WO2020085579A1 - Novel spiro compound and organic electronic device using same - Google Patents

Novel spiro compound and organic electronic device using same Download PDF

Info

Publication number
WO2020085579A1
WO2020085579A1 PCT/KR2018/016936 KR2018016936W WO2020085579A1 WO 2020085579 A1 WO2020085579 A1 WO 2020085579A1 KR 2018016936 W KR2018016936 W KR 2018016936W WO 2020085579 A1 WO2020085579 A1 WO 2020085579A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
independently
compound
electronic device
alkyl
Prior art date
Application number
PCT/KR2018/016936
Other languages
French (fr)
Korean (ko)
Inventor
권순기
김윤희
최지영
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2020085579A1 publication Critical patent/WO2020085579A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to novel spiro compounds and organic electronic devices using the same.
  • Typical examples of the organic electronic device include an organic light emitting device (OLED), an organic thin film transistor (OTFT), an organic optical sensor (OPD), an organic solar cell (OPV), a photodetector, a memory device, and a logic circuit.
  • OLED organic light emitting device
  • OFT organic thin film transistor
  • OPD organic optical sensor
  • OCV organic solar cell
  • photodetector a photodetector
  • memory device a logic circuit.
  • the organic solar cell uses an electron donor and an acceptor as a photoactive layer at the same time, and the film formation conditions are less demanding than conventional inorganic semiconductor devices.
  • Many studies have been conducted in recent years due to the advantage of being able to fabricate a flexible device that can be bent at will, especially the material of a layer.
  • the organic solar cell is composed of a junction structure of an electron donor and an electron acceptor, and is a very fast charge transfer phenomenon called a “photoinduced charge transfer (PICT)” between the electron donor and the electron acceptor, Research is being conducted to obtain a high-efficiency organic solar cell by increasing the photoexcitation charge transfer phenomenon.
  • PICT photoinduced charge transfer
  • PCBM ⁇ 6 ⁇ -1- (3- (methoxycarbonyl) propyl
  • a metanofullerene derivative published by Fred Wudl Group in 1995- ⁇ 5 ⁇ -1-phenyl [5,6] C61 ( ⁇ 6 ⁇ -1- (3- (methoxycarbonyl) propyl)- ⁇ 5 ⁇ -1-phenyl [5,6] C61)
  • perylene, 3,4,9,10-perylenetetracarboxylic acid diimide, phthalocyanine, and pentacene are used.
  • fullerene derivatives as well as fullerene derivatives represented by PCBM, have low solubility in organic solvents, when they are mixed with polymer compounds used as electron donors, there is a problem that phase separation occurs or overall overall efficiency is low. have. Moreover, solar absorption is weak and energy level manipulation is difficult.
  • the fullerene derivative As a replaceable compound of the fullerene derivative, it has excellent solubility in an organic solvent, high electron affinity similar to fullerene, excellent compatibility with an electron donor, high absorption coefficient for sunlight, and excellent photoelectric conversion efficiency. Research into compounds is needed.
  • the present invention aims to provide a novel spiro compound having an extended conjugated spiro structure.
  • An object of the present invention is to provide an organic electronic device having excellent light efficiency by employing the spiro compound of the present invention.
  • An object of the present invention is to provide an organic solar cell having excellent photoelectric conversion efficiency by employing the spiro compound of the present invention in a photoactive layer.
  • the present invention may include the following means.
  • the spiro compound according to an embodiment of the present invention is a small molecule compound of ADA composed of a central electron donor unit (D) and a terminal electron acceptor unit (A) on both sides of the central electron donor unit (D), and the central electron donor unit (D) )
  • ADA central electron donor unit
  • A terminal electron acceptor unit
  • the central electron donor unit (D) ) Has a spiro backbone, has a central skeleton extended to a two-dimensional region, and forms a delocalized pi-electron field along the central skeleton to have a more extended conjugated structure, represented by the following Chemical Formula 1 You can.
  • R 1 to R 4 are each independently C1-C30 alkyl
  • V 1 and V 2 are each independently a C6-C20 aromatic ring having methylidene as a linking group, and the aromatic rings are each independently C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano, HaloC1-C30alkyl, carboxyl, nitro, hydroxy and C1-C30alkyloxycarbonyl may be further substituted with one or more substituents selected from;
  • X 1 , X 2 , Y 1 and Y 2 are each independently O, S or Se.
  • the aromatic ring (V 1 and V 2 ) having the methylidene as a linkage group may be independently represented by the following formula (A).
  • Z 1 and Z 2 are each independently O, S, Se or CR 11 R 12 , and R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl. ego;
  • A is a C6-C20 aromatic ring, and the aromatic ring may be further substituted with one or more substituents selected from C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano and halo C1-C30 alkyl.
  • the aromatic ring (V 1 and V 2 ) having the methylidene as a linkage group may be independently represented by the following formula (B).
  • R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl;
  • R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano or halo C1-C30 alkyl, or may be connected to adjacent substituents to form an aromatic ring. have.]
  • the spiro compound according to an embodiment of the present invention may be represented by the following Chemical Formula 2.
  • R 1 to R 4 are each independently C1-C30 alkyl
  • R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, halogen or haloC1-C30 alkyl.
  • the present invention provides an organic electronic device including the spiro compound according to an embodiment of the present invention.
  • the organic electronic device may be an organic light emitting device, an organic thin film transistor, an organic photosensor or an organic solar cell, and preferably an organic solar cell.
  • the spiro compound may be included in the photoactive layer of the organic solar cell.
  • the spiro compound may be included in the photoactive layer of the organic solar cell as an electron acceptor.
  • the spiro compound of the present invention has a low bandgap, has excellent crystallization properties, and realizes effective intermolecular stacking of planar molecular sieves. Accordingly, the spiro compound of the present invention has a high absorption coefficient for sunlight and has an absorption spectrum of almost all wavelengths (eg, full color) in the visible region, and at the same time, has a more extended conjugated structure, thereby realizing high photoelectric conversion efficiency. have.
  • the spiro compound of the present invention has a high solubility in various organic solvents, and thus it is possible to manufacture an organic electronic device by a solution process, and it has high compatibility with an electron donor (for example, a polymer compound such as polythiophene). It is possible to increase the energy conversion efficiency of the electronic device.
  • an electron donor for example, a polymer compound such as polythiophene
  • the organic electronic device employing the spiro compound of the present invention has a high absorption coefficient and is capable of efficiently absorbing sunlight, and can realize excellent photoelectric conversion efficiency with high charge transfer characteristics.
  • the organic electronic device employing the spiro compound of the present invention as an electron acceptor can lower the driving voltage, improve light efficiency, and improve the life characteristics of the device by thermal stability of the compound.
  • the spiro compound of the present invention is used as a compound that can replace the fullerene derivative widely used as an electron acceptor, and can significantly improve the stability and photoelectric conversion efficiency of an organic solar cell. That is, the spiro compound of the present invention is very useful as a non-fullerene-based electron acceptor.
  • alkyl alkoxy
  • alkylthio alkyl moieties described herein include both straight-chain or ground forms.
  • alkoxy and alkylthio mean a monovalent organic radical represented by "* -O-alkyl” and "* -S-alkyl", respectively.
  • halogen means a fluorine, chlorine, bromine or iodine atom.
  • carboxyl described in this specification means a carboxylic acid group represented by * -COOH.
  • the present invention is a small molecule compound of ADA composed of a central electron donor unit (D) and a terminal electron acceptor unit (A) on both sides of the central electron donor unit (D), wherein the central electron donor unit (D) has a spiro backbone 2
  • the spiro compound of the present invention is represented by the following formula (1) Is displayed.
  • R 1 to R 4 are each independently C1-C30 alkyl
  • V 1 and V 2 are each independently a C6-C20 aromatic ring having methylidene as a linking group, and the aromatic rings are each independently C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano, HaloC1-C30alkyl, carboxyl, nitro, hydroxy and C1-C30alkyloxycarbonyl may be further substituted with one or more substituents selected from;
  • X 1 , X 2 , Y 1 and Y 2 are each independently O, S or Se.
  • the spiro compound of the present invention exhibits improved solubility in various organic solvents as it has a central electron donor unit (D) spiro backbone, and has excellent electron transport properties as an electron acceptor material in an organic solar cell, thereby exhibiting high efficiency and high efficiency. You can.
  • a compound having a central electron donor unit other than a spiro backbone must manufacture a device by a vacuum deposition method due to a considerably lowered solubility in an organic solvent, and the fabricated device exhibits a rapidly lowered photoelectric conversion efficiency.
  • the spiro compound of the present invention has a high absorption coefficient for sunlight, a high charge mobility, and a high solubility in an organic solvent, so that it is possible to manufacture an organic electronic device by a solution process, and the thermal stability of the organic electronic device including the same And improve the electrical properties. Moreover, it is possible to impart more advantage to the solution process because it satisfies the viscosity range favorable to the solution process with high solubility in a conventional organic solvent.
  • the spiro compound of the present invention has a high miscibility with an electron donor (eg, a polymer compound such as polythiophene), and thus can increase the efficiency of an organic electronic device including the same.
  • an electron donor eg, a polymer compound such as polythiophene
  • the spiro compound of the present invention is a structure in which an aromatic ring using methylidene as a linking group is introduced to form an extended conjugate out of the central skeleton to further improve the intermolecular interaction.
  • aromatic rings (V 1 and V 2 ) having the methylidene as a linking group may be independently represented by the following Chemical Formula A.
  • Z 1 and Z 2 are each independently O, S, Se or CR 11 R 12 , and R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl. ego;
  • A is a C6-C20 aromatic ring, and the aromatic ring may be further substituted with one or more substituents selected from C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano and halo C1-C30 alkyl.
  • aromatic rings (V 1 and V 2 ) having the methylidene as a linking group may be independently represented by the following Chemical Formula B.
  • R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl;
  • R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano or halo C1-C30 alkyl, or may be connected to adjacent substituents to form an aromatic ring. have.]
  • the aromatic ring (V 1 and V 2 ) using the methylidene as a linking group may be selected from the following structures, but is not limited thereto.
  • the spiro compound according to an embodiment of the present invention minimizes the quenching of an excited state by an electromagnetic vibration (vibronic) path by the above-described structural characteristics, and thus has less energy loss due to absorption of sunlight and thus a higher absorption coefficient for sunlight. You can implement In addition, the compound has high crystallinity, and thus high charge mobility can be realized.
  • X 1 and X 2 are the same as each other, Y 1 and Y 2 may be the same as each other, more preferably X 1 , X 2 , Y 1 And Y 2 may all be S.
  • R 1 to R 4 are each independently C1-C30 alkyl
  • R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, halogen or haloC1-C30 alkyl.
  • the spiro compound according to an embodiment of the present invention in terms of improving solubility as well as electron donation, it is preferable that at least one long-chain alkoxy is substituted in the central electron donor unit (D) spiro backbone.
  • R 1 to R 4 may each independently be C6-C30 alkyl, preferably crushed C6-C30 alkyl, and more preferably
  • A is an integer from 1 to 5
  • b and c are each independently an integer of 1 or more, and satisfies 2 ⁇ b + c ⁇ 20.
  • the spiro compound according to an embodiment of the present invention may be included in an organic electronic device, and among them, it is used as an electron acceptor material in a photoactive layer of an organic solar cell and replaces a fullerene derivative used in the prior art, thereby converting photoelectric conversion efficiency in an organic solar cell. It is possible to improve.
  • the spiro compound according to an embodiment of the present invention can be manufactured through a conventional organic synthesis method, and the organic solvent used therein is not limited, and the reaction time and temperature are also within the scope of the invention. Of course, changes are possible.
  • the present invention provides an organic electronic device comprising the spiro compound of the present invention.
  • the organic electronic device is not limited as long as the spiro compound of the present invention can be used, and in one non-limiting example, the organic electronic device is an organic solar cell, an organic thin film transistor, an organic memory, or Organic photoreceptors, organic photosensors, and the like, and preferably an organic solar cell or an organic thin film transistor.
  • the organic electronic device may be an organic solar cell, and the spiro compound may be included in the photoactive layer of the organic solar cell.
  • the spiro compound of the present invention is an electron acceptor used as an alternative compound of a fullerene derivative conventionally used in an organic solar cell, and the organic solar cell employing the same has improved photoelectric conversion efficiency.
  • the organic solar cell consists of a structure in which a hole transport layer and an electron transport layer are bonded, and when absorbing sunlight, electron-hole pairs are generated in the hole receptor and electrons move to the electron receptor to separate electron-holes. It shows the photoelectric conversion effect through the process.
  • the present invention can achieve a surprisingly improved photoelectric conversion efficiency by employing the spiro compound of the present invention in an organic solar cell.
  • the spiro compound of the present invention has high crystallinity and high charge mobility, so it can be used as an electron acceptor material in the photoactive layer of an organic solar cell, thereby realizing high efficiency.
  • the organic solar cell according to an embodiment of the present invention may include a substrate, a first electrode, a photoactive layer, and a second electrode, and of course, may further include a hole transport layer, an electron transport layer, and the like.
  • the organic solar cell according to an embodiment of the present invention may be an inverted type organic solar cell.
  • the substrate is PET (polyethylene terephthalate), PEN (polyethylene naphthelate), PP (polyperopylene), PI (polyimide), PC (polycarbornate), PS (polystylene), POM (polyoxyethlene), AS resin (acrylonitrile styrene) copolymer), ABS resin (acrylonitrile butadiene styrene copolymer) and TAC (Triacetyl cellulose).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polyperopylene
  • PI polyimide
  • PC polycarbornate
  • PS polystylene
  • POM polyoxyethlene
  • AS resin acrylonitrile styrene copolymer
  • ABS resin acrylonitrile butadiene styrene copolymer
  • TAC Triacetyl cellulose
  • the first electrode is formed by applying a transparent electrode material to one surface of the substrate or coated in a film form using sputtering, E-Beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing. do.
  • the first electrode is a part that functions as an anode.
  • any material having transparency and conductivity may be used.
  • ITO indium tin oxide
  • FTO fluorine doped tin oxide
  • AZO aluminum doped zinc oxide
  • IZO indium zink oxide
  • ITO indium tin oxide
  • gold, silver, and fluorine doped tin oxide FTO
  • FTO fluorine doped tin oxide
  • AZO aluminum doped zinc oxide
  • IZO indium zink oxide
  • ZnO-Ga 2 O 3 ZnO-Al 2 O 3
  • ATO antimony tin oxide, SnO 2 -Sb 2 O 3
  • the spiro compound may be included in the photoactive layer, and the compounding amount thereof may be appropriately adjusted according to the application.
  • the spiro compound since the spiro compound has excellent solubility, it can be dissolved in an organic solvent and used as an electron acceptor material of a photoactive layer with a thickness of 60 mm or more, preferably 60 to 120 nm.
  • an example of an electron donor is PBDTTT-CT (Poly ⁇ [4,8-bis- (2-ethyl-hexyl-thiophene-5-yl) -benzo [1,2-b: 4,5-b '] dithiophene -2,6-diyl] -alt- [2- (2'-ethyl-hexanoyl) -thieno [3,4-b] thiophen-4,6-diyl] ⁇ ), PBDTTT-CF (Poly [1- ( 6- ⁇ 4,8-bis [(2-ethylhexyl) oxy] -6-methylbenzo [1,2- b : 4,5- b ′] dithiophen-2-yl ⁇ -3-fluoro-4-methylthieno [3 , 4- b ] thiophen-2-yl) -1-octanone]), P3HT (Poly (3-hexylthiophene)), PCDTBT (Poly [
  • the electron donor and the spiro compound are mixed in a weight ratio of 1: 0.5 to 1: 4 to form a photoactive layer by a solution process method such as spin coating, spray coating, screen printing, doctor blade method, and the like, and dissolving the solution in an organic solvent.
  • a solution process method such as spin coating, spray coating, screen printing, doctor blade method, and the like, and dissolving the solution in an organic solvent.
  • the organic solvent may be acetone, methanol, THF, toluene, xylene, tetralin, chloroform, chlorobenzene, dichlorobenzene, or a mixed solvent thereof, but is not limited thereto.
  • the photoactive layer containing the spiro compound according to the present invention increases the photoelectric conversion efficiency by increasing short circuit current density and open circuit voltage due to high electron density.
  • the second electrode may be deposited using a thermal evaporator while the electron transport layer is introduced.
  • the usable electrode materials include lithium fluoride / aluminum, lithium fluoride / calcium / aluminum, aluminum / calcium, barium fluoride / aluminum, barium fluoride / barium / aluminum, barium / aluminum, aluminum, gold, silver, magnesium: silver and It may be selected from lithium: aluminum, and preferably, an electrode made of silver, aluminum, aluminum / calcium or barium fluoride / barium / aluminum is used.
  • materials of the electron transport layer and the hole transport layer may be used unlike the electron transport layer and the hole transport layer of the general type.
  • the electron transport layer material include TiO x , ZnO, TiO 2 , ZrO 2 , MgO, and HfO 2
  • examples of the hole transport layer material include NiO, Ta 2 O 3 , MoO 3 , and Ru 2 O 3 And metal oxides.
  • Trimethyl (thieno [3,2-b] thiophen-2-yl) silane (2.74 g, 12.9 mmol) was added to THF (200 mL) and dissolved in a nitrogen-substituted three-necked flask, the temperature was lowered to -78 ° C, and 2.5. M n-Butyllithium (5.2 mL, 12.9 mmol) was dropped and stirred for 2 hours. And, after dissolving ZnCl 2 (1.76 g, 12.9 mmol) in THF (30 mL), the temperature was raised to -40 ° C, and slowly dropped and stirred at 0 ° C for 1 hour.
  • ITO Indium Tin Oxide
  • first electrode an anode transparent electrode
  • IPA isopropyl alcohol
  • the ITO glass substrate washed as described above was subjected to ultraviolet / ozone treatment for 15 minutes, followed by spin coating ZnO ⁇ NPs having a thickness of 30 nm on the ITO substrate. And the substrate coated with ZnO ⁇ NPs was heat treated at 100 ° C. for 10 minutes on a hot plate.
  • the photoactive layer was prepared by dissolving Compound 1 (electroreceptor) and P3HT (Poly (3-hexylthiophene)) (electron donor) prepared in Example 1 in a chloroform solvent at a ratio of 1: 1 by weight, and carrying a 0.45 ⁇ m (PTFE) syringe.
  • An organic semiconductor solution filtered through a filter (syringe filter) was prepared by coating on a ZnO layer with a thickness of 100 nm through a spin coating method.
  • An organic solar cell was fabricated by depositing a 10 nm thick MoO 3 and 100 nm thick Ag electrode as a top electrode on the photoactive layer under a 3 ⁇ 10 ⁇ 6 torr vacuum in a thermal evaporator.
  • An organic solar cell was produced in the same manner as in Example 5, except that Compound 2 prepared in Example 2 was used as the electron acceptor, and its properties were confirmed.
  • An organic solar cell was manufactured in the same manner as in Example 5, except that Compound 3 prepared in Example 3 was used as the electron acceptor, and its properties were confirmed.
  • An organic solar cell was manufactured in the same manner as in Example 5, except that Compound 4 prepared in Example 4 was used as the electron acceptor, and its properties were confirmed.
  • An organic solar cell was prepared in the same manner as in Example 5 using a conventional electron acceptor (PC71BM) instead of Compound 1 to compare its properties.
  • PC71BM conventional electron acceptor
  • An organic solar cell was prepared in the same manner as in Example 5 using Comparative Compound C1 instead of Compound 1 to compare its properties.
  • An organic solar cell was prepared in the same manner as in Example 5 using Comparative Compound C2 instead of Compound 1 to compare its properties.
  • An organic solar cell was prepared in the same manner as in Example 5 using Comparative Compound C3 instead of Compound 1 to compare its properties.
  • V oc (V) and J sc (mA / cm 2 ) each represent a voltage value when the current is 0 and a current value when the voltage is 0, in the current-voltage curve of the fabricated device.
  • the fill factor (FF) is calculated from Equation 1 below.
  • V mpp and J mpp each represents the voltage and current value at the point indicating the maximum power when measuring the current-voltage of the fabricated device
  • V oc (V) and J sc (mA / cm 2 ) Each represents the voltage value when the current is 0 and the current value when the voltage is 0 in the current-voltage curve of the fabricated device.
  • Equation 2 FF, V oc and J sc are as defined in Equation 1, and P in represents the total energy of light incident on the device.
  • the spiro compound of the present invention is used as a replacement compound of a conventional fullerene derivative, and has high electron affinity and excellent compatibility with an electron donor, thereby having high photoelectric conversion efficiency.

