WO2020085353A1 - Quenching device, quenching method, and steel sheet production method - Google Patents

Quenching device, quenching method, and steel sheet production method Download PDF

Info

Publication number
WO2020085353A1
WO2020085353A1 PCT/JP2019/041434 JP2019041434W WO2020085353A1 WO 2020085353 A1 WO2020085353 A1 WO 2020085353A1 JP 2019041434 W JP2019041434 W JP 2019041434W WO 2020085353 A1 WO2020085353 A1 WO 2020085353A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
metal plate
quenching
longitudinal direction
steel sheet
Prior art date
Application number
PCT/JP2019/041434
Other languages
French (fr)
Japanese (ja)
Inventor
宗司 吉本
智弘 橋向
宗佑 鈴木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2020506841A priority Critical patent/JP6879429B2/en
Priority to CN201980070242.9A priority patent/CN112888797A/en
Publication of WO2020085353A1 publication Critical patent/WO2020085353A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a quenching apparatus and a quenching method in a continuous annealing facility that performs annealing while continuously passing a metal plate, and a method for manufacturing a steel sheet.
  • a water quenching method is known as one of the technologies with the fastest cooling rate of a steel sheet. In the water quenching method, the steel sheet is quenched by immersing the heated steel sheet in water and at the same time spraying cooling water on the steel sheet by a quench nozzle provided in the water.
  • Patent Document 1 in order to suppress wavy deformation of a metal plate that occurs during quenching in a continuous annealing furnace, a method is proposed in which a bridle roll is provided before and after the quenching part as a tension changing means of the steel plate subjected to the quenching process.
  • Patent Document 2 proposes a method of straightening a steel sheet by applying tension to at least the entire width direction of the front and back surfaces of the steel sheet during quenching.
  • Patent Document 3 proposes a method for preventing deformation of a steel plate by restraining a metal plate being quenched by a pair of restraining rolls.
  • Patent Document 1 applies a large amount of tension to a high temperature steel plate, so that the steel plate may be broken.
  • a large thermal crown is generated on the bridle roll before the quenching part, which comes into contact with the high temperature steel plate, and the bridle roll and the steel plate are unevenly contacted in the width direction.
  • buckling or flaws occur in the steel sheet, and there is a problem that the shape of the steel sheet cannot be improved.
  • the amount of warp is reduced to about several mm by setting the tension to 15 N / mm 2 , but such high tension may cause drawing in the steel strip. .
  • Patent Document 4 proposes a method of ejecting a liquid obliquely toward the constraining roll from the nozzle closest to the constraining roll while constraining the metal plate being quenched by a pair or a plurality of constraining rolls. .
  • the inventors of the present invention have earnestly studied to solve such a problem, and have obtained the following findings. Since the constraining roll and the metal plate are in contact with each other across the entire width of the metal plate, the escape area for the water ejected from the nozzle adjacent to the constraining roll is only in the width direction, and the central part of the metal plate The colliding water will flow laterally. Therefore, the cooling rate on the metal plate tends to be higher in the edge portion than in the central portion of the metal plate.
  • the present invention has been completed based on the above findings. That is, a quenching device and a quenching device capable of preventing non-uniformity of the cooling rate of the metal plate in the plate width direction while suppressing a decrease in the cooling rate of the metal plate while suppressing a shape defect that occurs in the metal plate during quenching. It is an object to provide a method and a method for manufacturing a steel sheet.
  • a restraint roll that is provided between an inlet side end and an outlet side end of the ejection device and that holds the metal plate from both sides
  • the nozzle adjacent to the restraint roll is inclined from the direction perpendicular to the metal plate toward the restraint roll
  • the opening of the nozzle adjacent to the constraining roll has a slit-like shape
  • a quenching device wherein the opening width of the opening is reduced from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
  • [6] A method for manufacturing a steel sheet, which uses the quenching method described in [5] above when manufacturing a steel sheet.
  • the opening width of the opening is 2 mm or more and 5 mm or less at the central portion in the longitudinal direction of the opening, and is more than 0 mm and 3 mm or less at the end portions in the longitudinal direction of the opening, and the opening at the central portion in the longitudinal direction.
  • the quenching device according to any one of [1] to [3], wherein the opening width of the longitudinal end portion is smaller than the width.
  • the present invention it is possible to prevent the non-uniformity of the cooling rate of the metal plate in the plate width direction while suppressing the shape defect that occurs in the metal plate during quenching and suppressing the decrease of the cooling rate of the metal plate.
  • FIG. 1 is an explanatory diagram showing a basic configuration of a quenching apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view showing the vicinity of the ejection device of FIG.
  • FIG. 3 is an enlarged view of an example of the openings of the adjacent nozzles in the embodiment of the present invention.
  • FIG. 4 is an enlarged view of another example of the openings of the adjacent nozzles in the embodiment of the present invention.
  • FIG. 5 is an enlarged view of an opening of a conventional adjacent nozzle.
  • FIG. 6 is a graph showing the results of Example 1 of the present invention.
  • FIG. 7 is a graph showing the results of Example 2 of the present invention.
  • FIG. 8 is a graph showing the results of Example 3 of the present invention.
  • FIG. 9 is a graph showing the results of Comparative Example 1.
  • FIG. 10 is a graph showing the results of Comparative Example 2.
  • FIG. 11 is a graph showing the results of Inventive Examples 1, 2, and 3 and Comparative Examples 1 and 2.
  • FIG. 12 is a schematic view of the steel sheet viewed from the conveyance direction.
  • FIG. 1 is a diagram showing a basic configuration of a quenching apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the vicinity of the ejection device 4 of the quenching device shown in FIG.
  • the quenching device can be applied to a cooling facility provided on the outflow side of the soaking zone of a continuous annealing furnace.
  • FIG. 1 shows a pair of seal rolls 3 provided at the soaking zone outlet of the continuous annealing furnace.
  • the quenching apparatus includes a water tank 1 containing water 2 which is a coolant (liquid) for cooling the metal plate 5, a jetting device 4 for spraying the water 2 on both surfaces of the metal plate 5 for cooling, and a metal plate 5 And a restraining roll 7 for restraining the deformation and preventing the deformation.
  • a part of the ejection device 4 is provided in the liquid (in the water 2) of the tank 1.
  • a sink roll 6 is provided on the outlet side of the ejection device 4 to change the transport direction (passing direction) of the metal plate 5 while immersing the metal plate 5 in water.
  • the ejection device 4 includes a plurality of nozzles 14 and 24 that eject water, and nozzle units 34 and 44 that hold the nozzles 14 and 24.
  • a gap is provided between the pair of nozzle units 34 and 44.
  • the metal plate 5 is passed through the gap, water is jetted from the nozzles 14 and 24 toward the front and back surfaces of the metal plate 5.
  • the left side of the metal plate 5 is the front surface and the right side is the back surface.
  • the nozzle unit 34 is arranged so that the nozzle 14 faces the front surface of the metal plate 5, and on the right side of the figure, the nozzle unit 44 faces so that the nozzle 24 faces the back surface of the metal plate 5. Will be placed.
  • the nozzle units 34 and 44 are each divided into two along the carrying direction.
  • An inlet side nozzle unit 34a and an outlet side nozzle unit 34b are provided on the front surface side of the metal plate 5, and an inlet side nozzle unit 44a and an outlet side nozzle unit 44b are provided on the back surface side.
  • the restraint roll 7 is provided between the inlet nozzle units 34a and 44a and the outlet nozzle units 34b and 44b. Thereby, the restraint roll 7 is provided between the inlet side end portion (the inlet side end surface of the inlet side nozzle units 34a, 44a) and the outlet side end portion (the outlet side end surface of the outlet side nozzle units 34b, 44b) of the ejection device. Will be provided.
  • the inlet nozzle units 34a and 44a are provided so that a part of them is immersed in water and the rest comes out of the water.
  • the metal plate 5 that has been passed through is inserted into a gap inside the inlet nozzle units 34a and 44a exposed on the water, then immersed in the water, and water is ejected from the nozzles 14 and 24.
  • the inlet nozzle units 34a, 44a are provided with a plurality of nozzles 14, 24.
  • Some nozzles (for example, the nozzles provided at the top of the inlet-side nozzle units 34a and 44a in FIG. 1) have an opening of the nozzle located above the water surface, and at least a part of the opening of the nozzle is underwater. Not soaked in.
  • the nozzle whose opening is located above the water surface suppresses the water from being blown up when the high-temperature metal plate 5 is introduced into the water. It is installed diagonally.
  • the metal plate 5 is constrained by the constraining roll 7 after passing through the inlet nozzle units 34a, 44a.
  • the restraint roll 7 sandwiches the metal plate 5 from both sides (front and back surfaces) in water in order to prevent deformation that may occur when the metal plate 5 is rapidly cooled.
  • the pair of restraining rolls 7 are arranged with their central axes displaced in the transport direction of the metal plate 5. By arranging the central axes so as to be displaced, the restraining force of the metal plate 5 can be increased and the shape correcting force can be increased.
  • the constraining rolls 7 it is preferable to dispose the constraining rolls 7 by displacing the respective central axes in the transport direction by 40 mm or more and 150 mm or less, and it is more preferable to dispose the constraining rolls 7 by 80 mm or more and 100 mm or less.
  • the pushing amount by one restraint roll 7 is 0 mm or more and 2.5 mm or less in the horizontal direction when the reference (0 mm) is the case where the metal plate 5 is linearly threaded as shown in FIGS. 1 and 2. It is preferable that More preferably, it is 0.5 mm or more and 1.0 mm or less.
  • the metal plate 5 After passing through the constraining roll 7, the metal plate 5 passes through the gap between the outlet nozzle units 34b and 44b. Also at this time, water is jetted to the front and back surfaces of the metal plate 5 by the nozzles 14 and 24 provided in the outlet nozzle units 34b and 44b.
  • the inlet-side nozzle units 34a and 44a and the outlet-side nozzle units 34b and 44b are provided so as to sandwich the constraining roll 7 from above and below, and the height of the constraining roll 7 and the nozzle unit and the nozzles Is not provided.
  • the nozzles 14a and 24a located on the most outlet side of the inlet side nozzle units 34a and 44a and the nozzles 14b and 24b located on the most inlet side of the outlet side nozzle units 34b and 44b are attached to the restraining roll 7. It becomes an adjacent nozzle.
  • the above adjacent nozzles may be referred to as "adjacent nozzles" hereinafter.
  • the adjacent nozzles are not horizontal but are installed so as to be inclined so that the nozzle openings face from the horizontal plane toward the constraining roll 7. That is, the adjacent nozzles are inclined from the direction perpendicular to the metal plate 5 toward the restraining roll 7. More specifically, the adjacent nozzles 14a and 24a in FIG. 2 are attached while being inclined downward, and the adjacent nozzles 14b and 24b are attached while being inclined upward. Inclining the adjacent nozzles in this way allows the water ejected from the adjacent nozzles to reach a position closer to the contact point between the constraining roll 7 and the metal plate 5, as compared with the case where the adjacent nozzles are provided horizontally.
  • all the nozzles other than the adjacent nozzles are also tilted in the same direction as the adjacent nozzles, but the nozzles other than the adjacent nozzles may be horizontally provided as before.
  • the inclination angle of the adjacent nozzle may be set to an acute angle ⁇ among the angles formed by the axial direction of the adjacent nozzle (liquid ejection direction (water ejection direction)) and the metal plate. it can.
  • the direction of the central axis of the water discharged from the nozzle can be adopted as the jetting direction of the water.
