WO2020085221A1 - Flat molded-body of thermoplastic resin, multilayered body, method of determining authenticity, system of determining authenticity, and program - Google Patents

Flat molded-body of thermoplastic resin, multilayered body, method of determining authenticity, system of determining authenticity, and program Download PDF

Info

Publication number
WO2020085221A1
WO2020085221A1 PCT/JP2019/041010 JP2019041010W WO2020085221A1 WO 2020085221 A1 WO2020085221 A1 WO 2020085221A1 JP 2019041010 W JP2019041010 W JP 2019041010W WO 2020085221 A1 WO2020085221 A1 WO 2020085221A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
flat plate
shaped molded
thermoplastic resin
bright spot
Prior art date
Application number
PCT/JP2019/041010
Other languages
French (fr)
Japanese (ja)
Inventor
聖英 武田
彰太 若山
鈴木 健太郎
福井 眞彌
田中 正規
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2020085221A1 publication Critical patent/WO2020085221A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a thermoplastic resin plate-shaped molded article, a multilayer body, an authenticity determination method, an authenticity determination system, and a program.
  • cards including a resin film and a laminate thereof have been used in ID cards, e-passports, non-contact type IC cards and the like.
  • an encryption code such as QR code (registered trademark) or a photograph of the owner is attached to the surface of this resin film.
  • QR code registered trademark
  • a photograph of the owner is attached to the surface of this resin film.
  • forgery may occur due to a process such as copying the QR code or the like as it is printed, or removing the photo and replacing it.
  • Patent Document 1 a photoluminescent film in which a luminous body is dispersed in a thermoplastic resin, wherein the luminous body particles emit infrared light when irradiated with ultraviolet light or visible light.
  • a film using is proposed.
  • Patent Document 2 an image such as a facial photograph is formed on a base material formed with a first information pattern portion containing an infrared emitting fluorescent agent, and any one of an image receiving layer, a hologram layer, and a peelable protective layer is formed.
  • Patent Document 1 utilizes the emission of infrared light by irradiation with ultraviolet light or visible light.
  • patent document 2 the light emission of infrared light by irradiation of ultraviolet light is utilized. Both of them utilize infrared light emission that is invisible to the eyes, and the anti-counterfeiting property is improved as compared with the case of printing on the surface or attaching a photograph.
  • Patent Document 1 and Patent Document 2 it cannot be said that the authenticity determining method is sufficient.
  • the present invention is a technique using a light-emitting body that emits light upon irradiation with light, in which a thermoplastic resin flat molded article capable of enhancing anti-counterfeiting properties, a multilayer body, an authenticity determining method thereof, an authenticity determining system, and these.
  • the purpose is to provide a program that can control the.
  • thermoplastic resin which includes a light-emitting body that emits light when irradiated with light, and when the flat plate-shaped molded body of the thermoplastic resin is irradiated with light and observed with a microscope, the following brightness is obtained.
  • a flat plate-shaped molded product of a thermoplastic resin in which the number N 0 of points is 1 or more and the number N 1 of bright points below is N e1 or less represented by the following formula (F1);
  • N 0 Number of specific bright spots per area of 46.2 cm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
  • N 1 Number of specific bright spots per area of 1.4 mm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
  • D 50 Median diameter [ ⁇ m] of luminescent material;
  • Specific bright point A bright point having a maximum length of 10 ⁇ m or more and not more than the thickness of the flat plate-shaped molded product.
  • thermoplastic resin plate-shaped molded body including a light-emitting body that emits light when irradiated with light, wherein the light-emitting body has a median diameter of 10 ⁇ m or more and a thickness of the flat-plate molded body or less
  • the thermoplastic resin plate-shaped molded product that satisfies the following relational expression (F2):
  • D 50 is the median diameter [ ⁇ m] of the luminescent material
  • d is the density [g / mm 3 ] of the luminescent material.
  • thermoplastic resin plate-shaped molded article including a light-emitting body that emits light when irradiated with light, wherein the light-emitting body has a median diameter of 10 ⁇ m or more and a thickness of the flat-plate molded body or less,
  • the lower and upper thresholds 24 and 255 are set for the gray image, and binarization is performed using two thresholds within a density value range of 24 to 255, and the white portion corresponding to the bright spot is displayed.
  • the value obtained by dividing the area by the area of the entire image is obtained as the area ratio.
  • the luminous body is B, F, Mg, Al, Si, P, S, Cl, Na, K, Li, Ca, V, Mn, Cu, Mo, Zn, Sn, Ge, Sr, Y, Ba. , La, Bi, W, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, including an element selected from the group of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> The flat plate-shaped molded article according to any one of ⁇ 1> to ⁇ 6>, which is used for determining authenticity.
  • ⁇ 8> The flat plate-shaped molded article according to any one of ⁇ 1> to ⁇ 7>, wherein the luminescent material is at least one of ultraviolet light and infrared light.
  • ⁇ 9> The flat plate molded article according to any one of ⁇ 1> to ⁇ 8>, wherein the flat plate molded body is a film, a sheet or a card.
  • ⁇ 10> A multilayer body having the flat plate-shaped molded article according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> The multilayer body according to ⁇ 10>, further including a light shielding layer.
  • ⁇ 12> The multilayer body according to ⁇ 10> or ⁇ 11>, which is a security card.
  • ⁇ 13> The multilayer body according to ⁇ 10> or ⁇ 11>, which is a passport data page.
  • ⁇ 14> irradiating light onto the flat plate-shaped molded article according to any one of ⁇ 1> to ⁇ 9> or the multilayer body according to any one of ⁇ 10> to ⁇ 13>, and Detecting the bright spot information that appears when illuminated, and a method for determining authenticity.
  • ⁇ 15> The authenticity determination according to ⁇ 14>, wherein the bright spot information is at least one selected from a bright spot size, a bright spot emission wavelength, a bright spot emission intensity, and a bright spot position information.
  • a flat plate shaped article according to any one of the above or a multilayered article according to any one of ⁇ 10> to ⁇ 13> is provided with a light irradiation section for irradiating light, and bright spot information detected by the light irradiation.
  • An authenticity determination system having an authenticity determination unit for determining authenticity.
  • ⁇ 17> A program written in a computer-readable format, wherein the flat plate-shaped product according to any one of ⁇ 1> to ⁇ 9> or any one of ⁇ 10> to ⁇ 13>
  • a flat plate-shaped molded product of a thermoplastic resin capable of enhancing anti-counterfeiting properties a multilayer body, an authenticity determining method thereof, an authenticity determining system, and It has become possible to provide programs that can control these.
