment characteristics are in compliance with their corresponding first parameter configuration rules, and it is determined that the configuration parameters of the simulated flight environment characteristics indicated according to the user's current configuration operation are legal.
  • the determination of whether the configuration parameters of the simulated flight environment features are legal may further include determining whether the configuration parameters of each simulated flight environment feature in the simulated flight environment features are legitimate. Specifically, whether the configuration parameters for determining the characteristics of the simulated flight environment are legal includes: determining whether each configuration parameter among the configuration parameters for the characteristics of the simulated flight environment conforms to the second parameter configuration rule; The configuration parameters of the simulated flight environment characteristics are legal; if any two of the configuration parameters of the simulated flight environment characteristics do not comply with the second parameter configuration rule, it is determined that the configuration parameters of the simulated flight environment characteristics are not legal.
  • the second parameter configuration rule is used to determine whether there is a conflict between configuration parameters of multiple simulated flight environment features, that is, whether there is a conflict between attribute parameters and / or type information of the simulated flight environment features.
  • the conflict between the configuration parameters of the simulated flight environment features may refer to the type information of the simulated flight environment features conflicting when the attribute parameters are certain, for example, assuming that the simulated flight environment features are respectively lakes And the house, the positions included in the attribute parameters of the two simulated flight environment characteristics are the same, that is, the lake and the house appear at the same position, and the configuration parameters corresponding to the two simulated flight environments of the lake and the house Is conflict.
  • the terminal device If there is no conflict between the configuration parameters of multiple simulated flight environment characteristics, it indicates that each of the configuration parameters of the simulated flight environment characteristics is legal, and the terminal device generates and displays the simulated flight according to the configuration parameters of the respective simulated flight environment characteristics Environment; if the configuration parameters of multiple simulated flight environment characteristics conflict, it means that the configuration parameters of the simulated flight environment characteristics are illegal between each configuration parameter, and the terminal device can output a prompt message, such as "The lake and the house cannot be the same Appears in the same location, please modify ".
  • the configuration parameters of the simulated flight environment characteristics may be sent to the drone in the simulation mode so that the drone in the simulation mode Flying in the simulated environment, acquiring and displaying simulated flight state data sent by the drone to verify whether the drone performs a preset response operation with respect to the characteristics of the simulated flight environment.
  • the pre-response operation may refer to autonomous obstacle avoidance operation, advanced auxiliary flight operation, and the like.
  • the simulated flight environment feature generated by the terminal device is that a large tree with a height of 30 meters appears directly in front of the drone, and the configuration parameters of the simulated flight environment feature are sent to the drone in the simulation mode to obtain At this time, the currently generated simulated flight status data sent by the drone, if the simulated flight status data shows that the drone adjusted the flight direction before the big tree, or adjusted the flying height of the drone (more than 30 meters) , Indicating that the autonomous obstacle avoidance function of the UAV is normal.
  • the simulation method of the drone provided by the embodiment of the present invention can realize the dynamic change of the characteristics of the simulated flight environment before the simulation starts or during the simulation process, thereby changing the simulated flight environment of the drone, so as to expand the flight
  • the applicable scope of the simulator improves the convenience of developers to verify the developed functions, thereby improving the development efficiency.
  • the modification of the characteristics of the simulated environment may include editing operations of the characteristics of the current simulated flight environment, or may include adding new characteristics of the simulated flight environment to the characteristics of the current simulated flight environment.
  • a user's editing operation on the characteristics of the simulated flight environment is detected, wherein the editing operation is used to adjust the Attribute parameters of simulated flight environment characteristics; determining updated attribute parameters according to the detected editing operation; generating and displaying updated simulated flight environment characteristics according to the updated attribute parameters; converting the updated simulated flight environment characteristics
  • the attribute parameters are sent to the drone in simulation mode.
  • the terminal device can receive the user's editing operations at any time, and change the attribute parameters of the current simulated flight environment characteristics according to the user's editing operations, such as adjusting the size, position, and time parameters of the simulated flight environment characteristics. . Then, the terminal device sends the attribute parameters of the simulated flight environment characteristics with the changed attribute parameters to the drone in the simulation mode, so that the drone operates in the changed simulated flight environment.
  • a user's adding operation to the characteristics of the simulated flight environment is detected, wherein the adding operation is used for flying in the simulated flight
  • Add simulated flight environment features to the environment determine the configuration parameters of the added simulated flight environment features according to the detected addition operation; generate and display the added simulated flight environment features according to the added configuration parameters of the simulated flight environment features;
  • the added configuration parameters of the simulated flight environment characteristics are sent to the drone in the simulation mode to make the drone in the simulation mode fly in the simulation environment.
  • the terminal device can receive the user's addition operation at any time, and add some new simulation flight environment characteristics to the current simulation flight environment characteristics according to the user's addition operation, such as the current simulation flight Only the trees are included in the environmental features, and two new simulated flight environment features, wind and rain, are added to the current simulated flight environment features according to the user's addition operation. Then, the terminal device combines the current simulated flight environment features and the newly added simulation The flight environment features constitute a new simulated flight environment feature, and the configuration parameters of the new simulated flight environment feature are sent to the drone in the simulation, so that the drone can fly in the new simulated flight environment.
  • the terminal device each time after configuring a simulated flight environment feature, the terminal device will output a prompt message as to whether to save the simulated flight environment feature, and if the confirmation message to save the simulated flight environment feature is detected, store the location
  • the configuration parameters of the characteristics of the simulated flight environment are described. In this way, it is easy to obtain the simulated flight environment feature directly from the stored data without having to reconfigure it later if you want to use the simulated flight environment feature.
  • FIG. 4 is a flowchart of a simulation process of a drone provided by an embodiment of the present invention.
  • FIG. 4 is a simulation process of a drone based on the simulation method of the drone shown in FIG. 3. It can be seen from Fig. 4 that the terminal device is mainly responsible for providing a simulated flight environment and controlling the simulation progress for the simulation of the drone during the simulation of the drone, and the flight control device is mainly responsible for controlling the simulated flight of the drone.
  • the terminal device determines the configuration parameter of the simulated flight environment feature when detecting the user's configuration operation for the simulated flight environment feature, and then generates and displays the simulation according to the configuration parameter of the simulated flight environment feature
  • the characteristics of the flight environment in order to form the simulated flight environment of the drone according to the characteristics of the simulated flight environment, so that the influence of environmental factors on the flight of the drone can be simulated in the flight simulator, which expands the range of use of the flight simulator and provides Developers verify the convenience of the functions of the developed UAV and improve the development efficiency.
  • FIG. 5 is a schematic structural diagram of a drone simulation device according to an embodiment of the present invention.
  • the drone simulation device shown in FIG. 5 includes a detection unit 501 and a processing unit 502:
  • the detection unit 501 is configured to detect a user's configuration operation, wherein the configuration operation is used to configure the flight environment characteristics in the simulated flight environment of the drone;
  • the processing unit 502 is configured to determine configuration parameters of the simulated flight environment characteristics according to the configuration operation detected by the detection unit, wherein the configuration parameters of the simulated flight environment characteristics include type information and attribute parameters of the simulated flight environment characteristics;
  • the processing unit 502 is further configured to generate and display simulated flight environment characteristics according to the configuration parameters of the simulated flight environment characteristics, wherein the simulated flight environment characteristics constitute the simulated flight environment of the drone.
  • the type information includes one or more of obstacles, ground, magnetic field interference, wind, and rain.
  • the attribute parameters include one or more of position, size, intensity, time parameters, angle, attitude, temperature, humidity, and speed.
  • the processing unit 502 is further configured to: determine whether the configuration parameters of the simulated flight environment characteristics are legal; when the configuration parameters are illegal, refuse to generate and display simulations based on the configuration parameters of the simulated flight environment characteristics Generate and display prompt information for flight environment characteristics; when the configuration parameters are legal, generate and display simulated flight environment characteristics according to the configuration parameters of the simulated flight environment characteristics.
  • the implementation of the processing unit 502 to determine whether the configuration parameters of the simulated flight environment features are legal is to determine whether each of the configuration parameters of the simulated flight environment features conforms to the corresponding first Parameter configuration rules; if they are all met, then the configuration parameters that determine the characteristics of the simulated flight environment are legal. If any one of the configuration parameters of the simulated flight environment feature does not comply with its corresponding first parameter configuration rule, it is determined that the configuration parameter of the simulated flight environment feature is illegal.
  • the implementation of the processing unit 502 to determine whether the configuration parameters of the simulated flight environment features are legal is to determine whether each configuration parameter among the configuration parameters of the simulated flight environment features conforms to the second parameter configuration Rules; if they all match, the configuration parameters of the simulated flight environment characteristics are determined to be legal; if any two of the configuration parameters of the simulated flight environment characteristics do not comply with the second parameter configuration rule, then determine The configuration parameters describing the characteristics of the simulated flight environment are illegal.
