JPS61281825A - Floater for supporting strip - Google Patents

Floater for supporting strip

Info

Publication number
JPS61281825A
JPS61281825A JP12144685A JP12144685A JPS61281825A JP S61281825 A JPS61281825 A JP S61281825A JP 12144685 A JP12144685 A JP 12144685A JP 12144685 A JP12144685 A JP 12144685A JP S61281825 A JPS61281825 A JP S61281825A
Authority
JP
Japan
Prior art keywords
strip
floater
fluid
gas
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12144685A
Other languages
Japanese (ja)
Other versions
JPH068467B2 (en
Inventor
Masahiro Harada
昌博 原田
Hajime Okita
沖田 肇
Yasuo Fukada
深田 保男
Kuniaki Sato
邦昭 佐藤
Yasuhisa Nakajima
康久 中島
Riichi Kaihara
貝原 利一
Norio Oota
範男 太田
Yukio Ida
幸夫 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12144685A priority Critical patent/JPH068467B2/en
Publication of JPS61281825A publication Critical patent/JPS61281825A/en
Publication of JPH068467B2 publication Critical patent/JPH068467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To efficiently float a strip by providing a floater having an opening for spouting a fluid in the oblique upward direction at the front and the rear end part in the traveling direction of the strip of the pressure receiving surface of the main body immediately below the strip, specifying the width of the opening and reducing the unused flow of the spouted gas. CONSTITUTION:A floater 11 has a slit nozzle 12a which is opened on the surface opposed to the lower surface of a traveling strip 1 and used as a nozzle for a fluid. The nozzle 12a is a narrow slit which is extended in the widthwise direction of the strip 1 and respectively provided to the front and the rear end in the traveling direction of the strip 1. Both nozzles are inclined to the lower surface of the strip 1 so that the gas spouting directions are faced to each other. The upper smooth pressure receiving surface 16 is supported by the static pressure produced by the gas spouted into the clearance under the strip 1 and the strip is floated above the floater 11 and traveled. The width of the opening of the nozzle 12a is enlarged at the central part in comparison with both ends in the widthwise direction of the strip 1. Consequently, the amt. of the fluid escaping to the outside of both end parts in the widthwise direction of the strip 1 and the spouted fluid can be effectively utilized.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、鋼ストリップ等の金属帯板の連続焼鈍炉に付
設されて通板中の金属帯板を非接触支持する帯板用のフ
ロータに関するへ〈従来の技術〉 冷延鋼板ス) IJツゾ等の金属帯板の処理設備として
、従来から用いられている連続焼鈍炉の概念を表す第6
図に示すように、冷延鋼板のストリップlは図示しない
ペイオフリールJ:り繰出され、図示しないクリーニン
グタンク及びルーツR等を通過して連続焼鈍炉に供給さ
れる。この連続焼鈍炉中にはへルノぞロール2が上下に
多数設けられており、ストリップ1はこれらヘル、eロ
ール2に巻き掛けられ。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to a floater for strips that is attached to a continuous annealing furnace for metal strips such as steel strips and supports the strips in a non-contact manner during threading. Regarding (Prior art) Cold rolled steel sheets
As shown in the figure, a strip L of cold-rolled steel sheet is fed out to a payoff reel J (not shown), passes through a cleaning tank, roots R (not shown), etc., and is supplied to a continuous annealing furnace. In this continuous annealing furnace, a large number of ferret rolls 2 are provided above and below, and the strip 1 is wound around these ferret and e-rolls 2.

炉内を上下しながら製品に要求される機械的性質に応じ
て所要の加熱や冷却を受け、常温状態で必要な降伏9強
度や抗張力或いは良好な深絞り性等の機械的性質を付与
される。なお。
As it moves up and down in the furnace, it undergoes the necessary heating and cooling depending on the mechanical properties required for the product, and is given the necessary mechanical properties such as yield strength, tensile strength, and good deep drawability at room temperature. . In addition.

連続焼鈍炉内はス) IJツブlの表面酸化防止のため
に窒化水素ガス等の還元性ガスが充満している。
The interior of the continuous annealing furnace is filled with reducing gas such as hydrogen nitride gas to prevent surface oxidation of the IJ tube.