  • the angle ⁇ can be set according to the amount of water jetted from the adjacent nozzle, the distance between the opening of the adjacent nozzle and the restraint roll 7, the distance between the opening of the adjacent nozzle and the front and back surfaces of the metal plate 5, and the like.
  • a preferable example of the angle ⁇ is 20 ° or more and 60 ° or less.
  • the angle ⁇ is 20 ° or more and 60 ° or less, the flow of water ejected from the adjacent nozzle reaches the vicinity of the contact position between the restraint roll 7 and the metal plate 5, and the metal plate 5 near the restraint roll 7 is reached. It is possible to sufficiently obtain the effect of suppressing the decrease in the cooling rate. Further, it is more preferable that the angle ⁇ is 30 ° or more and 45 ° or less.
  • the tip of the nozzle may be inclined so that water can be jetted obliquely from the nozzle.
  • the quenching device may include a non-divided nozzle unit integrally formed along the transport direction of the metal plate 5.
  • each nozzle in the ejection device 4 is connected to a pipe provided with a pump in the middle.
  • the pump the water 2 in the water tank 1 is pumped up in the pipe and pressure-fed to the nozzles 14 and 24, whereby high-pressure water is ejected from the openings of the nozzles 14 and 24.
  • the water 2 in the water tank 1 is maintained at a water temperature suitable for quenching.
  • Part of the water 2 in the water tank 1 is sent to a cooling facility such as an external cooling tower to be cooled, and then the cooled water 2 is returned to the water tank 1 to prevent an increase in the water temperature in the water tank 1.
  • the water temperature in the water tank 1 is preferably more than 0 ° C and 50 ° C or less, and particularly preferably 10 ° C or more and 40 ° C or less.
  • the quenching apparatus includes the adjacent nozzle having an opening (ejection hole) having a shape different from the opening (ejection hole) of the conventional adjacent nozzle. This will be described below with reference to FIGS. 3, 4, and 5.
  • the opening width of the opening is the opening amount of the metal plate 5 in the sheet passing direction (vertical direction in each drawing), and the longitudinal direction of the opening is the plate width direction of the metal plate 5 (left and right in each drawing). Direction).
  • FIG. 5 is an enlarged view of the openings 14a (14aX), 24a (24aX), 14b (14bX), and 24b (24bX) of the conventional adjacent nozzles. Since the opening widths of the openings 14aX, 24aX, 14bX, 24bX of the adjacent nozzles are the same in the longitudinal direction of the openings, the water ejected from the adjacent nozzles has the same flow rate in the plate width direction of the metal plate 5. Further, the escape area of the water ejected from the adjacent nozzle of the restraint roll 5 is only in the plate width direction of the metal plate 5, so that the water that collides with the central portion of the metal plate 5 flows laterally. From the above two effects, the cooling rate on the metal plate 5 tends to be higher in the edge portion than in the central portion of the metal plate 5.
  • FIG. 3 is an enlarged view of the openings 14a (14aA), 24a (24aA), 14b (14bA), 24b (24bA) of the adjacent nozzles in the embodiment of the present invention.
  • FIG. 4 is an enlarged view of the other openings 14aB, 24aB, 14bB, 24bB of the adjacent nozzles in the embodiment of the present invention.
  • the opening is slit-shaped, and the opening width at the longitudinal end is smaller than the opening width at the central portion in the longitudinal direction of the opening.
  • the openings 14aA, 24aA, 14bA, and 24bA of FIG. 3 have a wide and uniform region at the central portion in the longitudinal direction and a narrow and uniform region at the end portions in the longitudinal direction. That is, the opening width decreases discontinuously (stepwise) from the central portion in the longitudinal direction to the end portion in the longitudinal direction.
  • the openings 14aB, 24aB, 14bB, 24bB of FIG. 4 have a wide and uniform area in the central portion in the longitudinal direction, and the opening width continuously decreases from there to the end portion in the longitudinal direction. .
  • the opening width of the opening of the adjacent nozzle decreases from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction. Therefore, the amount of water ejected from the adjacent nozzles is smaller in the edge portion than in the central portion in the plate width direction of the metal plate 5.
  • the escape area for the water ejected from the adjacent nozzle of the restraint roll 7 is only in the plate width direction of the metal plate 5, so that the water that collides with the central portion of the metal plate 5 will flow laterally. From the above two effects, the cooling rate on the metal plate 5 is uniform in the plate width direction without any difference between the central part and the edge part of the metal plate 5.
  • the shape of the longitudinal ends of the openings of the adjacent nozzles may be parallel to the plate width direction as shown in FIG. 3 or may be oblique to the plate width direction as shown in FIG. However, the opening width at the longitudinal end must be smaller than the opening width at the central portion in the longitudinal direction.
  • the opening width of the opening of the adjacent nozzle is preferably 2 mm or more and 5 mm or less, more preferably 2 mm or more and 4 mm or less, and even more preferably 2 mm or more and 3 mm or less.
  • the opening width of the longitudinal end portion is preferably more than 0 mm and 3 mm or less, more preferably 1 mm or more and 3 mm or less, and further preferably 1 mm or more and 2 mm or less.
  • the length of the opening of the adjacent nozzle in the longitudinal direction is, as a specific value, preferably 600 mm or more and 1200 mm or less, more preferably 800 mm or more and 1000 mm or less, and 850 mm or more and 950 mm or less in the length of the central portion in the longitudinal direction. More preferable.
  • the total length in the longitudinal direction is preferably 1400 mm or more and 2000 mm or less, more preferably 1500 mm or more and 1900 mm or less, and further preferably 1600 mm or more and 1800 mm or less.
  • the restraint roll 7 in order to suppress the slip between the metal plate and the roll, it is preferable to use the restraint roll 7 as a drive roll. Further, in order to adjust the correction force of the metal plate 5, it is preferable that the restraint roll 7 can be opened and closed (the amount of pushing into the metal plate 5 can be controlled) as necessary.
  • the restraint roll 7 may be formed of a material having excellent thermal conductivity and strength enough to withstand the load when the metal plate 5 is pinched.
  • Examples of the material of the constraining roll 7 include SUS304, SUS310, and ceramics.
  • the quenching apparatus and the quenching method using the quenching apparatus according to the embodiment of the present invention as described above can be applied to the production of a steel sheet, and particularly preferably applied to the method for producing a high-strength cold-rolled steel sheet (high tensile strength steel sheet). . More specifically, it is preferably applied to a method for manufacturing a steel sheet having a tensile strength of 580 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but may be 1600 MPa or less as an example.
  • C is 0.04% or more and 0.25% or less
  • Si is 0.01% or more and 2.50% or less
  • Mn is 0.80% or more and 3% by mass. .70% or less
  • P is 0.001% or more and 0.090% or less
  • S is 0.0001% or more and 0.0050% or less
  • Al is 0.005% or more and 0.065% or less, and if necessary, at least one kind of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less, and if necessary.
  • B, and Sb are each 0.01% or less, and the balance is Fe and inevitable impurities.
  • the embodiment of the present invention is not limited to an example of rapidly cooling a steel sheet, but can be applied to the rapid cooling of all metal sheets other than the steel sheet, and is also applied to quenching using a liquid other than water. can do.
  • the central axis of the constraining roll 7 was arranged so as to be displaced by 80 mm in the sheet passing direction, and the pushing amount of the constraining roll 7 into the metal plate 5 was all 0.5 mm.
  • the opening widths of the openings 14aA, 24aA, 14bA, and 24bA of the adjacent nozzles were 2 mm at the center in the longitudinal direction and 1 mm at the ends in the longitudinal direction.
  • the temperature of the steel plate being passed through the quenching device was measured. Specifically, the temperature of the measured region of the steel sheet was measured with time using a thermocouple-type thermometer.
  • the cooling start temperature of the steel sheet (the temperature immediately before entering the jetting device 4) was 740 ° C
  • the cooling end temperature (the temperature immediately after leaving the water tank 1) was 30 ° C. From the relationship between the elapsed time after the start of cooling and the temperature of the steel sheet, the cooling rate distribution in the sheet width direction of the steel sheet at the moment when the steel sheet was in contact with the restraint roll 7A was calculated. Results are shown in FIG.
  • the amount of warp of the steel plate was measured after passing the plate. Specifically, a description will be given with reference to FIG. 12 in which the steel sheet is viewed from the conveying direction. When the steel plate warps, a high-height portion and a low-height portion are formed in the width direction of the steel sheet. In the steel sheet after passing, the difference in height between the highest portion and the lowest portion was measured as the amount of warpage.
  • Example 1 An experiment was conducted in the same manner as Example 1 of the present invention, except that the quenching device described in Patent Document 4 and the adjacent nozzles having the openings 14aX, 24aX, 14bX, 24bX shown in FIG. 5 were used.
  • the opening width of the openings 14aX, 24aX, 14bX, 24bX of the adjacent nozzles was set to a constant 2 mm in the longitudinal direction. The results are shown in Fig. 9.
  • Example 2 An experiment was conducted in the same manner as Example 1 of the present invention, except that the quenching device described in Patent Document 3 and the adjacent nozzle having the openings 14aX, 24aX, 14bX, 24bX shown in FIG. 5 were used.
  • the opening width of the openings 14aX, 24aX, 14bX, 24bX of the adjacent nozzles was set to a constant 2 mm in the longitudinal direction.
  • the inclination angle of the adjacent nozzle was 90 °. The results are shown in Fig. 10.
  • the cooling rate is 900 ° C./s at the central portion and 1200 ° C./s at the edge, and the cooling rate is reduced by about 40% (1500 ° C./s to 900 ° C./s) compared with FIG. 6 in the central portion.
  • the cooling rate is reduced by about 40% (1500 ° C./s to 900 ° C./s) compared with FIG. 6 in the central portion.
  • the tensile strength of the steel sheets manufactured according to Inventive Examples 1, 2, and 3 was about 1470 MPa in the entire sheet width direction.
  • the tensile strength of the steel sheet manufactured in Comparative Example 1 was about 1470 MPa in the central portion of the plate width, but was about 1550 MPa at the edge portion, showing uneven tensile strength.
  • the tensile strength of the steel sheet manufactured in Comparative Example 2 was about 1350 MPa at the center of the sheet width and about 1400 MPa at the edge portion, showing a decrease in tensile strength and nonuniformity.
  • the present invention it is possible to prevent the non-uniformity of the cooling rate in the plate width direction of the metal plate while suppressing a decrease in the cooling rate of the metal plate while suppressing the shape defect that occurs in the metal plate during quenching. It is possible to provide an apparatus, a quenching method, and a method for manufacturing a steel sheet using the quenching method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Provided are a quenching device, a quenching method, and steel sheet production method, whereby shape defects in metal plates during quenching can be suppressed, reduction in metal plate cooling speed can be suppressed, and lack of uniformity of cooling speed in the plate width direction of the metal plates can be prevented. This quenching device immerses and cools a high-temperature metal plate in liquid and comprises: a tank housing the liquid in which the metal plate is immersed; a jetting device having at least part thereof provided inside the liquid in the tank and comprising a plurality of nozzles that jet the liquid on to the metal plate; and a restraining roll provided between an entry side end section and an exit side end section of the jetting device and pinching the metal plate from both sides. The jetting device is characterized by: at least a nozzle adjacent to the restraining roll being inclined from the horizontal, towards the restraining roll; the opening of the nozzle adjacent to the restraining roll being slit-shaped; and the width of the opening reducing from the center of the opening in the longitudinal direction to the end in the longitudinal direction.