  • the processing unit 502 is further configured to: obtain the user's authority; determine and display identification information of target simulated flight environment features matching the authority according to the user's authority; and the processing unit
  • An implementation manner of 502 for detecting a user's configuration operation is: detecting a configuration operation of the user for identification information of the target simulated flight environment feature; the processing unit 502 is used for determining a simulated flight according to the detected configuration operation
  • An embodiment of the configuration parameter of the environmental feature is to determine one or more types of configuration parameters of the simulated flight environment feature of the target simulated flight environment feature according to the detected configuration operation.
  • the processing unit 502 is further configured to: determine whether the user has the authority of the simulated flight environment feature; when the user does not have the authority, refuse to generate and configure the simulated flight environment feature configuration parameter Display the characteristics of the simulated flight environment, generate and display prompt information; when the user has the authority, determine the configuration parameters of the characteristics of the simulated flight environment according to the detected configuration operation.
  • the processing unit 502 is further configured to: send the configuration parameters of the simulated flight environment characteristics to the drone in the simulation mode so that the drone in the simulation mode is in the simulation environment Flight; obtain and display the simulated flight status data sent by the drone to verify whether the drone performs a preset response operation for the simulated flight environment characteristics.
  • the processing unit 502 is further configured to: during the flight of the drone in the simulated flight environment, detect a user's editing operation of the characteristics of the simulated flight environment, wherein, the The editing operation is used to adjust the attribute parameters of the simulated flight environment characteristics; the updated attribute parameters are determined according to the detected edit operation; the updated simulated flight environment characteristics are generated and displayed according to the updated attribute parameters; The updated attribute parameters of the simulated flight environment characteristics are sent to the drone in simulation mode.
  • the processing unit 502 is further configured to: during a flight of the drone in the simulated flight environment, detect a user's operation of adding features of the simulated flight environment, wherein, the The adding operation is used to add a simulated flight environment feature in the simulated flight environment; determine the configuration parameters of the added simulated flight environment feature according to the detected addition operation; generate and display the addition according to the added configuration parameter of the simulated flight environment feature The post-simulation flight environment feature; sending the added configuration parameters of the post-simulation flight environment feature to the drone in the simulation mode so that the drone in the simulation mode flies in the simulation environment.
  • the processing unit 502 is further configured to: output prompt information on whether to save the characteristics of the simulated flight environment; if it is detected that confirmation information on saving the characteristics of the simulated flight environment is stored, store the characteristics of the simulated flight environment Configuration parameters.
  • the processing unit 502 determines the configuration parameter of the simulated flight environment feature, and then generates and displays the configuration parameter of the simulated flight environment feature Simulate the characteristics of the flight environment, so as to form the simulated flight environment of the UAV according to the characteristics of the simulated flight environment, so that the influence of the environmental factors on the flight of the drone can be simulated in the flight simulator, which expands the use of the flight simulator and provides The convenience of developers to verify the functions of the developed UAV has improved the development efficiency.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device shown in FIG. 6 includes a processor 601 and a memory 602, and the memory 602 and the processor 601 are connected through a bus 603
  • the memory 602 is used to store program instructions.
  • the memory 602 may include volatile memory (volatile memory), such as random-access memory (RAM); the memory 602 may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory), solid-state drive (SSD), etc .; the memory 602 may also include a combination of the above types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • SSD solid-state drive
  • the processor 601 may be a central processing unit (Central Processing Unit, CPU).
  • the processor 601 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (programmable logic device, PLD), or the like.
  • the PLD may be a field-programmable gate array (field-programmable gate array, FPGA), general-purpose array logic (generic array logic, GAL), or the like.
  • the processor 601 may also be a combination of the above structures.
  • the memory 602 is used to store a computer program, and the computer program includes program instructions, and the processor 601 is used to execute the program instructions stored in the memory 602, which are used to implement the above embodiment shown in FIG. Steps of the corresponding method.
  • the processor 601 is used to execute program instructions stored in the memory 602, and the processor 601 is configured to execute when the program instructions are invoked: detecting a user's configuration operation, wherein the operation is used The characteristics of the simulated flight environment in the simulated flight environment of a drone;
  • configuration parameters of the simulated flight environment characteristics include type information and attribute parameters of the simulated flight environment characteristics
  • the simulated flight environment characteristics are generated and displayed according to the configuration parameters of the simulated flight environment characteristics, wherein the simulated flight environment characteristics constitute the simulated flight environment of the drone.
  • the prompt device is used to display a user interface
  • the second instruction is used to control the user interface displayed on the prompt device.
  • the type information includes one or more of obstacles, magnetic field interference, wind, and rain.
  • the attribute parameters include one or more of position, size, intensity, time parameters, angle, attitude, temperature, humidity, and speed.
  • the processor 601 also executes when calling the program instruction: determining whether the configuration parameters of the simulated flight environment characteristics are legal; when the configuration parameters are illegal, rejecting the configuration based on the simulated flight environment characteristics The parameters generate and display the characteristics of the simulated flight environment, and generate and display prompt information; when the configuration parameters are legal, generate and display the characteristics of the simulated flight environment according to the configuration parameters of the characteristics of the simulated flight environment.
  • the processor 601 when determining whether the configuration parameters of the simulated flight environment characteristics are legal, performs the following operations: determines whether each of the configuration parameters of the simulated flight environment characteristics meets the corresponding first Parameter configuration rules; if they are all met, then the configuration parameters that determine the characteristics of the simulated flight environment are legal. If any one of the configuration parameters of the simulated flight environment feature does not comply with its corresponding first parameter configuration rule, it is determined that the configuration parameter of the simulated flight environment feature is illegal.
  • the processor 601 when determining whether the configuration parameters of the simulated flight environment characteristics are legal, performs the following operations: determining whether each configuration parameter among the configuration parameters of the simulated flight environment characteristics conforms to the second parameter configuration Rules; if they all match, the configuration parameters of the simulated flight environment characteristics are determined to be legal; if any two of the configuration parameters of the simulated flight environment characteristics do not comply with the second parameter configuration rule, then determine The configuration parameters describing the characteristics of the simulated flight environment are illegal.
  • the processor 601 when the processor 601 invokes the program instruction, it also executes: acquiring the authority of the user; determining and displaying identification information of the characteristics of the target simulated flight environment matching the authority according to the authority of the user
  • the processor performs the following operations when detecting the user's configuration operation: detecting the user's configuration operation for the target simulated flight environment feature; the processor 601 determines the simulated flight environment feature according to the detected configuration operation
  • When configuring the configuration parameters perform the following operations: Determine the configuration parameters of one or more types of simulated flight environment features in the target simulated flight environment features according to the detected configuration operation.
  • the processor 601 when the processor 601 invokes the program instruction, it also executes: determining whether the user has the authority of the simulated flight environment feature; when the user does not have the authority, refuse to use the simulated flight environment feature The configuration parameters of the generated and displayed simulated flight environment characteristics and generated and displayed prompt information; when the user has the authority, the configuration parameters of the simulated flight environment characteristics are determined according to the detected configuration operation.
  • the processor 601 when the processor 601 invokes the program instruction, it also executes: sending the configuration parameters of the simulated flight environment characteristics to the drone in the simulation mode so that the drone in the simulation mode Flying in the simulated environment; acquiring and displaying simulated flight status data sent by the drone to verify whether the drone performs preset response operations for the simulated flight environment characteristics.
  • the processor 601 when the processor 601 invokes the program instruction, it also executes: during the flight of the drone in the simulated flight environment, detecting a user's editing operation of the characteristics of the simulated flight environment , Wherein the editing operation is used to adjust the attribute parameters of the simulated flight environment characteristics; the updated attribute parameters are determined according to the detected edit operation; and the updated simulated flight environment is generated and displayed according to the updated attribute parameters Feature; send the updated attribute parameter of the simulated flight environment feature to the drone in the simulation mode.
  • the processor 601 also executes when calling the program instruction:
  • a user's adding operation to the characteristics of the simulated flight environment is detected, wherein the adding operation is used to add the simulated flight environment to the simulated flight environment Characteristics; determine the configuration parameters of the added simulated flight environment characteristics according to the detected addition operation; generate and display the added simulated flight environment characteristics according to the added configuration parameters of the simulated flight environment characteristics; add the added simulated flight environment characteristics
  • the configuration parameters of the environmental characteristics are sent to the drone in the simulation mode so that the drone in the simulation mode flies in the simulation environment.
  • the processor 601 when the processor 601 invokes the program instruction, it also executes: outputting a prompt message of whether to save the characteristics of the simulated flight environment; The configuration information of the characteristics of the simulated flight environment is described.