ストリップ1は加熱帯Aにおいて1通常650〜900
℃程度までラジアントチューブ3で加熱される。その後
、均熱帯Bにて数十秒間均等加熱され、急冷帯Cにてガ
スジェットにニジ毎秒3〜200度の冷却速度で400
℃程度まで急冷され、次に過時効帯りで400℃程度で
の約二分間程度の過時効処理を受け、最後に最終急冷帯
Eにおいてガスジェットで常温まで急冷される。
Strip 1 is typically 650-900 in heating zone A.
It is heated by the radiant tube 3 to about ℃. After that, it is heated uniformly for several tens of seconds in a soaking zone B, and then heated to 400 degrees by a gas jet at a cooling rate of 3 to 200 degrees per second in a rapid cooling zone C.
It is quenched to about 0.degree. C., then subjected to an overaging treatment at about 400.degree. C. for about 2 minutes in an overaging zone, and finally quenched to room temperature by a gas jet in a final quenching zone E.

ところで、このような連続焼鈍炉では過時効帯りで約二
分間と長い滞留時間を要するため、大形の連続焼鈍炉で
はこの過時効帯りの炉長がお工そ100メートル以上と
長大になり、連続焼鈍炉全体としては150メートル以
上の非常に長すものとなる。この過時効帯りを短縮でき
れば、連続焼鈍炉を短く製作できて設備の建設コストを
低減し得ることが期待される。その具体的な手段として
、ストリップlの材質を変えてその加熱温度を従来工り
も高くすれば、過時効帯りの長さを短縮できることが判
明している。
By the way, in such a continuous annealing furnace, the overaging zone requires a long residence time of about 2 minutes, so in a large continuous annealing furnace, the length of the overaging zone can be as long as 100 meters or more. Therefore, the continuous annealing furnace as a whole is very long, over 150 meters. If this overaging zone can be shortened, it is expected that a continuous annealing furnace can be manufactured in a shorter length and the construction cost of the equipment can be reduced. As a specific means for this, it has been found that the length of the over-aged zone can be shortened by changing the material of the strip l and increasing its heating temperature compared to the conventional process.

しかし、このような炉を実現する場合に高温のストリッ
プをロールに接触させると、ストリップの強度が低下し
ているため、冷窺いロールとの不均一接触や圧延油中の
力−ゼン等が付着したロール面との接触によるストリッ
プの熱変形が通板上の問題となって来る。
However, when realizing such a furnace, if a high-temperature strip is brought into contact with the rolls, the strength of the strip is reduced, resulting in uneven contact with the cold rolls and adhesion of forces in the rolling oil. Thermal deformation of the strip due to contact with the rolled roll surface becomes a problem in threading.

又・従来の工うにストリップを鉛直方向に走。Also, in the conventional method, the sea urchin strip is run vertically.

行させると、高温のためにストリップの自重によるクリ
ープ現象を生じ1幅が狭くなってしまうため、ストリッ
プを水平に走行させると共にできるだけ長い区間をロー
ルと接触させずに安定走行させる必要がある。
If the strip is run, the high temperature causes a creep phenomenon due to the strip's own weight and the width becomes narrow. Therefore, it is necessary to run the strip horizontally and stably run as long as possible without contacting the rolls.

この工うに、ストリップをするませることなく水平方向
に長い距離に亘って通板するため、ス) IJツブを非
接触支持するフロータが開発されており、このフロータ
は例えばカラーコーティングライン等に笑用されている
In order to thread the material over a long distance in the horizontal direction without stripping, a floater has been developed that supports the IJ knob in a non-contact manner, and this floater is used, for example, in color coating lines. has been done.