Description

焼入れ装置及び焼入れ方法並びに鋼板の製造方法Quenching apparatus, quenching method, and steel sheet manufacturing method
 本発明は、金属板を連続的に通板しながら焼鈍を行う連続焼鈍設備における焼入れ装置及び焼入れ方法並びに鋼板の製造方法に関する。 The present invention relates to a quenching apparatus and a quenching method in a continuous annealing facility that performs annealing while continuously passing a metal plate, and a method for manufacturing a steel sheet.
 鋼板をはじめとする金属板の製造においては、連続焼鈍設備において、金属板を加熱後に冷却し、相変態を起こさせる等して材質の造り込みを行う。近年、自動車業界では車体の軽量化と衝突安全性の両立を目的として、薄肉化した高張力鋼板(ハイテン)の需要が増している。ハイテンの製造時には、鋼板を急速に冷却する技術が重要となる。鋼板の冷却速度が最も速い技術の1つとして、水焼入れ法が知られている。水焼入れ法では、加熱された鋼板を水中に浸漬させると同時に、水中内に設けられたクエンチノズルにより冷却水を鋼板に噴射することで、鋼板の焼入れが行われる。鋼板の焼入れ時には、鋼板に反りや波状変形等の形状不良が発生するという問題がある。このような鋼板の焼入れ時における形状不良を防止するために、従来、様々な手法が提案されている。 In the production of metal sheets such as steel sheets, in a continuous annealing equipment, the metal sheet is heated and then cooled to undergo phase transformation, etc. to build in the material. In recent years, in the automobile industry, there is an increasing demand for thin high-strength steel sheets (high tensile strength steel sheets) for the purpose of achieving both weight reduction of vehicle bodies and collision safety. When manufacturing high-tensile steel, technology for rapidly cooling the steel sheet is important. A water quenching method is known as one of the technologies with the fastest cooling rate of a steel sheet. In the water quenching method, the steel sheet is quenched by immersing the heated steel sheet in water and at the same time spraying cooling water on the steel sheet by a quench nozzle provided in the water. When quenching a steel sheet, there is a problem in that the steel sheet suffers from shape defects such as warpage and wavy deformation. In order to prevent such a defective shape at the time of quenching a steel sheet, various methods have been conventionally proposed.
 例えば、特許文献1では、連続焼鈍炉での焼入れ時に生じる金属板の波状変形を抑制するために、焼入れ工程に付される鋼板の張力変更手段として、ブライドルロールを焼入れ部前後に設ける手法が提案されている。また、特許文献2には、焼入れの際に鋼板の表裏面の少なくとも幅方向の全域に亘って張力を付与することにより、鋼板を平坦状に矯正する手法が提案されている。また、特許文献3には、焼入れ中の金属板を一対の拘束ロールにより拘束することで、鋼板の変形を防止する手法が提案されている。 For example, in Patent Document 1, in order to suppress wavy deformation of a metal plate that occurs during quenching in a continuous annealing furnace, a method is proposed in which a bridle roll is provided before and after the quenching part as a tension changing means of the steel plate subjected to the quenching process. Has been done. Further, Patent Document 2 proposes a method of straightening a steel sheet by applying tension to at least the entire width direction of the front and back surfaces of the steel sheet during quenching. Further, Patent Document 3 proposes a method for preventing deformation of a steel plate by restraining a metal plate being quenched by a pair of restraining rolls.
 しかし、特許文献1に記載された方法は、高温の鋼板に大きな張力をかけるため鋼板の破断が起きるおそれがある。また、高温の鋼板に接触する焼入れ部前のブライドルロールには大きなサーマルクラウンが発生し、ブライドルロールと鋼板とが幅方向に不均一に接触してしまう。その結果、鋼板に座屈や疵が発生するので、鋼板形状を改善することができないという問題がある。
 また、特許文献2に記載された方法では、張力15N/mmとすることで反り量が数mm程度まで減少しているが、このような高張力では鋼帯に絞りが発生する恐れがある。
 また、特許文献3に記載された方法では、焼入れ時の鋼板の変形を防止できるものの、金属板が拘束ロールを通過する際に、一時的に金属板の冷却速度が低下することで、金属板の特性が低下するという課題がある。具体的には、金属板の冷却速度の低下に起因して、所望の引張強度を有する金属板が得られないことがある。
 これらの問題を解決するための技術を、本出願人は特許文献4において開示している。特許文献4では、焼入れ中の金属板を一対又は複数の拘束ロールにより拘束しつつ、拘束ロールに最も近いノズルからは、拘束ロールの方へ向かって斜めに液体を噴出する手法が提案されている。
However, the method described in Patent Document 1 applies a large amount of tension to a high temperature steel plate, so that the steel plate may be broken. In addition, a large thermal crown is generated on the bridle roll before the quenching part, which comes into contact with the high temperature steel plate, and the bridle roll and the steel plate are unevenly contacted in the width direction. As a result, buckling or flaws occur in the steel sheet, and there is a problem that the shape of the steel sheet cannot be improved.
Further, in the method described in Patent Document 2, the amount of warp is reduced to about several mm by setting the tension to 15 N / mm 2 , but such high tension may cause drawing in the steel strip. .
Further, in the method described in Patent Document 3, the deformation of the steel plate during quenching can be prevented, but when the metal plate passes through the constraining roll, the cooling rate of the metal plate is temporarily reduced, so that the metal plate However, there is a problem in that Specifically, a metal plate having a desired tensile strength may not be obtained due to a decrease in the cooling rate of the metal plate.
The applicant discloses a technique for solving these problems in Patent Document 4. Patent Document 4 proposes a method of ejecting a liquid obliquely toward the constraining roll from the nozzle closest to the constraining roll while constraining the metal plate being quenched by a pair or a plurality of constraining rolls. .
特開2011-184773号公報JP, 2011-184773, A 特開平11-193418号公報Japanese Patent Laid-Open No. 11-193418 特許第6094722号公報Japanese Patent No. 6094722 特開2017-119912号公報JP, 2017-119912, A
 ただし、特許文献4に記載された方法では、焼入れ時の鋼板の変形を防止しつつ、拘束ロールの近傍での金属板の冷却速度の低下を抑えることができるが、金属板の板幅方向の冷却速度が不均一になるという課題がある。具体的には、金属板の中央部よりもエッジ部の冷却速度が高くなり、冷却速度の不均一性に起因して、金属板の中央部よりもエッジ部の引張強度が高くなるということがある。 However, in the method described in Patent Document 4, it is possible to suppress the deformation of the steel plate during quenching and suppress the decrease in the cooling rate of the metal plate near the restraint roll. There is a problem that the cooling rate becomes uneven. Specifically, the cooling rate of the edge part is higher than that of the central part of the metal plate, and the tensile strength of the edge part is higher than that of the central part of the metal plate due to the uneven cooling rate. is there.
 本発明者らは、このような問題を解決すべく鋭意検討を重ねた結果、以下のような知見を得た。拘束ロールと金属板は金属板の板幅方向全面で接触しているため、拘束ロールに隣接するノズルから噴出された水の逃げ場が、板幅方向にしかないことになり、金属板の中央部に衝突した水は横流れすることになる。そのため、金属板上における冷却速度は、金属板の中央部よりもエッジ部の方が高くなる傾向がある。 The inventors of the present invention have earnestly studied to solve such a problem, and have obtained the following findings. Since the constraining roll and the metal plate are in contact with each other across the entire width of the metal plate, the escape area for the water ejected from the nozzle adjacent to the constraining roll is only in the width direction, and the central part of the metal plate The colliding water will flow laterally. Therefore, the cooling rate on the metal plate tends to be higher in the edge portion than in the central portion of the metal plate.
 本発明は、上記の知見に基づき完成されたものである。すなわち、焼入れ時に金属板に発生する形状不良を抑制しつつ、金属板の冷却速度の低下を抑えながら、金属板の板幅方向の冷却速度の不均一性を防止することのできる焼入れ装置及び焼入れ方法並びに鋼板の製造方法を提供することを課題とする。 The present invention has been completed based on the above findings. That is, a quenching device and a quenching device capable of preventing non-uniformity of the cooling rate of the metal plate in the plate width direction while suppressing a decrease in the cooling rate of the metal plate while suppressing a shape defect that occurs in the metal plate during quenching. It is an object to provide a method and a method for manufacturing a steel sheet.
 上記課題を解決するための手段は、以下の通りである。
 [1] 高温の金属板を浸漬させる液体を収容した槽と、
 少なくとも一部が前記槽の液体中に設けられ、前記金属板の両面に前記液体を噴射する複数のノズルを備えた噴出装置と、
 前記噴出装置の入側端部と出側端部との間に設けられ、前記金属板を両面から挟みつける拘束ロールとを備え、
 前記噴出装置は、少なくとも前記拘束ロールに隣接するノズルが、前記金属板に対して垂直方向から前記拘束ロールの方へ傾斜しており、
 前記拘束ロールに隣接するノズルの開口部が細隙状であり、
 前記開口部の開口幅が、前記開口部の長手方向中央部から長手方向端部にかけて減少していることを特徴とする、焼入れ装置。
 [2] 前記開口部の開口幅が、前記開口部の長手方向中央部から長手方向端部にかけて不連続に減少している、前記[1]に記載の焼入れ装置。
 [3] 前記開口部の開口幅が、前記開口部の長手方向中央部から長手方向端部にかけて連続的に減少している、前記[1]に記載の焼入れ装置。
 [4] 前記開口部の長手方向中央部に、開口幅が均一な領域を有する、前記[1]~[3]のいずれかに記載の焼入れ装置。
 [5] 前記[1]~[4]のいずれかに記載の焼入れ装置を用いて焼入れを行う、焼入れ方法。
 [6] 鋼板を製造する際に、前記[5]に記載の焼入れ方法を用いる、鋼板の製造方法。
 [7] 前記開口部の開口幅が、前記開口部の長手方向中央部では2mm以上5mm以下であり、前記開口部の長手方向端部では0mm超3mm以下であり、前記長手方向中央部の開口幅より前記長手方向端部の開口幅が小さいことを特徴とする、前記[1]~[3]のいずれかに記載の焼入れ装置。
Means for solving the above problems are as follows.
[1] A tank containing a liquid in which a high-temperature metal plate is immersed,
At least a part is provided in the liquid of the tank, a jetting device including a plurality of nozzles for jetting the liquid on both surfaces of the metal plate,
A restraint roll that is provided between an inlet side end and an outlet side end of the ejection device and that holds the metal plate from both sides,
In the ejection device, at least the nozzle adjacent to the restraint roll is inclined from the direction perpendicular to the metal plate toward the restraint roll,
The opening of the nozzle adjacent to the constraining roll has a slit-like shape,
A quenching device, wherein the opening width of the opening is reduced from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
[2] The quenching device according to [1], wherein the opening width of the opening decreases discontinuously from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
[3] The quenching apparatus according to [1], wherein the opening width of the opening is continuously reduced from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
[4] The quenching device according to any one of [1] to [3], which has a region having a uniform opening width in a central portion in the longitudinal direction of the opening.
[5] A quenching method in which quenching is performed using the quenching device according to any one of [1] to [4].
[6] A method for manufacturing a steel sheet, which uses the quenching method described in [5] above when manufacturing a steel sheet.
[7] The opening width of the opening is 2 mm or more and 5 mm or less at the central portion in the longitudinal direction of the opening, and is more than 0 mm and 3 mm or less at the end portions in the longitudinal direction of the opening, and the opening at the central portion in the longitudinal direction. The quenching device according to any one of [1] to [3], wherein the opening width of the longitudinal end portion is smaller than the width.
 本発明によって、焼入れ時に金属板に発生する形状不良を抑制しつつ、金属板の冷却速度の低下を抑えながら、金属板の板幅方向の冷却速度の不均一性を防止することができる。 According to the present invention, it is possible to prevent the non-uniformity of the cooling rate of the metal plate in the plate width direction while suppressing the shape defect that occurs in the metal plate during quenching and suppressing the decrease of the cooling rate of the metal plate.
図1は、本発明の一実施形態に係る焼入れ装置の基本構成を示す説明図である。FIG. 1 is an explanatory diagram showing a basic configuration of a quenching apparatus according to an embodiment of the present invention. 図2は、図1の噴出装置の付近を示す拡大図である。FIG. 2 is an enlarged view showing the vicinity of the ejection device of FIG. 図3は、本発明の一実施形態における隣接ノズルの開口部の一例の拡大図である。FIG. 3 is an enlarged view of an example of the openings of the adjacent nozzles in the embodiment of the present invention. 図4は、本発明の一実施形態における隣接ノズルの開口部の他の例の拡大図である。FIG. 4 is an enlarged view of another example of the openings of the adjacent nozzles in the embodiment of the present invention. 図5は、従来の隣接ノズルの開口部の拡大図である。FIG. 5 is an enlarged view of an opening of a conventional adjacent nozzle. 図6は、本発明例1の結果を示すグラフである。FIG. 6 is a graph showing the results of Example 1 of the present invention. 図7は、本発明例2の結果を示すグラフである。FIG. 7 is a graph showing the results of Example 2 of the present invention. 図8は、本発明例3の結果を示すグラフである。FIG. 8 is a graph showing the results of Example 3 of the present invention. 図9は、比較例1の結果を示すグラフである。FIG. 9 is a graph showing the results of Comparative Example 1. 図10は、比較例2の結果を示すグラフである。FIG. 10 is a graph showing the results of Comparative Example 2. 図11は、本発明例1、2、3及び比較例1、2の結果を示すグラフである。FIG. 11 is a graph showing the results of Inventive Examples 1, 2, and 3 and Comparative Examples 1 and 2. 図12は、鋼板を搬送方向から正対して見た模式図である。FIG. 12 is a schematic view of the steel sheet viewed from the conveyance direction.