Abstract

The present invention relates to a novel spiro compound and an organic electronic device using same and, more particularly, to a novel spiro compound having an extended conjugated spiro structure, and an organic electronic device having excellent light efficiency by employing the novel spiro compound.

Description

신규한 스피로 화합물 및 이를 이용하는 유기 전자 소자Novel spiro compound and organic electronic device using same
본 발명은 신규한 스피로 화합물 및 이를 이용하는 유기 전자 소자에 관한 것이다.The present invention relates to novel spiro compounds and organic electronic devices using the same.
유기 전자 소자의 대표적인 예로는 유기 발광 소자(OLED), 유기 박막 트랜지스터(OTFT), 유기 광센서(OPD), 유기 태양 전지(OPV), 광검출기, 메모리 소자 및 논리 회로 등을 들 수 있다.Typical examples of the organic electronic device include an organic light emitting device (OLED), an organic thin film transistor (OTFT), an organic optical sensor (OPD), an organic solar cell (OPV), a photodetector, a memory device, and a logic circuit.
이중 유기 태양 전지는 광활성층으로 전자공여체(donor)와 전자수용체 (acceptor)를 동시에 사용하는 것으로, 종래의 무기 반도체 소자에 비하여 성막 조건이 까다롭지 않고, 수백 nm 이내의 얇은 두께와 상대적으로 저렴한 광활성층의 재료, 특히 마음대로 구부릴 수 있는 플렉서블한 소자를 제작할 수 있다는 장점으로 인하여 최근 많은 연구가 진행되고 있다.Among them, the organic solar cell uses an electron donor and an acceptor as a photoactive layer at the same time, and the film formation conditions are less demanding than conventional inorganic semiconductor devices. Many studies have been conducted in recent years due to the advantage of being able to fabricate a flexible device that can be bent at will, especially the material of a layer.
구체적으로, 유기 태양 전지는 전자공여체와 전자수용체의 접합 구조로 이루어져 있고, 상기 전자공여체와 전자수용체간의 소위 “광여기 전하 이동현상(photoinduced charge transfer, PICT)”이라 불리는 매우 빠른 전하 이동현상으로서, 이러한 광여기 전하 이동현상을 높여 고효율의 유기 태양 전지를 얻기 위한 연구가 진행되고 있다.Specifically, the organic solar cell is composed of a junction structure of an electron donor and an electron acceptor, and is a very fast charge transfer phenomenon called a “photoinduced charge transfer (PICT)” between the electron donor and the electron acceptor, Research is being conducted to obtain a high-efficiency organic solar cell by increasing the photoexcitation charge transfer phenomenon.
현재 유기 태양 전지의 전자공여체로 사용되는 화합물은 p-형 전도성 고분자를 중심으로 많은 연구가 진행되고 있으며, 일예로 폴리파라페닐렌비닐렌(poly para-phenylenevinylene, 이하, “PPV”라 한다) 계열의 고분자 화합물과 폴리싸이오펜(polythiophene, 이하, “PT”라 한다) 계열의 고분자 화합물을 비롯하여 최근에는 저 밴드갭 고분자 화합물(Low bandgap polymer) 위주의 다양한 유도체들이 사용되고 있다. Currently, many studies have been conducted on compounds used as electron donors in organic solar cells, mainly with p-type conductive polymers. For example, poly para-phenylenevinylene (hereinafter referred to as “PPV”) series Recently, various derivatives mainly based on low bandgap polymers have been used, including high-molecular weight compounds and polythiophene (hereinafter referred to as “PT”) polymer compounds.
또한 유기 태양 전지의 전자수용체로는 1995년 프레드 우들(Fred Wudl) 그룹에서 발표한 메타노풀러렌(methanofullerene) 유도체인 PCBM({6}-1-(3-(메톡시카르보닐)프로필)-{5}-1-페닐[5,6]C61({6}-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]C61))을 들 수 있으며, 그 외의 단분자로는 페릴렌(perylene), 3,4,9,10-페릴렌테트라카르복실산 다이이미드, 프탈로시아닌, 펜타센(pentacene) 등이 사용되고 있다. 그러나, PCBM으로 대표되는 플러렌 유도체는 물론 다수의 플러렌 유도체는 유기용매에 대한 용해도가 낮으므로, 전자공여체로 사용되는 고분자 화합물과 섞었을 때 상 분리 현상이 일어나거나 외형상 전반적으로 효율성이 낮은 문제가 있다. 더욱이, 태양광 흡수가 약하고 에너지 레벨 조작이 어렵다. In addition, as an electron acceptor of an organic solar cell, PCBM ({6} -1- (3- (methoxycarbonyl) propyl), a metanofullerene derivative, published by Fred Wudl Group in 1995- { 5} -1-phenyl [5,6] C61 ({6} -1- (3- (methoxycarbonyl) propyl)-{5} -1-phenyl [5,6] C61)). As a single molecule, perylene, 3,4,9,10-perylenetetracarboxylic acid diimide, phthalocyanine, and pentacene are used. However, since fullerene derivatives, as well as fullerene derivatives represented by PCBM, have low solubility in organic solvents, when they are mixed with polymer compounds used as electron donors, there is a problem that phase separation occurs or overall overall efficiency is low. have. Moreover, solar absorption is weak and energy level manipulation is difficult.
다수의 플러렌 유도체는 유기 용매에 대한 용해도가 낮으므로, 고분자와 섞었을 때 상 분리 현상이 일어나, 외형상 전반적으로 효율성이 낮은 문제가 있고, 태양 스펙트럼의 강한 영역의 범위에 대해 광흡수가 약하고 에너지 레별 조작이 어려우며, 상기와 같은 전자공여체와의 혼화성이 낮아 플러렌을 대체할 화합물에 대한 연구가 절실히 필요한 실정이다.Since many fullerene derivatives have low solubility in organic solvents, phase separation occurs when mixed with polymers, resulting in low overall efficiency in appearance, weak light absorption and energy in a range of strong regions of the solar spectrum It is difficult to perform the operation of each layer, and studies on compounds to replace fullerene are urgently required due to low compatibility with the electron donor as described above.
그러나 현재까지 저 밴드갭 고분자를 중심으로 한 전자공여체에 대한 연구는 다양하게 진행된 반면, 전자수용체로 사용되는 플러렌 유도체를 대체할 화합물에 대한 연구는 거의 이루어지지 않고 있는 실정이다.However, various studies have been conducted on electron donors centered on low-bandgap polymers, but few studies have been conducted on compounds to replace fullerene derivatives used as electron acceptors.
구체적으로, 플러렌 유도체의 대체할 수 있는 화합물로 유기 용매에 대한 용해도가 우수하고 플러렌과 유사한 높은 전자 친화력을 가지는 동시에 전자공여체와 혼화성이 우수하며 태양광에 대한 흡수계수가 높고 광전변환효율이 우수한 화합물에 대한 연구가 필요하다.Specifically, as a replaceable compound of the fullerene derivative, it has excellent solubility in an organic solvent, high electron affinity similar to fullerene, excellent compatibility with an electron donor, high absorption coefficient for sunlight, and excellent photoelectric conversion efficiency. Research into compounds is needed.
상기와 같은 문제점을 해결하고자, 본 발명은 확장된 공액 스피로 구조를 갖는 신규한 스피로 화합물을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention aims to provide a novel spiro compound having an extended conjugated spiro structure.
본 발명은 본 발명의 스피로 화합물을 채용함에 따라 우수한 광효율을 가지는 유기 전자 소자를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an organic electronic device having excellent light efficiency by employing the spiro compound of the present invention.
본 발명은 본 발명의 스피로 화합물을 광활성층에 채용함에 따라 우수한 광전변환효율을 가지는 유기 태양 전지를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an organic solar cell having excellent photoelectric conversion efficiency by employing the spiro compound of the present invention in a photoactive layer.
상술된 목적을 위하여, 본 발명은 다음과 같은 수단을 포함할 수 있다.For the above-mentioned purposes, the present invention may include the following means.
본 발명의 일 실시예에 따른 스피로 화합물은 중심 전자주게 유닛(D) 및 중심 전자주게 유닛(D)의 양쪽에 말단 전자받게 유닛(A)으로 이루어진 A-D-A의 소분자 화합물로, 중심 전자주게 유닛(D)은 스피로 백본을 가지고 있어 2차원 영역으로 확장된 중심골격을 가지며, 중심골격을 따라 비편재화(delocalized)된 파이-전자계를 형성하여 보다 확장된 공액 구조를 갖는 것으로, 하기 화학식 1로 표시되는 것일 수 있다.The spiro compound according to an embodiment of the present invention is a small molecule compound of ADA composed of a central electron donor unit (D) and a terminal electron acceptor unit (A) on both sides of the central electron donor unit (D), and the central electron donor unit (D) ) Has a spiro backbone, has a central skeleton extended to a two-dimensional region, and forms a delocalized pi-electron field along the central skeleton to have a more extended conjugated structure, represented by the following Chemical Formula 1 You can.
[화학식 1][Formula 1]
Figure PCTKR2018016936-appb-img-000001
Figure PCTKR2018016936-appb-img-000001
[상기 화학식 1에서,[In the formula 1,
R 1 내지 R 4는 각각 독립적으로 C1-C30알킬이고;R 1 to R 4 are each independently C1-C30 alkyl;
V 1 및 V 2는 각각 독립적으로 메틸리덴을 연결기로 하는 C6-C20방향족 고리이고, 상기 방향족 고리는 각각 독립적으로 C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노, 할로C1-C30알킬, 카르복실, 니트로, 히드록시 및 C1-C30알킬옥시카르보닐에서 선택되는 하나 이상의 치환기로 더 치환될 수 있고;V 1 and V 2 are each independently a C6-C20 aromatic ring having methylidene as a linking group, and the aromatic rings are each independently C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano, HaloC1-C30alkyl, carboxyl, nitro, hydroxy and C1-C30alkyloxycarbonyl may be further substituted with one or more substituents selected from;
X 1, X 2, Y 1 및 Y 2는 각각 독립적으로 O, S 또는 Se이다.]X 1 , X 2 , Y 1 and Y 2 are each independently O, S or Se.]
본 발명의 일 실시예에 따른 스피로 화합물은 상기 화학식 1에서, 상기 메틸리덴을 연결기로 하는 방향족 고리(V 1 및 V 2)가 각각 독립적으로 하기 화학식 A로 표시되는 것일 수 있다.In the spiro compound according to an embodiment of the present invention, in the formula (1), the aromatic ring (V 1 and V 2 ) having the methylidene as a linkage group may be independently represented by the following formula (A).
[화학식 A][Formula A]
Figure PCTKR2018016936-appb-img-000002
Figure PCTKR2018016936-appb-img-000002
[상기 화학식 A에서, [In the above formula A,
Z 1 및 Z 2는 각각 독립적으로 O, S, Se 또는 CR 11R 12이고, R 11 및 R 12는 각각 독립적으로 할로겐, 시아노, 카르복실, 니트로, 히드록시 또는 C1-C30알킬옥시카르보닐이고;Z 1 and Z 2 are each independently O, S, Se or CR 11 R 12 , and R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl. ego;
A는 C6-C20방향족 고리이며, 상기 방향족 고리는 C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노 및 할로C1-C30알킬에서 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]A is a C6-C20 aromatic ring, and the aromatic ring may be further substituted with one or more substituents selected from C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano and halo C1-C30 alkyl. have.]
본 발명의 일 실시예에 따른 스피로 화합물은 상기 화학식 1에서, 상기 메틸리덴을 연결기로 하는 방향족 고리(V 1 및 V 2)가 각각 독립적으로 하기 화학식 B로 표시되는 것일 수 있다.In the spiro compound according to an embodiment of the present invention, in the formula (1), the aromatic ring (V 1 and V 2 ) having the methylidene as a linkage group may be independently represented by the following formula (B).
[화학식 B][Formula B]
Figure PCTKR2018016936-appb-img-000003
Figure PCTKR2018016936-appb-img-000003
[상기 화학식 B에서, [In the above formula B,
R 11 및 R 12는 각각 독립적으로 할로겐, 시아노, 카르복실, 니트로, 히드록시 또는 C1-C30알킬옥시카르보닐이고;R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl;
R 21 내지 R 24는 각각 독립적으로 수소, C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노 또는 할로C1-C30알킬이거나, 인접한 치환기와 연결되어 방향족 고리를 형성할 수 있다.]R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano or halo C1-C30 alkyl, or may be connected to adjacent substituents to form an aromatic ring. have.]
본 발명의 일 실시예에 따른 스피로 화합물은 하기 화학식 2로 표시될 수 있다.The spiro compound according to an embodiment of the present invention may be represented by the following Chemical Formula 2.
[화학식 2][Formula 2]
Figure PCTKR2018016936-appb-img-000004
Figure PCTKR2018016936-appb-img-000004
[상기 화학식 2에서, [In the formula 2,
R 1 내지 R 4는 각각 독립적으로 C1-C30알킬이고;R 1 to R 4 are each independently C1-C30 alkyl;
R 21 내지 R 24는 각각 독립적으로 수소, C1-C30알킬, C1-C30알콕시, 할로겐 또는 할로C1-C30알킬이다.]R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, halogen or haloC1-C30 alkyl.]
또한, 본 발명은 본 발명의 일 실시예에 따른 상기 스피로 화합물을 포함하는 유기 전자 소자를 제공한다.In addition, the present invention provides an organic electronic device including the spiro compound according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 유기 전자 소자는 유기 발광 소자, 유기 박막 트랜지스터, 유기 광센서 또는 유기 태양 전지 등일 수 있으며, 바람직하게는 유기 태양 전지 일 수 있다.The organic electronic device according to an embodiment of the present invention may be an organic light emitting device, an organic thin film transistor, an organic photosensor or an organic solar cell, and preferably an organic solar cell.
본 발명의 일 실시예에 따른 유기 전자 소자에서, 상기 스피로 화합물은 유기 태양 전지의 광활성층에 포함될 수 있다.In the organic electronic device according to an embodiment of the present invention, the spiro compound may be included in the photoactive layer of the organic solar cell.
본 발명의 일 실시예에 따른 유기 전자 소자에서, 상기 스피로 화합물은 전자수용체로 유기 태양 전지의 광활성층에 포함될 수 있다.In the organic electronic device according to an embodiment of the present invention, the spiro compound may be included in the photoactive layer of the organic solar cell as an electron acceptor.