従来のフロータを概念的に表す第7図及びフロータの断
面構造を表す第8図に示すように、フロータ11は、走
行するストリップlの下側に複数個設けられ1通板方向
(第7図中左右方向)に亘り配列されている。各フロー
タ11はそれぞれストリップlの通板方向前後両端部に
狭いスリットノズル12t−有しておV、これらスリッ
トノズル12は斜めにストリップlと対向している。そ
して、これらスリットノズルエ2からガス供給用ダクト
14エク供給されるチャンバ5内のガス金互いに向い合
う工うに噴出させている。この噴出ガスはストリップl
と70−タ11との間の間I!Iisに押し込まれて、
フロータ11の上面の受圧面16との間にガス圧を生じ
、ストリップlを浮き上がらせて通板させる。尚、噴出
ガスとしては窒化水素など一般に炉内の雰囲気ガスと同
種のものが用いられている。
As shown in FIG. 7, which conceptually represents a conventional floater, and FIG. 8, which shows a cross-sectional structure of the floater, a plurality of floaters 11 are provided below the running strip l in the direction of one strip (FIG. 7). They are arranged across the middle, left and right directions. Each floater 11 has narrow slit nozzles 12t at both front and rear ends of the strip l in the threading direction, and these slit nozzles 12 diagonally face the strip l. The gas in the chamber 5, which is supplied from the slit nozzles 2 to the gas supply duct 14, is ejected into opposing channels. This ejected gas is strip l
and 70-ta 11 I! Pushed into Iis,
Gas pressure is generated between the floater 11 and the pressure receiving surface 16 on the upper surface of the floater 11, causing the strip 1 to float and pass through the strip. Note that as the ejected gas, the same kind of gas as the atmospheric gas in the furnace is generally used, such as hydrogen nitride.

〈発明が解決しようとする問題点〉 上述した従来のフロータ11におけるストリップlと受
圧面16との間のス) IJツブ10幅方向の圧力分布
を見ると、ストリップ10幅方向中央部分の圧力はほぼ
一定であるが、端部に近づくとある地点から急に圧力が
低下してしまう。第9図に幅がLl + I4 + L
Bであるストリップ1の幅方向の圧力分布を示す。同図
に示す工うに幅がLt+l4tLsであるストリップ1
では、中央部分の測定圧力は、同一であるが、それぞれ
端部から4 + 4 + 63の距離だけ離れた地点か
ら圧力が急に低下してしまい、端部での圧力は外気と同
じになっている。
<Problems to be Solved by the Invention> Looking at the pressure distribution in the width direction of the IJ tube 10 between the strip l and the pressure receiving surface 16 in the conventional floater 11 described above, the pressure in the center portion of the strip 10 in the width direction is The pressure is almost constant, but as you approach the end, the pressure suddenly drops from a certain point. In Figure 9, the width is Ll + I4 + L
The pressure distribution in the width direction of the strip 1, which is B, is shown. Strip 1 shown in the same figure has a width of Lt+l4tLs
In this case, the measured pressure at the center is the same, but the pressure suddenly decreases from a distance of 4 + 4 + 63 from each end, and the pressure at the end becomes the same as the outside air. ing.

ま几、このときのZl e z、 e z、の距離は、
はぼ同一である。つまV、ストリップlの受ける圧力が
低下し始める位置は、ストリップlの幅%あるいはその
ス) IJップエがその中央部分で受けている圧力の大
きさとは無関係に一定である。このため、幅の狭いスト
リップでは、流体のロスが多く −Ls 、 Lx 、
 LtQ受ける平均圧力は* P3 * P2 +丁ヱ
となpだんだん/J%さくなっている。
In this case, the distance between Zl ez and ez is
They are exactly the same. The position at which the pressure exerted by the tab V and the strip L begins to decrease is constant regardless of the width of the strip L or the magnitude of the pressure that the IJ strip is subjected to at its central portion. Therefore, in narrow strips, there is a lot of fluid loss −Ls, Lx,
The average pressure received by LtQ is * P3 * P2 + ding p/J%.

一方、従来のフロータ11におけるスリツノド1z  
からの噴出ガスは、第10図(a)に示す=うに、スト
リップ1の幅方向中央部分では。
On the other hand, the slotted rod 1z in the conventional floater 11
As shown in FIG. 10(a), the gas ejected from the strip 1 is at the center in the width direction of the strip 1.

その#−1とんどがストリップ1の長手方向に反転する
流れaになっているのに対し、ストリツプエの両端部で
はそのほとんどがストリップlと受圧[16との間に流
れ込んだまま反転せずにストリップlの幅方向外側へ逃
げる流れbになっている。第10図(b)には、これら
の流れa、bのX−X軸、Y−Y@Iに対する流速を示
す。ここで、ス) IJツプエの幅方向外側へ逃げる流
れbが大きくなり始める地点は、ストリップlの受ける
圧力が低下し始める地点とほぼ一致している。したがっ
て。
Most of #-1 is a flow a that reverses in the longitudinal direction of the strip 1, whereas at both ends of the strip, most of it flows between the strip l and the receiving pressure [16] and does not reverse. Flow b escapes to the outside in the width direction of strip l. FIG. 10(b) shows the flow velocities of these flows a and b with respect to the X-X axis and Y-Y@I. Here, (i) The point at which the flow b escaping to the outside in the width direction of the IJ tube begins to increase almost coincides with the point at which the pressure applied to the strip l begins to decrease. therefore.