  • FIG. 6 It is a perspective view which shows typically an example of the flat shaped body which concerns on preferable embodiment of this invention. It is a schematic diagram which showed an example of the bright spot detected by microscope observation. It is sectional drawing which expands an example of the flat shaped body which concerns on preferable embodiment of this invention, and is shown typically. It is the figure which plotted the Example and comparative example of this invention. It is sectional drawing which shows typically an example of the multilayer body which concerns on preferable embodiment of this invention. It is a flow chart which shows an example of the authenticity judging method concerning a preferred embodiment of the present invention. 7 is a part of a flowchart showing a modified example of the authenticity determination method shown in FIG. 6.
  • FIG. 7 is a flowchart showing a usage mode according to a preferred embodiment of the authenticity determination method shown in FIG. 6. It is a block diagram of the authenticity determination system which concerns on preferable embodiment of this invention. It is a microscope image (Example 4) at the time of making a flat molded body light-emit. It is a microscope image (Comparative Example 4) when a flat plate-shaped molded product is caused to emit light. It is sectional drawing which expands and shows the plate-shaped molded object of a comparative example typically.
  • a flat plate-shaped molded body of a thermoplastic resin according to Embodiment 1 of the present invention is a flat plate-shaped molded body of a thermoplastic resin, which includes a light-emitting body that emits light when irradiated with light.
  • the number N 0 of the following bright points is 1 or more, and the number N 1 of the following bright points is N e1 or less represented by the following formula (F1). Characterize.
  • N 0 Number of specific bright spots per area of 46.2 cm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article
  • N 1 Number of specific bright spots per area of 1.4 mm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article
  • D 50 Median diameter [ ⁇ m] of luminescent material
  • Specific bright point A bright point having a maximum length of 10 ⁇ m or more and not more than the thickness of the flat plate-shaped molded product.
  • thermoplastic resin flat-plate molded article is a thermoplastic resin flat-plate molded article that includes a light-emitting body that emits light when irradiated with light, and the median diameter of the light-emitting body is:
  • the content of the luminous body per 10,000 mm 2 of the thermoplastic resin flat plate-shaped molded product is 10 ⁇ m or more and less than or equal to the thickness of the flat-shaped molded product, the following relational expression (F2 ) Is satisfied.
  • D 50 is the median diameter [ ⁇ m] of the luminescent material
  • d is the density [g / mm 3 ] of the luminescent material.
  • the second embodiment by dispersing a light-emitting body having a median diameter of 10 ⁇ m or more in a flat plate-shaped molded body having a certain area, it is observed as a bright spot clearly distinguished from a non-light-emitting portion. Further, when the median diameter of the bright spot exceeds the thickness of the flat plate-shaped molded body, the appearance of the flat plate-shaped molded body is deteriorated, that is, for example, as shown in FIG. Since the appearance is significantly deteriorated, it is not suitable for practical use.
  • the median diameter of the luminescent material is 10 ⁇ m or more and not more than the thickness of the flat plate-shaped molded product, it is possible to observe as a bright spot, and it is possible to manufacture a flat plate-shaped molded product having a good appearance. There is. Further, by adjusting the amount of the luminescent material per unit area of the flat plate-shaped molded product, it becomes possible to confirm the pattern of bright spots on the surface of the flat plate-shaped molded product. This bright spot pattern is virtually unreproducible. As a result, it becomes possible to judge the authenticity.
  • thermoplastic resin flat plate-shaped molded body according to Embodiment 3 of the present invention emits light when irradiated with light, and includes a light-emitting body having a median diameter of 10 ⁇ m or more and a thickness of the flat plate-shaped molded body or less. It is a flat plate-shaped molded product of a plastic resin, characterized in that the area ratio of bright spots defined by the following measuring method is 60% or less. Measurement method: Image analysis software WinROOF2013 (registered trademark) is used, and the range is specified to be 8.07 cm 2, and monochromeization is performed. The obtained grayscale image is displayed with density values having gradations of 0 to 255.
  • the lower limit threshold value 24 and the upper limit threshold value 255 are set for this grayscale image, and "binarization by two threshold values" is performed in the range of density values of 24 or more and 255 or less, and the area of the white portion corresponding to the bright spot is determined as the entire image. The value obtained by dividing by the area is calculated as the area ratio.
  • the third embodiment by dispersing a light-emitting body having a median diameter of 10 ⁇ m or more in a flat plate-shaped molded body having a certain area, it is observed as a bright spot clearly distinguished from a non-light-emitting portion. Further, when the median diameter of the bright spot exceeds the thickness of the flat plate-shaped molded body, the appearance of the flat plate-shaped molded body is deteriorated, that is, for example, as shown in FIG. Since the appearance is significantly deteriorated, it is not suitable for practical use.
  • the median diameter of the luminescent material is 10 ⁇ m or more and not more than the thickness of the flat plate-shaped molded product, it is possible to observe as a bright spot, and it is possible to manufacture a flat plate-shaped molded product having a good appearance. There is. Furthermore, by adjusting the area ratio of the bright spots on the surface of the flat plate-shaped article to be 60% or less, the pattern of bright spots can be confirmed on the surface of the flat plate-shaped article. This bright spot pattern is virtually unreproducible. As a result, it becomes possible to judge the authenticity.
  • FIG. 1 is a perspective view schematically showing an example of a flat plate-shaped molded product of a thermoplastic resin according to a preferred embodiment of the present invention.
  • the flat plate-shaped molded body 10 of the thermoplastic resin of the present embodiment is molded into a quadrangular (for example, rectangular) shape in a plan view.
  • the size is assumed to be used as a passport or card, but is not limited to this.
  • the flat molded article of the present invention is intended to include films, sheets, cards and the like.
  • An identification mark (identification design) 2 that can be visually recognized is usually printed or drawn (drawing, etc.) on the surface of the thermoplastic resin plate-shaped molded product 10. As a result, the user can visually distinguish this thermoplastic resin flat-plate molded article from another flat-plate molded article.
  • the identification display is usually drawn with a colored paint or the like, and may be drawn on the front surface (upper surface) or the back surface (lower surface) of the thermoplastic resin plate-shaped molded product. .
  • the thermoplastic resin flat plate-shaped molded body 10 of the present embodiment contains a thermoplastic resin, and the light emitting body 1 is dispersed in the thermoplastic resin. The light emitter 1 emits light when irradiated with light.
  • the emitted light is preferably at least one of ultraviolet light and infrared light, more preferably ultraviolet light.
  • the thermoplastic resin flat plate-shaped molded product is detected by detecting the bright spot information generated by the above-mentioned light emission.
  • the authenticity of the body can be identified.