  • the program may be stored in a computer-readable storage medium, and the program During execution, the process of the above method embodiments may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Abstract

一种无人机的仿真方法、终端设备及计算机可读存储介质,其中,方法包括:检测用户的配置操作(S301);根据检测到的所述配置操作确定仿真飞行环境特征的配置参数(S302);进而,根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征(S303),进一步的各个仿真飞行环境特征组成了无人机仿真的仿真飞行环境。采用本实施例,可以动态配置无人机的仿真环境,扩大了飞行模拟器的适用范围,提高了开发人员验证无人机相应功能的便捷性,从而可提高无人机的开发效率。

Description

一种无人机的仿真方法、终端设备及计算机可读存储介质 技术领域
本发明涉及通信技术领域,尤其涉及一种无人机的仿真方法、终端设备及计算机可读存储介质。
背景技术
无人机领域中,在开发人员对无人机的飞行功能以及算法开发完成后,无人机用于正常使用前,需要先在飞行模拟器中验证无人机的飞行特征。通常情况下,无人机的飞行控制设备(例如飞行控制器)一般会配置飞行模拟器,该飞行模拟器用于支持无人机的仿真。用户可以通过飞行模拟器熟悉无人机的基本功能,以及锻炼飞行技术等,无人机的开发人员还可以通过飞行模拟器验证无人机的某些预设功能。
现有的飞行模拟器一般将无人机的飞行环境看作是理想的,不考虑环境对飞行器飞行的影响,这样一来导致无人机的自主避障、高级辅助飞行等功能难以在飞行模拟器中得到验证,此外,无人机在不同环境干扰下的行为也难以模拟。综上所述,在飞行模拟器中模拟无人机的飞行时,不考虑环境对无人机飞行的影响,限制了飞行模拟器的适用范围。
发明内容
本发明实施例提供了一种无人机的仿真方法、终端设备及计算机可读存储介质,可以动态配置无人机的仿真环境,可提高无人机的开发效率。
第一方面,本发明实施例提供了一种无人机的仿真方法,包括:
检测用户的配置操作,其中,所述配置操作用于配置无人机的仿真飞行环境中的仿真飞行环境特征;
根据检测到的所述配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其 中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
第二方面,本发明实施例提供了一种无人机的仿真装置,包括:
检测单元,用于检测用户的配置操作,其中,所述配置操作用于配置无人机的仿真飞行环境中的仿真飞行环境特征;
处理单元,用于根据所述检测单元检测到的配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
所述处理单元,还用于根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
第三方面,本发明实施例提供了一种终端设备,包括处理器和存储器,所述处理器和所述存储器相连接,所述存储器存储有计算机程序,计算机程序包括程序指令,处理器调用所述程序指令时用于执行:
检测用户的配置操作,其中,所述配置操作用于配置无人机的仿真飞行环境中的仿真飞行环境特征;
根据检测到的所述配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
相应的,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序指令,所述计算机程序指令被执行时用于实现上述的第一方面所述的无人机的仿真方法。
本发明实施例中,终端设备在检测到用户针对仿真飞行环境特征的配置操作的情况下,确定所述仿真飞行环境特征的配置参数,进而根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,以便于根据仿真飞行环境特征组成无人机的仿真飞行环境,从而可以实现在飞行模拟器中模拟环境因素对无人机飞行的影响,扩大了飞行模拟器的使用范围,提供了开发人员验证所开发的无人机的功能的便捷性,进一步提高了开发效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种无人机的仿真原理示意图;
图2为本发明实施例提供的一种无人机的仿真场景示意图;
图3为本发明实施例提供的一种无人机的仿真方法的流程示意图;
图4为本发明实施提供的一种无人机的仿真方法流程图;
图5为本发明实施例提供的一种无人机的仿真装置的结构示意图;
图6为本发明实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中提出一种无人机的仿真方法,所述无人机的仿真方法应用于终端设备中,所述终端设备与飞行控制设备相连接,所述飞行控制设备中可配置有飞行模拟器,所述飞行模拟器用于模拟无人机的飞行,所述终端设备负责为模拟无人机的飞行提供仿真飞行环境。
在无人机的飞行过程中,飞行环境是影响无人机安全飞行的重要因素,因此,为了无人机的安全飞行,除了要保证无人机的基本功能正常外,还需要保证无人机能够根据飞行环境的变化调整飞行状态,另外还需要操作人员能够在各种环境下熟练控制无人机飞行。目前,大多数无人机中已经开发了自主避障、高级辅助飞行等功能,以使得无人机可以随着环境变化调整飞行状态,但是为了安全起见,在无人机正式使用之前,还需要对无人机中的各种功能进行验证。
通常情况下,采用在飞行模拟器中模拟无人机飞行的方法来验证无人机的 各种功能,现有技术中的飞行模拟器可以模拟无人机的基本功能、锻炼飞行操作技术,开发人员还可以通过飞行模拟器测试无人机的飞行性能。但是,在上述使用飞行模拟器模拟无人机的飞行时,将无人机的飞行环境考虑为理想的,也即未考虑环境因素对无人机飞行的影响,这样,不能通过仿真来确定环境因素改变时,无人的飞行控制设备是否针对环境因素的改变执行响应操作,例如当环境中出现障碍物时,飞行控制设备是否控制无人机的自主避障功能启动等。针对这一问题,本发明实施例提供了一种无人机的仿真方法、终端设备及计算机可读存储介质,以实现在动态配置仿真飞行环境中的仿真飞行环境特征的情况下模拟无人机飞行。
本发明实施例中飞行模拟器可配置于无人机的飞行控制设备中,在飞行模拟器运行之前,终端设备可将组成仿真飞行环境的多种仿真飞行环境特征对应的标识信息展示给用户,所述标识信息包括仿真飞行环境特征对应的图标或者是能够代表仿真飞行环境特征的文字等,在飞行模拟器运行之前,用户针对多个仿真飞行环境特征进行配置操作(比如用户手动拖动仿真飞行环境特征对应的图标到指定的位置,再如用户也可通过脚本的形式设置仿真飞行环境特征的位置、出现时间、大小等属性)指示终端设备生成仿真飞行环境特征的配置参数,进而根据所述配置参数生成并显示组成无人机的仿真飞行环境的仿真飞行环境特征,并将仿真飞行环境特征的配置参数发送给无人机的飞行控制设备,从而可以使得无人机在所述仿真飞行环境下进行飞行,以验证无人机的自主避障、高级辅助飞行等预设功能,与此同时也锻炼了用户对无人机的操纵技术。
针对设置了仿真飞行环境的无人机的仿真,下面将详细介绍仿真原理。当无人机处于仿真模式时,具体地,当无人机的飞行控制设备处于仿真模式时,无人机的仿真是基于无人机的仿真模型来实现的。参见图1中,无人机的仿真模型至少包括无人机的物理模型101和仿真飞行环境102,无人机的物理模型101是一个软件模块,表征无人机的物理模态。无人机的物理模型101接收动力信号,其中,所述动力信号可以为脉冲宽度调制(Pulse Width Modulation,PWM)信号,无人机的物理模型101对接收到的动力信号进行响应输出模拟飞行状态数据真值,模拟飞行状态数据真值可以表征动力信号对无人机物理模型101的影响之后无人机的飞行状态。无人机的物理模型101还可以包括电机-螺 旋桨模型、动力学模型、运动学模型、对象模型(该对象模型用于表征无人机的物理结构,如动力、结构、重量、机电等)中的一种或多种。
仿真飞行环境102用于为无人机的仿真飞行提供仿真飞行环境,仿真飞行环境102是由至少一个仿真飞行环境特征组成的,所述仿真飞行环境特征可包括配置参数,所述配置参数包括仿真飞行环境特征的类型信息和属性参数。其中,类型信息包括障碍物、地面、磁场干扰、风、雨中的一种或多种,属性参数可包括位置、大小、强度、时间参数、角度、姿态、温度、湿度、速度中的一种或多种,上述的时间参数可指仿真飞行环境特征的出现时间、持续时间以及结束时间等。例如,仿真飞行环境特征可以为一个高度为500米经纬度为(23,24)的障碍物,或者仿真飞行环境特征可以为持续时间为2分钟的5级大风,再或者仿真飞行环境特征也可以是上述两种仿真飞行环境特征的组合。在某些时候,仿真飞行环境102会作用于无人机的物理模型101,例如,仿真飞行环境102中包括持续时间为2分钟的5级大风,无人机的物理模型101会对动力信号和仿真飞行环境102进行响应输出模拟飞行状态数据真值。
在一个实施例中,图1无人机的仿真模型中还可包括传感器模型103。当飞行控制设备处于仿真模式时,传感器模型103在接收到无人机的物理模型101的模拟飞行状态数据真值之后,确定并输出模拟传感器数据,在某些时候,传感器模型103还可以结合仿真飞行环境102确定并输出模拟传感器数据。对应地,当飞行控制设备处于正常工作模式时,真实传感器可以结合真实飞行环境确定出真实传感器数据。
在一个实施例中,图1所述的无人机的仿真模型中还可以包括融合模块104,当飞行控制设备处于仿真模式时,上述传感器模型103输出的模拟传感器数据可以被输出到融合模块104,融合模块104可以根据模拟传感器数据确定模拟飞行状态数据,也即融合模块104可以对模拟传感器数据进行融合计算以确定模拟飞行状态数据。在某些情况下,融合模块104可以为软件模型。在其他实施例中,当飞行控制设备处于正常工作时,融合模块104可以接收真实传感器输出的真实传感器数据,并且将真实传感器数据融合以确定真实飞行状态数据。
在其他实施例中,当飞行控制设备处于仿真模式时,传感器模型103输出 的模拟传感器数据也可以不输出到融合模块,也即将传感器模型103输出的模拟传感器数据直接确定为模拟飞行状态数据。对应地,当飞行控制设备处于正常工作模式时,可以将真实传感器数据确定为真实飞行状态数据。