ストリップlを浮上させるのに有効な圧力を発生させる
ガスの流れはスリット12からの噴出ガスがストリップ
lの長手方向に反転する流れaだけであり、ストリップ
10幅方向外側への流れbは無駄な流れである。
The only gas flow that generates an effective pressure to levitate the strip 1 is the flow a in which the jetted gas from the slit 12 is reversed in the longitudinal direction of the strip 1, and the flow b outward in the width direction of the strip 10 is wasteful. It is a flow.

以上のような理由にエフ、従来のフロータ11では、ス
リット12からの噴出ガスの流量全−足にしてストリッ
プlの幅を変化させると1幅の狭いストリップ1の浮上
高さが低くなるという問題があつ几。!11図には。
For the above reasons, F. With the conventional floater 11, there is a problem that when the width of the strip 1 is changed based on the entire flow rate of gas ejected from the slit 12, the flying height of the narrow strip 1 becomes lower. It's hot. ! In figure 11.

ストリップエの幅が100のときの浮上高さが100と
した場合のス) IJツブlの幅と浮上高さとの関係を
示す。ストリップlの幅が狭い#1ど浮上高さが小さく
なっている。
The relationship between the width of the IJ tube l and the flying height is shown when the flying height is 100 when the width of the stripe is 100. #1, where the width of the strip l is narrower, has a smaller flying height.

工づて、従来のフロータ11上に幅の狭いストリップ1
走行させる場合、ストリップ1があまり浮上せずフロー
タ11に接触してしまう惧れがある友めスリット12か
らの噴出ガスの流量を大きくする必要があるので、幅の
狭いストリップ■はど生産コストが大きくなっていた。
A narrow strip 1 is placed on a conventional floater 11 by
When running, it is necessary to increase the flow rate of gas ejected from the friend slit 12, where the strip 1 does not float too much and may come into contact with the floater 11. It was getting bigger.

本発明は、このような事情に鑑み、ガス噴出口からの噴
出ガスの無駄な流れをなくし、帯板を効率工く浮上させ
ることができる帯板支持用フロータを提供することを目
的とする。
In view of the above circumstances, an object of the present invention is to provide a floater for supporting a strip that can efficiently levitate the strip by eliminating wasteful flow of gas ejected from the gas outlet.

〈問題点を解決する丸めの手段〉 前記目的全達成する本発明の構成は、帯板の直下にこの
帯板と対向する受圧面が形成され九本体と、前記帯板の
通板方向に沿つ九前記受正面の前後両端部に該帯板の幅
方向に沿ってそれぞれ開口し且つ該受圧面の中央側へ向
けて斜め上方にそれぞれ流体を噴出させて当該帯板と受
圧面との間にこの流体の静圧全発生させる一組の流体噴
出口とを備えた帯板支持用フロータにおいて、前記帯板
の通板方向の前記流体噴出口開口幅を該帯板の幅方向両
端部に較べて中央部の方が広く設定したことを特徴とす
る。
<Rounding means for solving the problems> The configuration of the present invention that achieves all of the above objects is that a pressure receiving surface facing the strip is formed directly below the strip, and a pressure receiving surface facing the strip is formed along the main body and the strip along the threading direction of the strip. (9) Openings are made at both front and rear ends of the pressure receiving surface along the width direction of the strip plate, and fluid is ejected obliquely upward toward the center of the pressure receiving surface to create a space between the strip plate and the pressure receiving surface. In a floater for supporting a strip plate, the width of the opening of the fluid outlet in the passing direction of the strip plate is set at both ends in the width direction of the strip plate. It is characterized by having a wider center area.

く作   用〉 帯板と受圧面との間に噴出する流体tを。For Kusaku Fluid t ejects between the strip plate and the pressure receiving surface.