본 발명의 스피로 화합물은 낮은 밴드갭을 가지며, 결정화 특성이 우수하며, 평면성 분자체의 분자간 효과적인 스태킹(stacking)을 구현한다. 이에, 본 발명의 스피로 화합물은 태양광에 대한 흡수계수가 높고 가시광선 영역의 거의 모든 파장(전정색) 영역의 흡수 스펙트럼을 가짐과 동시에 보다 확장된 공액 구조를 가져, 높은 광전변환효율을 구현할 수 있다.The spiro compound of the present invention has a low bandgap, has excellent crystallization properties, and realizes effective intermolecular stacking of planar molecular sieves. Accordingly, the spiro compound of the present invention has a high absorption coefficient for sunlight and has an absorption spectrum of almost all wavelengths (eg, full color) in the visible region, and at the same time, has a more extended conjugated structure, thereby realizing high photoelectric conversion efficiency. have.
또한 본 발명의 스피로 화합물은 다양한 유기 용매에 대한 용해도가 높아 용액공정으로 유기 전자 소자의 제작이 가능하며, 전자공여체(예, 폴리싸이오펜 등의 고분자 화합물)와 혼용성이 높아, 이를 포함하는 유기 전자 소자의 에너지전환 효율을 높일 수 있다.In addition, the spiro compound of the present invention has a high solubility in various organic solvents, and thus it is possible to manufacture an organic electronic device by a solution process, and it has high compatibility with an electron donor (for example, a polymer compound such as polythiophene). It is possible to increase the energy conversion efficiency of the electronic device.
본 발명의 스피로 화합물을 채용한 유기 전자 소자는 높은 흡수계수를 가져 효율적으로 태양광을 흡수할 수 있으며, 높은 전하 이동 특성으로 우수한 광전변환효율을 구현할 수 있다.The organic electronic device employing the spiro compound of the present invention has a high absorption coefficient and is capable of efficiently absorbing sunlight, and can realize excellent photoelectric conversion efficiency with high charge transfer characteristics.
나아가, 본 발명의 스피로 화합물을 전자수용체로 채용한 유기 전자 소자는 구동전압을 낮추고, 광효율을 향상시키며, 화합물의 열적 안정성에 의해 소자의 수명 특성을 향상시킬 수 있다.Furthermore, the organic electronic device employing the spiro compound of the present invention as an electron acceptor can lower the driving voltage, improve light efficiency, and improve the life characteristics of the device by thermal stability of the compound.
이와 같은 특성으로, 본 발명의 스피로 화합물은 전자수용체로 널리 사용되고 있는 플러렌 유도체를 대체할 수 있는 화합물로 사용되어, 유기 태양 전지의 안정성 및 광전변환효율을 현저하게 향상시킬 수 있다. 즉, 본 발명의 스피로 화합물은 비플러렌(non-fullerene)계 전자수용체로서 활용가능성이 매우 높다.With such characteristics, the spiro compound of the present invention is used as a compound that can replace the fullerene derivative widely used as an electron acceptor, and can significantly improve the stability and photoelectric conversion efficiency of an organic solar cell. That is, the spiro compound of the present invention is very useful as a non-fullerene-based electron acceptor.
본 발명에 따른 신규한 화합물 및 이를 이용하는 유기 전자 소자에 대하여 이하 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.The novel compound according to the present invention and the organic electronic device using the same will be described below, but unless otherwise defined in the technical terms and scientific terms used at this time, those skilled in the art to which the present invention pertains generally understand Descriptions of well-known functions and configurations that have meaning and that may unnecessarily obscure the subject matter of the present invention are omitted in the following description.
본 명세서에 기재된 용어, “알킬”, “알콕시”, “알킬티오” 및 그 외 알킬부분을 포함하는 치환기는 직쇄 또는 분쇄 형태를 모두 포함한다. 또한, 상기 알콕시 및 알킬티오는 각각 “*-O-알킬” 및 “*-S-알킬”로 표시되는 1가의 유기 라디칼을 의미한다.Substituents including the terms, “alkyl”, “alkoxy”, “alkylthio” and other alkyl moieties described herein include both straight-chain or ground forms. In addition, the alkoxy and alkylthio mean a monovalent organic radical represented by "* -O-alkyl" and "* -S-alkyl", respectively.
본 명세서에 기재된 용어, “할로겐”은 불소, 염소, 브롬 또는 요오드 원자를 의미한다. As used herein, the term “halogen” means a fluorine, chlorine, bromine or iodine atom.
본 명세서에 기재된 용어, “카르복실”은 *-COOH로 표시되는 카르복시산기를 의미한다.The term “carboxyl” described in this specification means a carboxylic acid group represented by * -COOH.
본 발명은 중심 전자주게 유닛(D) 및 중심 전자주게 유닛(D)의 양쪽에 말단 전자받게 유닛(A)으로 이루어진 A-D-A의 소분자 화합물로, 중심 전자주게 유닛(D)은 스피로 백본을 가지고 있어 2차원 영역으로 확장된 중심골격을 가지며, 중심골격을 따라 비편재화(delocalized)된 파이-전자계를 형성하여 보다 확장된 공액 구조를 가지는 스피로 화합물을 제공하는 것으로, 본 발명의 스피로 화합물은 하기 화학식 1로 표시된다.The present invention is a small molecule compound of ADA composed of a central electron donor unit (D) and a terminal electron acceptor unit (A) on both sides of the central electron donor unit (D), wherein the central electron donor unit (D) has a spiro backbone 2 By providing a spiro compound having a more extended conjugated structure by forming a delocalized pi-electron field along a central skeleton, extending into a dimensional region, the spiro compound of the present invention is represented by the following formula (1) Is displayed.
[화학식 1][Formula 1]
Figure PCTKR2018016936-appb-img-000005
Figure PCTKR2018016936-appb-img-000005
[상기 화학식 1에서,[In the formula 1,
R 1 내지 R 4는 각각 독립적으로 C1-C30알킬이고;R 1 to R 4 are each independently C1-C30 alkyl;
V 1 및 V 2는 각각 독립적으로 메틸리덴을 연결기로 하는 C6-C20방향족 고리이고, 상기 방향족 고리는 각각 독립적으로 C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노, 할로C1-C30알킬, 카르복실, 니트로, 히드록시 및 C1-C30알킬옥시카르보닐에서 선택되는 하나 이상의 치환기로 더 치환될 수 있고;V 1 and V 2 are each independently a C6-C20 aromatic ring having methylidene as a linking group, and the aromatic rings are each independently C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano, HaloC1-C30alkyl, carboxyl, nitro, hydroxy and C1-C30alkyloxycarbonyl may be further substituted with one or more substituents selected from;
X 1, X 2, Y 1 및 Y 2는 각각 독립적으로 O, S 또는 Se이다.]X 1 , X 2 , Y 1 and Y 2 are each independently O, S or Se.]
본 발명의 스피로 화합물은 중심 전자주게 유닛(D) 스피로 백본을 가짐에 따라 다양한 유기용매에 대한 향상된 용해도를 나타내고, 유기 태양 전지에 전자수용체 재료로써 우수한 전자전달 특성을 가져 높은 효율을 높은 효율을 나타낼 수 있다. 반면 스피로 백본이 아닌 중심 전자주게 유닛을 가지는 화합물은 유기 용매에 대하여 상당히 저하된 용해도로 인하여 반드시 진공 증착법으로 소자를 제작하여야만 하고 제작된 소자는 급격히 낮아진 광전변환 효율을 나타냈다.The spiro compound of the present invention exhibits improved solubility in various organic solvents as it has a central electron donor unit (D) spiro backbone, and has excellent electron transport properties as an electron acceptor material in an organic solar cell, thereby exhibiting high efficiency and high efficiency. You can. On the other hand, a compound having a central electron donor unit other than a spiro backbone must manufacture a device by a vacuum deposition method due to a considerably lowered solubility in an organic solvent, and the fabricated device exhibits a rapidly lowered photoelectric conversion efficiency.
또한 본 발명의 스피로 화합물은 태양광에 대한 흡수계수가 높고, 전하이동도가 높으며, 유기 용매에 대한 용해도를 높아 용액공정으로 유기 전자 소자의 제작이 가능하며, 이를 포함하는 유기 전자 소자의 열적안정성을 높이고 전기적 특성을 향상시킬 수 있다. 더욱이, 통상의 유기 용매에 대한 높은 용해도로 용액공정에 유리한 점성 범위를 만족하기에 용액공정에 보다 유리함을 부여할 수 있다.In addition, the spiro compound of the present invention has a high absorption coefficient for sunlight, a high charge mobility, and a high solubility in an organic solvent, so that it is possible to manufacture an organic electronic device by a solution process, and the thermal stability of the organic electronic device including the same And improve the electrical properties. Moreover, it is possible to impart more advantage to the solution process because it satisfies the viscosity range favorable to the solution process with high solubility in a conventional organic solvent.
또한 본 발명의 스피로 화합물은 전자공여체(예, 폴리싸이오펜 등의 고분자 화합물)와의 혼화성이 높아 이를 포함하는 유기 전자 소자의 효율을 높일 수 있다.In addition, the spiro compound of the present invention has a high miscibility with an electron donor (eg, a polymer compound such as polythiophene), and thus can increase the efficiency of an organic electronic device including the same.
본 발명의 스피로 화합물은 중심골격 밖으로 확장된 공액을 형성하여 분자간 상호작용을 보다 향상시키기 위해, 메틸리덴을 연결기로 하는 방향족 고리가 도입되어 있는 구조이다.The spiro compound of the present invention is a structure in which an aromatic ring using methylidene as a linking group is introduced to form an extended conjugate out of the central skeleton to further improve the intermolecular interaction.
구체적으로, 상기 메틸리덴을 연결기로 하는 방향족 고리(V 1 및 V 2)가 각각 독립적으로 하기 화학식 A로 표시되는 것일 수 있다.Specifically, the aromatic rings (V 1 and V 2 ) having the methylidene as a linking group may be independently represented by the following Chemical Formula A.
[화학식 A][Formula A]
Figure PCTKR2018016936-appb-img-000006
Figure PCTKR2018016936-appb-img-000006
[상기 화학식 A에서, [In the above formula A,
Z 1 및 Z 2는 각각 독립적으로 O, S, Se 또는 CR 11R 12이고, R 11 및 R 12는 각각 독립적으로 할로겐, 시아노, 카르복실, 니트로, 히드록시 또는 C1-C30알킬옥시카르보닐이고;Z 1 and Z 2 are each independently O, S, Se or CR 11 R 12 , and R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl. ego;
A는 C6-C20방향족 고리이며, 상기 방향족 고리는 C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노 및 할로C1-C30알킬에서 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]A is a C6-C20 aromatic ring, and the aromatic ring may be further substituted with one or more substituents selected from C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano and halo C1-C30 alkyl. have.]
보다 구체적으로, 상기 메틸리덴을 연결기로 하는 방향족 고리(V 1 및 V 2)가 각각 독립적으로 하기 화학식 B로 표시되는 것일 수 있다.More specifically, the aromatic rings (V 1 and V 2 ) having the methylidene as a linking group may be independently represented by the following Chemical Formula B.
[화학식 B][Formula B]
Figure PCTKR2018016936-appb-img-000007
Figure PCTKR2018016936-appb-img-000007
[상기 화학식 B에서, [In the above formula B,
R 11 및 R 12는 각각 독립적으로 할로겐, 시아노, 카르복실, 니트로, 히드록시 또는 C1-C30알킬옥시카르보닐이고;R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl;
R 21 내지 R 24는 각각 독립적으로 수소, C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노 또는 할로C1-C30알킬이거나, 인접한 치환기와 연결되어 방향족 고리를 형성할 수 있다.]R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano or halo C1-C30 alkyl, or may be connected to adjacent substituents to form an aromatic ring. have.]
일 예로, 상기 메틸리덴을 연결기로 하는 방향족 고리(V 1 및 V 2)는 하기 구조에서 선택되는 것일 수 있으나 이에 한정되지 않는다.For example, the aromatic ring (V 1 and V 2 ) using the methylidene as a linking group may be selected from the following structures, but is not limited thereto.
Figure PCTKR2018016936-appb-img-000008
Figure PCTKR2018016936-appb-img-000008
본 발명의 일 실시예에 따른 스피로 화합물은 상술된 구조적 특징에 의해 전자진동(vibronic) 경로에 의한 여기 상태의 켄칭을 최소화함으로써, 태양광의 흡수에 따른 에너지 손실이 적어 보다 높은 태양광에 대한 흡수계수를 구현할 수 있다. 또한 상기 화합물은 높은 결정성을 가져 높은 전하이동도의 구현이 가능하다.The spiro compound according to an embodiment of the present invention minimizes the quenching of an excited state by an electromagnetic vibration (vibronic) path by the above-described structural characteristics, and thus has less energy loss due to absorption of sunlight and thus a higher absorption coefficient for sunlight. You can implement In addition, the compound has high crystallinity, and thus high charge mobility can be realized.
본 발명의 일 실시예에 따른 스피로 화합물은 상기 화학식 1에서, X 1 및 X 2는 서로 동일하고, Y 1 및 Y 2는 서로 동일할 수 있으며, 보다 바람직하게는 X 1, X 2, Y 1 및 Y 2는 모두 S일 수 있다. The spiro compound according to an embodiment of the present invention in Formula 1, X 1 and X 2 are the same as each other, Y 1 and Y 2 may be the same as each other, more preferably X 1 , X 2 , Y 1 And Y 2 may all be S.
본 발명의 일 실시예에 따른 스피로 화합물에 있어서, 우수한 용해도 및 광 흡수계수의 구현은 물론 전자공여체와의 높은 혼화성으로 향상된 광전변환효율을 구현하기 위한 측면에서 가장 바람직하게는 하기 화학식 2로 표시될 수 있다.In the spiro compound according to an embodiment of the present invention, in terms of realizing excellent solubility and light absorption coefficient, as well as high miscibility with an electron donor, in order to realize improved photoelectric conversion efficiency, most preferably represented by the following formula (2) Can be.
[화학식 2][Formula 2]
Figure PCTKR2018016936-appb-img-000009
Figure PCTKR2018016936-appb-img-000009
[상기 화학식 2에서, [In the formula 2,
R 1 내지 R 4는 각각 독립적으로 C1-C30알킬이고;R 1 to R 4 are each independently C1-C30 alkyl;
R 21 내지 R 24는 각각 독립적으로 수소, C1-C30알킬, C1-C30알콕시, 할로겐 또는 할로C1-C30알킬이다.]R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, halogen or haloC1-C30 alkyl.]