 以下、図面を参照して、本発明の一実施形態について具体的に説明する。 An embodiment of the present invention will be specifically described below with reference to the drawings.
 図1は、本発明の一実施形態に係る焼入れ装置の基本構成を示す図である。図2は図1に示す焼入れ装置の噴出装置4付近の拡大図である。焼入れ装置は、連続焼鈍炉の均熱帯の出側に設けられた冷却設備に適用されうる。図1では、連続焼鈍炉の均熱帯の出口に設けられた一対のシールロール3が示されている。焼入れ装置は、金属板5を冷却するための冷媒(液体)である水2を収容した水槽1と、金属板5の両面に水2を吹き付けて冷却するための噴出装置4と、金属板5を拘束して変形を防ぐ拘束ロール7とを備えている。噴出装置4は少なくとも一部が槽1の液体中(水2中)に設けられる。また、噴出装置4の出側には、金属板5を水中に浸漬させつつ金属板5の搬送方向(通板方向)を変更するシンクロール6が設けられる。 FIG. 1 is a diagram showing a basic configuration of a quenching apparatus according to an embodiment of the present invention. FIG. 2 is an enlarged view of the vicinity of the ejection device 4 of the quenching device shown in FIG. The quenching device can be applied to a cooling facility provided on the outflow side of the soaking zone of a continuous annealing furnace. FIG. 1 shows a pair of seal rolls 3 provided at the soaking zone outlet of the continuous annealing furnace. The quenching apparatus includes a water tank 1 containing water 2 which is a coolant (liquid) for cooling the metal plate 5, a jetting device 4 for spraying the water 2 on both surfaces of the metal plate 5 for cooling, and a metal plate 5 And a restraining roll 7 for restraining the deformation and preventing the deformation. At least a part of the ejection device 4 is provided in the liquid (in the water 2) of the tank 1. A sink roll 6 is provided on the outlet side of the ejection device 4 to change the transport direction (passing direction) of the metal plate 5 while immersing the metal plate 5 in water.
 噴出装置4は、水を噴出する複数のノズル14、24と、ノズル14、24を保持するノズルユニット34、44とからなる。一対のノズルユニット34と44との間には、間隙が設けられている。前記間隙中を金属板5が通板される際に、金属板5の表裏面に向かってノズル14、24から水が噴出される。図1及び図2の例では、金属板5の左側をおもて面とし、右側を裏面とする。図の左側には、ノズル14を金属板5のおもて面に向けるようにノズルユニット34が配置され、図の右側には、ノズル24を金属板5の裏面に向けるようにノズルユニット44が配置される。 The ejection device 4 includes a plurality of nozzles 14 and 24 that eject water, and nozzle units 34 and 44 that hold the nozzles 14 and 24. A gap is provided between the pair of nozzle units 34 and 44. When the metal plate 5 is passed through the gap, water is jetted from the nozzles 14 and 24 toward the front and back surfaces of the metal plate 5. In the example of FIGS. 1 and 2, the left side of the metal plate 5 is the front surface and the right side is the back surface. On the left side of the figure, the nozzle unit 34 is arranged so that the nozzle 14 faces the front surface of the metal plate 5, and on the right side of the figure, the nozzle unit 44 faces so that the nozzle 24 faces the back surface of the metal plate 5. Will be placed.
 図1及び図2の例では、ノズルユニット34及び44は、それぞれ搬送方向に沿って2つずつに分割される。金属板5のおもて面側には、入側ノズルユニット34aと出側ノズルユニット34bとが設けられ、裏面側には、入側ノズルユニット44aと出側ノズルユニット44bとが設けられる。拘束ロール7は、入側ノズルユニット34a、44aと出側ノズルユニット34b、44bとの間に設けられる。これにより、拘束ロール7は、噴出装置の入側端部(入側ノズルユニット34a、44aの入側端面)と出側端部(出側ノズルユニット34b、44bの出側端面)との間に設けられることになる。 In the example of FIGS. 1 and 2, the nozzle units 34 and 44 are each divided into two along the carrying direction. An inlet side nozzle unit 34a and an outlet side nozzle unit 34b are provided on the front surface side of the metal plate 5, and an inlet side nozzle unit 44a and an outlet side nozzle unit 44b are provided on the back surface side. The restraint roll 7 is provided between the inlet nozzle units 34a and 44a and the outlet nozzle units 34b and 44b. Thereby, the restraint roll 7 is provided between the inlet side end portion (the inlet side end surface of the inlet side nozzle units 34a, 44a) and the outlet side end portion (the outlet side end surface of the outlet side nozzle units 34b, 44b) of the ejection device. Will be provided.
 入側ノズルユニット34a、44aは、一部が水中に浸漬し、残部が水上から出るように、設けられる。通板されてきた金属板5は、水上に露出する入側ノズルユニット34a、44aの内側の間隙に装入され、次いで水中に浸漬し、ノズル14及び24から水が噴出される。入側ノズルユニット34a、44aには、複数のノズル14、24が設けられている。一部のノズル(例えば図1の入側ノズルユニット34a、44aの最も上に設けられたノズル)は、ノズルの開口部が水面よりも上部に位置し、ノズルの開口部の少なくとも一部が水中に浸漬していない状態にある。開口部が水面よりも上部に位置するノズルは、高温の金属板5が水中に導入された際に発生する水の噴き上げを抑えるため、斜め下に向かって水を噴出できるように、下方向に向いて斜めに設けられている。 The inlet nozzle units 34a and 44a are provided so that a part of them is immersed in water and the rest comes out of the water. The metal plate 5 that has been passed through is inserted into a gap inside the inlet nozzle units 34a and 44a exposed on the water, then immersed in the water, and water is ejected from the nozzles 14 and 24. The inlet nozzle units 34a, 44a are provided with a plurality of nozzles 14, 24. Some nozzles (for example, the nozzles provided at the top of the inlet- side nozzle units 34a and 44a in FIG. 1) have an opening of the nozzle located above the water surface, and at least a part of the opening of the nozzle is underwater. Not soaked in. The nozzle whose opening is located above the water surface suppresses the water from being blown up when the high-temperature metal plate 5 is introduced into the water. It is installed diagonally.
 金属板5は、入側ノズルユニット34a、44aを通過した後に、拘束ロール7により拘束される。拘束ロール7は、金属板5の急冷時に生じうる変形を防止するために、水中において金属板5を両面(表裏面)から挟みつける。一対の拘束ロール7は、中心軸を金属板5の搬送方向にずらして配置することが好ましい。中心軸をずらして配置することで、金属板5の拘束力を増大させ、形状矯正力を高めることができる。一例として、それぞれの中心軸を搬送方向に40mm以上150mm以下ずらして拘束ロール7を配置することが好ましく、80mm以上100mm以下ずらして配置することがさらに好ましい。 The metal plate 5 is constrained by the constraining roll 7 after passing through the inlet nozzle units 34a, 44a. The restraint roll 7 sandwiches the metal plate 5 from both sides (front and back surfaces) in water in order to prevent deformation that may occur when the metal plate 5 is rapidly cooled. It is preferable that the pair of restraining rolls 7 are arranged with their central axes displaced in the transport direction of the metal plate 5. By arranging the central axes so as to be displaced, the restraining force of the metal plate 5 can be increased and the shape correcting force can be increased. As an example, it is preferable to dispose the constraining rolls 7 by displacing the respective central axes in the transport direction by 40 mm or more and 150 mm or less, and it is more preferable to dispose the constraining rolls 7 by 80 mm or more and 100 mm or less.
 また、拘束ロール7によって金属板5を押し込み、拘束ロール7に金属板5を巻き付けるように通板することが望ましい。金属板5を押し込むことにより、矯正力を高めることができる。1個の拘束ロール7による押し込み量は、図1及び図2のように金属板5が直線状に通板される場合を基準(0mm)とした場合に、水平方向に0mm以上2.5mm以下とすることが好ましい。0.5mm以上1.0mm以下とすることがより好ましい。 Also, it is desirable to push the metal plate 5 with the restraint roll 7 and pass the metal plate 5 around the restraint roll 7 so as to wind it. By pushing in the metal plate 5, the correction force can be increased. The pushing amount by one restraint roll 7 is 0 mm or more and 2.5 mm or less in the horizontal direction when the reference (0 mm) is the case where the metal plate 5 is linearly threaded as shown in FIGS. 1 and 2. It is preferable that More preferably, it is 0.5 mm or more and 1.0 mm or less.
 金属板5は、拘束ロール7を通過した後に、出側ノズルユニット34b、44bの間隙を通過する。この際にも、出側ノズルユニット34b、44bに設けられたノズル14、24によって金属板5の表裏面に水が噴出される。
 図1の例では、入側ノズルユニット34a、44aと出側ノズルユニット34b、44bが、拘束ロール7を上下から挟むように設けられており、拘束ロール7と重なる高さにはノズルユニット及びノズルが設けられていない。このような例では、入側ノズルユニット34a、44aの最も出側に位置するノズル14a、24aと、出側ノズルユニット34b、44bの最も入側に位置するノズル14b、24bが、拘束ロール7に隣接するノズルとなる。上記の隣接するノズルを以下「隣接ノズル」と称することがある。
After passing through the constraining roll 7, the metal plate 5 passes through the gap between the outlet nozzle units 34b and 44b. Also at this time, water is jetted to the front and back surfaces of the metal plate 5 by the nozzles 14 and 24 provided in the outlet nozzle units 34b and 44b.
In the example of FIG. 1, the inlet- side nozzle units 34a and 44a and the outlet- side nozzle units 34b and 44b are provided so as to sandwich the constraining roll 7 from above and below, and the height of the constraining roll 7 and the nozzle unit and the nozzles Is not provided. In such an example, the nozzles 14a and 24a located on the most outlet side of the inlet side nozzle units 34a and 44a and the nozzles 14b and 24b located on the most inlet side of the outlet side nozzle units 34b and 44b are attached to the restraining roll 7. It becomes an adjacent nozzle. The above adjacent nozzles may be referred to as "adjacent nozzles" hereinafter.
 前記隣接ノズルは、水平ではなく、ノズルの開口部が水平面から拘束ロール7の方へと向くように、傾斜して設けられる。すなわち、前記隣接ノズルは、金属板5に対して垂直方向から拘束ロール7の方へ傾斜している。より具体的には、図2における隣接ノズル14a、24aは、下方向に傾けて取り付けられ、隣接ノズル14b、24bは、上方向に傾けて取り付けられる。このように隣接ノズルを傾けると、隣接ノズルを水平となるように設けるのに比べて、隣接ノズルから噴出された水を、拘束ロール7と金属板5との接触点により近い位置まで到達させることができる。これにより、拘束ロール7の近傍でノズルから噴出された水が金属板5の表裏面に接触しにくいことに起因する、拘束ロール7近傍での金属板5に対する冷却能力の低下を防止することができる。 The adjacent nozzles are not horizontal but are installed so as to be inclined so that the nozzle openings face from the horizontal plane toward the constraining roll 7. That is, the adjacent nozzles are inclined from the direction perpendicular to the metal plate 5 toward the restraining roll 7. More specifically, the adjacent nozzles 14a and 24a in FIG. 2 are attached while being inclined downward, and the adjacent nozzles 14b and 24b are attached while being inclined upward. Inclining the adjacent nozzles in this way allows the water ejected from the adjacent nozzles to reach a position closer to the contact point between the constraining roll 7 and the metal plate 5, as compared with the case where the adjacent nozzles are provided horizontally. You can As a result, it is possible to prevent the cooling ability of the metal plate 5 near the constraining roll 7 from being lowered due to the fact that the water ejected from the nozzle near the constraining roll 7 does not easily contact the front and back surfaces of the metal plate 5. it can.
 図1及び図2の例では、隣接ノズル以外の他のノズルについても、全て隣接ノズルと同じ方向に傾けて設けているが、隣接ノズル以外のノズルは従来通り水平に設けていてもよい。ただし、金属板5における水の接触位置をなるべく均一にするという観点からは、各ノズルユニットにおける全てのノズルを同じ方向に同じ角度だけ傾けることが好ましい。 In the example of FIGS. 1 and 2, all the nozzles other than the adjacent nozzles are also tilted in the same direction as the adjacent nozzles, but the nozzles other than the adjacent nozzles may be horizontally provided as before. However, from the viewpoint of making the contact position of water on the metal plate 5 as uniform as possible, it is preferable to incline all the nozzles in each nozzle unit in the same direction by the same angle.
 図2のように、隣接ノズルの傾斜角度としては、隣接ノズルの軸線方向(液体噴出方向(水の噴出方向))と金属板とのなす角度のうち、鋭角となる角度θを設定することができる。尚、水は一定の広がりをもってノズルから吐出されるが、前記水の噴出方向としてはノズルから吐出された水の中心軸線の方向を採用することができる。角度θは、隣接ノズルからの水の噴出量、隣接ノズルの開口部と拘束ロール7との距離、隣接ノズルの開口部と金属板5の表裏面との距離等に応じて設定することができる。角度θの好適例としては、20°以上60°以下が挙げられる。角度θが20°以上60°以下であれば、隣接ノズルから噴出された水の流れが拘束ロール7と金属板5との接触位置のより近傍まで到達し、拘束ロール7近傍での金属板5に対する冷却速度低下を抑制する効果が十分に得られる。
 また、角度θを30°以上45°以下とすることがさらに好ましい。尚、ノズルを傾斜させる際には、ノズルから水を斜めに噴射できるように、少なくともノズルの先端を傾斜させていればよい。