該帯板の幅方向両端部に較べて中央部の方が多くなる工
うにしたことにエフ、該帯板の幅方向両端部外側へ逃げ
る流体のit減少させて噴出流体を有効に利用できる。
Since the amount of fluid is larger at the central portion of the strip than at both ends in the width direction, it is possible to effectively utilize the ejected fluid by reducing the amount of fluid escaping to the outside of both ends of the strip in the width direction.

く芙 施 例〉 以下1本発明の好適な実施例を図面を参照しながら説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the drawings.

第1図は、−実施例にかかる帯板支持用フロータの斜視
図、第2図(ω、 CO)はその断面図である。これら
の図面に示す工うに、フロータ11は走行するストリッ
プ1の下面と対向する面に開口した流体噴出口としての
スリットノズル12a’i有している。このスリットノ
ズル12aはストリップlの幅方向に延びる狭いスリッ
ト状をなし、フロータ11のストリップ1走行方向に対
する前後両端にそれぞれ設けられており、これら一対の
スリットノズル12aは、ここから噴出するガスの噴出
方向が互いに向い合う工うにストIJツブ1の下面に対
して斜めに形成されている。フロータ11の内部は、窒
化水素ガス等の加圧ガスが充満するチャンバ13となっ
ており、このチャンバ13に連結され几ダクト14から
供給される加圧ガスは、スリットノズル12αからス1
1ツブlの下面に向って噴出する。
FIG. 1 is a perspective view of a floater for supporting a strip according to an embodiment, and FIG. 2 (ω, CO) is a sectional view thereof. As shown in these drawings, the floater 11 has a slit nozzle 12a'i, which serves as a fluid ejection port, and is open on a surface opposite to the lower surface of the running strip 1. The slit nozzles 12a have a narrow slit shape extending in the width direction of the strip l, and are provided at both front and rear ends of the floater 11 in the running direction of the strip 1. The sections facing each other are formed obliquely with respect to the lower surface of the strike IJ tab 1. The inside of the floater 11 is a chamber 13 filled with pressurized gas such as hydrogen nitride gas.
It squirts out towards the bottom surface of 1 tube.

チャンバ13の天井上面は、平滑な受圧面16となって
おり、この受圧面16は、ス) IJツブ1の下の間隙
15に噴出された噴出ガスにエフ生じる静圧を受けてい
る。ストリップエは、との静圧に工り支持されてフロー
タ11の上方に浮揚して走行する。
The upper surface of the ceiling of the chamber 13 is a smooth pressure-receiving surface 16, and this pressure-receiving surface 16 receives the static pressure generated by the ejected gas ejected into the gap 15 below the IJ tube 1. The stripe is supported by the static pressure of the floater 11 and travels floating above the floater 11.

本実施例のスリットノズル12aはその開口幅(ス) 
IJツブlの走行方向の幅)がストリップlの幅方向両
端に較べて中央部が広く設定されており、中央から両端
部にかけて徐々に狭くなっている。なお、第2図(at
は、フロータ11の中央部の断面構造、第2図0))は
両端部の断面構造を示す。
The slit nozzle 12a of this embodiment has an opening width (slit) of
The width of the IJ tube l in the running direction is set to be wider at the center than at both ends of the strip l in the width direction, and gradually narrows from the center to both ends. In addition, Fig. 2 (at
2 shows the cross-sectional structure of the center portion of the floater 11, and FIG. 2 (0)) shows the cross-sectional structure of both ends.

ここで一般に、噴出ガスの静圧によりストリップを浮揚
支持するフロータにおいて、受圧面上でス) IJツブ
が受ける浮上刃Fは次の推算式で表される。
In general, in a floater that floats and supports a strip by the static pressure of ejected gas, the floating blade F that the IJ tube receives on the pressure receiving surface is expressed by the following equation.