본 발명의 일 실시예에 따른 스피로 화합물에 있어서, 전자 공여는 물론 용해성을 향상시키기 위한 측면에서, 중심 전자주게 유닛(D) 스피로 백본에 하나 이상의 장쇄의 알콕시가 치환되는 것이 좋다.In the spiro compound according to an embodiment of the present invention, in terms of improving solubility as well as electron donation, it is preferable that at least one long-chain alkoxy is substituted in the central electron donor unit (D) spiro backbone.
본 발명의 일 실시예에 따른 스피로 화합물에 있어서, 용해도 향상 측면에서 R 1 내지 R 4는 각각 독립적으로 C6-C30알킬일 수 있고, 바람직하게는 분쇄형 C6-C30알킬일 수 있으며, 보다 바람직하게는
Figure PCTKR2018016936-appb-img-000010
이고, a는 1 내지 5의 정수이고, b 및 c는 각각 독립적으로 1 이상의 정수이고, 2 ≤ b+c ≤ 20을 만족한다.
In the spiro compound according to an embodiment of the present invention, in terms of improving solubility, R 1 to R 4 may each independently be C6-C30 alkyl, preferably crushed C6-C30 alkyl, and more preferably The
Figure PCTKR2018016936-appb-img-000010
, A is an integer from 1 to 5, b and c are each independently an integer of 1 or more, and satisfies 2 ≦ b + c ≦ 20.
본 발명의 일 실시예에 따른 스피로 화합물은 유기 전자 소자에 포함될 수 있으며, 그 중에서도 유기 태양 전지의 광활성층에 전자수용체 재료로서 사용되어 종래에 사용되던 플러렌 유도체를 대체하여 유기 태양 전지에서 광전변환 효율의 향상이 가능하다.The spiro compound according to an embodiment of the present invention may be included in an organic electronic device, and among them, it is used as an electron acceptor material in a photoactive layer of an organic solar cell and replaces a fullerene derivative used in the prior art, thereby converting photoelectric conversion efficiency in an organic solar cell. It is possible to improve.
본 발명의 일 실시예에 따른 스피로 화합물은 통상의 유기합성방법을 통하여 제조될 수 있음은 물론이며, 이에 사용되는 유기 용매는 제한되지 않으며, 반응시간과 온도 또한 발명의 핵심을 벗어나지 않는 범위 내에서 변경이 가능함은 물론이다. The spiro compound according to an embodiment of the present invention can be manufactured through a conventional organic synthesis method, and the organic solvent used therein is not limited, and the reaction time and temperature are also within the scope of the invention. Of course, changes are possible.
또한, 본 발명은 본 발명의 스피로 화합물을 포함하는 유기 전자 소자를 제공한다.In addition, the present invention provides an organic electronic device comprising the spiro compound of the present invention.
본 발명의 일 실시예에 따른 유기 전자 소자는 본 발명의 스피로 화합물이 사용될 수 있는 소자라면 제한되지 않으며, 이의 비한정적인 일예로는 유기 전자 소자는 유기 태양 전지, 유기 박막 트랜지스터, 유기메모리, 또는 유기감광체, 유기 광센서 등을 들 수 있으며, 바람직하게는 유기태양전지 또는 유기박막트랜지스터일 수 있다.The organic electronic device according to an embodiment of the present invention is not limited as long as the spiro compound of the present invention can be used, and in one non-limiting example, the organic electronic device is an organic solar cell, an organic thin film transistor, an organic memory, or Organic photoreceptors, organic photosensors, and the like, and preferably an organic solar cell or an organic thin film transistor.
본 발명의 일 실시예에 따른 유기 전자 소자는 유기 태양 전지일 수 있으며, 상기 스피로 화합물은 유기 태양 전지의 광활성층에 포함될 수 있다.The organic electronic device according to an embodiment of the present invention may be an organic solar cell, and the spiro compound may be included in the photoactive layer of the organic solar cell.
보다 구체적으로, 본 발명의 스피로 화합물은 전자수용체로 유기 태양 전지에서 종래에 사용되던 플러렌 유도체의 대체 화합물로 사용되어 이를 채용한 유기 태양 전지는 향상된 광전변환효율을 가진다.More specifically, the spiro compound of the present invention is an electron acceptor used as an alternative compound of a fullerene derivative conventionally used in an organic solar cell, and the organic solar cell employing the same has improved photoelectric conversion efficiency.
이하, 본 발명에 따른 유기 태양 전지의 제조방법을 일예를 들어 설명하나 이에 한정되지 않는다.Hereinafter, a method of manufacturing an organic solar cell according to the present invention will be described as an example, but is not limited thereto.
유기 태양 전지는 정공수송층과 전자수송층이 접합된 구조로 이루어져 있고, 태양광을 흡수하면, 정공수용체에서 전자-홀 쌍(electron-hole pair)이 생성되고 전자수용체로 전자가 이동함으로써 전자-홀의 분리가 이루어지는 과정을 통해 광전변환효과를 나타낸다.The organic solar cell consists of a structure in which a hole transport layer and an electron transport layer are bonded, and when absorbing sunlight, electron-hole pairs are generated in the hole receptor and electrons move to the electron receptor to separate electron-holes. It shows the photoelectric conversion effect through the process.
이에, 본 발명은 본 발명의 스피로 화합물을 유기 태양 전지에 채용함으로써, 놀랍도록 향상된 광전변환효율을 달성할 수 있음을 확인하였다. 또한 본 발명의 스피로 화합물은 높은 결정성을 가져 전하이동도가 높아 유기 태양 전지의 광활성층에 전자수용체 재료로 사용되어 높은 효율을 구현할 수 있다.Accordingly, it was confirmed that the present invention can achieve a surprisingly improved photoelectric conversion efficiency by employing the spiro compound of the present invention in an organic solar cell. In addition, the spiro compound of the present invention has high crystallinity and high charge mobility, so it can be used as an electron acceptor material in the photoactive layer of an organic solar cell, thereby realizing high efficiency.
본 발명의 일 실시예에 따른 유기 태양 전지는 기판, 제1전극, 광활성층 및 제2전극을 포함하는 것일 수 있으며, 정공수송층, 전자수송층 등을 더 포함할 수 있음은 물론이다.The organic solar cell according to an embodiment of the present invention may include a substrate, a first electrode, a photoactive layer, and a second electrode, and of course, may further include a hole transport layer, an electron transport layer, and the like.
또한 본 발명의 일 실시예에 따른 유기 태양 전지는 반전된 유형의 유기 태양 전지일 수 있다.In addition, the organic solar cell according to an embodiment of the present invention may be an inverted type organic solar cell.
상기 기판은 유리 및 석영판 이외에도 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polyperopylene), PI(polyimide), PC(polycarbornate), PS(polystylene), POM(polyoxyethlene), AS 수지(acrylonitrile styrene copolymer), ABS 수지(acrylonitrile butadiene styrene copolymer) 및 TAC(Triacetyl cellulose) 등을 포함하는 플라스틱과 같은 유연하고 투명한 물질로 제조될 수 있다.In addition to the glass and quartz plates, the substrate is PET (polyethylene terephthalate), PEN (polyethylene naphthelate), PP (polyperopylene), PI (polyimide), PC (polycarbornate), PS (polystylene), POM (polyoxyethlene), AS resin (acrylonitrile styrene) copolymer), ABS resin (acrylonitrile butadiene styrene copolymer) and TAC (Triacetyl cellulose).
또한 상기 제1전극은 스퍼터링, E-Beam, 열증착, 스핀코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 투명전극 물질을 상기 기판의 일면에 도포되거나 필름형태로 코팅됨으로써 형성된다. 제1전극은 애노드의 기능을 하는 부분으로써, 후술하는 제2전극에 비해 일함수가 큰 물질로 투명성 및 도전성을 갖는 임의의 물질이 사용될 수 있다. 예를 들면, ITO(indium tin oxide), 금, 은, 플로린이 도핑된 틴 옥사이드(fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드(aluminium doped zink oxide, AZO), IZO(indium zink oxide), ZnO-Ga 2O 3, ZnO-Al 2O 3 및 ATO(antimony tin oxide, SnO 2-Sb 2O 3) 등이 있으며, 바람직하게는 ITO를 사용하는 것이 좋다.In addition, the first electrode is formed by applying a transparent electrode material to one surface of the substrate or coated in a film form using sputtering, E-Beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing. do. The first electrode is a part that functions as an anode. As a material having a larger work function than the second electrode described later, any material having transparency and conductivity may be used. For example, ITO (indium tin oxide), gold, silver, and fluorine doped tin oxide (FTO), aluminum doped zinc oxide (AZO), IZO (indium zink oxide) ), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 and ATO (antimony tin oxide, SnO 2 -Sb 2 O 3 ), and the like, preferably ITO.
또한 상기 광활성층에는 상기 스피로 화합물을 포함할 수 있으며, 이의 배합량은 용도에 따라 적절하게 조절될 수 있다. 또한 상기 스피로 화합물은 용해도가 뛰어나므로 유기 용매에 용해시켜, 60 mm 이상의 두께, 좋게는 60 내지 120nm 두께로 광활성층의 전자수용체 재료로 사용될 수 있다. 또한 전자공여체의 일예로는 PBDTTT-C-T(Poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b']dithiophene-2,6-diyl]-alt-[2-(2'-ethyl-hexanoyl)-thieno[3,4-b]thiophen-4,6-diyl]}), PBDTTT-CF(Poly[1-(6-{4,8-bis[(2-ethylhexyl)oxy]-6-methylbenzo[1,2- b:4,5- b′]dithiophen-2-yl}-3-fluoro-4-methylthieno[3,4- b]thiophen-2-yl)-1-octanone]), P3HT(Poly(3-hexylthiophene)), PCDTBT(Poly[ N-9'-heptadecanyl-2,7-carbazole- alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)], Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) 등을 들 수 있다. 상기 전자공여체와 상기 스피로 화합물은 1 : 0.5 내지 1 : 4의 중량비로 배합하여 유기 용매에 용해시킨 용액을 스핀코팅, 스프레이 코팅, 스크린 인쇄, 닥터 블레이드법 등의 용액공정 방법으로 광활성층을 형성할 수 있다. 상기 유기 용매는 아세톤, 메탄올, THF, 톨루엔, 자일렌, 테트랄린, 클로로포름, 클로로벤젠, 디클로로벤젠 또는 이들의 혼합용매 일 수 있으나, 이에 한정되는 것은 아니다. In addition, the spiro compound may be included in the photoactive layer, and the compounding amount thereof may be appropriately adjusted according to the application. In addition, since the spiro compound has excellent solubility, it can be dissolved in an organic solvent and used as an electron acceptor material of a photoactive layer with a thickness of 60 mm or more, preferably 60 to 120 nm. Also, an example of an electron donor is PBDTTT-CT (Poly {[4,8-bis- (2-ethyl-hexyl-thiophene-5-yl) -benzo [1,2-b: 4,5-b '] dithiophene -2,6-diyl] -alt- [2- (2'-ethyl-hexanoyl) -thieno [3,4-b] thiophen-4,6-diyl]}), PBDTTT-CF (Poly [1- ( 6- {4,8-bis [(2-ethylhexyl) oxy] -6-methylbenzo [1,2- b : 4,5- b ′] dithiophen-2-yl} -3-fluoro-4-methylthieno [3 , 4- b ] thiophen-2-yl) -1-octanone]), P3HT (Poly (3-hexylthiophene)), PCDTBT (Poly [ N -9'-heptadecanyl-2,7-carbazole- alt -5,5 -(4 ', 7'-di-2-thienyl-2', 1 ', 3'-benzothiadiazole)], Poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2 , 5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) and the like. The electron donor and the spiro compound are mixed in a weight ratio of 1: 0.5 to 1: 4 to form a photoactive layer by a solution process method such as spin coating, spray coating, screen printing, doctor blade method, and the like, and dissolving the solution in an organic solvent. You can. The organic solvent may be acetone, methanol, THF, toluene, xylene, tetralin, chloroform, chlorobenzene, dichlorobenzene, or a mixed solvent thereof, but is not limited thereto.
또한 본 발명에 따른 스피로 화합물을 포함하는 상기 광활성층은 높은 전자 밀도로 인하여, 단락전류밀도(short circuit current density) 및 개방전압(open circuit voltage)이 증가하여 광전변환효율을 향상시킨다. In addition, the photoactive layer containing the spiro compound according to the present invention increases the photoelectric conversion efficiency by increasing short circuit current density and open circuit voltage due to high electron density.
또한 상기 제2전극은 전자 수송층이 도입된 상태에서 열증착기를 이용하여 증착될 수 있다. 이때, 사용 가능한 전극재료로는 불화리튬/알루미늄, 불화리튬/칼슘/알루미늄, 알루미늄/칼슘, 불화바륨/알루미늄, 불화바륨/바륨/알루미늄, 바륨/알루미늄, 알루미늄, 금, 은, 마그네슘:은 및 리튬:알루미늄 중에서 선택될 수 있으며, 바람직하게는 은, 알루미늄, 알루미늄/칼슘 또는 불화바륨/바륨/알루미늄 구조로 제작된 전극을 사용하는 것이 좋다.In addition, the second electrode may be deposited using a thermal evaporator while the electron transport layer is introduced. At this time, the usable electrode materials include lithium fluoride / aluminum, lithium fluoride / calcium / aluminum, aluminum / calcium, barium fluoride / aluminum, barium fluoride / barium / aluminum, barium / aluminum, aluminum, gold, silver, magnesium: silver and It may be selected from lithium: aluminum, and preferably, an electrode made of silver, aluminum, aluminum / calcium or barium fluoride / barium / aluminum is used.
또한 전자수송층 및 정공수송층의 재료가 일반적인 유형의 전자수송층 및 정공수송층과 달리 사용될 수 있다. 전자수송층 재료의 일 예로는 TiO x, ZnO, TiO 2, ZrO 2, MgO, HfO 2 등을 들 수 있고, 정공수송층 재료의 일 예로는 NiO, Ta 2O 3, MoO 3, Ru 2O 3 등의 금속산화물을 들 수 있다. 또한 상술된 금속산화물과 더불어 양이온 혹은 음이온을 지니는 유기 공액고분자 전해질을 전자수송층 또는 정공수송층 재료로 사용할 수 있음은 물론이다.In addition, materials of the electron transport layer and the hole transport layer may be used unlike the electron transport layer and the hole transport layer of the general type. Examples of the electron transport layer material include TiO x , ZnO, TiO 2 , ZrO 2 , MgO, and HfO 2 , and examples of the hole transport layer material include NiO, Ta 2 O 3 , MoO 3 , and Ru 2 O 3 And metal oxides. In addition, it is of course possible to use the organic conjugated polymer electrolyte having a cation or an anion in addition to the metal oxide described above as an electron transport layer or a hole transport layer material.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다. 또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only for illustrating the present invention, and the contents of the present invention are not limited by the following examples. At this time, unless there is another definition in the technical terminology and scientific terminology used, it has a meaning that a person with ordinary knowledge in the technical field to which this invention belongs generally understands. In addition, repeated description of the same technical configuration and operation as the prior art will be omitted.