As shown in FIG. 2, the inclination angle of the adjacent nozzle may be set to an acute angle θ among the angles formed by the axial direction of the adjacent nozzle (liquid ejection direction (water ejection direction)) and the metal plate. it can. Although water is discharged from the nozzle with a certain spread, the direction of the central axis of the water discharged from the nozzle can be adopted as the jetting direction of the water. The angle θ can be set according to the amount of water jetted from the adjacent nozzle, the distance between the opening of the adjacent nozzle and the restraint roll 7, the distance between the opening of the adjacent nozzle and the front and back surfaces of the metal plate 5, and the like. . A preferable example of the angle θ is 20 ° or more and 60 ° or less. If the angle θ is 20 ° or more and 60 ° or less, the flow of water ejected from the adjacent nozzle reaches the vicinity of the contact position between the restraint roll 7 and the metal plate 5, and the metal plate 5 near the restraint roll 7 is reached. It is possible to sufficiently obtain the effect of suppressing the decrease in the cooling rate.
Further, it is more preferable that the angle θ is 30 ° or more and 45 ° or less. When inclining the nozzle, at least the tip of the nozzle may be inclined so that water can be jetted obliquely from the nozzle.
 また、本発明に係る焼入れ装置は、金属板5の搬送方向に沿って一体として形成された、非分割型のノズルユニットを備えていてもよい。
 図示していないが、噴出装置4における各ノズルは、ポンプを途中に設けた配管に接続される。ポンプによって、水槽1内の水2が配管内を汲み上げられて、ノズル14、24へと圧送されることにより、ノズル14、24の開口部から高圧水が噴出される。
Further, the quenching device according to the present invention may include a non-divided nozzle unit integrally formed along the transport direction of the metal plate 5.
Although not shown, each nozzle in the ejection device 4 is connected to a pipe provided with a pump in the middle. By the pump, the water 2 in the water tank 1 is pumped up in the pipe and pressure-fed to the nozzles 14 and 24, whereby high-pressure water is ejected from the openings of the nozzles 14 and 24.
 また、水槽1内の水2は、焼入れに適した水温となるように維持される。水槽1内の水2の一部が、外部のクーリングタワー等の冷却設備に送られて冷却された後に、冷却後の水2が水槽1へと戻されることで、水槽1内の水温上昇が防止される。例えば、水槽1内の水温としては、0℃超50℃以下が好ましく、10℃以上40℃以下が特に好ましい。 Also, the water 2 in the water tank 1 is maintained at a water temperature suitable for quenching. Part of the water 2 in the water tank 1 is sent to a cooling facility such as an external cooling tower to be cooled, and then the cooled water 2 is returned to the water tank 1 to prevent an increase in the water temperature in the water tank 1. To be done. For example, the water temperature in the water tank 1 is preferably more than 0 ° C and 50 ° C or less, and particularly preferably 10 ° C or more and 40 ° C or less.
 そして、本発明の一実施形態に係る焼入れ装置では、従来の隣接ノズルの開口部(噴出孔)とは異なる形状の開口部(噴出孔)を有する隣接ノズルを備えている。以下、図3、図4、図5を用いて述べる。なお、開口部の開口幅とは、金属板5の通板方向(各図における上下方向)の開口量であり、開口部の長手方向とは、金属板5の板幅方向(各図における左右方向)を意味する。 Then, the quenching apparatus according to the embodiment of the present invention includes the adjacent nozzle having an opening (ejection hole) having a shape different from the opening (ejection hole) of the conventional adjacent nozzle. This will be described below with reference to FIGS. 3, 4, and 5. The opening width of the opening is the opening amount of the metal plate 5 in the sheet passing direction (vertical direction in each drawing), and the longitudinal direction of the opening is the plate width direction of the metal plate 5 (left and right in each drawing). Direction).
 まず、図5は、従来の隣接ノズルの開口部14a(14aX)、24a(24aX)、14b(14bX)、24b(24bX)の拡大図である。隣接ノズルの開口部14aX、24aX、14bX、24bXの開口幅が開口部の長手方向で同一であるため、隣接ノズルから噴出される水は金属板5の板幅方向で同一流量となる。また、拘束ロール5の隣接ノズルから噴出された水の逃げ場は、金属板5の板幅方向にしかないため、金属板5の中央部に衝突した水は横流れすることになる。上記2つの効果から、金属板5上における冷却速度は、金属板5の中央部よりもエッジ部の方が高くなる傾向がある。 First, FIG. 5 is an enlarged view of the openings 14a (14aX), 24a (24aX), 14b (14bX), and 24b (24bX) of the conventional adjacent nozzles. Since the opening widths of the openings 14aX, 24aX, 14bX, 24bX of the adjacent nozzles are the same in the longitudinal direction of the openings, the water ejected from the adjacent nozzles has the same flow rate in the plate width direction of the metal plate 5. Further, the escape area of the water ejected from the adjacent nozzle of the restraint roll 5 is only in the plate width direction of the metal plate 5, so that the water that collides with the central portion of the metal plate 5 flows laterally. From the above two effects, the cooling rate on the metal plate 5 tends to be higher in the edge portion than in the central portion of the metal plate 5.
 これに対して、図3は、本発明の一実施形態における隣接ノズルの開口部14a(14aA)、24a(24aA)、14b(14bA)、24b(24bA)の拡大図である。
 また、図4は、本発明の一実施形態における隣接ノズルの他の開口部14aB、24aB、14bB、24bBの拡大図である。
On the other hand, FIG. 3 is an enlarged view of the openings 14a (14aA), 24a (24aA), 14b (14bA), 24b (24bA) of the adjacent nozzles in the embodiment of the present invention.
Further, FIG. 4 is an enlarged view of the other openings 14aB, 24aB, 14bB, 24bB of the adjacent nozzles in the embodiment of the present invention.
 図3及び図4の例では、開口部が細隙状(スリット状)であるとともに、開口部の長手方向中央部の開口幅に比べて長手方向端部の開口幅が小さくなっている。詳しくは、図3の開口部14aA、24aA、14bA、24bAは、長手方向中央部に開口幅が広くて均一な領域を、長手方向端部に開口幅が狭くて均一な領域を有する。すなわち、長手方向中央部から長手方向端部にかけて開口幅が不連続に(段階的に)減少している。 In the example of FIGS. 3 and 4, the opening is slit-shaped, and the opening width at the longitudinal end is smaller than the opening width at the central portion in the longitudinal direction of the opening. Specifically, the openings 14aA, 24aA, 14bA, and 24bA of FIG. 3 have a wide and uniform region at the central portion in the longitudinal direction and a narrow and uniform region at the end portions in the longitudinal direction. That is, the opening width decreases discontinuously (stepwise) from the central portion in the longitudinal direction to the end portion in the longitudinal direction.
 一方、図4の開口部14aB、24aB、14bB、24bBは、長手方向中央部に開口幅が広くて均一な領域を有し、そこから長手方向端部にかけて開口幅が連続的に減少している。このように、いずれの開口部も、隣接ノズルの開口部の開口幅が、開口部の長手方向中央部から長手方向端部にかけて減少している。
 そのため、隣接ノズルから噴出される水は金属板5の板幅方向で中央部よりエッジ部の方が小流量となる。また、拘束ロール7の隣接ノズルから噴出された水の逃げ場は、金属板5の板幅方向にしかないため、金属板5の中央部に衝突した水は横流れすることになる。上記2つの効果から、金属板5上における冷却速度は、金属板5の中央部とエッジ部で差が無く、板幅方向で均一になる。
On the other hand, the openings 14aB, 24aB, 14bB, 24bB of FIG. 4 have a wide and uniform area in the central portion in the longitudinal direction, and the opening width continuously decreases from there to the end portion in the longitudinal direction. . As described above, in any of the openings, the opening width of the opening of the adjacent nozzle decreases from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
Therefore, the amount of water ejected from the adjacent nozzles is smaller in the edge portion than in the central portion in the plate width direction of the metal plate 5. Further, the escape area for the water ejected from the adjacent nozzle of the restraint roll 7 is only in the plate width direction of the metal plate 5, so that the water that collides with the central portion of the metal plate 5 will flow laterally. From the above two effects, the cooling rate on the metal plate 5 is uniform in the plate width direction without any difference between the central part and the edge part of the metal plate 5.
 隣接ノズルの開口部の長手方向端部の形状は、図3のように板幅方向に対して平行でも良いし、図4のように板幅方向に対して斜めでも良い。ただし、長手方向中央部の開口幅より長手方向端部の開口幅が小さくなければならない。 The shape of the longitudinal ends of the openings of the adjacent nozzles may be parallel to the plate width direction as shown in FIG. 3 or may be oblique to the plate width direction as shown in FIG. However, the opening width at the longitudinal end must be smaller than the opening width at the central portion in the longitudinal direction.
 なお、隣接ノズルの開口部の開口幅は、具体的な値としては、長手方向中央部の開口幅が2mm以上5mm以下が好ましく、2mm以上4mm以下がより好ましく、2mm以上3mm以下が更に好ましい。また、長手方向端部の開口幅は、0mm超3mm以下が好ましく、1mm以上3mm以下がより好ましく、1mm以上2mm以下が更に好ましい。 As a specific value, the opening width of the opening of the adjacent nozzle is preferably 2 mm or more and 5 mm or less, more preferably 2 mm or more and 4 mm or less, and even more preferably 2 mm or more and 3 mm or less. Further, the opening width of the longitudinal end portion is preferably more than 0 mm and 3 mm or less, more preferably 1 mm or more and 3 mm or less, and further preferably 1 mm or more and 2 mm or less.
 また、隣接ノズルの開口部の長手方向の長さは、具体的な値としては、長手方向中央部の長さが600mm以上1200mm以下が好ましく、800mm以上1000mm以下がより好ましく、850mm以上950mm以下が更に好ましい。また、長手方向全体の長さは、1400mm以上2000mm以下が好ましく、1500mm以上1900mm以下がより好ましく、1600mm以上1800mm以下が更に好ましい。 The length of the opening of the adjacent nozzle in the longitudinal direction is, as a specific value, preferably 600 mm or more and 1200 mm or less, more preferably 800 mm or more and 1000 mm or less, and 850 mm or more and 950 mm or less in the length of the central portion in the longitudinal direction. More preferable. The total length in the longitudinal direction is preferably 1400 mm or more and 2000 mm or less, more preferably 1500 mm or more and 1900 mm or less, and further preferably 1600 mm or more and 1800 mm or less.
 そして、金属板とロールのスリップを抑えるために、拘束ロール7を駆動ロールとすることが好ましい。さらに、金属板5の矯正力を調整するために、拘束ロール7は、必要に応じて開閉可能(金属板5に対する押し込み量を制御可能)とすることが好ましい。 Then, in order to suppress the slip between the metal plate and the roll, it is preferable to use the restraint roll 7 as a drive roll. Further, in order to adjust the correction force of the metal plate 5, it is preferable that the restraint roll 7 can be opened and closed (the amount of pushing into the metal plate 5 can be controlled) as necessary.
 拘束ロール7は、熱伝導率に優れるとともに、金属板5の挟圧時における荷重に耐えられる強度を備えた材質で形成されていればよい。拘束ロール7の材質としては、例えば、SUS304、SUS310、セラミック等が挙げられる。 The restraint roll 7 may be formed of a material having excellent thermal conductivity and strength enough to withstand the load when the metal plate 5 is pinched. Examples of the material of the constraining roll 7 include SUS304, SUS310, and ceramics.
 上記のような本発明の実施形態に係る焼入れ装置及びそれを用いた焼入れ方法は、鋼板の製造に適用することができ、高強度冷延鋼板(ハイテン)の製造方法に適用することが特に好ましい。より具体的には、引張強度が580MPa以上である鋼板の製造方法に適用することが好ましい。引張強度の上限は特に制限されないが、一例として1600MPa以下であればよい。ハイテンの製造時には、鋼板を急速に冷却することで、緻密な組織制御を行うことが重要となる。この実施形態を適用することで、焼入れ時に発生する形状不良を抑制しつつ、拘束ロール7近傍での冷却速度の低下を防ぎながら、板幅方向の冷却速度の不均一性を防止し、確実に所望の強度のハイテンを製造することができる。 The quenching apparatus and the quenching method using the quenching apparatus according to the embodiment of the present invention as described above can be applied to the production of a steel sheet, and particularly preferably applied to the method for producing a high-strength cold-rolled steel sheet (high tensile strength steel sheet). . More specifically, it is preferably applied to a method for manufacturing a steel sheet having a tensile strength of 580 MPa or more. The upper limit of the tensile strength is not particularly limited, but may be 1600 MPa or less as an example. During the production of high tensile strength steel, it is important to control the structure precisely by rapidly cooling the steel sheet. By applying this embodiment, it is possible to prevent the non-uniformity of the cooling rate in the plate width direction while reliably suppressing the shape defect that occurs at the time of quenching and preventing the cooling rate from decreasing in the vicinity of the constraining roll 7. It is possible to manufacture high tensile strength steel having a desired strength.
 高強度冷延鋼板の組成の具体例として、質量%で、Cが0.04%以上0.25%以下、Siが0.01%以上2.50%以下、Mnが0.80%以上3.70%以下、Pが0.001%以上0.090%以下、Sが0.0001%以上0.0050%以下、sol.Alが0.005%以上0.065%以下、必要に応じて、Cr、Mo、Nb、V、Ni、Cu、及びTiの少なくとも1種以上がそれぞれ0.5%以下、さらに必要に応じて、B、Sbがそれぞれ0.01%以下、残部がFe及び不可避的不純物からなる例が挙げられる。
 尚、本発明の実施形態は、鋼板を急冷する例に限定されるものではなく、鋼板以外の金属板全般の急冷に適用することができ、また、水以外の液体を用いた焼入れにも適用することができる。