  • the method of dispersing the light emitting body 1 in the thermoplastic resin is not particularly limited, but generally, the following procedure can be performed. A material in which a thermoplastic resin and the light emitting body 1 are mixed is prepared and melt-kneaded.
  • thermoplastic resin flat plate-shaped molded body 10 of the present embodiment can be obtained by cutting it into a desired size after forming a long flat plate-shaped molded body.
  • the light-emitting body 1 dispersed in the thermoplastic resin plate-shaped molded body 10 of the present embodiment is dispersed and present in the plate-shaped molded body.
  • the enlarged view in the circle of FIG. 1 shows an example of the dispersed state of the light emitting body 1.
  • This dispersed state is not created intentionally, but is created accidentally when it is obtained by melting the resin as described above. That is, it is extremely difficult to intentionally reproduce that state, and normally, there cannot be two flat plate-shaped molded products. Therefore, in the flat plate-shaped molded product having such an arbitrary light-emitting body dispersion state, the state of bright spots (bright spot information) due to light emission can be obtained by irradiation of light.
  • the light emitter 1 is shown by a black circle, but the light emitter may not be visible when light is not emitted. For example, it suffices that light is emitted by irradiating light and the bright spot can be confirmed.
  • the flat plate-shaped molded product of the thermoplastic resin according to the first preferred embodiment of the present invention (hereinafter, may be simply referred to as “the flat plate-shaped molded product of the present invention”) is irradiated with light on the flat plate-shaped molded product of the thermoplastic resin.
  • the number N 0 of specific bright points per area of 46.2 cm 2 in a plan view of the thermoplastic resin flat plate-shaped product is 1 or more.
  • FIG. 2 schematically shows the shape of the specific bright spot according to the embodiment of the present invention.
  • the illustrated specific bright spot has an irregular contour which is not a circle.
  • the size of the specific bright spot is evaluated by the maximum length L 2 of the bright spot.
  • the maximum length of the bright spot refers to the distance (length) at which the distance when the arbitrary two points on the outline P of the bright spot are selected and the two points are connected by a straight line becomes the largest.
  • the maximum length L 2 of the bright spot is shown by an auxiliary line.
  • the shape of the bright spot is not limited to that shown in the figure, and may be a rectangular shape or a flat shape having a length in a predetermined direction in addition to the circular shape and the elliptical shape.
  • the maximum length L 2 of the bright spot is 10 ⁇ m or more, preferably 12 ⁇ m or more, and more preferably 15 ⁇ m or more.
  • the upper limit is preferably 1 mm or less, more preferably 500 ⁇ m or less, further preferably 300 ⁇ m or less, further preferably 200 ⁇ m or less, and more preferably 160 ⁇ m or less. More preferably, it is even more preferably 140 ⁇ m or less. It is preferable to set the maximum length of the bright spots to the above lower limit value or more because the bright spot information having a sufficient size and no leakage can be detected accurately.
  • the content is not more than the above upper limit, it is preferable that the luminescent material is prevented from being exposed on the surface of the flat plate-shaped molded product and the appearance of the flat plate-shaped molded product is good.
  • the number of specific bright spots detected by microscope observation when irradiating with light is 1 or more in the number of bright spots N 0 .
  • N 0 may be 20 or more, 50 or more, 90 or more, and more than 100.
  • the number of bright spots N 0 is the number of specific bright spots present per 46.2 cm 2 in plan view of the flat plate-shaped molded product of the thermoplastic resin. This area takes into consideration the size of cards that are generally handled. Specific dimensions of the card include 85.60 mm ⁇ 53.98 mm ⁇ 0.76 mm (length ⁇ width ⁇ thickness).
  • the upper limit of N 0 is preferably 1,000,000 or less, more preferably 500,000 or less, and further preferably 100,000 or less. By setting the upper limit of N 0 in the above range, it is preferable that light emission by light irradiation is less likely to be surface emission.
  • the number N 1 of bright spots is N e1 or less in the following formula (F1).
  • the number N 1 of bright spots is the number of specific bright spots existing per 1.4 mm 2 in area in a plan view of the thermoplastic resin flat plate-shaped molded article.
  • the specific bright spot is synonymous with the one described above.
  • the number N 1 of bright spots is preferably 5 or more, more preferably 15 or more, and further preferably 20 or more. When N 1 is equal to or more than the above lower limit value, bright spots can be appropriately captured during microscopic observation, and accurate detection can be performed.
  • the number N 1 of specific bright spots is N e1 or less, preferably 0.8 ⁇ N e1 or less, more preferably 0.6 ⁇ N e1 or less, and 0.5 ⁇ N e1 or less. Is more preferable.
  • the number N 1 of specific bright spots is equal to or less than the above upper limit, it is preferable that the bright spots are not gathered to form the surface emission and the bright spots can be detected and analyzed appropriately.
  • the median diameter D 50 of the added luminous body is preferably 10 ⁇ m or more.
  • the lower limit of the median diameter is preferably 12 ⁇ m or more, more preferably 15 ⁇ m or more.
  • the upper limit is preferably 1 mm or less, more preferably 500 ⁇ m or less, further preferably 300 ⁇ m or less, further preferably 200 ⁇ m or less, and more preferably 160 ⁇ m or less. More preferably, it is even more preferably 140 ⁇ m or less.
  • the flat plate-shaped molded body of the thermoplastic resin according to the first embodiment of the present invention may satisfy one or more of the requirements defined in the second and third embodiments described later.
  • the median diameter D 50 of the light emitting body is 10 ⁇ m or more and the flat plate-shaped molded body thickness T or less.
  • the median diameter of the light emitting body when observed with a microscope is the same as that of the first embodiment, and the preferable range is also the same.
  • FIG. 3 is a cross-sectional view schematically showing the relationship between the thickness T and the size L 1 of the light emitting body of the flat plate-shaped molded body 10 according to this embodiment.
  • a flat plate molded body 10 of a thermoplastic resin according to a preferred embodiment of the present invention is composed of a base portion 3 whose main component is the thermoplastic resin of the flat plate molded body and a light emitting body 1. (However, it goes without saying that the flat molded article of the present invention does not exclude other components).
  • the size L 1 (for example, the median diameter D 50 and / or the number average particle diameter of the light emitting body) of the light emitting body 1 is set so as not to exceed the thickness T of the flat plate-shaped molded body.
  • the flat plate-shaped molded body 90 of the comparative example shown in FIG. 12 an example in which the size L 1 of the particle 1 is larger than the thickness T of the flat plate-shaped molded body base 3 is schematically shown. That is, this example corresponds to an example in which the maximum length of the bright spot exceeds the thickness of the flat plate-shaped molded body.