<약어 정리><Abbreviation summary>
DMF : dimethylformamideDMF: dimethylformamide
MC : dichloromethaneMC: dichloromethane
EA : ethyl acetate EA: ethyl acetate
THF : tetrahydrofuranTHF: tetrahydrofuran
[실시예 1] 화합물 1의 제조[Example 1] Preparation of compound 1
단계1: 화합물 B의 제조Step 1: Preparation of compound B
Figure PCTKR2018016936-appb-img-000011
Figure PCTKR2018016936-appb-img-000011
화합물 A (10 g, 0.047 mol), K 2CO 3 (19.54 g, 0.14 mol), 3-(bromomethyl)heptane (27.3 g, 0.14 mol)를 DMF (150 mL)에 녹이고 질소 치환을 실시하였다. 그 후 80℃에서 12시간 동안 환류시켰다. 반응용액에 증류수 (200 mL)을 투입하여 반응을 종결시켰다. 이를 MC로 추출하고, 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후 회전식 증발기를 이용하여 용매를 제거하였다. 수득된 잔사를 컬럼 크로마토그래피(n-Hexane/dichloromethane=8/1)로 분리해서 주황색의 액체 화합물 B를 수득하였다(수율= 78%). Compound A (10 g, 0.047 mol), K 2 CO 3 (19.54 g, 0.14 mol), 3- (bromomethyl) heptane (27.3 g, 0.14 mol) was dissolved in DMF (150 mL) and nitrogen substitution was performed. Then, the mixture was refluxed at 80 ° C for 12 hours. Distilled water (200 mL) was added to the reaction solution to terminate the reaction. This was extracted with MC, the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator. The obtained residue was separated by column chromatography (n-Hexane / dichloromethane = 8/1) to obtain an orange liquid compound B (yield = 78%).
1H-NMR (CD 2Cl 2, 300 MHz): δ(ppm) 7.23 (s, 1H), 7.20 (s, 1H), 7.04-7.03 (d, J=2.3Hz, 2H), 6.88-6.87(d, J=2.5Hz, 2H), 6.85-6.84(d, J=2.5Hz, 2H), 3.80-3.78(d, J=5.8Hz, 4H), 1.68-1.60(m, 2H), 1.42-1.21(m, 16H), 0.87-0.80(m, 12H). 1 H-NMR (CD 2 Cl 2 , 300 MHz): δ (ppm) 7.23 (s, 1H), 7.20 (s, 1H), 7.04-7.03 (d, J = 2.3Hz, 2H), 6.88-6.87 ( d, J = 2.5Hz, 2H), 6.85-6.84 (d, J = 2.5Hz, 2H), 3.80-3.78 (d, J = 5.8Hz, 4H), 1.68-1.60 (m, 2H), 1.42-1.21 (m, 16H), 0.87-0.80 (m, 12H).
단계2: 화합물 C의 제조Step 2: Preparation of compound C
Figure PCTKR2018016936-appb-img-000012
Figure PCTKR2018016936-appb-img-000012
질소 치환된 삼구 플라스크에 trimethyl(thieno[3,2-b]thiophen-2-yl)silane (2.74 g, 12.9 mmol)를 THF (200 mL)에 넣고 녹여 준 후 온도를 -78 ℃로 낮추고, 2.5M n-Butyllithium (5.2 mL, 12.9 mmol)을 드랍핑(dropping)해주고 2시간 동안 교반하였다. 그리고, ZnCl 2 (1.76 g, 12.9 mmol)를 THF (30mL)에 녹여준 후 온도를 -40 ℃로 올리고, 천천히 드랍핑(dropping) 후 0 ℃에서 1시간 교반하였다. 1,4-dibromo-2,5-diiodobenzene (3.0 g, 6.1 mmol)와 Pd(PPh 3) 4 (0.71 g, 0.6 mmol)를 넣고 12 시간 동안 환류시켰다. 그 후 상온으로 낮춘 후 MC로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 재결정(MeOH/dichloromethane)으로 정제하여 노란색의 고체 화합물 C를 얻었다(수율= 65%). Trimethyl (thieno [3,2-b] thiophen-2-yl) silane (2.74 g, 12.9 mmol) was added to THF (200 mL) and dissolved in a nitrogen-substituted three-necked flask, the temperature was lowered to -78 ° C, and 2.5. M n-Butyllithium (5.2 mL, 12.9 mmol) was dropped and stirred for 2 hours. And, after dissolving ZnCl 2 (1.76 g, 12.9 mmol) in THF (30 mL), the temperature was raised to -40 ° C, and slowly dropped and stirred at 0 ° C for 1 hour. 1,4-dibromo-2,5-diiodobenzene (3.0 g, 6.1 mmol) and Pd (PPh 3 ) 4 (0.71 g, 0.6 mmol) were added and refluxed for 12 hours. Then, after lowering to room temperature, extracted with MC, the organic layer was washed with water, dried over MgSO 4, and then the solvent was removed using a rotary evaporator. Then, it was purified by recrystallization (MeOH / dichloromethane) to obtain a yellow solid compound C (yield = 65%).
1H-NMR (CD 2Cl 2, 300 MHz) : δ(ppm) 7.69(s, 2H), 7.40-7.40(d, J=0.6Hz, 2H), 7.22-7.22(d, J=0.6Hz, 2H), 0.21-0.19(m, 18H). 1 H-NMR (CD 2 Cl 2 , 300 MHz): δ (ppm) 7.69 (s, 2H), 7.40-7.40 (d, J = 0.6Hz, 2H), 7.22-7.22 (d, J = 0.6Hz, 2H), 0.21-0.19 (m, 18H).
단계3: 화합물 D의 제조Step 3: Preparation of compound D
Figure PCTKR2018016936-appb-img-000013
Figure PCTKR2018016936-appb-img-000013
질소 치환된 삼구 플라스크에 화합물 C (10 g, 15.2 mmol)를 THF (500 mL)에 넣고 녹여 준 후 온도를 -78 ℃로 낮추고, 2.5M n-Butyllithium (14 mL, 35 mmol)을 드랍핑(dropping)해주고 1 시간 동안 교반하였다. 그리고, 화합물 B (15.96 g, 36.5 mmol)를 THF (100 mL)에 녹여 천천히 드랍핑(dropping) 후 상온에서 12시간 동안 교반하였다. 반응용액에 증류수 (100 mL)을 투입하여 반응을 종결시켰다. MC로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 acetic acid (40 mL)에 녹인 후 100 ℃에서 4시간 교반하였다. 상온으로 낮추고 반응용액을 증류수에 넣고 필터하여 고체를 수득하였다. 그 후 재결정(MeOH/dichloromethane)으로 정제하여 흰색의 고체 화합물 D를 얻었다(수율= 50%). Compound C (10 g, 15.2 mmol) was added to THF (500 mL) in a nitrogen-substituted three-necked flask, dissolved, and the temperature was lowered to -78 ° C, and 2.5M n-Butyllithium (14 mL, 35 mmol) was dropped ( dropping) and stirred for 1 hour. Then, Compound B (15.96 g, 36.5 mmol) was dissolved in THF (100 mL), slowly dropped, and stirred at room temperature for 12 hours. Distilled water (100 mL) was added to the reaction solution to terminate the reaction. After extraction with MC, the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. After that, it was dissolved in acetic acid (40 mL) and stirred at 100 ° C for 4 hours. Lowered to room temperature, the reaction solution was placed in distilled water and filtered to obtain a solid. Then, it was purified by recrystallization (MeOH / dichloromethane) to obtain a white solid compound D (yield = 50%).
1H-NMR (CD 2Cl 2, 300 MHz): δ(ppm) 7.55(s, 2H), 7.52(s, 2H), 7.01-6.99(d, J=5.2Hz, 2H), 6.93-6.91(d, J=5.2Hz, 2H). 6.76-6.76(d, J=2.4Hz, 2H), 6.74-6.73(d, J=2.4Hz, 2H), 6.71(s, 2H), 6.17-6.16(d, J=2.3Hz, 4H), 3.50-3.48(m, 8H), 1.39-1.35(m, 4H), 1.18-0.99(m, 32H), 0.63-0.58(m, 24H). 1 H-NMR (CD 2 Cl 2 , 300 MHz): δ (ppm) 7.55 (s, 2H), 7.52 (s, 2H), 7.01-6.99 (d, J = 5.2Hz, 2H), 6.93-6.91 ( d, J = 5.2 Hz, 2H). 6.76-6.76 (d, J = 2.4Hz, 2H), 6.74-6.73 (d, J = 2.4Hz, 2H), 6.71 (s, 2H), 6.17-6.16 (d, J = 2.3Hz, 4H), 3.50 -3.48 (m, 8H), 1.39-1.35 (m, 4H), 1.18-0.99 (m, 32H), 0.63-0.58 (m, 24H).
단계4: 화합물 E의 제조Step 4: Preparation of compound E
Figure PCTKR2018016936-appb-img-000014
Figure PCTKR2018016936-appb-img-000014
화합물D (C76H86O4S4, 1 g, 0.8 mmol), DMF (0.45 mL, 5.8 mmol)를 1,2-dichloroethane (60 mL)에 녹이고 질소 치환을 실시하였다. 온도를 0 oC로 낮추고 POCl 3 (0.8g 5 mmol)를 천천히 드랍핑(dropping) 후 상온에서 12 시간 동안 교반하였다. 반응용액에 증류수 (100 mL)을 투입하여 반응을 종결 시켰다. 이를 EA로 추출하고, 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후 회전식 증발기를 이용하여 용매를 제거하였다. 수득된 잔사를 컬럼 크로마토그래피(n-Hexane/dichloromethane=4/1)와 재결정(n-Hexane/dichloromethane)으로 분리해 고체 화합물 E를 수득하였다(수율= 72%). Compound D (C76H86O4S4, 1 g, 0.8 mmol), DMF (0.45 mL, 5.8 mmol) was dissolved in 1,2-dichloroethane (60 mL) and nitrogen substitution was performed. The temperature was lowered to 0 o C, POCl 3 (0.8 g 5 mmol) was slowly dropped, and stirred at room temperature for 12 hours. Distilled water (100 mL) was added to the reaction solution to terminate the reaction. This was extracted with EA, and the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator. The obtained residue was separated by column chromatography (n-Hexane / dichloromethane = 4/1) and recrystallization (n-Hexane / dichloromethane) to obtain solid compound E (yield = 72%).
1H-NMR (CDCl 3, 300 MHz): δ(ppm) 9.79(s, 2H), 7.86(s, 2H), 7.77-7.74(d, J=8.4Hz, 4H), 7.08(s, 2H), 7.00-6.99(d, J=2.3Hz, 2H), 6.97-6.96(d, J=2.3Hz, 2H), 6.36-6.36(d, J=2.1Hz, 4H) 3.74-3.72(m, 8H), 1.61-1.59(m, 4H), 1.41-1.23(m, 32H), 0.86-0.81(m, 24H). 1 H-NMR (CDCl 3 , 300 MHz): δ (ppm) 9.79 (s, 2H), 7.86 (s, 2H), 7.77-7.74 (d, J = 8.4Hz, 4H), 7.08 (s, 2H) , 7.00-6.99 (d, J = 2.3Hz, 2H), 6.97-6.96 (d, J = 2.3Hz, 2H), 6.36-6.36 (d, J = 2.1Hz, 4H) 3.74-3.72 (m, 8H) , 1.61-1.59 (m, 4H), 1.41-1.23 (m, 32H), 0.86-0.81 (m, 24H).
단계5: 화합물 1의 제조Step 5: Preparation of compound 1
Figure PCTKR2018016936-appb-img-000015
Figure PCTKR2018016936-appb-img-000015
(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.21 g, 1.1 mmol)과 sodium acetate (0.45 mL, 5.8 mmol)를 acetic acid (18 mL)에 녹이고 질소 치환을 실시한 후 온도를 80 ℃로 높여 5분간 교반하였다. 화합물 E (0.21 g, 1.1 mmol)를 toluene (12 mL)에 녹여 dropping 한 후 100 ℃에서 12시간 동안 교반하였다. 상온으로 낮춘 후 반응용액에 증류수 (50 mL)을 투입하여 반응을 종결시켰다. 그 후 MC로 추출하고 유기층을 물로 씻어준 다음 MgSO 4로 건조시킨 후, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 컬럼 크로마토그래피(n-Hexane/dichloromethane=10/1)와 재결정(MC/Acetone)으로 정제하여 고체의 화합물 1를 얻었다(수율= 73%). (3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (0.21 g, 1.1 mmol) and sodium acetate (0.45 mL, 5.8 mmol) were dissolved in acetic acid (18 mL) and nitrogen substitution was performed. After the temperature was raised to 80 ℃ and stirred for 5 minutes. Compound E (0.21 g, 1.1 mmol) was dissolved in toluene (12 mL), dropped, and stirred at 100 ° C. for 12 hours. After lowering to room temperature, distilled water (50 mL) was added to the reaction solution to terminate the reaction. Thereafter, the mixture was extracted with MC, the organic layer was washed with water, dried over MgSO 4, and the solvent was removed using a rotary evaporator. After that, it was purified by column chromatography (n-Hexane / dichloromethane = 10/1) and recrystallization (MC / Acetone) to obtain a solid compound 1 (yield = 73%).
1H-NMR (CD 2Cl 2, 300 MHz) : δ(ppm) 8.78(s, 2H), 8.66-8.63(m, 2H), 8.14(s, 2H), 7.90(s, 2H), 7.87(s, 2H), 7.86-7.73(m, 6H), 7.14(s, 2H), 7.09-7.08(d, J=2.3Hz, 2H), 7.06-7.05(d, J=2.3Hz, 2H), 6.45-6.44(d, J=2.2Hz, 4H), 3.76-3.75(d, J=4.9Hz, 8H), 1.64-1.59(m, 4H), 1.41-1.23(m, 32H), 0.86-0.80(m, 24H). 1 H-NMR (CD 2 Cl 2 , 300 MHz): δ (ppm) 8.78 (s, 2H), 8.66-8.63 (m, 2H), 8.14 (s, 2H), 7.90 (s, 2H), 7.87 ( s, 2H), 7.86-7.73 (m, 6H), 7.14 (s, 2H), 7.09-7.08 (d, J = 2.3Hz, 2H), 7.06-7.05 (d, J = 2.3Hz, 2H), 6.45 -6.44 (d, J = 2.2Hz, 4H), 3.76-3.75 (d, J = 4.9Hz, 8H), 1.64-1.59 (m, 4H), 1.41-1.23 (m, 32H), 0.86-0.80 (m , 24H).
[실시예 2] 화합물 2의 제조[Example 2] Preparation of compound 2
Figure PCTKR2018016936-appb-img-000016
Figure PCTKR2018016936-appb-img-000016
(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.21 g, 1.1 mmol) 대신에 화합물 M1 (0.23 g, 1.1 mmol)을 사용한 것을 제외하고는 상기 실시예 1의 단계5와 동일한 방법으로 반응시켜 고체의 화합물 2를 얻었다(수율= 70%). Step of Example 1 above except that compound M1 (0.23 g, 1.1 mmol) was used instead of (3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (0.21 g, 1.1 mmol) The reaction was carried out in the same manner as 5 to obtain solid compound 2 (yield = 70%).
1H-NMR (CD 2Cl 2, 300 MHz) : δ(ppm) 8.75(s, 2H), 8.54-8.51(d, J=8.1Hz, 2H), 8.14(s, 2H), 7.90(s, 2H), 7.87(s, 2H), 7.65-7.65(m, 2H), 7.61-7.57(m, 2H), 7.12(s, 2H), 7.08-7.08(d, J=2.3Hz, 2H), 7.06-7.05(d, J=2.3Hz, 2H), 6.44-6.44(d, J=2.2Hz, 4H), 3.76-3.74(d, J=4.9Hz, 8H), 2.53(s, 6H), 1.63-1.59(m, 4H), 1.41-1.21(m, 32H), 0.86-0.81(m, 24H). 1 H-NMR (CD 2 Cl 2 , 300 MHz): δ (ppm) 8.75 (s, 2H), 8.54-8.51 (d, J = 8.1Hz, 2H), 8.14 (s, 2H), 7.90 (s, 2H), 7.87 (s, 2H), 7.65-7.65 (m, 2H), 7.61-7.57 (m, 2H), 7.12 (s, 2H), 7.08-7.08 (d, J = 2.3Hz, 2H), 7.06 -7.05 (d, J = 2.3Hz, 2H), 6.44-6.44 (d, J = 2.2Hz, 4H), 3.76-3.74 (d, J = 4.9Hz, 8H), 2.53 (s, 6H), 1.63- 1.59 (m, 4H), 1.41-1.21 (m, 32H), 0.86-0.81 (m, 24H).
[실시예 3] 화합물 3의 제조[Example 3] Preparation of compound 3
Figure PCTKR2018016936-appb-img-000017
Figure PCTKR2018016936-appb-img-000017