在一个实施例中,当飞行控制设备处于仿真模式时,模拟飞行状态数据可以输出到终端设备106,终端设备106可以通过显示屏等方式展示模拟飞行状态数据,以便于开发人员验证无人机的某些预设功能是否正常,并且开发人员或者用户也可以根据模拟飞行状态数据输入对无人机的控制操作,以调整或控制无人机的仿真飞行。再一个实施例中,当飞行控制设备处于仿真模式时,模拟飞行状态数据还可以输出到控制器105,控制器105是飞行控制设备的一个重要部件或者软件模块。控制器105还可以接收终端设备106的控制杆量,所述控制杆量为终端设备106通过检测用户的无人机控制操作确定的控制指令,控制器105可以根据模拟飞行状态数据和/或控制杆量产生动力信号,无人机的物理模型101接收控制器105输出的动力信号,通过这样方式,可以驱动无人机的仿真的持续进行。
相应地,当飞行控制设备处于正常工作模式时,控制器105可以接收真实飞行状态数据,并且可以根据真实状态数据和/或终端设备105输出的控制杆量产生动力信号,无人机的真实动力系统可以接收所述动力信号并执行对应的操作。
在一个实施例中,当飞行控制设备处于仿真模式之前或者处于仿真模式过程中,终端设备105可以检测用户的配置操作,其中,所述配置操作用于配置无人机的仿真飞行环境特征;终端设备105可以根据检测到的配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特性的配置参数包括仿真飞行环境特征的类型信息和属性参数,其中,所述仿真飞行环境特征的类型信息包括障碍物、地面、磁场干扰、风、雨中的一种或多种;所述仿真飞行环境特征的属性参数包括位置、大小、强度、时间参数、角度、姿态、温度、湿度、速度中的一种或多种。进一步的,终端设备105根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,然后终端设备105可以将多个仿真飞行环境特征组成仿真飞行环境。
在其他实施例中,用户可以调整仿真飞行环境特征,进而调整仿真飞行环 境。终端设备106可以检测用户的调整操作,然后根据所述调整操作调整仿真飞行环境特征,这样一来,实现了对仿真飞行环境的动态配置。所述调整操作可包括用户对当前仿真飞行环境特征的编辑操作和添加操作,所述编辑操作用于在仿真过程中调整当前所述仿真飞行环境中的仿真飞行环境特征的属性参数,所述添加操作用于在仿真过程中在当前所述仿真飞行环境中加入新的仿真飞行环境特征。
终端设备106对仿真飞行环境特征进行调整后,可接收调整仿真飞行环境后传感器模型103输出的模拟飞行状态数据,终端设备106显示所述模拟飞行状态数据,以便于用户验证无人机的某些预设功能。比如,当前仿真环境特征为理想环境,终端设备106调整后的仿真飞行环境特征中加入了高度为600米的障碍物,此时如果再次输出的模拟飞行状态数据显示无人机的飞行速度以及其他状态数据发生改变,说明无人机的自主避障功能正常。
在某些实施中,仿真模型可以内置于飞行控制设备(例如飞行控制器)中,参见图2,为本发明实施例提供的一种无人机的仿真场景的示意图。如图2所示的,无人机200可以包括飞行控制设备2001,仿真模型2002可以内置在飞行控制设备2001内,在飞行控制设备2001处于仿真模式时,飞行控制设备2001可以通过飞行控制设备内部数据链路或者外部数据链路获取控制器产生的动力信号,并根据动力信号运行所述仿真模型2002。在一个实施例中,飞行控制设备2001可以通过飞行控制设备内部数据链路或者外部数据链路将仿真模型2002输出的模拟飞行状态数据传输至飞行控制设备2001的控制器,控制器根据终端设备201的控制杆量和/或所述模拟飞行状态数据产生动力信号,并将所述动力信号通过飞行控制设备2001的内部数据链路或者外部数据链路传输至所述仿真模型2002。
无人机的物理模型根据动力信号输出模拟飞行状态数据真值,传感器模型获取所述模拟飞行状态数据真值,结合仿真环境飞行,确定并输出模拟传感器数据,进而根据模拟传感器数据输出模拟飞行状态数据。飞行控制设备2001将模拟飞行状态数据传输给终端设备201,终端设备201获取所述模拟飞行状态数据并通过显示装置显示所述模拟飞行状态数据,此处所述显示装置可以包括显示屏,或者其他可显示数据的设备。由图2可知,终端设备201通过显示装置 可显示无人机图像2012,还可以显示无人机200当前的姿态、位置、电池电量等信息,还可以显示无人机200当前所在仿真环境中的其他物体图像,例如树木图像2011、建筑物图像2013等,由此,方便用户根据仿真飞行环境对无人机200进行进一步的操作。
请参考图3,为本发明实施例提供的一种无人机的仿真方法的流程示意图,图3所示的仿真方法可以应用在图1和图2所示的无人机仿真中,所述无人机的仿真方法由终端设备执行,所述终端设备可以包括遥控器、智能手机、平板电脑、膝上型电脑、台式电脑、穿戴式设备中的一种或多种。图3所示的无人机的仿真方法主要用于为图1和图2所示的无人机的仿真提供仿真飞行环境,以便于无人机在存在仿真飞行环境的条件下模拟飞行,图3所示的无人机的仿真方法,可包括如下步骤:
步骤S301,检测用户的配置操作。
在一个实施例中,用户的配置操作用于配置无人机的仿真飞行环境中的仿真飞行环境特征。所述配置操作包括点击、滑动、按压、拖动等操作中的一种或多种。步骤S301所述的检测用户的配置操作目的是检测用户选择了哪些仿真飞行环境特征来组成仿真飞行环境。终端设备中可存储有至少一个仿真飞行环境特征,终端设备负责管理每一个仿真飞行环境特征的类型信息、属性参数以及仿真飞行环境特征的配置权限等等。仿真飞行环境特征的类型信息可包括障碍物(比如树木、墙、桌子等)、地面(比如山地、平原、湖泊等)、磁场干扰、风、雨中的一种或多种;仿真飞行环境特征的属性参数可指位置、大小、时间参数、速度、湿度、温度等参数中的一种或多种;仿真飞行环境特征的配置权限是指不同用户对于仿真飞行环境特征的使用权限,一般情况下,不同的开发人员或不同的用户对于仿真飞行环境的配置要求不相同,相应地其配置权限也有区别。例如,针对某个仿真飞行环境特征是可供开发人员配置的,用户便对其没有配置权限。
在无人机的仿真开始之前或者无人机的仿真过程中,终端设备可以将与当前无人机的仿真相匹配的至少一个仿真飞行环境特征对应的标识信息显示给用户,用户的配置操作可以指用户对至少一个仿真飞行环境特征的标识信息的点击操作、拖动操作、滑动操作中任意一种,所述与当前无人机的仿真相匹配 的仿真飞行环境特征是指能够配置到当前无人机的仿真中的、可供用户操作的仿真飞行环境特征。
具体地,所述S301的具体实施方式可以为:获取用户的权限;根据所述用户的权限确定并显示与所述权限匹配的目标仿真飞行环境特征的标识信息;检测用户针对所述目标仿真飞行环境特征的标识信息的配置操作。
终端设备中存储有多种仿真飞行环境特征以及所述多种仿真飞行环境特征对应的标识信息,不同用户或者开发人员对多种仿真飞行环境特征的使用权限不一样,比如,某个仿真飞行环境特征是只能够被开发人员操作或配置的,那么用户就没有该仿真飞行环境特征的使用权限;再如,某个仿真飞行环境特征是针对高级用户开放的,普通用户便没有使用该仿真飞行环境特征的权限。终端设备中可预先存储了用户的权限与仿真飞行环境特征的对应关系,比如高级用户对应第一仿真飞行环境特征集合,普通用户对应第二仿真飞行环境特征集合。用户在向终端设备输入配置操作之前,终端设备可首先判断用户的权限,找到并显示与用户的权限对应的仿真飞行环境特征的标识信息,以供用户操作。
在一个实施例中,终端设备可通过获取用户标识来判断用户的权限,用户标识可包括用户的身份信息、用户在终端设备中的注册信息等。终端设备判断出用户的权限以后,找到与用户权限对应的目标仿真飞行环境特征,并将目标仿真飞行环境特征对应的标识信息显示给用户,以便于用户对目标仿真飞行环境特征进行选择。所述目标仿真飞行环境特征的标识信息可以是能够表示目标仿真飞行环境特征的图标,或者也可以是能够表示目标仿真飞行环境的文字,或者还可以是其他能够表示目标仿真飞行环境特征的标识,在本发明实施例中不做具体限定。所述用户对目标仿真飞行环境特征的配置操作可以是指拖动、滑动或者点击所述目标仿真飞行环境特征的标识信息等。
步骤S302,根据检测到的配置操作确定仿真飞行环境特征的配置参数。
在一个实施例中,所述仿真飞行环境特征的配置参数包括类型信息和属性参数。用户对仿真飞行环境特征的配置操作可以包括:拖动某个仿真飞行环境特征的标识信息到预设位置,调节该仿真飞行环境特征的大小或者其他属性参数,终端设备通过用户的配置操作可获取到如下信息:用户想要选择了哪个仿 真飞行环境特征作为无人机的仿真中的环境因素;被选择的仿真飞行环境特征具体的属性参数是多少,进一步的,终端设备通过获取到的上述信息,生成并显示仿真飞行环境特征,这样所述仿真飞行环境特征即可以组成无人机的仿真飞行环境。
在一个实施例中,终端设备在根据检测到的配置操作确定仿真飞行环境特征的配置参数之前,还包括:确定用户是否具有所述仿真飞行环境特征的权限;当所述用户不具有所述权限时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;当所述用户具有所述权限时,根据所述检测到的配置操作确定仿真飞行环境特征的配置参数。简单来说,终端设备不仅针对不同用户设置了对仿真飞行环境特征的选择权限,还针对不同用户设置了仿真飞行环境特征的权限,也可以理解为配置权限,所述配置权限表示用户是否能够使用、改变或者配置仿真飞行环境特征的配置参数,如果用户具有所述权限,则终端设备执行步骤S302;如果用户不具备所述权限,则终端设备可拒绝执行步骤S302,同时可以生成并显示提示信息,所述提示信息可用于提示用户当前操作不可超出了权限范围。
步骤S303,根据仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征。
可选的,终端设备根据用户的配置操作以及配置操作对应的仿真飞行环境特征的配置参数生成多个仿真飞行环境特征,多个仿真飞行环境特征组成了仿真飞行环境。