  • thermoplastic resin flat plate-shaped molded product 10 of the present embodiment it is preferable that particles are prevented from protruding beyond the flat plate-shaped molded product surface.
  • thermoplastic resin flat plate-shaped molded product according to the second embodiment has a light emitting body content w [g] per 10,000 mm 2 in plan view of the thermoplastic resin flat plate-shaped molded product. Then, the following relational expression (F2) is satisfied.
  • D 50 is the median diameter [ ⁇ m] of the light emitter
  • d is the density [g / mm 3 ] of the light emitter.
  • N c is a value obtained by calculating the number of particles contained per 10,000 mm 2 from w, D50, and d. The reason why the value of the formula (F3) is set to be equal to or less than the upper limit value is based on the data of Examples 1 to 4 and Comparative Examples 3 to 5 and the like. That is, FIG.
  • the upper limit range of the above formula (F2) corresponding to the straight line X is determined as the range in which N c is suitable for the measurement of the bright spot.
  • the lower limit of the formula (F3) is based on the fact that if the number of light emitting bodies is more than 1, individual resin moldings can be individualized.
  • the lower limit value of N c is preferably 5 or more, more preferably 100 or more, and further preferably 1000 or more.
  • N e2 The term on the right side of the formula (F2) is referred to as N e2 in the present specification (see the formula (F4) below).
  • N c is less than N e2, more preferably preferably at 0.7 ⁇ N e2 or less, more preferably less 0.5 ⁇ N e2, is 0.3 ⁇ N e2 less .
  • the flat plate-shaped molded article of the thermoplastic resin according to the second embodiment of the present invention may satisfy one or more of the requirements defined in the first embodiment and the third embodiment described later.
  • the median diameter of the light-emitting body is 10 ⁇ m or more and the flat plate-shaped molded product thickness or less. This preferable range is as described in the first embodiment. Further, when the thermoplastic resin flat plate-shaped molded product according to the third embodiment is irradiated with light to the thermoplastic resin flat plate-shaped molded product and observed with a microscope, the area ratio of the bright spots defined by the following measurement method is It is 60% or less.
  • Image analysis software WinROOF2013 (registered trademark) is used to specify the range to be 8.07 cm 2, and monochrome processing is performed.
  • the obtained grayscale image has density values having gradations of 0 to 255. It is displayed.
  • the lower limit threshold value 24 and the upper limit threshold value 255 are set for this grayscale image, and "binarization by two threshold values" is performed in the range of density values of 24 or more and 255 or less, and the area of the white portion corresponding to the bright spot is determined as the entire image.
  • the value obtained by dividing by the area is calculated as the area ratio.
  • the area ratio of the bright spots is preferably 55% or less, more preferably 50% or less.
  • the lower limit value is preferably 1% or more, and may be 10% or more, 25% or more. It is preferable that the content is not less than the above lower limit because it is possible to reliably detect bright spots without leakage.
  • the bright spots by the luminescent material have a sufficient size, and the distance between the particles (bright spots) is appropriately secured. Therefore, the contrast at the time of detecting a bright spot is high, and excellent distinguishability can be exhibited.
  • the interval between the light emitters (bright spots) becomes too narrow, the peripheral portion of each bright spot becomes bright, and the contrast decreases. If the spacing between the bright spots becomes narrower, the bright spots will overlap and the entire surface will emit light or will be in a state close to that, resulting in poor discrimination.
  • the flat plate-shaped molded product of the thermoplastic resin according to the third embodiment of the present invention may satisfy one or more of the requirements defined in the first and second embodiments. In the present invention, it is preferable that two or more of the requirements defined in Embodiments 1 to 3 are combined and satisfied.
  • the thickness T of the thermoplastic resin flat molded article is not particularly limited, but when the flat molded article alone is used as a product such as a card, it may be 1 ⁇ m or more, for example. It is preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, and may be 500 ⁇ m or more and 800 ⁇ m or more. The upper limit is practically 10 mm or less, and may be 5 mm or less and 3 mm or less.
  • the thermoplastic resin flat plate-shaped molded body may be thin, preferably 100 nm or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more. More preferable.
  • the upper limit may be 2 mm or less.
  • the thickness of the flat plate-shaped molded product refers to the thickness of the flat plate-shaped molded product base 3 (FIGS. 3 and 12) when the surface of the flat-shaped molded product is uneven.
  • the thickness of the flat plate-shaped product the thickness is measured every 2 cm in each of the extrusion direction and the width direction of the flat plate-shaped product using a Digimatic standard outside micrometer manufactured by Mitutoyo, and the average value is adopted.
  • the number average particle diameter of the luminescent material in the flat plate-shaped molded body is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more, and further preferably 15 ⁇ m or more.
  • the upper limit is preferably 1 mm or less, more preferably 500 ⁇ m or less, further preferably 300 ⁇ m or less, further preferably 200 ⁇ m or less, and more preferably 160 ⁇ m or less. More preferably, it is even more preferably 140 ⁇ m or less.
  • the number average particle diameter of the luminescent material in the resin molded body refers to the number average particle diameter of the luminescent material included in an arbitrary area (for example, an area of 46.2 cm 2 ) of the resin molded body.
  • the luminescent material is secondary particles
  • the secondary particles are regarded as one particle, and the number average particle diameter is measured. It is preferable that the arbitrary area of the resin molded body is an average value of three places.
  • the ratio (L 1 / T) of the thickness T of the flat plate-shaped molded product of the thermoplastic resin and the size (D 50 or the number average particle size, preferably the number average particle size) L 1 of the luminescent material is preferably 0.5 or less, more preferably 0.3 or less, and further preferably 0.2 or less.
  • the lower limit value is preferably 0.005 or more, more preferably 0.01 or more, and further preferably 0.02 or more.
  • the light-emitting body used in the present invention is preferably in the form of particles (light-emitting body particles), but may be in the form of fibers or the like.
  • the size of the luminescent material (D 50 or number average particle size, preferably number average particle size) is calculated as the equivalent spherical diameter of the same volume.
  • the ratio (L 3 / T) between the thickness T of the thermoplastic resin flat plate-shaped product and the maximum length (arithmetic mean) L 3 of the bright spots is It is preferably 0.5 or less, more preferably 0.3 or less, and further preferably 0.2 or less.
  • the lower limit value is preferably 0.005 or more, more preferably 0.01 or more, and further preferably 0.02 or more.