(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.21 g, 1.1 mmol) 대신에 2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.29 g, 1.1 mmol)을 사용한 것을 제외하고는 상기 실시예 1의 단계5와 동일한 방법으로 반응시켜 고체의 화합물 3을 얻었다(수율= 68%). (3-oxo-2,3-dihydro-1H-inden-1-ylidene) 2- (5,6-dichloro-3-oxo-2,3-dihydro-1H- instead of malononitrile (0.21 g, 1.1 mmol) Reaction was performed in the same manner as in Step 5 of Example 1, except that inden-1-ylidene) malononitrile (0.29 g, 1.1 mmol) was used to obtain solid compound 3 (yield = 68%).
1H-NMR (CD 2Cl 2, 300 MHz) : δ(ppm) 8.80(s, 2H), 8.73(s, 2H) 8.19(s, 2H), 7.91-7.90(d, J=2.6Hz, 4H) 7.87(s, 2H), 7.15(s, 2H), 7.09-7.08(d, J=2.3Hz, 2H), 7.06-7.05(d, J=2.3Hz, 2H), 6.44-6.43(d, J=2.1Hz, 4H), 3.76-3.74(d, J=5.2Hz, 8H), 1.62-1.57(m, 4H), 1.39-1.21(m, 32H), 0.86-0.81(m, 24H). 1 H-NMR (CD 2 Cl 2 , 300 MHz): δ (ppm) 8.80 (s, 2H), 8.73 (s, 2H) 8.19 (s, 2H), 7.91-7.90 (d, J = 2.6Hz, 4H ) 7.87 (s, 2H), 7.15 (s, 2H), 7.09-7.08 (d, J = 2.3Hz, 2H), 7.06-7.05 (d, J = 2.3Hz, 2H), 6.44-6.43 (d, J = 2.1Hz, 4H), 3.76-3.74 (d, J = 5.2Hz, 8H), 1.62-1.57 (m, 4H), 1.39-1.21 (m, 32H), 0.86-0.81 (m, 24H).
[실시예 4] 화합물 4의 제조[Example 4] Preparation of compound 4
Figure PCTKR2018016936-appb-img-000018
Figure PCTKR2018016936-appb-img-000018
(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.21 g, 1.1 mmol) 대신에 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.21 g, 1.1 mmol)을 사용한 것을 제외하고는 상기 실시예 1의 단계5와 동일한 방법으로 반응시켜 고체의 화합물 4를 얻었다(수율= 70%). (3-oxo-2,3-dihydro-1H-inden-1-ylidene) 2- (5,6-difluoro-3-oxo-2,3-dihydro-1H- instead of malononitrile (0.21 g, 1.1 mmol) Reaction was performed in the same manner as in Step 5 of Example 1, except that inden-1-ylidene) malononitrile (0.21 g, 1.1 mmol) was used to obtain solid compound 4 (yield = 70%).
1H-NMR (CD 2Cl 2, 300 MHz) : δ(ppm) 8.78(s, 2H), 8.53-8.47(m, 2H), 8.17(s, 2H), 7.90(s, 2H), 7.87(s, 2H), 7.67-7.62(t, J=7.7Hz, 2H), 7.15(s, 2H), 7.08-7.08(d, J=2.3Hz, 2H), 7.06-7.05(d, J=2.3Hz, 2H), 6.44-6.43(d, J=2.2Hz, 4H), 3.76-3.74(d, J=5.3Hz, 8H), 1.64-1.57(m, 4H), 1.40-1.21(m, 32H) 0.86-0.81(m, 24H). 1 H-NMR (CD 2 Cl 2 , 300 MHz): δ (ppm) 8.78 (s, 2H), 8.53-8.47 (m, 2H), 8.17 (s, 2H), 7.90 (s, 2H), 7.87 ( s, 2H), 7.67-7.62 (t, J = 7.7Hz, 2H), 7.15 (s, 2H), 7.08-7.08 (d, J = 2.3Hz, 2H), 7.06-7.05 (d, J = 2.3Hz , 2H), 6.44-6.43 (d, J = 2.2Hz, 4H), 3.76-3.74 (d, J = 5.3Hz, 8H), 1.64-1.57 (m, 4H), 1.40-1.21 (m, 32H) 0.86 -0.81 (m, 24H).
[실험예 1] 용해도 테스트[Experimental Example 1] Solubility test
상기 실시예 1 내지 4에서 제조된 화합물 1 내지 4의 용해도를 알아보기 위하여 하기 표 1에 기재된 바와 같이 각 화합물 1 mg을 용매 0.1 mL에 가하여 용해되는 정도를 육안으로 관찰하였으며, 그 결과를 하기 표 1에 나타내었다.In order to find out the solubility of the compounds 1 to 4 prepared in Examples 1 to 4, as shown in Table 1 below, 1 mg of each compound was added to 0.1 mL of the solvent to observe the degree of dissolution, and the results are shown in the table below. It is shown in 1.
<평가 기준><Evaluation criteria>
◎ : 가열하지 않아도 잘 녹음, ○ : 50℃ 가열 시 완전히 녹음, △ : 50℃ 가열 시 일부 녹음◎: Records well without heating, ○: Records completely when heated to 50 ℃, △: Records partially when heated to 50 ℃
용해도 테스트 (1 mg/0.1 mL)Solubility test (1 mg / 0.1 mL)
EAEA MCMC 톨루엔toluene THFTHF 자일렌Xylene
화합물 1 (실시예 1)Compound 1 (Example 1)
화합물 2 (실시예 2)Compound 2 (Example 2)
화합물 3 (실시예 3)Compound 3 (Example 3)
화합물 4 (실시예 4)Compound 4 (Example 4)
[비교실험예 1] 용해도 테스트[Comparative Experimental Example 1] Solubility test
하기 비교화합물 C1 및 C2의 용해도를 알아보기 위하여 상기 실험예 1과 동일한방법으로 각 화합물 1 mg이 용매 0.1 mL에 용해되는 정도를 육안으로 관찰하였으며, 그 결과를 하기 표 2에 나타내었다.In order to examine the solubility of the following comparative compounds C1 and C2, the degree to which each compound 1 mg is dissolved in 0.1 mL of the solvent was visually observed in the same manner as in Experimental Example 1, and the results are shown in Table 2 below.
용해도 테스트 (1 mg/0.1 mL)Solubility test (1 mg / 0.1 mL)
EAEA MCMC 톨루엔toluene THFTHF 자일렌Xylene
비교화합물 C1Comparative Compound C1
비교화합물 C2Comparative Compound C2
Figure PCTKR2018016936-appb-img-000019
Figure PCTKR2018016936-appb-img-000019
Figure PCTKR2018016936-appb-img-000020
Figure PCTKR2018016936-appb-img-000020
[실시예 5] 유기 태양 전지의 제작[Example 5] Fabrication of organic solar cell
본 발명의 스피로 화합물의 유기 태양 전지용 전자수용체로서의 사용에 대한 성능을 평가하기 위하여, 종래의 대표적인 전자공여체인 P3HT (Poly(3-hexylthiophene))과의 혼합층을 만들어 비교 분석하였다.In order to evaluate the performance of the spiro compound of the present invention as an electron acceptor for an organic solar cell, a mixed layer with P3HT (Poly (3-hexylthiophene)), a typical electron donor, was prepared and compared.
양극 투명전극(제 1전극)인 ITO (Indium Tin Oxide)가 코팅된 유기 기판을 세척용액이 포함된 탈이온수에 담궈, 초음파 세척기에 15분간 세척하고, 다시 탈이온수, 아세톤, 아이소프로필알코올(IPA)로 각각 3번씩 세정한 뒤, 130℃의 오븐에서 5시간 건조시켰다. 상기와 같이 세척된 ITO 유리 기판은 15분 자외선/오존 처리를 한 뒤, 30 nm 두께를 갖는 ZnO·NPs를 ITO 기판 상에 스핀 코팅하였다. 그리고 ZnO·NPs이 도포된 기판은 핫플레이트 상에서 100℃로 10분간 열처리하였다. 그리고 광활성층을 도포하기 위하여 아르곤으로 충진된 글로브 박스로 소자를 옮겼다. 광활성층은 실시예 1에서 제조된 화합물 1(전자수용체)과 P3HT (Poly(3-hexylthiophene))(전자공여체)를 무게비 1:1의 비율로 클로로포름 용매에 녹여 제조하여 0.45 ㎛ (PTFE) 실린지 필터(syringe filter)를 통해 필터링한 유기 반도체 용액으로 스핀코팅 방법을 통하여 100 nm 두께로 ZnO층 위에 도포하여 제조하였다. 얻어진 소자 구조체를 열증착기 내 3 × 10 -6 torr 진공 하에서 광활성층 상에 10 nm 두께의 MoO 3, 최상부 전극으로써 100 nm 두께의 Ag 전극을 증착하여 유기 태양 전지를 제작하였다.An organic substrate coated with ITO (Indium Tin Oxide), which is an anode transparent electrode (first electrode), is immersed in deionized water containing a cleaning solution, washed for 15 minutes in an ultrasonic cleaner, and again deionized water, acetone, isopropyl alcohol (IPA) ) And washed 3 times, and dried in an oven at 130 ° C for 5 hours. The ITO glass substrate washed as described above was subjected to ultraviolet / ozone treatment for 15 minutes, followed by spin coating ZnO · NPs having a thickness of 30 nm on the ITO substrate. And the substrate coated with ZnO · NPs was heat treated at 100 ° C. for 10 minutes on a hot plate. Then, to apply the photoactive layer, the device was moved to a glove box filled with argon. The photoactive layer was prepared by dissolving Compound 1 (electroreceptor) and P3HT (Poly (3-hexylthiophene)) (electron donor) prepared in Example 1 in a chloroform solvent at a ratio of 1: 1 by weight, and carrying a 0.45 μm (PTFE) syringe. An organic semiconductor solution filtered through a filter (syringe filter) was prepared by coating on a ZnO layer with a thickness of 100 nm through a spin coating method. An organic solar cell was fabricated by depositing a 10 nm thick MoO 3 and 100 nm thick Ag electrode as a top electrode on the photoactive layer under a 3 × 10 −6 torr vacuum in a thermal evaporator.
제작된 유기 태양 전지의 전기 특성인 개방전압(V oc), 단락전류(J sc), FF(Fill Factor) 및 광전변환 효율(Power Conversion Efficiency, PCE)을 확인하였다.The electrical characteristics of the fabricated organic solar cell, open voltage (V oc ), short-circuit current (J sc ), FF (Fill Factor), and photoelectric conversion efficiency (Power Conversion Efficiency, PCE) were confirmed.
[실시예 6] 유기 태양 전지의 제작[Example 6] Fabrication of organic solar cell
전자수용체로 실시예 2에서 제조된 화합물 2를 사용한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 확인하였다.An organic solar cell was produced in the same manner as in Example 5, except that Compound 2 prepared in Example 2 was used as the electron acceptor, and its properties were confirmed.
[실시예 7] 유기 태양 전지의 제작[Example 7] Fabrication of organic solar cell
전자수용체로 실시예 3에서 제조된 화합물 3을 사용한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 확인하였다.An organic solar cell was manufactured in the same manner as in Example 5, except that Compound 3 prepared in Example 3 was used as the electron acceptor, and its properties were confirmed.
[실시예 8] 유기 태양 전지의 제작[Example 8] Fabrication of organic solar cell
전자수용체로 실시예 4에서 제조된 화합물 4를 사용한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 확인하였다.An organic solar cell was manufactured in the same manner as in Example 5, except that Compound 4 prepared in Example 4 was used as the electron acceptor, and its properties were confirmed.
[비교예 1] 유기 태양 전지의 제작[Comparative Example 1] Production of organic solar cell
Figure PCTKR2018016936-appb-img-000021
Figure PCTKR2018016936-appb-img-000021
화합물 1 대신 기존의 전자수용체(PC71BM)을 사용하여 상기 실시예 5와 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 비교하였다.An organic solar cell was prepared in the same manner as in Example 5 using a conventional electron acceptor (PC71BM) instead of Compound 1 to compare its properties.
[비교예 2] 유기 태양 전지의 제작[Comparative Example 2] Production of an organic solar cell
화합물 1 대신 비교화합물 C1를 사용하여 상기 실시예 5와 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 비교하였다.An organic solar cell was prepared in the same manner as in Example 5 using Comparative Compound C1 instead of Compound 1 to compare its properties.
Figure PCTKR2018016936-appb-img-000022
Figure PCTKR2018016936-appb-img-000022
[비교예 3] 유기 태양 전지의 제작[Comparative Example 3] Production of an organic solar cell
화합물 1 대신 비교화합물 C2를 사용하여 상기 실시예 5와 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 비교하였다.An organic solar cell was prepared in the same manner as in Example 5 using Comparative Compound C2 instead of Compound 1 to compare its properties.
Figure PCTKR2018016936-appb-img-000023
Figure PCTKR2018016936-appb-img-000023
[비교예 4] 유기 태양 전지의 제작[Comparative Example 4] Production of an organic solar cell
화합물 1 대신 비교화합물 C3를 사용하여 상기 실시예 5와 동일한 방법으로 유기 태양 전지를 제작하여 그 특성을 비교하였다.An organic solar cell was prepared in the same manner as in Example 5 using Comparative Compound C3 instead of Compound 1 to compare its properties.
Figure PCTKR2018016936-appb-img-000024
Figure PCTKR2018016936-appb-img-000024
V oc(V) 및 J sc(mA/cm 2) 각각은 제작된 소자의 전류-전압 곡선에서, 전류가 0일 때 전압 값 및 전압이 0일 때 전류 값을 나타낸다.V oc (V) and J sc (mA / cm 2 ) each represent a voltage value when the current is 0 and a current value when the voltage is 0, in the current-voltage curve of the fabricated device.
또한, FF(fill factor)는 하기 수학식 1로부터 산출된다.In addition, the fill factor (FF) is calculated from Equation 1 below.
[수학식 1][Equation 1]
FF = V mppㆍJ mpp/V ocㆍJ sc FF = V mpp ㆍ J mpp / V oc ㆍ J sc
(상기 수학식 1에서, V mpp 및 J mpp 각각은 제작된 소자의 전류-전압 측정 시, 최대의 일률을 나타내는 지점에서의 전압 및 전류값을 나타내고, V oc(V) 및 J sc(mA/cm 2) 각각은 제작된 소자의 전류-전압 곡선에서, 전류가 0일 때 전압 값 및 전압이 0일 때 전류 값을 나타낸다.)(In the above Equation 1, V mpp and J mpp each represents the voltage and current value at the point indicating the maximum power when measuring the current-voltage of the fabricated device, V oc (V) and J sc (mA / cm 2 ) Each represents the voltage value when the current is 0 and the current value when the voltage is 0 in the current-voltage curve of the fabricated device.)
나아가, 광전변환 효율(%)은 하기 수학식 2로부터 산출된다.Furthermore, the photoelectric conversion efficiency (%) is calculated from Equation 2 below.
[수학식 2][Equation 2]
광전변환 효율(%) = 100×FF×V ocㆍJ sc/P in Photoelectric conversion efficiency (%) = 100 × FF × V oc ㆍ J sc / P in
(상기 수학식 2에서, FF, V oc 및 J sc는 상기 수학식 1에서 정의한 바와 같고, P in는 소자에 입사되는 빛의 총 에너지를 나타낸다.)(In Equation 2, FF, V oc and J sc are as defined in Equation 1, and P in represents the total energy of light incident on the device.)
본 발명의 스피로 화합물은 종래의 플러렌 유도체의 대체 화합물로 사용되어 높은 전자 친화력을 가지는 동시에 전자공여체와 혼화성도 우수하여 높은 광전변환효율을 가짐을 알 수 있다.It can be seen that the spiro compound of the present invention is used as a replacement compound of a conventional fullerene derivative, and has high electron affinity and excellent compatibility with an electron donor, thereby having high photoelectric conversion efficiency.
이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.As described above, although the embodiments of the present invention have been described in detail, those of ordinary skill in the art to which the present invention pertains, without departing from the technical spirit of the present invention as defined in the appended claims The present invention may be implemented in various ways. Therefore, changes in the embodiments of the present invention will not be able to escape the technology of the present invention.