t F = C7v” T (1+ cos# ) −AF
:浮上刃(−) C:流体噴出口の形状、70−タの 形状、ストリップのサイズ等に エフ決まる定数 r:噴出ガスの比重量(Kf々〕 g:重力加速度(m/5−) V二流体噴出口からの流体噴出速度(”/s )t:流
体噴出口のガス噴出幅(m) h:浮上高さくm) θ:流体噴出口の傾斜角(0) Aニストリップの受圧面積(−) 天験によると、ストリップlの幅方向中央部分において
は、上記理論式に近い浮上刃が得られるが、両端部にお
いては、理論式通りの浮上刃が得られていない。これは
、従来技術の項で述べた工うに、ス) IJツブlの両
端部においては、噴出ガスがストリップlの長手方向に
反転する流れaにはならずにストリップ1の幅方向外側
へ逃げる流れbとなってしまうからである。
tF=C7v”T(1+cos#)-AF
: Levitating blade (-) C: Constant determined by the shape of the fluid jet port, the shape of the 70-ta, the size of the strip, etc. r: Specific weight of the ejected gas (Kf) g: Gravitational acceleration (m/5-) V Fluid ejection speed from the two-fluid ejection port (''/s) t: Gas ejection width of the fluid ejection port (m) h: Flying height (m) θ: Inclination angle of the fluid ejection port (0) Pressure-receiving area of the A Ni lip (-) According to a divine coincidence, at the central part in the width direction of the strip l, a floating edge close to the above theoretical formula can be obtained, but at both ends, floating edges according to the theoretical formula cannot be obtained. As described in the prior art section, (i) At both ends of the IJ tube l, the ejected gas does not become a flow a that reverses in the longitudinal direction of the strip l, but forms a flow b that escapes to the outside in the width direction of the strip l. This is because it becomes

一方、スリットノズル12aからの流体の噴出速度vt
−−足に保った場合には、噴出口の幅tとストリップの
浮上高さhとは比例関係にある。
On the other hand, the ejection velocity vt of the fluid from the slit nozzle 12a
--When the jet is kept at the same height, the width t of the spout and the floating height h of the strip are in a proportional relationship.

よって、上記理論式と比較的一致する浮上刃が得られる
ストリップlの幅方向中央部のスリットノズル12aの
幅を広<シ、ロスが多く理論通りの浮上刃が得られない
両端部のスリットノズル12aの幅を狭くす、ることに
1って無駄な流れbt−少なくして噴出ガスを有効に利
用することができる。これにニジ噴出ガスの噴出速度が
同じ場合には、ストリップlの幅を変化させても、同程
度の浮上高さが得られる工うになり、[凱 この浮上高
さは従来に較べて大幅に大きくなっている。
Therefore, the width of the slit nozzle 12a at the center in the width direction of the strip l, where a floating blade that is relatively consistent with the above theoretical formula can be obtained, is increased, and the slit nozzles at both ends, where there is a lot of loss and a floating blade that is not as expected in theory, are widened. By narrowing the width of 12a, in particular, the wasteful flow bt- can be reduced and the ejected gas can be used effectively. In addition, if the ejection speed of the rainbow ejected gas is the same, even if the width of the strip l is changed, the same level of flying height can be obtained. It's getting bigger.

第3図に本実施例のフロータ11におけるIJlsLl
lの幅を有するストリップlの幅方向の圧力分布を示す
。なお従来のフロータl1t−用いたとき(第9図参照
)と同じガス噴出速度として、従来のL3の最高圧力r
iooとして表わした。同図に示すように1本実施例の
フロータ11においては平均圧力が従来に較べて20〜
25%程度同上し、またLtお工びIaの幅を有するス
トリップLにおける最高圧力の差がほとんどなくなって
いる。
FIG. 3 shows IJlsLl in the floater 11 of this embodiment.
1 shows the pressure distribution across the width of a strip l having a width of l; In addition, assuming the same gas ejection speed as when using the conventional floater l1t (see Fig. 9), the maximum pressure r of the conventional L3
Expressed as ioo. As shown in the figure, the average pressure in the floater 11 of this embodiment is 20 to 20% higher than that of the conventional one.
It is about 25% the same as above, and the difference in the maximum pressure in the strip L having a width of Lt and Ia has almost disappeared.

なお上記実施例のスリットノズル12aは開口幅金線形
的に変化させ次ものであるが、ある関数に基づいて変化
させたりあるいは段階的に変化させたりしても工い。第
4図にはスリットノズル12bの中央部の開口幅を両端
部と段をつけて広くした実施例を示す。
Although the slit nozzle 12a of the above embodiment has the opening width changed linearly, it may also be changed based on a certain function or in steps. FIG. 4 shows an embodiment in which the opening width at the center of the slit nozzle 12b is widened in steps at both ends.

また、上記実施例は、何れもフロータ11ニジガスを噴
出させるノズルがストリップlの幅方向に延びるスリッ
ト状のものであるが。
Furthermore, in all of the above embodiments, the nozzle for ejecting the rainbow gas from the floater 11 has a slit shape extending in the width direction of the strip l.