  • the basis weight of the thermoplastic resin flat plate-shaped molded product of the present invention is not particularly limited, but when it has a thickness such as cards and passports that can be carried on a daily basis, it is 9.6 ⁇ 10 ⁇ 1 g / is preferably m 2 or more, more preferably 9.6 g / m 2 or more, further preferably 9.6 ⁇ 10 g / m 2 or more. As an upper limit value, it is practical that it is 9.6 ⁇ 10 4 g / m 2 or less.
  • the flat molded article of the present invention When used as a thin film piece to be attached to the above-mentioned cards and the like, it is preferably 9.6 ⁇ 10 ⁇ 7 g / m 2 or less, and 9.6 ⁇ 10. It is more preferably ⁇ 6 g / m 2 or less, further preferably 9.6 ⁇ 10 ⁇ 5 g / m 2 or less. It is practical that the lower limit value is 9.6 ⁇ 10 ⁇ 9 g / m 2 or more.
  • the light-emitting body that constitutes the light-emitting body used in the present invention is not particularly limited as long as it emits light upon irradiation with light (for example, at least one selected from ultraviolet light and infrared light), and preferably ultraviolet light. Those that emit visible light or infrared light by irradiation with the above are preferable.
  • the compound serving as a light emitting body include B, F, Mg, Al, Si, P, S, Cl, Na, K, Li, Ca, V, Mn, Cu, Mo, Zn, Sn, Ge, and A compound containing an element selected from the group consisting of Sr, Y, Ba, La, Bi, W, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Is mentioned. Among them, preferably B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr, Nd, Pm, Sm.
  • a compound containing an element selected from the group consisting of Lu more preferably Al, P, Li, Cu, Zn, Sr, Y, Ce. , Eu, Dy and Lu are compounds containing an element selected from the group consisting of.
  • the compound constituting the light emitting body include a composite oxide of the above element and an oxygen atom, an organometallic compound in combination with an organic group, and the like. Moreover, what added the activator to these compounds is mentioned.
  • the compound serving as a luminescent material may be a compound represented by any one of the following formulas (1) to (3).
  • Examples of the compound represented by the formula (1) include an inorganic composite metal oxide obtained by treating a raw material having the following composition (i) by the following procedure.
  • This inorganic composite metal oxide can be used as a material that emits infrared light by ultraviolet light. After uniformly mixing the raw materials having the following composition (i), the alumina crucible is filled in the air under the atmosphere and the temperature is raised to 1450 ° C. over 3 hours in an electric furnace and kept for 10 hours. Then, it cools to room temperature.
  • Examples of the compound represented by the formula (2) include an inorganic mixed metal oxide obtained by treating a raw material having the following composition (ii) by the following procedure.
  • the host crystal as the main component and the activator or luminescent center dispersed in the host crystal are divided and connected by (:).
  • ZnS of ZnS: Mn serves as a host crystal
  • Mn serves as an activator.
  • a raw material having the following composition (ii) is uniformly mixed in a closed reactor, and then heated at 100 ° C. to volatilize water. Then, the temperature is gradually raised to 200 ° C. to cause a decomposition reaction of citric acid, which is an organic acid, to obtain a mixture.
  • Examples of the compound represented by the formula (3) include an inorganic composite metal oxide obtained by treating a raw material having the following composition (iii) by the following procedure.
  • This inorganic composite metal oxide can be used as a material that emits infrared light by ultraviolet light.
  • the obtained calcined product can be pulverized to obtain a luminescent material having an average particle diameter of about 1 ⁇ m.
  • the above mixture was filled in an alumina crucible, heated in an electric furnace at 650 ° C for 4 hours in the air, cooled to room temperature and coarsely pulverized to obtain particles having an average particle diameter of about 10 ⁇ m.
  • the fired product obtained in the first step is heated in an electric furnace at 1100 ° C. for 4 hours in the air, cooled to room temperature and coarsely pulverized to obtain particles having an average particle diameter of about 3 ⁇ m. obtain.
  • the fired product obtained in the second step is heated in an electric furnace at 600 ° C. for 2 hours in the air, and then cooled to room temperature.
  • ultraviolet light means an electromagnetic wave having a wavelength of 10 nm to 400 nm (preferably 50 nm to 350 nm)
  • visible light means an electromagnetic wave having a wavelength of 360 nm to 830 nm (preferably 410 to 690 nm)
  • infrared light Means an electromagnetic wave having a wavelength of 700 nm to 1,000,000 nm (preferably 880 nm to 1,000 nm).
  • Examples of the luminescent material that emits ultraviolet light include those that are excited by ultraviolet light and have a spectral peak that is emitted when returning to an energy level lower than this in the wavelength range of visible light such as blue, green, and red. .
  • a small amount of metal copper, silver, manganese, bismuth, lead, etc.
  • high-purity phosphors such as zinc sulfide and alkaline earth metal sulfides in order to enhance the emission.
  • the thing obtained by baking at high temperature is mentioned.
  • the luminescent material that emits ultraviolet light can be adjusted in hue, brightness, and degree of color attenuation by a combination of a host crystal and an activator.
  • a light-emitting body that emits infrared light can also be used as the light-emitting body. Specifically, a light-emitting body that is excited by infrared light (about 800 to about 1200 nm) and emits visible light (about 400 to about 800 nm) and a longer wavelength by being excited by infrared light (about 800 to about 900 nm) Some infrared rays (about 980 to about 1020 nm) emit light.
  • the former luminescent material is a fluorescent material having a very special excitation mechanism, and it excites visible light emission by using a plurality of infrared photons having low energy.
  • this excitation mechanism there are two types of this excitation mechanism, one of which is observed in many host crystals that use Er 3+ , Ho 3+ (rare earth), etc. as an activator, which are excited by excitation at other stages in the activator ion.
  • the resonance energy transfer from the sensitizer is performed a plurality of times, that is, the sensitizer Yb 3+ absorbs infrared rays, and multi-step energy transfer causes multi-step energy transfer, such as Er 3+ , Tm 3+ , and Ho 3+, which are high levels.
  • the latter has a composition of LiNd 0.9 Yb 0.1 P 4 O 12 , LiBi 0.2 Nd 0.7 Yb 0.1 P 4 O 12 , Nd 0.9 Yb 0.1 Nd 5 (MoO 4 ). 4 , NaNd 0.9 Yb 0.1 P 4 O 12 , Nd 0.8 Yb 0.2 Na 5 (WO 4 ) 4 , Nd 0.8 Yb 0.2 Na 5 (Mo 0.5 W 0.5) O 4 ) 4 , Ce 0.05 Gd 0.05 Nd 0.75 Yb 0.15 Na 5 (W 0.7 Mo 0.3 O 4 ) 4 , Nd 0.9 Yb 0.1 Al 3 (BO 3 ) 4 , Nd 0.9 Yb 0.1 Al 2.7 Cr 0.3 (BO 3 ) 4 , Nd 0.6 Yb 0.4 P 5 O 14 Nd 0.8 Yb 0.2 K 3 (PO 4) ) There are 2 etc.