As a specific example of the composition of the high-strength cold-rolled steel sheet, C is 0.04% or more and 0.25% or less, Si is 0.01% or more and 2.50% or less, and Mn is 0.80% or more and 3% by mass. .70% or less, P is 0.001% or more and 0.090% or less, S is 0.0001% or more and 0.0050% or less, sol. Al is 0.005% or more and 0.065% or less, and if necessary, at least one kind of Cr, Mo, Nb, V, Ni, Cu, and Ti is 0.5% or less, and if necessary. , B, and Sb are each 0.01% or less, and the balance is Fe and inevitable impurities.
The embodiment of the present invention is not limited to an example of rapidly cooling a steel sheet, but can be applied to the rapid cooling of all metal sheets other than the steel sheet, and is also applied to quenching using a liquid other than water. can do.
 以下に、実施例を用いて本発明についてより具体的に説明する。 The present invention will be described in more detail below using examples.
 (本発明例1)
 引張強さ1470MPa級の高張力冷延鋼板を製造する際に、図1、2に示した焼入れ装置および図3に示した開口部14aA、24aA、14bA、24bAを有する隣接ノズルを用いて焼入れを行った。板厚1.0mm、板幅1000mm、通板速度は1.0m/sとした。尚、噴出装置4においてノズル14、24を傾斜させる角度θは、全て30°とした。ここで、拘束ロール7の中心軸は通板方向に80mmずらして配置し、拘束ロール7の金属板5への押し込み量は全て0.5mmとした。また、隣接ノズルの開口部14aA、24aA、14bA、24bAの開口幅は、長手方向中央部が2mmで、長手方向端部が1mmとした。
(Invention Example 1)
When manufacturing a high-strength cold-rolled steel sheet having a tensile strength of 1470 MPa, quenching is performed by using the quenching apparatus shown in FIGS. 1 and 2 and the adjacent nozzle having the openings 14aA, 24aA, 14bA, 24bA shown in FIG. went. The plate thickness was 1.0 mm, the plate width was 1000 mm, and the plate passing speed was 1.0 m / s. In addition, the angles θ at which the nozzles 14 and 24 are inclined in the ejection device 4 are all 30 °. Here, the central axis of the constraining roll 7 was arranged so as to be displaced by 80 mm in the sheet passing direction, and the pushing amount of the constraining roll 7 into the metal plate 5 was all 0.5 mm. The opening widths of the openings 14aA, 24aA, 14bA, and 24bA of the adjacent nozzles were 2 mm at the center in the longitudinal direction and 1 mm at the ends in the longitudinal direction.
 また、焼入れ装置に通板中の鋼板の温度を測定した。具体的には、熱電対型の温度計を用いて、鋼板の被測定領域の温度を経時的に測定した。尚、鋼板の冷却開始温度(噴出装置4に入る直前の温度)は740℃であり、冷却終了温度(水槽1から出た直後の温度)は30℃であった。冷却開始後の経過時間と鋼板の温度との関係から、鋼板が拘束ロール7Aに接触している瞬間の、鋼板の板幅方向の冷却速度分布を計算した。結果を図6に示す。 Also, the temperature of the steel plate being passed through the quenching device was measured. Specifically, the temperature of the measured region of the steel sheet was measured with time using a thermocouple-type thermometer. The cooling start temperature of the steel sheet (the temperature immediately before entering the jetting device 4) was 740 ° C, and the cooling end temperature (the temperature immediately after leaving the water tank 1) was 30 ° C. From the relationship between the elapsed time after the start of cooling and the temperature of the steel sheet, the cooling rate distribution in the sheet width direction of the steel sheet at the moment when the steel sheet was in contact with the restraint roll 7A was calculated. Results are shown in FIG.
 また、通板後に鋼板の反り量を測定した。具体的には、鋼板を搬送方向から正対して見た図12を用いて説明する。鋼板に反りが発生すると、鋼板の幅方向において高さの高い部分と低い部分とが形成される。通板後の鋼板において、最も高さの高い部分と、最も高さの低い部分との高さの差を反り量として測定した。 Also, the amount of warp of the steel plate was measured after passing the plate. Specifically, a description will be given with reference to FIG. 12 in which the steel sheet is viewed from the conveying direction. When the steel plate warps, a high-height portion and a low-height portion are formed in the width direction of the steel sheet. In the steel sheet after passing, the difference in height between the highest portion and the lowest portion was measured as the amount of warpage.
 (本発明例2)
 隣接ノズルの開口部14aA、24aA、14bA、24bAの開口幅を、長手方向中央部が5mmで、長手方向端部が3mmとしたこと以外は、本発明例1と同様にして実験を行った。結果を図7に示す。
(Invention Example 2)
An experiment was performed in the same manner as in Example 1 of the present invention, except that the opening widths of the openings 14aA, 24aA, 14bA, and 24bA of the adjacent nozzles were 5 mm at the central portion in the longitudinal direction and 3 mm at the end portions in the longitudinal direction. The results are shown in Fig. 7.
 (本発明例3)
 隣接ノズルの開口部14aA、24aA、14bA、24bAの開口幅を、長手方向中央部が7mmで、長手方向端部が5mmとしたこと以外は、本発明例1と同様にして実験を行った。結果を図8に示す。
(Invention Example 3)
An experiment was conducted in the same manner as in Example 1 of the present invention, except that the opening widths of the openings 14aA, 24aA, 14bA, and 24bA of the adjacent nozzles were 7 mm at the central portion in the longitudinal direction and 5 mm at the end portions in the longitudinal direction. The results are shown in Fig. 8.
 (比較例1)
 特許文献4に記載の焼入れ装置と図5に示した開口部14aX、24aX、14bX、24bXを有する隣接ノズルを用いたこと以外は、本発明例1と同様にして実験を行った。なお、隣接ノズルの開口部14aX、24aX、14bX、24bXの開口幅は、長手方向に一定の2mmとした。結果を図9に示す。
(Comparative Example 1)
An experiment was conducted in the same manner as Example 1 of the present invention, except that the quenching device described in Patent Document 4 and the adjacent nozzles having the openings 14aX, 24aX, 14bX, 24bX shown in FIG. 5 were used. The opening width of the openings 14aX, 24aX, 14bX, 24bX of the adjacent nozzles was set to a constant 2 mm in the longitudinal direction. The results are shown in Fig. 9.
 (比較例2)
 特許文献3に記載の焼入れ装置と図5に示した開口部14aX、24aX、14bX、24bXを有する隣接ノズルを用いたこと以外は、本発明例1と同様にして実験を行った。なお、隣接ノズルの開口部14aX、24aX、14bX、24bXの開口幅は、長手方向に一定の2mmとした。隣接ノズルの傾斜角度は90°であった。結果を図10に示す。
(Comparative example 2)
An experiment was conducted in the same manner as Example 1 of the present invention, except that the quenching device described in Patent Document 3 and the adjacent nozzle having the openings 14aX, 24aX, 14bX, 24bX shown in FIG. 5 were used. The opening width of the openings 14aX, 24aX, 14bX, 24bX of the adjacent nozzles was set to a constant 2 mm in the longitudinal direction. The inclination angle of the adjacent nozzle was 90 °. The results are shown in Fig. 10.
 <冷却速度の評価>
 図6、7、8(本発明例1、2、3)では、鋼板の板幅方向の冷却速度分布は、板幅位置によらずほぼ一定であり、ほぼ均一に冷却されている。冷却速度は1500℃/sであった。
 一方、図9(比較例1)では、中央部よりもエッジ部の方が冷却速度が高くなり、不均一に冷却されている。冷却速度は中央部が1500℃/sでエッジは2000℃/sであった。
 同様に、図10(比較例2)では、中央部よりもエッジ部の方が冷却速度が高くなり、不均一に冷却されている。冷却速度は中央部が900℃/sでエッジは1200℃/sであり、図6と中央部で比較すると冷却速度が約40%(1500℃/sから900℃/s)低下している。
 鋼板の板幅中央部とエッジ部の冷却速度に、100℃の差がある場合は、不均一性が生じた。
 これにより、本発明を適用することで、拘束ロール近傍における金属板の冷却速度の低下を抑えつつ、板幅方向の冷却速度の不均一性を防止できることが示された。
<Evaluation of cooling rate>
In FIGS. 6, 7, and 8 (Examples 1, 2, and 3 of the present invention), the cooling rate distribution in the plate width direction of the steel plate is substantially constant regardless of the plate width position, and the steel plate is cooled substantially uniformly. The cooling rate was 1500 ° C / s.
On the other hand, in FIG. 9 (Comparative Example 1), the cooling rate is higher in the edge portion than in the central portion, and the cooling is uneven. The cooling rate was 1500 ° C./s at the center and 2000 ° C./s at the edges.
Similarly, in FIG. 10 (Comparative Example 2), the cooling rate is higher in the edge portion than in the central portion, and the cooling is uneven. The cooling rate is 900 ° C./s at the central portion and 1200 ° C./s at the edge, and the cooling rate is reduced by about 40% (1500 ° C./s to 900 ° C./s) compared with FIG. 6 in the central portion.
When there was a difference of 100 ° C. between the cooling rates of the plate width center part and the edge part of the steel plate, non-uniformity occurred.
As a result, it was shown that by applying the present invention, it is possible to prevent the cooling rate of the metal plate in the vicinity of the constraining roll from being reduced and prevent the cooling rate from being uneven in the plate width direction.
 <引張強度の評価>
 本発明例1、2、3によって製造された鋼板の引張強度は、板幅方向全域で約1470MPaであった。
 これに対し、比較例1によって製造された鋼板の引張強度は、板幅中央部は約1470MPaであったが、エッジ部は約1550MPaであり、引張強度の不均一性が見られた。
 また、比較例2によって製造された鋼板の引張強度は、板幅中央部は約1350MPaで、エッジ部は約1400MPaであり、引張強度の低下と不均一性が見られた。
 鋼板の板幅中央部とエッジ部の引張強度に30MPa以上の差がある場合は、引張強度の不均一性があると判断した。
 これにより、本発明を適用することで、拘束ロール近傍での冷却速度の低下や不均一性に伴う、鋼板の特性低下や不均一性を防止することができることが示された。
<Evaluation of tensile strength>
The tensile strength of the steel sheets manufactured according to Inventive Examples 1, 2, and 3 was about 1470 MPa in the entire sheet width direction.
On the other hand, the tensile strength of the steel sheet manufactured in Comparative Example 1 was about 1470 MPa in the central portion of the plate width, but was about 1550 MPa at the edge portion, showing uneven tensile strength.
In addition, the tensile strength of the steel sheet manufactured in Comparative Example 2 was about 1350 MPa at the center of the sheet width and about 1400 MPa at the edge portion, showing a decrease in tensile strength and nonuniformity.
When there was a difference of 30 MPa or more in the tensile strength between the central portion and the edge portion of the steel sheet, it was determined that the tensile strength was non-uniform.
From this, it is shown that by applying the present invention, it is possible to prevent the deterioration or non-uniformity of the characteristics of the steel sheet due to the decrease or non-uniformity of the cooling rate in the vicinity of the constraining rolls.
 <反り量の評価>
 本発明例1、2、3及び比較例1、2において測定した鋼板の反り量の結果を図11に示す。
 本発明例1、2、3及び比較例1、2では、ともに鋼板の反り量は同程度であり、本発明のように隣接ノズルの開口部の開口幅が中央部より端部の方が小さくても、焼入れ時の鋼板の変形を防止できることが確認された。
<Evaluation of warp amount>
The results of the amounts of warpage of the steel sheets measured in Inventive Examples 1, 2, and 3 and Comparative Examples 1 and 2 are shown in FIG.
In each of Inventive Examples 1, 2 and 3 and Comparative Examples 1 and 2, the warpage amount of the steel sheet is about the same, and the opening width of the opening portion of the adjacent nozzle is smaller in the end portion than in the central portion as in the present invention. However, it was confirmed that the deformation of the steel plate during quenching can be prevented.
 本発明によって、焼入れ時に金属板に発生する形状不良を抑制しつつ、金属板の冷却速度の低下を抑えながら、金属板の板幅方向の冷却速度の不均一性を防止することができる、焼入れ装置、焼入れ方法及び前記焼入れ方法を用いる鋼板の製造方法を提供することが可能である。 According to the present invention, it is possible to prevent the non-uniformity of the cooling rate in the plate width direction of the metal plate while suppressing a decrease in the cooling rate of the metal plate while suppressing the shape defect that occurs in the metal plate during quenching. It is possible to provide an apparatus, a quenching method, and a method for manufacturing a steel sheet using the quenching method.
1        水槽
2        水
3        シールロール
4        噴出装置
5        金属板
6        シンクロール
7        拘束ロール
14、24    ノズル
14a、24a  隣接ノズル
14b、24b  隣接ノズル
14aA、24aA  隣接ノズルの開口部
14bA、24bA  隣接ノズルの開口部
14aB、24aB  隣接ノズルの開口部
14bB、24bB  隣接ノズルの開口部
14aX、24aX  隣接ノズルの開口部
14bX、24bX  隣接ノズルの開口部
34、44    ノズルユニット
34a、44a  入側ノズルユニット
34b、44b  出側ノズルユニット
1 Water Tank 2 Water 3 Seal Roll 4 Spouting Device 5 Metal Plate 6 Sink Roll 7 Restraint Roll 14, 24 Nozzles 14a, 24a Adjacent Nozzles 14b, 24b Adjacent Nozzles 14aA, 24aA Adjacent Nozzle Openings 14bA, 24bA Adjacent Nozzle Openings 14aB , 24aB Adjacent nozzle openings 14bB, 24bB Adjacent nozzle openings 14aX, 24aX Adjacent nozzle openings 14bX, 24bX Adjacent nozzle openings 34, 44 Nozzle units 34a, 44a Inlet nozzle units 34b, 44b Outgoing nozzle units