このノズルは多数の円形孔をストリップlの幅方向に列
設した多円孔ノズルとしても工く。
This nozzle is also constructed as a multi-circular hole nozzle in which a large number of circular holes are arranged in a row in the width direction of the strip l.

この場合には中央部分の円形孔の径を大きくすれば本発
明が実施できる。第5図には、多円孔ノズル12cの円
形孔の直径を、ストリップlの幅方向中央部分から両端
面にかけて徐々にlトさくした実施例を示す。
In this case, the present invention can be implemented by increasing the diameter of the circular hole in the central portion. FIG. 5 shows an embodiment in which the diameter of the circular hole of the multi-circular nozzle 12c is gradually reduced by l from the central portion in the width direction of the strip l toward both end faces.

〈発明の効果〉 本発明によれば、走行する帯板の下面に対向して流体噴
出口の該帯板の走行方向に対する開口幅を、該帯板幅方
向両端部に較べて中央部の方が広くすることにニジ噴出
ガスの無駄な流れを小さくして、噴出ガスを効率工く利
用できる。これにエフ、同じ流量の噴出ガスを用いた場
合、従来のものに較べて大きな浮上刃が得られ、また、
帯板の幅の違いによる浮上高さの差がほとんどなくなる
という効果が得られる。ま友、本発明の帯板支持用フロ
ータは冷延鋼板用連続焼鈍ラインのみならず、連続亜鉛
めっきラインやステンレス鋼板焼鈍ライレ或いは連続電
解クリーニングライン、カラー鉄板コーティングライン
、銅、アルミニウム等の連続熱処理炉、更には紙工機器
等の設備にも広く適用し得るものである。
<Effects of the Invention> According to the present invention, the opening width of the fluid jet port facing the lower surface of the running strip in the running direction of the strip is made larger at the central portion than at both ends in the width direction of the strip. By widening the gap, the wasteful flow of the ejected gas can be reduced and the ejected gas can be used more efficiently. If the same flow rate of ejected gas is used for this, a larger floating blade can be obtained compared to the conventional one, and
The effect is that the difference in flying height due to the difference in the width of the strips is almost eliminated. The floater for supporting strips of the present invention can be used not only in continuous annealing lines for cold-rolled steel sheets, but also in continuous galvanizing lines, stainless steel plate annealing lines, continuous electrolytic cleaning lines, colored iron plate coating lines, and continuous heat treatment of copper, aluminum, etc. It can be widely applied to equipment such as furnaces and even paper processing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかるフロータの外観金安
す斜視図、第2図(a) 、 (b)はその断面図、第
3図は、そのフグータによる圧力分布を表す説明図、第
4図、第5図は不発明の他の実施例にかかるフロータの
外観を表す斜視図、第6図は従来の連続焼鈍炉の概念図
、第7図は従来技術にかかるフロータの外観を表す斜視
図。 第8図はその断面図、第9図は従来のフロータによる圧
力分布を表す説明図、第1O図(a)は。 従来のフロータによる流体の流れを表す説明図。 第10図(b)はそのX−X軸、Y−Y軸に対する流速
を表す説明図、第11図は従来のフロータにおいて走行
帯状体と浮上高さとの関係を表すグラフである。 図  面  中。 lはストリップ。 llは70−タ、 12a、12bはスリットノズル、 12cは多回形孔ノズル。 16は受圧面である。
Fig. 1 is an external perspective view of a floater according to an embodiment of the present invention, Figs. 2(a) and (b) are sectional views thereof, and Fig. 3 is an explanatory diagram showing the pressure distribution due to the floater. , FIG. 4 and FIG. 5 are perspective views showing the external appearance of a floater according to another embodiment of the invention, FIG. 6 is a conceptual diagram of a conventional continuous annealing furnace, and FIG. 7 is an external appearance of a floater according to the prior art. FIG. FIG. 8 is a sectional view thereof, FIG. 9 is an explanatory diagram showing the pressure distribution by a conventional floater, and FIG. 10(a) is an illustration. An explanatory diagram showing the flow of fluid by a conventional floater. FIG. 10(b) is an explanatory diagram showing the flow velocity with respect to the X-X axis and the Y-Y axis, and FIG. 11 is a graph showing the relationship between the running strip and the flying height in a conventional floater. Inside the drawing. l is strip. 11 is a 70-hole nozzle, 12a and 12b are slit nozzles, and 12c is a multi-hole nozzle. 16 is a pressure receiving surface.