  • Examples of the compound that can be used as a light-emitting body in the present invention include those described in paragraphs 0019 and 0090 to 0097 of JP-A-2005-168728, and paragraphs 0033, 0034, and 0069 of JP-A-10-129107. Reference may be made to the above documents, and these descriptions are incorporated herein.
  • the light-emitting body of the present invention emits light when irradiated with light.
  • a mode in which the light-emitting body emits light upon irradiation with light and visible light or infrared light is returned is preferable.
  • electromagnetic waves other than visible light it is possible to prevent information diffusion and easy forgery without visually recognizing the color state of the flat plate-shaped molded product.
  • a mode is adopted in which visible light is emitted by light irradiation, it can be easily confirmed at this stage whether the product is a counterfeit product or not.
  • the density of emitters is preferably 0.0001 g / mm 3 or more, more preferably 0.001 g / mm 3 or more. Further, it is preferably 0.01 g / mm 3 or less, and more preferably 0.008 g / mm 3 or less.
  • the content of the luminescent material used in the flat shaped article of the present invention is 1 ⁇ 10 ⁇ 4 mass% or more based on the solid content in the thermoplastic resin composition for forming the flat shaped article.
  • the content is preferably 5 ⁇ 10 ⁇ 4 mass% or more, more preferably 1 ⁇ 10 ⁇ 3 mass% or more.
  • the upper limit value is preferably 5% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less.
  • the solid content refers to the weight of the entire resin composition forming the flat plate-shaped molded product.
  • the content of the luminescent material used in the flat shaped article of the present invention is 1 ⁇ 10 ⁇ 4 parts by mass or more based on 100 parts by weight of the flat shaped article of the thermoplastic resin, as defined by the ratio with the thermoplastic resin. Is more preferable, 5 ⁇ 10 ⁇ 4 parts by mass or more is more preferable, and 1 ⁇ 10 ⁇ 3 parts by mass or more is still more preferable.
  • the upper limit is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass or less.
  • the luminescent material may be used alone or in combination of two or more.
  • the mass of the thermoplastic resin and the luminescent material may be obtained by elemental analysis of the flat molded article product, but since there is information at the manufacturing stage. If there is any, it may be calculated from the mass of the thermoplastic resin or the like to be charged into the manufacturing apparatus at the time of manufacturing and the mass of the light emitting body.
  • the formulation of the manufacturing stage is unknown and it is difficult to measure the mass of the thermoplastic resin in the flat plate-shaped product from the flat plate-shaped product, it is difficult to distinguish it from other organic components. It may be evaluated as the ratio of the mass of the luminescent material to the total mass of the organic compounds in the molded body.
  • the content of the light-emitting body in the flat-plate molded body By setting the content of the light-emitting body in the flat-plate molded body to the above upper limit or less, it is possible to prevent the transparency of the flat-plate molded body from decreasing and the emission color from becoming unclear.
  • the luminous points of the light emitters are not too close to each other, which is suitable for collation and judgment.
  • the content of the luminescent material By making the content of the luminescent material equal to or higher than the above lower limit value, it becomes possible to prevent the detection by the detector from becoming difficult. Further, it is possible to prevent the bright spots of the light emitting body from becoming sparse and disperse too much, and to obtain bright spot information having a discriminative distribution, which contributes to detection and determination.
  • the continuous layer (base) thereof is made of a thermoplastic resin.
  • the method for producing the flat shaped article of the present invention is not particularly limited, but it is preferable that the flat shaped article is molded using a resin composition suitable for shaping the flat shaped article.
  • the thermoplastic resin preferably contains at least one of a polycarbonate resin and a polyester resin.
  • a polycarbonate resin is a — [O—R—OCO]-unit (R is an aliphatic group, an aromatic group, or a group containing both an aliphatic group and an aromatic group) containing a carbonic acid ester bond in the molecular main chain. And the aliphatic group may have a linear structure or a branched structure).
  • each flat plate-shaped molded product contains an aromatic polycarbonate resin.
  • the weight average molecular weight of the polycarbonate resin is preferably 20,000 to 80,000, more preferably 21,000 to 50,000, and even more preferably 22,000 to 40,000.
  • the glass transition temperature of the polycarbonate resin is preferably 120 ° C. or higher, and more preferably 130 ° C. or higher.
  • the upper limit is preferably 160 ° C. or lower, more preferably 155 ° C. or lower.
  • the glass transition temperature is measured by differential scanning calorimetry (DSC).
  • the polyester resin may be an amorphous polyester resin or a crystalline polyester resin.
  • the amorphous polyester resin include PETG resin and PCTG resin.
  • PETG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly containing terephthalic acid units, an ethylene glycol unit, and a glycol unit mainly containing 1,4-cyclohexanedimethanol units. , Occupy less than 50% of all glycol units on a molar basis.
  • the terephthalic acid unit preferably accounts for all dicarboxylic acid units.
  • PCTG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly containing terephthalic acid unit, an ethylene glycol unit, and a glycol unit mainly containing 1,4-cyclohexanedimethanol unit, and is 1,4-cyclohexanedimethanol.
  • the units account for 50% or more of all glycol units on a molar basis.
  • the terephthalic acid unit preferably accounts for all dicarboxylic acid units.
  • polycaprolactone As the crystalline polyester resin, polycaprolactone can be mentioned.
  • thermoplastic resin a combination of a polycarbonate resin and a polyester resin, a combination of a polycarbonate resin or a polyester resin and another thermoplastic resin, or a combination of a polycarbonate resin, a polyester resin and another thermoplastic resin Good.
  • the polycarbonate resin or the polyester resin preferably polycarbonate resin
  • the polycarbonate resin or the polyester resin preferably accounts for 50% by mass or more of the entire thermoplastic resin, more preferably 60% by mass or more, and 80% by mass or more. Is more preferable, and may be 90% by mass or more.
  • the upper limit is not particularly limited, and the polycarbonate resin or the polyester resin may be 100% by mass.
  • the polycarbonate resin one kind or a plurality of kinds may be used.
  • the polyester resin one kind or a plurality of kinds may be used. When a plurality of materials are used in each case, the total amount is within the above range.
  • the resin constituting the flat molded article is a resin composition
  • additives such as an antioxidant, a heat stabilizer, a flame retardant, a flame retardant aid, a release agent, a colorant, etc. May be included.