Claims (7)

  1.  高温の金属板を浸漬させる液体を収容した槽と、
     少なくとも一部が前記槽の液体中に設けられ、前記金属板の両面に前記液体を噴射する複数のノズルを備えた噴出装置と、
     前記噴出装置の入側端部と出側端部との間に設けられ、前記金属板を両面から挟みつける拘束ロールとを備え、
     前記噴出装置は、少なくとも前記拘束ロールに隣接するノズルが、前記金属板に対して垂直方向から前記拘束ロールの方へ傾斜しており、
     前記拘束ロールに隣接するノズルの開口部が細隙状であり、
     前記開口部の開口幅が、前記開口部の長手方向中央部から長手方向端部にかけて減少していることを特徴とする、焼入れ装置。
    A bath containing a liquid for immersing a high-temperature metal plate,
    At least a part is provided in the liquid of the tank, a jetting device including a plurality of nozzles for jetting the liquid on both surfaces of the metal plate,
    A restraint roll that is provided between an inlet side end and an outlet side end of the ejection device and that holds the metal plate from both sides,
    In the ejection device, at least the nozzle adjacent to the restraint roll is inclined from the direction perpendicular to the metal plate toward the restraint roll,
    The opening of the nozzle adjacent to the constraining roll has a slit-like shape,
    A quenching device, wherein the opening width of the opening is reduced from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
  2.  前記開口部の開口幅が、前記開口部の長手方向中央部から長手方向端部にかけて不連続に減少している、請求項1に記載の焼入れ装置。 The quenching device according to claim 1, wherein the opening width of the opening decreases discontinuously from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
  3.  前記開口部の開口幅が、前記開口部の長手方向中央部から長手方向端部にかけて連続的に減少している、請求項1に記載の焼入れ装置。 The quenching device according to claim 1, wherein the opening width of the opening continuously decreases from the central portion in the longitudinal direction of the opening to the end portion in the longitudinal direction.
  4.  前記開口部の長手方向中央部に、開口幅が均一な領域を有する、請求項1~3のいずれか一項に記載の焼入れ装置。 The quenching device according to any one of claims 1 to 3, wherein the quenching device has a region having a uniform opening width in a central portion in the longitudinal direction of the opening.
  5.  請求項1~4のいずれか一項に記載の焼入れ装置を用いて焼入れを行う、焼入れ方法。 A quenching method in which quenching is performed using the quenching device according to any one of claims 1 to 4.
  6.  鋼板を製造する際に、請求項5に記載の焼入れ方法を用いる、鋼板の製造方法。 A method for manufacturing a steel sheet, which uses the quenching method according to claim 5 when manufacturing a steel sheet.
  7.  前記開口部の開口幅が、前記開口部の長手方向中央部では2mm以上5mm以下であり、前記開口部の長手方向端部では0mm超3mm以下であり、前記長手方向中央部の開口幅より前記長手方向端部の開口幅が小さいことを特徴とする、請求項1~3のいずれか一項に記載の焼入れ装置。 The opening width of the opening is 2 mm or more and 5 mm or less at the central portion in the longitudinal direction of the opening, and is more than 0 mm and 3 mm or less at the end portions in the longitudinal direction of the opening, which is larger than the opening width of the central portion in the longitudinal direction. The quenching device according to any one of claims 1 to 3, characterized in that the opening width of the longitudinal end portion is small.
PCT/JP2019/041434 2018-10-25 2019-10-23 Quenching device, quenching method, and steel sheet production method WO2020085353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020506841A JP6879429B2 (en) 2018-10-25 2019-10-23 Quenching equipment, quenching method, and steel sheet manufacturing method
CN201980070242.9A CN112888797A (en) 2018-10-25 2019-10-23 Quenching apparatus, quenching method, and method for manufacturing steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-200739 2018-10-25
JP2018200739 2018-10-25