Claims (9)

  1. 하기 화학식 1로 표시되는 스피로 화합물:A spiro compound represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2018016936-appb-img-000025
    Figure PCTKR2018016936-appb-img-000025
    [상기 화학식 1에서,[In the formula 1,
    R 1 내지 R 4는 각각 독립적으로 C1-C30알킬이고;R 1 to R 4 are each independently C1-C30 alkyl;
    V 1 및 V 2는 각각 독립적으로 메틸리덴을 연결기로 하는 C6-C20방향족 고리이고, 상기 방향족 고리는 각각 독립적으로 C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노, 할로C1-C30알킬, 카르복실, 니트로, 히드록시 및 C1-C30알킬옥시카르보닐에서 선택되는 하나 이상의 치환기로 더 치환될 수 있고;V 1 and V 2 are each independently a C6-C20 aromatic ring having methylidene as a linking group, and the aromatic rings are each independently C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano, HaloC1-C30alkyl, carboxyl, nitro, hydroxy and C1-C30alkyloxycarbonyl may be further substituted with one or more substituents selected from;
    X 1, X 2, Y 1 및 Y 2는 각각 독립적으로 O, S 또는 Se이다.]X 1 , X 2 , Y 1 and Y 2 are each independently O, S or Se.]
  2. 제 1항에 있어서,According to claim 1,
    상기 V 1 및 V 2는 각각 독립적으로 하기 화학식 A로 표시되는 것인, 스피로 화합물:The V 1 and V 2 are each independently represented by the following formula (A), a spiro compound:
    [화학식 A][Formula A]
    Figure PCTKR2018016936-appb-img-000026
    Figure PCTKR2018016936-appb-img-000026
    [상기 화학식 A에서, [In the above formula A,
    Z 1 및 Z 2는 각각 독립적으로 O, S, Se 또는 CR 11R 12이고, R 11 및 R 12는 각각 독립적으로 할로겐, 시아노, 카르복실, 니트로, 히드록시 또는 C1-C30알킬옥시카르보닐이고;Z 1 and Z 2 are each independently O, S, Se or CR 11 R 12 , and R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl. ego;
    A는 C6-C20방향족 고리이며, 상기 방향족 고리는 C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노 및 할로C1-C30알킬에서 선택되는 하나 이상의 치환기로 더 치환될 수 있다.]A is a C6-C20 aromatic ring, and the aromatic ring may be further substituted with one or more substituents selected from C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano and halo C1-C30 alkyl. have.]
  3. 제 2항에 있어서, According to claim 2,
    상기 V 1 및 V 2는 각각 독립적으로 하기 화학식 B로 표시되는 것인, 스피로 화합물:The V 1 and V 2 are each independently represented by the following formula B, a spiro compound:
    [화학식 B][Formula B]
    Figure PCTKR2018016936-appb-img-000027
    Figure PCTKR2018016936-appb-img-000027
    [상기 화학식 B에서, [In the above formula B,
    R 11 및 R 12는 각각 독립적으로 할로겐, 시아노, 카르복실, 니트로, 히드록시 또는 C1-C30알킬옥시카르보닐이고;R 11 and R 12 are each independently halogen, cyano, carboxyl, nitro, hydroxy or C1-C30 alkyloxycarbonyl;
    R 21 내지 R 24는 각각 독립적으로 수소, C1-C30알킬, C1-C30알콕시, C1-C30알킬티오, 할로겐, 시아노 또는 할로C1-C30알킬이거나, 인접한 치환기와 연결되어 방향족 고리를 형성할 수 있다.]R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, C1-C30 alkylthio, halogen, cyano or halo C1-C30 alkyl, or may be connected to adjacent substituents to form an aromatic ring. have.]
  4. 제 1항에 있어서,According to claim 1,
    하기 화학식 2로 표시되는 것인, 스피로 화합물:A spiro compound represented by the following formula (2):
    [화학식 2][Formula 2]
    Figure PCTKR2018016936-appb-img-000028
    Figure PCTKR2018016936-appb-img-000028
    [상기 화학식 2에서, [In the formula 2,
    R 1 내지 R 4는 각각 독립적으로 C1-C30알킬이고;R 1 to R 4 are each independently C1-C30 alkyl;
    R 21 내지 R 24는 각각 독립적으로 수소, C1-C30알킬, C1-C30알콕시, 할로겐 또는 할로C1-C30알킬이다.]R 21 to R 24 are each independently hydrogen, C1-C30 alkyl, C1-C30 alkoxy, halogen or haloC1-C30 alkyl.]
  5. 제 1항 내지 제 4항에서 선택되는 어느 한 항에 따른 스피로 화합물을 포함하는 유기 전자 소자.An organic electronic device comprising the spiro compound according to any one of claims 1 to 4.
  6. 제 5항에 있어서,The method of claim 5,
    상기 유기 전자 소자는 유기 태양 전지, 유기 박막 트랜지스터, 유기메모리, 유기감광체 또는 유기 광센서인, 유기 전자 소자.The organic electronic device is an organic solar cell, an organic thin film transistor, an organic memory, an organic photoreceptor or an organic photosensor, an organic electronic device.
  7. 제 6항에 있어서,The method of claim 6,
    상기 유기 전자 소자는 유기 태양 전지인, 유기 전자 소자.The organic electronic device is an organic solar cell, an organic electronic device.
  8. 제 7항에 있어서,The method of claim 7,
    상기 스피로 화합물은 유기 태양 전지의 광활성층에 포함되는 것인, 유기 전자 소자.The spiro compound is included in the photoactive layer of an organic solar cell, an organic electronic device.
  9. 제 8항에 있어서,The method of claim 8,
    상기 스피로 화합물은 전자수용체로 사용되는 것인, 유기 전자 소자.The spiro compound is used as an electron acceptor, an organic electronic device.
PCT/KR2018/016936 2018-10-22 2018-12-28 Novel spiro compound and organic electronic device using same WO2020085579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180126212 2018-10-22
KR10-2018-0126212 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020085579A1 true WO2020085579A1 (en) 2020-04-30