在一个实施例中,终端设备根据仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征之前,还需要判断用户选择的配置操作中仿真飞行环境特征的配置参数是否合法,在合法的情况下,终端设备执行根据仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征的步骤。换句话说,图3所示的无人机的仿真方法,还包括:确定仿真飞行环境特征的配置参数是否合法;当所述配置参数不合法时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;当所述配置参数合法时,根据所述仿真飞机环境特征的配置参数生成并显示仿真飞行环境特征。
在一个实施例中,所述确定仿真飞行环境特征的配置参数是否合法可以理 解为:确定各个所述仿真飞行环境特征的配置参数是否满足预先设定的相应的参数配置规则,如果满足,则可确定仿真飞行环境特征是合法的;如果不满足,则可确定仿真飞行环境特征是不合法的。例如,仿真飞行环境特征的类型信息为树木,如果预先规定了树木的参数配置规则为:高度范围为10米-30米,如果用户的配置操作中所指示的树木的配置参数为高度为45米,由上述参数配置规则可以,该配置参数不满足参数配置规则,也即配置参数不合法;如果用户的配置操作中所指示的树木的配置参数为高度为28米,则表示配置参数是合法的。
在一个实施例中,若仿真飞行环境特征的数量为至少一个,所述确定仿真飞行环境特征的配置参数是否合法,可以包括判断仿真飞行环境特征中每个仿真飞行环境特征的配置参数是否合法。具体地,所述确定仿真飞行环境特征的配置参数是否合法,包括:确定所述仿真飞行环境特征的配置参数中每一个配置参数是否符合各自对应的第一参数配置规则;若均符合,则确定所述仿真飞行环境特征的配置参数是合法的。若所述仿真飞行环境特征的配置参数中任意一个配置参数不符合其对应的第一参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。可选的,第一参数配置规则是可某个仿真飞行环境特征单独存在的情况下该仿真飞行环境特征的参数配置规则。
简单来说,如果用户的配置操作所指示的仿真飞行环境特征的数量为至少一个,终端设备在获取到各个仿真飞行环境特征的配置参数之后,可先判断是否各个仿真飞行环境特征的配置参数都是合法的,如果都是合法的,才执行步骤S303;如果有一个不合法,则终端设备可生成并输出提示信息,用于通知用户某个仿真飞行环境特征的配置参数不合法,此时用户可以根据提示信息选择重新配置该仿真飞行环境特征的配置参数,或者用户也可以删除该仿真飞行环境特征。
例如,假设检测到用户当前的配置操作包括两个不同的仿真飞行环境特征,两个不同仿真飞行环境特征的类型分别为树木和风,两个仿真飞行环境特征的配置参数分别为树木高度为30米,风的速度为8米/秒,假设树木第一参数配置阈值为高度在20米-30米之间,风的第一参数配置阈值为速度在0.5米/秒-10.7米/秒之间,由此可知,上述两个仿真飞行环境特征均是符合各自对应 的第一参数配置规则,则确定根据用户当前的配置操作所指示的仿真飞行环境特征的配置参数是合法的。基于上述假设的树木的第一参数配置和风的第一参数配置,若假设上述两个不同仿真飞行环境特征中,树木的高度为25米,风的速度为18米/秒,可知仿真飞行环境特征风的配置参数是不合法的,因此,便可确定用户当前的配置操作所指示的仿真飞行环境特征的配置参数不合法。
再一个实施例中,若仿真飞行环境特征的数量为至少一个,所述确定仿真飞行环境特征的配置参数是否合法,还可以包括判断仿真飞行环境特征中各个仿真飞行环境特征的配置参数之间是否合法。具体地,所述确定仿真飞行环境特征的配置参数是否合法,包括:确定所述仿真飞行环境特征的配置参数中各个配置参数之间是否符合第二参数配置规则;若均符合,则确定所述仿真飞行环境特征的配置参数是合法的;若所述仿真飞行环境特征的配置参数中任意两个配置参数之间不符合第二参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
其中,所述第二参数配置规则用于判断多个仿真飞行环境特征的配置参数之间是否冲突,即仿真飞行环境特征的属性参数和/或类型信息之间是否存在冲突。在一个实施例中,所述仿真飞行环境特征的配置参数之间冲突可以指在属性参数一定的情况下,所述仿真飞行环境特征的类型信息是冲突的,例如假设仿真飞行环境特征分别为湖泊和房屋,所述两个仿真飞行环境特征的属性参数中包括的位置是相同的,也即在同一位置既出现了湖泊又出现了房屋,此时湖泊和房屋两个仿真飞行环境对应的配置参数是冲突的。
若多个仿真飞行环境特征的配置参数之间不冲突,则表明仿真飞行环境特征的配置参数中各个配置参数是合法的,终端设备根据所述各个仿真飞行环境特征的配置参数生成并显示仿真飞行环境;若多个仿真飞行环境特征的配置参数之间冲突,则表明仿真飞行环境特征的配置参数中各个配置参数之间是不合法的,终端设备可输出提示信息,比如“湖泊与房屋不能同时出现在同一位置,请修改”。
在一个实施例中,所述终端设备生成了仿真飞行环境特征之后,可以将所述仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的所述无人机在所述仿真环境中飞行,获取并显示所述无人机发送的模拟 飞行状态数据以验证所述无人机是否针对所述仿真飞行环境特征执行预设的响应操作。所述预先的响应操作可以指自主避障操作、高级辅助飞行操作等。例如,终端设备生成的仿真飞行环境特征为在无人机正前方出现一颗高度为30米的大树,将该所述仿真飞行环境特征的配置参数发送给处于仿真模式的无人机,获取此时无人机发送的当前产生的模拟飞行状态数据,如果模拟飞行状态数据中显示无人机在所述大树之前调整了飞行方向,或者调整了无人机的飞行高度(超过30米),则表明无人机的自主避障功能正常。
本发明实施例提供的无人机的仿真方法,可以实现在仿真开始之前或者仿真过程中对仿真飞行环境特征进行动态更改,进而更改了无人机的仿真飞行环境,如此一来,扩大了飞行模拟器的适用范围,提高了开发人员验证所开发功能的便捷性,从而提高了开发效率。
在一个实施例中,所述对仿真环境特征进行更改可包括对当前仿真飞行环境特征的编辑操作,也可以包括在当前仿真飞行环境特征中加入新的仿真飞行环境特征。作为一种可行的实施方式,在所述无人机在所述仿真飞行环境中飞行的过程中,检测用户对所述仿真飞行环境特征的编辑操作,其中,所述编辑操作用于调整所述仿真飞行环境特征的属性参数;根据检测到的编辑操作确定更新后的属性参数;根据所述更新后的属性参数生成并显示更新后的仿真飞行环境特征;将所述更新后的仿真飞行环境特征的属性参数发送给处于仿真模式的无人机。
在无人机的仿真过程中,终端设备随时可以接收用户的编辑操作,根据所述用户的编辑操作更改当前仿真飞行环境特性的属性参数,比如调整仿真飞行环境特征的大小、位置、时间参数等。接着,终端设备将更改了属性参数的仿真飞行环境特征的属性参数发送给处于仿真模式的无人机,以使得无人机在更改后的仿真飞行环境中运行。
再一个实施例中,在所述无人机在所述仿真飞行环境中飞行的过程中,检测用户对所述仿真飞行环境特征的添加操作,其中,所述添加操作用于在所述仿真飞行环境中添加仿真飞行环境特征;根据检测到的添加操作确定添加的仿真飞行环境特征的配置参数;根据所述添加的仿真飞行环境特征的配置参数生成并显示添加后的仿真飞行环境特征;将所述添加后的仿真飞行环境特征的配 置参数发送给处于仿真模式的无人机以使处于仿真模式的无人机在所述仿真环境中飞行。
也即,在无人机的仿真过程中,终端设备随时可以接收用户的添加操作,根据所述用户的添加操作为当前的仿真飞行环境特征添加一些新的仿真飞行环境特征,比如当前的仿真飞行环境特征中只包括了树木,根据用户的添加操作为当前的仿真飞行环境特征加入了风和雨两个新的仿真飞行环境特征,接着,终端设备将当前的仿真飞行环境特征和新添加的仿真飞行环境特征组成一个新的仿真飞行环境特征,并将所述新的仿真飞行环境特征的配置参数发送给处于仿真中的无人机,以使得无人机在新的仿真飞行环境中进行飞行。
在一个实施例中,每当配置完一个仿真飞行环境特征之后,终端设备会输出是否保存所述仿真飞行环境特征的提示信息,若检测到保存所述仿真飞行环境特征的确认信息,则存储所述仿真飞行环境特征的配置参数。如此以便于后续如果想要使用该仿真飞行环境特征时,可不必重新配置,直接从已存储数据中获取该仿真飞行环境特征即可。
参考图4,为本发明实施例提供的一种无人机的仿真过程流程图,图4所示是基于图3中所述无人机的仿真方法实现的无人机的仿真过程。由图4可见,终端设备在无人机的仿真过程中主要负责为无人机的仿真提供仿真飞行环境以及控制仿真进度,飞行控制设备主要负责控制无人机的仿真飞行。图4中包括的一些可行的实施方式已经在图1-图3实施例中具体描述,在此不再赘述。
本发明实施例中,终端设备在检测到用户针对仿真飞行环境特征的配置操作的情况下,确定所述仿真飞行环境特征的配置参数,进而根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,以便于根据仿真飞行环境特征组成无人机的仿真飞行环境,从而可以实现在飞行模拟器中模拟环境因素对无人机飞行的影响,扩大了飞行模拟器的使用范围,提供了开发人员验证所开发的无人机的功能的便捷性,提高了开发效率。
请参考图5,为本发明实施例提供的一种无人机的仿真装置的结构示意图,如图5所示的无人机的仿真装置包括检测单元501和处理单元502:
所述检测单元501,用于检测用户的配置操作,其中,所述配置操作用于 配置无人机的仿真飞行环境中的飞行环境特征;
所述处理单元502,用于根据所述检测单元检测到的配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
所述处理单元502,还用于根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
在一个实施例中,所述类型信息包括障碍物、地面、磁场干扰、风、雨中的一种或多种。在一个实施例中,所述属性参数包括位置、大小、强度、时间参数、角度、姿态、温度、湿度、速度中的一种或多种。
在一个实施例中,所述处理单元502还用于:确定仿真飞行环境特征的配置参数是否合法;当所述配置参数不合法时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;当所述配置参数合法时,根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征。