Claims (1)

【特許請求の範囲】[Claims] 帯板の直下にこの帯板と対向する受圧面が形成された本
体と、前記帯板の通板方向に沿つた前記受圧面の前後両
端部に該帯板の幅方向に沿つてそれぞれ開口し且つ該受
圧面の中央側へ向けて斜め上方にそれぞれ流体を噴出さ
せて当該帯板と受圧面との間にこの流体の静圧を発生さ
せる一組の流体噴出口とを備えた帯板支持用フロータに
おいて、前記帯板の通板方向の前記流体噴出口開口幅を
該帯板の幅方向両端部に較べて中央部の方が広く設定し
たことを特徴とする帯板支持用フロータ。
A main body having a pressure receiving surface opposite to the strip plate formed directly below the strip plate, and openings along the width direction of the strip plate at both front and rear ends of the pressure receiving surface along the threading direction of the strip plate. and a set of fluid ejection ports that eject fluid obliquely upward toward the center of the pressure-receiving surface to generate static pressure of the fluid between the strip and the pressure-receiving surface. 1. A floater for supporting a strip plate, characterized in that the opening width of the fluid ejection port in the passing direction of the strip plate is set wider at the center portion than at both ends in the width direction of the strip plate.
JP12144685A 1985-06-06 1985-06-06 Floater for supporting strips Expired - Lifetime JPH068467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12144685A JPH068467B2 (en) 1985-06-06 1985-06-06 Floater for supporting strips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12144685A JPH068467B2 (en) 1985-06-06 1985-06-06 Floater for supporting strips

Publications (2)

Publication Number Publication Date
JPS61281825A true JPS61281825A (en) 1986-12-12
JPH068467B2 JPH068467B2 (en) 1994-02-02

Family

ID=14811337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12144685A Expired - Lifetime JPH068467B2 (en) 1985-06-06 1985-06-06 Floater for supporting strips

Country Status (1)

Country Link
JP (1) JPH068467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085353A1 (en) * 2018-10-25 2020-04-30 Jfeスチール株式会社 Quenching device, quenching method, and steel sheet production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085353A1 (en) * 2018-10-25 2020-04-30 Jfeスチール株式会社 Quenching device, quenching method, and steel sheet production method
JPWO2020085353A1 (en) * 2018-10-25 2021-02-15 Jfeスチール株式会社 Quenching equipment, quenching method, and steel sheet manufacturing method

Also Published As

Publication number Publication date
JPH068467B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US4153006A (en) Apparatus for finishing molten metallic coatings
US3410734A (en) Quench system
US5201132A (en) Strip cooling, heating or drying apparatus and associated method
US4570453A (en) Apparatus for continuously cooling heated metal plate
US3328997A (en) Stabilizing system for strip work
US4084798A (en) Cooling systems for metal articles
JPS61281825A (en) Floater for supporting strip
JP3449295B2 (en) Apparatus and method for cooling lower surface of high-temperature steel sheet
JP4725718B2 (en) Steel strip cooling device
JPH02133589A (en) Pickling equipment of strip steel sheet
JPS61261440A (en) Floater for supporting strip
TW201114513A (en) System for cooling steel sheet, manufacturing apparatus of hot-rolled steel sheet, and manufacturing method of steel sheet
JPS61281827A (en) Floater for supporting strip
JPS61261439A (en) Floater for supporting strip
JP4901276B2 (en) Steel strip cooling device
JPS5848641A (en) Continuous heat treating furnace
KR910001608B1 (en) Support device for moving metal strip
CA1266602A (en) Method and apparatus for cooling steel strips
JPS63169337A (en) Floater for supporting strip
JPS61201738A (en) Noncontacting type supporting apparatus of strip material
JPS6326181B2 (en)
JPH07290136A (en) Method and device for cooling wide flange shape
JPS624836A (en) Floating and supporting device for belt-like material
JPS624837A (en) Floating and supporting device for belt-like material
JPS62192541A (en) Float supporting apparatus for converting sheet passing direction of running strip body