  • it contains additives such as an ultraviolet light absorber, an antistatic agent, a fluorescent brightening agent, an antifogging agent, a fluidity improving agent, a plasticizer, a dispersant, and an antibacterial agent.
  • the content of the additive as described above in the thermoplastic resin is preferably 1.0 mass% or less, more preferably 0.5 mass% or less, based on the mass of the entire thermoplastic resin. It is more preferably 0.1% by mass or less. The lower limit may be 0% by mass.
  • the flat shaped article of the present invention preferably contains an antioxidant.
  • the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, thioether antioxidants, and the like, and phosphorus antioxidants and phenolic antioxidants (more preferably hinders Dephenolic antioxidants) are preferred, and phosphorus antioxidants are more preferred.
  • a phosphite-based stabilizer as the phosphorus-based antioxidant, a phosphite compound represented by the following formula (1) or (2) is preferable.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R 3 to R 7 each independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms.
  • the alkyl groups represented by R 1 and R 2 are preferably each independently a linear or branched alkyl group having 1 to 10 carbon atoms.
  • R 1 and R 2 are aryl groups, an aryl group represented by any of the following formulas (1-a), (1-b), or (1-c) is preferable.
  • R A's each independently represent an alkyl group having 1 to 10 carbon atoms.
  • R B's each independently have 1 to 10 carbon atoms. Represents the alkyl group of 10.
  • the content of the antioxidant is preferably 0.005 parts by mass or more, more preferably 0.007 parts by mass or more, and further preferably 0.01 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin. .
  • the upper limit of the content of the antioxidant is preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, and further preferably 0.2 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Hereafter, it is more preferably 0.1 part by mass or less.
  • the antioxidant only one kind may be used, or two or more kinds may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the method of molding the resin or the resin composition as a flat plate-shaped molded product is not particularly limited, and a usual method can be appropriately adopted.
  • extrusion molding and cast molding may be used.
  • extrusion molding pellets, flakes or powders of the resin composition are melted and kneaded by an extruder, then extruded from a T die or the like, and a semi-molten film (flat plate molded body) obtained is pressed with a roll.
  • the method include cooling and solidifying to form a film (plate-shaped molded body).
  • coextrusion molding may be performed so that films (plate-shaped molded bodies) are laminated.
  • films plate-shaped molded bodies
  • coextrusion molding it is more efficient than a manufacturing method of forming an adhesive layer by using an adhesive and laminating a film, a manufacturing method of forming a coating film layer by using a paint, or the like.
  • Multilayer bodies can be produced.
  • the size of the flat plate-shaped molded product of the present invention in plan view is not particularly limited, but as described above, when used as a card or a passport, the size of the card is 85.60 mm ⁇ 53. It is generally 0.98 mm and 91 mm ⁇ 128 mm in a passport. Specifically, one side is preferably 5 mm or more, more preferably 10 mm or more, further preferably 20 mm or more, and may be 40 mm or more, 60 mm or more, 70 mm or more. It is practical that the upper limit value is 150 mm or less. Moreover, it is preferable that the flat plate-shaped molded body is substantially rectangular.
  • one side is preferably 20 mm or less, more preferably 10 mm or less, and 5 mm or less. Is more preferable. It is practical that the lower limit value is 10 ⁇ m or more.
  • FIG. 5 shows, as a preferred embodiment of the present invention, an example in which a thermoplastic resin film is laminated on a substrate as an example of the flat plate-shaped molded article of FIG.
  • the thermoplastic resin film 11 is laminated on the base material 12.
  • This thermoplastic resin film 11 can be used as the thermoplastic resin flat plate-shaped molded product according to the present invention. Therefore, in the thermoplastic resin film 11, as in the case shown in FIG. 1, the luminous body having a specific content and a specific size is dispersed inside. With this, by irradiation of light, it is possible to perform identification similar to or more than fingerprint authentication.
  • the characteristics of the base material 12 are not particularly limited, but may be a transparent film composed of the above-mentioned thermoplastic resin or its composition. In addition, it may be a plain mount such as paper, a chromatic resin film, or a combination with another fluorescent film.
  • the identification information (information design) of FIG. 1 may be given to either the upper surface or the lower surface. In the present embodiment, if the identification display is provided on the upper surface, the same effect as in FIG. 1 can be obtained by combining with the thermoplastic resin film.
  • the multilayer body of the present invention is not limited to the one shown.
  • it may have a three-layer structure of thermoplastic resin film / base film / thermoplastic resin film, or may have a structure in which more layers are laminated. Further, a light shielding layer may be provided.
  • the thickness and size of the multilayer body in plan view are not particularly limited, but the preferred range is the same as the dimensions described as the thickness and size of the thermoplastic resin film.
  • FIG. 6 is a flowchart showing the authenticity determination method according to the preferred embodiment of the present invention.
  • the flat plate-shaped molded product of the thermoplastic resin according to the present invention described above is irradiated with specific light, and information regarding a bright spot created by the light emission (bright spot information) is detected. Including doing.
  • the light is the same as described above, and the preferable range is also the same.
  • the bright spots are generated by the light emitted when the light emitting body is irradiated with light.
  • the size and distribution of the bright spots are determined by the type and distribution of the light emitters in the flat molded body (provided that the light emission of some light emitters is blocked or the light emission is blocked for some reason). , It may be in a state where bright spots are partially obtained.)
  • the bright spot information includes, for example, the size of the bright spot, the emission wavelength of the bright spot, the emission intensity of the bright spot, and the position information of the bright spot (distribution, interval, arrangement, etc.).
  • the size of the bright spot, the emission wavelength, the emission intensity, the position information, etc. are determined according to the size of the above-mentioned light-emitting body, etc. Determined by Therefore, it is preferable that the preferable size of the bright spots and the like be in a range determined according to the preferable size of the luminescent material, its distribution, and the contents specified as types.
  • the light emission of some of the light emitters may be intentionally or accidentally blocked.
  • the accuracy of detection can be improved by intentionally blocking the light emission of the light-emitting body with respect to a portion unnecessary for the detection device.
  • the light emission from the light emitter is not detected vaguely, but the bright spots are systematically read and detected as information.
  • Fingerprints may be damaged by burns, etc., or may become difficult to read.
  • the accuracy is higher than that of fingerprint authentication.
  • the distance between the bright spots does not become too short, the individual bright spots are separated, and they are detected without excessive bias in a predetermined size range.
  • This point becomes important when the bright spot information is automatically analyzed by a computer through image software or the like and collated with a previously registered database of bright spot information.