在一个实施例中,所述处理单元502用于确定仿真飞行环境特征的配置参数是否合法的实施方式为:确定所述仿真飞行环境特征的配置参数中每一个配置参数是否符合各自对应的第一参数配置规则;若均符合,则确定所述仿真飞行环境特征的配置参数是合法的。若所述仿真飞行环境特征的配置参数中任意一个配置参数不符合其对应的第一参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
在一个实施例中,所述处理单元502用于确定仿真飞行环境特征的配置参数是否合法的实施方式为:确定所述仿真飞行环境特征的配置参数中各个配置参数之间是否符合第二参数配置规则;若均符合,则确定所述仿真飞行环境特征的配置参数是合法的;若所述仿真飞行环境特征的配置参数中任意两个配置参数之间不符合第二参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
在一个实施例中,所述处理单元502还用于:获取所述用户的权限;根据所述用户的权限确定并显示与所述权限匹配的目标仿真飞行环境特征的标识 信息;所述处理单元502用于检测用户的配置操作的实施方式为:检测所述用户针对所述目标仿真飞行环境特征的标识信息的配置操作;所述处理单元502用于根据所述检测到的配置操作确定仿真飞行环境特征的配置参数的实施方式为:根据所述检测到的配置操作确定所述目标仿真飞行环境特征的一种或者多种类型的仿真飞行环境特征的配置参数。
在一个实施例中,所述处理单元502还用于:确定用户是否具有所述仿真飞行环境特征的权限;当用户不具有所述权限时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;当用户具有所述权限时,根据所述检测到的配置操作确定仿真飞行环境特征的配置参数。
在一个实施例中,所述处理单元502还用于:将所述仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的所述无人机在所述仿真环境中飞行;获取并显示所述无人机发送的模拟飞行状态数据以验证所述无人机是否针对所述仿真飞行环境特征执行预设的响应操作。
在一个实施例中,所述处理单元502还用于:在所述无人机在所述仿真飞行环境中飞行的过程中,检测用户对所述仿真飞行环境特征的编辑操作,其中,所述编辑操作用于调整所述仿真飞行环境特征的属性参数;根据检测到的编辑操作确定更新后的属性参数;根据所述更新后的属性参数生成并显示更新后的仿真飞行环境特征;将所述更新后的仿真飞行环境特征的属性参数发送给处于仿真模式的无人机。
在一个实施例中,所述处理单元502还用于:在所述无人机在所述仿真飞行环境中飞行的过程中,检测用户对所述仿真飞行环境特征的添加操作,其中,所述添加操作用于在所述仿真飞行环境中添加仿真飞行环境特征;根据检测到的添加操作确定添加的仿真飞行环境特征的配置参数;根据所述添加的仿真飞行环境特征的配置参数生成并显示添加后的仿真飞行环境特征;将所述添加后的仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的无人机在所述仿真环境中飞行。
在一个实施例中,所述处理单元502还用于:输出是否保存所述仿真飞行环境特征的提示信息;若检测到保存所述仿真飞行环境特征的确认信息,则存 储所述仿真飞行环境特征的配置参数。
本发明实施例中在检测单元501检测到用户针对仿真飞行环境特征的配置操作的情况下,处理单元502确定仿真飞行环境特征的配置参数,进而根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,以便于根据仿真飞行环境特征组成无人机的仿真飞行环境,从而可以实现在飞行模拟器中模拟环境因素对无人机飞行的影响,扩大了飞行模拟器的使用范围,提供了开发人员验证所开发的无人机的功能的便捷性,提高了开发效率。
请参见图6,为本发明实施例提供的一种终端设备的结构示意图,如图6所示的终端设备包括处理器601和存储器602,所述存储器602和所述处理器601通过总线603连接,所述存储器602用于存储程序指令。
所述存储器602可以包括易失性存储器(volatile memory),如随机存取存储器(random-access memory,RAM);存储器602也可以包括非易失性存储器(non-volatile memory),如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储器602还可以包括上述种类的存储器的组合。
所述处理器601可以是中央处理器(Central Processing Unit,CPU)。所述处理器601还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)等。该PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。所述处理器601也可以为上述结构的组合。
本发明实施例中,所述存储器602用于存储计算机程序,所述计算机程序包括程序指令,处理器601用于执行存储器602存储的程序指令,用来实现上述图3所示的实施例中的相应方法的步骤。
在一个实施例中,所述处理器601用于执行存储器602存储的程序指令,所述处理器601被配置用于调用所述程序指令时执行:检测用户的配置操作,其中,所述操作用于配置无人机的仿真飞行环境中的仿真飞行环境特征;
根据所述检测到的配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
在一个实施例中,所述提示设备用于显示用户界面,所述第二指令用于对所述提示设备上显示的所述用户界面进行控制。
在一个实施例中,所述类型信息包括障碍物、磁场干扰、风、雨中的一种或多种。在一个实施例中,所述属性参数包括位置、大小、强度、时间参数、角度、姿态、温度、湿度、速度中的一种或多种。
在一个实施例中,所述处理器601调用所述程序指令时还执行:确定仿真飞行环境特征的配置参数是否合法;当所述配置参数不合法时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;当所述配置参数合法时,根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征。
在一个实施例中,所述处理器601在确定仿真飞行环境特征的配置参数是否合法时,执行如下操作:确定所述仿真飞行环境特征的配置参数中每一个配置参数是否符合各自对应的第一参数配置规则;若均符合,则确定所述仿真飞行环境特征的配置参数是合法的。若所述仿真飞行环境特征的配置参数中任意一个配置参数不符合其对应的第一参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
在一个实施例中,所述处理器601在确定仿真飞行环境特征的配置参数是否合法时,执行如下操作:确定所述仿真飞行环境特征的配置参数中各个配置参数之间是否符合第二参数配置规则;若均符合,则确定所述仿真飞行环境特征的配置参数是合法的;若所述仿真飞行环境特征的配置参数中任意两个配置参数之间不符合第二参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
在一个实施例中,所述处理器601调用所述程序指令时还执行:获取所述用户的权限;根据所述用户的权限确定并显示与所述权限匹配的目标仿真飞行环境特征的标识信息;所述处理器在检测用户的配置操作时,执行如下操作:检测用户针对所述目标仿真飞行环境特征的配置操作;所述处理器601在根据所述检测到的配置操作确定仿真飞行环境特征的配置参数时,执行如下操作: 根据所述检测到的配置操作确定所述目标仿真飞行环境特征中一种或者多种类型的仿真飞行环境特征的配置参数。
在一个实施例中,所述处理器601调用所述程序指令时还执行:确定用户是否具有所述仿真飞行环境特征的权限;当用户不具有所述权限时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;当用户具有所述权限时,根据所述检测到的配置操作确定仿真飞行环境特征的配置参数。
在一个实施例中,所述处理器601调用所述程序指令时还执行:将所述仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的所述无人机在所述仿真环境中飞行;获取并显示所述无人机发送的模拟飞行状态数据以验证所述无人机是否针对所述仿真飞行环境特征执行预设的响应操作。
在一个实施例中,所述处理器601调用所述程序指令时还执行:在所述无人机在所述仿真飞行环境中飞行的过程中,检测用户对所述仿真飞行环境特征的编辑操作,其中,所述编辑操作用于调整所述仿真飞行环境特征的属性参数;根据检测到的编辑操作确定更新后的属性参数;根据所述更新后的属性参数生成并显示更新后的仿真飞行环境特征;将所述更新后的仿真飞行环境特征的属性参数发送给处于仿真模式的无人机。
在一个实施例中,所述处理器601调用所述程序指令时还执行:
在所述无人机在所述仿真飞行环境中飞行的过程中,检测用户对所述仿真飞行环境特征的添加操作,其中,所述添加操作用于在所述仿真飞行环境中添加仿真飞行环境特征;根据检测到的添加操作确定添加的仿真飞行环境特征的配置参数;根据所述添加的仿真飞行环境特征的配置参数生成并显示添加后的仿真飞行环境特征;将所述添加后的仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的无人机在所述仿真环境中飞行。
在一个实施例中,所述处理器601调用所述程序指令时还执行:输出是否保存所述仿真飞行环境特征的提示信息;若检测到保存所述仿真飞行环境特征的确认信息,则存储所述仿真飞行环境特征的配置信息。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (26)

  1. 一种无人机的仿真方法,其特征在于,包括:
    检测用户的配置操作,其中,所述配置操作用于配置无人机的仿真飞行环境中的仿真飞行环境特征;
    根据检测到的所述配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
    根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
  2. 根据权利要求1所述的方法,其特征在于,所述类型信息包括障碍物、地面、磁场干扰、风、雨中的一种或多种。