Publications (1)

Publication Number Publication Date
WO2020085353A1 true WO2020085353A1 (en) 2020-04-30

Family

ID=70331461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041434 WO2020085353A1 (en) 2018-10-25 2019-10-23 Quenching device, quenching method, and steel sheet production method

Country Status (3)

Country Link
JP (1) JP6879429B2 (en)
CN (1) CN112888797A (en)
WO (1) WO2020085353A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103728A (en) * 1980-12-18 1982-06-28 Nippon Steel Corp Slit type laminar flow nozzle
JPS609834A (en) * 1983-06-28 1985-01-18 Nippon Steel Corp Method and device for cooling steel strip
JPS61281825A (en) * 1985-06-06 1986-12-12 Mitsubishi Heavy Ind Ltd Floater for supporting strip
CN101993995A (en) * 2010-11-26 2011-03-30 首钢总公司 Water quenching and cooling method and device for ultrahigh-strength strip steel
JP2017119912A (en) * 2015-12-28 2017-07-06 Jfeスチール株式会社 Quick-cooling quenching apparatus, and quick-cooling quenching method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767762B2 (en) * 1997-07-17 2006-04-19 石川島播磨重工業株式会社 Roll cooling device
JP2011104594A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Device for cooling high temperature steel plate
JP6094722B2 (en) * 2014-11-28 2017-03-15 Jfeスチール株式会社 Metal plate manufacturing method and quench quenching apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103728A (en) * 1980-12-18 1982-06-28 Nippon Steel Corp Slit type laminar flow nozzle
JPS609834A (en) * 1983-06-28 1985-01-18 Nippon Steel Corp Method and device for cooling steel strip
JPS61281825A (en) * 1985-06-06 1986-12-12 Mitsubishi Heavy Ind Ltd Floater for supporting strip
CN101993995A (en) * 2010-11-26 2011-03-30 首钢总公司 Water quenching and cooling method and device for ultrahigh-strength strip steel
JP2017119912A (en) * 2015-12-28 2017-07-06 Jfeスチール株式会社 Quick-cooling quenching apparatus, and quick-cooling quenching method

Also Published As

Publication number Publication date
JPWO2020085353A1 (en) 2021-02-15
CN112888797A (en) 2021-06-01
JP6879429B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6477852B2 (en) Rapid quenching apparatus and quench quenching method
KR101987566B1 (en) Method for manufacturing metal sheet and rapid quenching unit
EP2450117B1 (en) Use of a cooling device, manufacturing device, and manufacturing method for hot-rolled steel sheet
WO2008035510A1 (en) Cooling method of steel plate
WO2017115742A1 (en) Rapid cooling quenching device and rapid cooling quenching method
JP6687084B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP6624113B2 (en) Quenching and quenching equipment
EP2979769A1 (en) Thick steel plate manufacturing method and manufacturing device
WO2020085352A1 (en) Quenching device, quenching method, and metal plate production method
JP6455421B2 (en) Rapid quenching apparatus and quench quenching method
WO2020085353A1 (en) Quenching device, quenching method, and steel sheet production method
JP4256885B2 (en) Spray cooling nozzle arrangement setting method and hot steel sheet cooling device
JP2019210549A (en) Method for cooling steel sheet, cooling system for steel sheet, and method for manufacturing steel sheet
EP3943619B1 (en) Quenching apparatus and method for manufacturing metal sheet
JP2008231476A (en) Method for producing steel sheet
JP7338783B2 (en) Quenching apparatus and method for metal plate, and method for manufacturing steel plate
JP7306590B1 (en) Quenching equipment, continuous annealing equipment, quenching method, steel sheet manufacturing method, and plated steel sheet manufacturing method
JP7180636B2 (en) Apparatus for quenching metal plate, method for quenching metal plate, and method for manufacturing steel plate
JPWO2021065583A1 (en) Metal band quenching device, metal band quenching method, and manufacturing method of metal band products

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020506841

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875988

Country of ref document: EP

Kind code of ref document: A1