Family

ID=70331012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016936 WO2020085579A1 (en) 2018-10-22 2018-12-28 Novel spiro compound and organic electronic device using same

Country Status (2)

Country Link
KR (1) KR102247317B1 (en)
WO (1) WO2020085579A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069675A (en) * 2009-08-05 2012-06-28 캠브리지 디스플레이 테크놀로지 리미티드 Organic semiconductors
CN105315298A (en) * 2014-08-04 2016-02-10 中国科学院化学研究所 A-D-A conjugated molecules based on hepta-condensed ring units and preparation method for A-D-A conjugated molecules and application of A-D-A conjugated molecules
WO2017191466A1 (en) * 2016-05-06 2017-11-09 Imperial Innovations Limited Organic ternary blends
WO2018103496A1 (en) * 2016-12-07 2018-06-14 北京大学 Polycyclic conjugated macromolecule and preparation method and application of same
KR20180104398A (en) * 2017-03-13 2018-09-21 주식회사 엘지화학 Heterocyclic compound and organic electronic device comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728612B1 (en) 2004-07-29 2007-06-14 (주)위세아이텍 Method of managing data quality in data migration
KR102016198B1 (en) * 2012-04-25 2019-08-29 메르크 파텐트 게엠베하 Conjugated polymers
KR102295781B1 (en) * 2018-10-12 2021-09-01 경상국립대학교산학협력단 Novel compound and organic electronic device using them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069675A (en) * 2009-08-05 2012-06-28 캠브리지 디스플레이 테크놀로지 리미티드 Organic semiconductors
CN105315298A (en) * 2014-08-04 2016-02-10 中国科学院化学研究所 A-D-A conjugated molecules based on hepta-condensed ring units and preparation method for A-D-A conjugated molecules and application of A-D-A conjugated molecules
WO2017191466A1 (en) * 2016-05-06 2017-11-09 Imperial Innovations Limited Organic ternary blends
WO2018103496A1 (en) * 2016-12-07 2018-06-14 北京大学 Polycyclic conjugated macromolecule and preparation method and application of same
KR20180104398A (en) * 2017-03-13 2018-09-21 주식회사 엘지화학 Heterocyclic compound and organic electronic device comprising the same

Also Published As

Publication number Publication date
KR20200045424A (en) 2020-05-04
KR102247317B1 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2015163614A1 (en) Heterocyclic compound and organic solar cell comprising same
WO2010087655A2 (en) Fullerene derivatives and organic electronic device comprising the same
WO2016133368A9 (en) Heterocyclic compound and organic solar cell comprising same
WO2011068305A2 (en) Conducting polymer to which pyrene compounds are introduced, and organic solar cell using same
WO2021118238A1 (en) Novel polymer and organic electronic device using same
WO2014119962A1 (en) Novel polymer material for hightly efficient organic thin-film solar cell, and organic thin-film solar cell using same
WO2014200309A1 (en) Organic photovoltaic cell and method for manufacturing same
WO2015122722A1 (en) Copolymer and organic solar cell comprising same
WO2014061867A1 (en) Novel organic semiconductor compound, and method for preparing same
WO2019221386A1 (en) Heterocyclic compound and organic electronic device comprising same
KR102093470B1 (en) Novel compound and organic electronic device using them
WO2014092408A1 (en) Copolymer and organic solar cell using same
WO2014182139A1 (en) Photoactive layer, organic solar cell comprising same, and manufacturing method therefor
WO2018225999A1 (en) Compound and organic solar cell comprising same
KR102091053B1 (en) Novel compound and organic electronic device using them
WO2015182973A1 (en) Organic semiconductor compound containing phosphine oxide group, and organic solar cell using same
WO2016163624A1 (en) Conjugated polymer having mid band gap, method for preparing same, and organic electronic device having applied same
KR102446165B1 (en) Compound containing aryloxy akyl group and organic electronic device using them
WO2019164054A1 (en) Novel compound, method for manufacturing same, and organic electronic element using same
WO2021118171A1 (en) (aryloxy)alkyl group-substituted compound and organic electronic device using same
WO2012148185A2 (en) Organic semiconductor compound, method for preparing same, and organic semiconductor device employing same
WO2020085579A1 (en) Novel spiro compound and organic electronic device using same
KR20190142948A (en) Polymer, composition comprising the same, and organic solar cell comprising the same
WO2017131376A1 (en) Copolymer and organic solar cell comprising same
WO2020076119A1 (en) Novel compound and organic electronic device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937687

Country of ref document: EP

Kind code of ref document: A1