  3. 根据权利要求1或2所述的方法,其特征在于,所述属性参数包括位置、大小、强度、时间参数、角度、姿态、温度、湿度、速度中的一种或多种。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    确定仿真飞行环境特征的配置参数是否合法;
    当所述配置参数不合法时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;
    当所述配置参数合法时,根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征。
  5. 根据权利要求4所述的方法,其特征在于,所述确定仿真飞行环境特征的配置参数是否合法,包括:
    确定所述仿真飞行环境特征的配置参数中每一个配置参数是否符合各自对应的第一参数配置规则;
    若均符合,则确定所述仿真飞行环境特征的配置参数是合法的;
    若所述仿真飞行环境特征的配置参数中任意一个配置参数不符合其对应的第一参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
  6. 根据权利要求4或5所述的方法,其特征在于,所述确定仿真飞行环境特征的配置参数是否合法,包括:
    确定所述仿真飞行环境特征的配置参数中各个配置参数之间是否符合第二参数配置规则;
    若均符合,则确定所述仿真飞行环境特征的配置参数是合法的;
    若所述仿真飞行环境特征的配置参数中任意两个配置参数之间不符合第二参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    获取所述用户的权限;
    根据所述用户的权限确定并显示与所述权限匹配的目标仿真飞行环境特征的标识信息;
    所述检测用户的配置操作包括:
    检测所述用户针对所述目标仿真飞行环境特征的标识信息的配置操作;
    所述根据所述检测到的配置操作确定仿真飞行环境特征的配置参数包括:
    根据所述检测到的配置操作确定所述目标仿真飞行环境特征的一种或者多种类型的仿真飞行环境特征的配置参数。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    确定所述用户是否具有所述仿真飞行环境特征的权限;
    当所述用户不具有所述权限时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;
    当所述用户具有所述权限时,根据所述检测到的配置操作确定仿真飞行环境特征的配置参数。
  9. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    将所述仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的所述无人机在所述仿真环境中飞行;
    获取并显示所述无人机发送的模拟飞行状态数据以验证所述无人机是否针对所述仿真飞行环境特征执行预设的响应操作。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    在所述无人机在所述仿真飞行环境中飞行的过程中,检测所述用户对所述仿真飞行环境特征的编辑操作,其中,所述编辑操作用于调整所述仿真飞行环境特征的属性参数;
    根据检测到的编辑操作确定更新后的属性参数;
    根据所述更新后的属性参数生成并显示更新后的仿真飞行环境特征;
    将所述更新后的仿真飞行环境特征的属性参数发送给处于仿真模式的无人机。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    在所述无人机在所述仿真飞行环境中飞行的过程中,检测所述用户对所述仿真飞行环境特征的添加操作,其中,所述添加操作用于在所述仿真飞行环境中添加仿真飞行环境特征;
    根据检测到的添加操作确定添加的仿真飞行环境特征的配置参数;
    根据所述添加的仿真飞行环境特征的配置参数生成并显示添加后的仿真飞行环境特征;
    将所述添加后的仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的无人机在所述仿真环境中飞行。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    输出是否保存所述仿真飞行环境特征的提示信息;
    若检测到保存所述仿真飞行环境特征的确认信息,则存储所述仿真飞行环境特征的配置参数。
  13. 一种无人机的仿真装置,其特征在于,包括:
    检测单元,用于检测用户的配置操作,其中,所述配置操作用于配置无人机的仿真飞行环境中的飞行环境特征;
    处理单元,用于根据所述检测单元检测到的配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
    所述处理单元,还用于根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
  14. 一种终端设备,其特征在于,包括处理器和存储器:
    所述存储器,用于存储有计算机程序,所述计算机程序包括程序指令;
    所述处理器调用所述程序指令时用于执行:
    检测用户的配置操作,其中,所述操作用于配置无人机的仿真飞行环境中的仿真飞行环境特征;
    根据所述检测到的配置操作确定仿真飞行环境特征的配置参数,其中,所述仿真飞行环境特征的配置参数包括仿真飞行环境特征的类型信息和属性参数;
    根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,其中,所述仿真飞行环境特征组成所述无人机的仿真飞行环境。
  15. 如权利要求14所述的终端设备,其特征在于,所述类型信息包括障碍物、磁场干扰、风、雨中的一种或多种。
  16. 如权利要求14或15所述的终端设备,其特征在于,所述属性参数包括位置、大小、强度、时间参数、角度、姿态、温度、湿度、速度中的一种或多种。
  17. 如权利要求14-16任一项所述的终端设备,其特征在于,所述处理器 调用所述程序指令时还执行:
    确定仿真飞行环境特征的配置参数是否合法;
    当所述配置参数不合法时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;
    当所述配置参数合法时,根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征。
  18. 如权利要求17所述的终端设备,其特征在于,所述处理器在确定仿真飞行环境特征的配置参数是否合法时,执行如下操作:
    确定所述仿真飞行环境特征的配置参数中每一个配置参数是否符合各自对应的第一参数配置规则;
    若均符合,则确定所述仿真飞行环境特征的配置参数是合法的;
    若所述仿真飞行环境特征的配置参数中任意一个配置参数不符合其对应的第一参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
  19. 如权利要求17或18所述的终端设备,其特征在于,所述处理器在确定仿真飞行环境特征的配置参数是否合法时,执行如下操作:
    确定所述仿真飞行环境特征的配置参数中各个配置参数之间是否符合第二参数配置规则;
    若均符合,则确定所述仿真飞行环境特征的配置参数是合法的;
    若所述仿真飞行环境特征的配置参数中任意两个配置参数之间不符合第二参数配置规则,则确定所述仿真飞行环境特征的配置参数是不合法的。
  20. 如权利要求14-18任一项所述的终端设备,其特征在于,所述处理器调用所述程序指令时还执行:
    获取所述用户的权限;
    根据所述用户的权限确定并显示与所述权限匹配的目标仿真飞行环境特征的标识信息;
    所述处理器在检测用户的配置操作时,执行如下操作:
    检测所述用户针对所述目标仿真飞行环境特征的配置操作;
    所述处理器在根据所述检测到的配置操作确定仿真飞行环境特征的配置参数时,执行如下操作:
    根据所述检测到的配置操作确定所述目标仿真飞行环境特征中一种或者多种类型的仿真飞行环境特征的配置参数。
  21. 如权利要求14-18任一项所述的终端设备,其特征在于,所述处理器调用所述程序指令时还执行:
    确定所述用户是否具有所述仿真飞行环境特征的权限;
    当所述用户不具有所述权限时,拒绝根据所述仿真飞行环境特征的配置参数生成并显示仿真飞行环境特征,生成并显示提示信息;
    当所述用户具有所述权限时,根据所述检测到的配置操作确定仿真飞行环境特征的配置参数。
  22. 如权利要求14-18任一项所述的终端设备,其特征在于,所述处理器调用所述程序指令时还执行:
    将所述仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的所述无人机在所述仿真环境中飞行;
    获取并显示所述无人机发送的模拟飞行状态数据以验证所述无人机是否针对所述仿真飞行环境特征执行预设的响应操作。
  23. 如权利要求22所述的终端设备,其特征在于,所述处理器调用所述程序指令时还执行:
    在所述无人机在所述仿真飞行环境中飞行的过程中,检测所述用户对所述仿真飞行环境特征的编辑操作,其中,所述编辑操作用于调整所述仿真飞行环境特征的属性参数;
    根据检测到的编辑操作确定更新后的属性参数;
    根据所述更新后的属性参数生成并显示更新后的仿真飞行环境特征;
    将所述更新后的仿真飞行环境特征的属性参数发送给处于仿真模式的无 人机。
  24. 如权利要求22或23所述的终端设备,其特征在于,所述处理器调用所述程序指令时还执行:
    在所述无人机在所述仿真飞行环境中飞行的过程中,检测所述用户对所述仿真飞行环境特征的添加操作,其中,所述添加操作用于在所述仿真飞行环境中添加仿真飞行环境特征;
    根据检测到的添加操作确定添加的仿真飞行环境特征的配置参数;
    根据所述添加的仿真飞行环境特征的配置参数生成并显示添加后的仿真飞行环境特征;
    将所述添加后的仿真飞行环境特征的配置参数发送给处于仿真模式的无人机以使处于仿真模式的无人机在所述仿真环境中飞行。
  25. 如权利要求14所述的终端设备,其特征在于,所述处理器调用所述程序指令时还执行:
    输出是否保存所述仿真飞行环境特征的提示信息;
    若检测到保存所述仿真飞行环境特征的确认信息,则存储所述仿真飞行环境特征的配置参数。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求1-12任一项所述的无人机的仿真方法。
PCT/CN2018/112943 2018-10-31 2018-10-31 一种无人机的仿真方法、终端设备及计算机可读存储介质 WO2020087334A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880037921.1A CN110770659A (zh) 2018-10-31 2018-10-31 一种无人机的仿真方法、终端设备及计算机可读存储介质
PCT/CN2018/112943 WO2020087334A1 (zh) 2018-10-31 2018-10-31 一种无人机的仿真方法、终端设备及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112943 WO2020087334A1 (zh) 2018-10-31 2018-10-31 一种无人机的仿真方法、终端设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020087334A1 true WO2020087334A1 (zh) 2020-05-07

Family

ID=69328768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112943 WO2020087334A1 (zh) 2018-10-31 2018-10-31 一种无人机的仿真方法、终端设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110770659A (zh)
WO (1) WO2020087334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250974A (zh) * 2023-09-25 2023-12-19 广州天海翔航空科技有限公司 一种在雷雨天气下无人机飞行控制方法及无人机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118622A (zh) * 2007-05-25 2008-02-06 清华大学 在城市环境下微型飞行器三维轨迹仿真方法
CN103488179A (zh) * 2013-09-18 2014-01-01 航天科工深圳(集团)有限公司 无人机飞行模拟系统及模拟方法
CN104503460A (zh) * 2014-12-05 2015-04-08 电子科技大学 一种通用型无人机地面站控制系统
CN104765280A (zh) * 2015-03-13 2015-07-08 吉林医药学院 无人机三维立体显控综合训练系统
US20170032576A1 (en) * 2015-07-31 2017-02-02 Thales Man-machine interface for managing the flight of an aircraft
CN107563011A (zh) * 2017-08-08 2018-01-09 西北工业大学 一种无人机数据链可靠性的仿真系统设计方法
CN108021144A (zh) * 2017-12-29 2018-05-11 中国地质大学(武汉) 一种无人机航迹规划及动态威胁规避仿真设备
CN108053714A (zh) * 2017-11-10 2018-05-18 广东电网有限责任公司教育培训评价中心 基于输电线路巡检的多旋翼无人机巡视作业仿真培训系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398866A (zh) * 2008-10-29 2009-04-01 哈尔滨工程大学 飞行器视景仿真系统
CN112947510A (zh) * 2014-09-30 2021-06-11 深圳市大疆创新科技有限公司 用于飞行模拟的系统和方法
CN104981748B (zh) * 2014-09-30 2019-12-24 深圳市大疆创新科技有限公司 一种飞行指示方法、装置及飞行器
US11069254B2 (en) * 2017-04-05 2021-07-20 The Boeing Company Method for simulating live aircraft infrared seeker obscuration during live, virtual, constructive (LVC) exercises

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118622A (zh) * 2007-05-25 2008-02-06 清华大学 在城市环境下微型飞行器三维轨迹仿真方法
CN103488179A (zh) * 2013-09-18 2014-01-01 航天科工深圳(集团)有限公司 无人机飞行模拟系统及模拟方法
CN104503460A (zh) * 2014-12-05 2015-04-08 电子科技大学 一种通用型无人机地面站控制系统
CN104765280A (zh) * 2015-03-13 2015-07-08 吉林医药学院 无人机三维立体显控综合训练系统
US20170032576A1 (en) * 2015-07-31 2017-02-02 Thales Man-machine interface for managing the flight of an aircraft
CN107563011A (zh) * 2017-08-08 2018-01-09 西北工业大学 一种无人机数据链可靠性的仿真系统设计方法
CN108053714A (zh) * 2017-11-10 2018-05-18 广东电网有限责任公司教育培训评价中心 基于输电线路巡检的多旋翼无人机巡视作业仿真培训系统
CN108021144A (zh) * 2017-12-29 2018-05-11 中国地质大学(武汉) 一种无人机航迹规划及动态威胁规避仿真设备

Also Published As

Publication number Publication date
CN110770659A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
US11971729B2 (en) Unmanned aerial vehicle control method and terminal
US11090563B2 (en) Object selection method, terminal and storage medium
CN108521788B (zh) 生成模拟航线的方法、模拟飞行的方法、设备及存储介质
US10284705B2 (en) Method and apparatus for controlling smart device, and computer storage medium
WO2019128455A1 (zh) 信息处理方法、装置、移动终端和存储介质
CN110765620B (zh) 飞行器视景仿真方法、系统、服务器及存储介质
US10740511B2 (en) Selective simulation of virtualized hardware inputs
CN110780679A (zh) 一种飞行指示方法、装置及飞行器
KR102325367B1 (ko) 자율 주행 데이터의 데이터 레이블링 방법, 장치 및 컴퓨터프로그램
CN105074615A (zh) 虚拟传感器系统和方法
US20170235859A1 (en) Simulation server capable of configuring events of a lesson plan through interactions with a computing device
EP3417441A1 (en) Simulation server and lesson plan events based on simulation data
CN103971049A (zh) 应用程序管控方法
WO2021016891A1 (zh) 处理点云的方法和装置
US11186366B2 (en) Method and device for controlling flight, control terminal, flight system and processor
US11194465B2 (en) Robot eye lamp control method and apparatus and terminal device using the same
WO2020087334A1 (zh) 一种无人机的仿真方法、终端设备及计算机可读存储介质
WO2021035702A1 (zh) 应用程序测试方法、设备及存储介质
KR102166336B1 (ko) 소프트웨어 플랫폼을 제공하는 서버 및 그 동작방법
CN107992253B (zh) 组合立体图形显示状态的调控方法、装置及计算机设备
US20210223793A1 (en) Control method and device for mobile platform, and mobile platform
TWI725497B (zh) 控制裝置與無人機控制方法
WO2021035691A1 (zh) 无人机的仿真方法、仿真装置和计算机可读存储介质
WO2022205166A1 (zh) 无人机的控制方法、无人机及存储介质
US20200125685A1 (en) Model Based System for Virtual Device Simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939118

Country of ref document: EP

Kind code of ref document: A1