  • the detected bright spot information is displayed in binary with white / black for each part and white for the part with bright spots and black for the other parts, if there is a reading failure in the distinction between black and white, That leads to a false decision.
  • such a situation can be suppressed or prevented. That is, since the distribution of the content and size of the luminous body is defined, it is possible to effectively prevent the detected bright spots from becoming too close. As a result, it is possible to lead to highly accurate detection and authenticity determination through image analysis. In particular, the effect becomes remarkable when the bright spot information registered in advance reaches a huge amount.
  • the bright spot information may be mechanically detected by a sensor or the like, but may be visually confirmed by a person.
  • the determination of authenticity described below is also the same, and may be performed mechanically by a computer or the like, but may be determined by a person.
  • the authenticity determination method it is determined whether the bright spot information detected above is the true bright spot information, that is, whether the flat plate-shaped molded body or the multilayer body of the thermoplastic resin is forged. To do. If this corresponds to the true bright spot information, the flat plate-shaped molded product of the thermoplastic resin, which has been tested for authenticity, is determined to be a genuine product (Yes in FIG. 6), and otherwise it is determined to be a counterfeit product ( No of FIG. 6).
  • a true light emission database true light emission database
  • Consistency rate of the authenticity determination method of the present invention using the thermoplastic resin plate-shaped molded article that is, the probability that the pre-registered bright spot information and the subsequently detected bright spot information will match (matching bright spot information (Number / number of bright spot information tested) is preferably 90% or more, more preferably 95% or more, and further preferably 99% or more.
  • the upper limit is not particularly limited, and may be 100% depending on the number of times of testing. According to a preferred embodiment of the present invention, it is possible to achieve a matching rate which is preferably comparable to the fingerprint authentication system applied to criminal investigation.
  • specific items for detecting and determining the bright spot information are not particularly limited, for example, the size of the bright spot, the emission wavelength of the bright spot, the emission intensity of the bright spot, and the position information of the bright spot (distance between bright spots and Distribution etc.) and the like.
  • FIG. 8 is a flowchart showing an overall image of the usage mode of the card A using the authenticity determination method of the present invention.
  • a card in which the light emitting elements are dispersed is manufactured (manufacturing process).
  • this manufacturing process for example, the above-described method of dispersing the luminescent material in the resin and molding a flat plate-shaped molded body by extrusion or the like is applied.
  • the manufactured card A is irradiated with light, and the bright spot information created by the light emitted from the card A is read.
  • the bright spot information is sent to a recording device that stores a true light emission database (true light emission DB) in which a large number of these are registered, and is recorded and stored here (registration process). Since the true light emission database stores a large number of bright spot information, it is preferably provided in a large-capacity server or cloud service platform.
  • the card A with the bright spot information registered is placed in the distribution (distribution process).
  • the distribution process For example, in the case of a card A of a financial institution, account information is printed or magnetically written in the card and delivered to the user. During this time, the card A is exposed to the risk of forgery.
  • the card A may be required to identify or authenticate it. For example, if the card A is a card in which financial information is stored, it is possible to confirm whether the card A is forged and give a loan to the holder of the card A. Therefore, determining whether the card A is authentic is a very important confirmation item.
  • the card A is irradiated with light to detect the bright spot information (detection process), and the detected bright spot information is collated with the information of the true light emission database by a nondestructive method. (Comparison process), it is determined whether the detected bright spot information matches the bright spot information in the database (determination process).
  • the detection process, the matching process, and the determination process are the same as those shown in FIGS. 6 and 7.
  • the bright spot information of the card A handed over to this user is registered in advance in the true light emission database (registration process), and the bright spot information is extracted from the database and collated. (Verification process).
  • registration process true light emission database
  • the bright spot information is extracted from the database and collated.
  • Verification process verification process.
  • the term "ni" means that there is no human error or the like, and specifically, the frequency of occurrence of inconsistency is less than 1%).
  • a mismatch (No) in the verification process means that there is a high probability that the card is damaged or forged in the distribution process.
  • the damage is due to negligence, counterfeiting is a deliberate criminal act that must be cracked down. In some cases, this can lead to a large amount of damage to financial institutions.
  • the present invention is not limited to the description of FIG. For example, it goes without saying that the present invention does not need to include all the flows in the figure.
  • the present invention is not construed as being limited by aspects of the manufacturing and distribution processes other than the above, including the detection, matching, and determination processes shown in FIG.
  • FIG. 9 is a block diagram of an authenticity determination system according to a preferred embodiment of the present invention.
  • light C1 is emitted from the light source (light emitting unit) 51 to the thermoplastic resin flat plate-shaped molded body 10.
  • the preferred range of this particular light is the same as the light described above.
  • the flat plate-shaped molded body of the thermoplastic resin is irradiated with the above-mentioned light to cause the multilayer body to emit light, and the light emission C2 is detected by the optical sensor (detection unit) 52.
  • the light source 51 and the detection unit 52 are connected to a computer (control unit / authenticity determination unit) 53 and are operated under the control thereof.
  • the authenticity determination device includes the light irradiation unit 51, the detection unit 52, and the computer 53 described above.
  • the computer 53 emits a brilliance emitted from the thermoplastic resin flat plate-shaped article through image analysis software (for example, WinROOF 2013 (registered trademark), Mitani Shoji Co., Ltd.) installed therein. It is determined whether or not the point information is genuine bright point information registered in advance.
  • the computer 53 is connected to the external network 57 so that it can communicate with the true light emission database provided on the external network. Therefore, even huge data (big data) can be handled, and it is a system that enables comprehensive, accurate, and quick determination.
  • the preferred determination procedure in this system is the same as the flowchart (FIGS. 6 and 7) shown in the authenticity determination method, and the preferred usage mode is also the same as that shown in FIG. 8.
  • the detection and the determination are performed by the detection unit and the computer without assuming that they are performed by human eyes.
  • the system according to the present embodiment includes an image display unit 54 that displays the determination result, a printing unit 55 that can print the determination result and its analysis result, and a medium recording unit that records the determination result in a recording medium.
  • the system is connected to 56 and the like and is entirely controlled by a computer.
  • the apparatus includes a light source (light irradiation unit) 51, an optical sensor (detection unit) 52, a computer (control unit / authenticity determination unit) 53, an image display unit 54, a printing unit 55, and a medium recording unit.
  • a light source light irradiation unit
  • an optical sensor detection unit
  • a computer control unit / authenticity determination unit
  • an image display unit 54
  • a printing unit 55 a printing unit 55
  • a medium recording unit When the means 56, the external network 57, and the like are included, they are called systems, and terms are distinguished.
  • the recording medium include a magnetic tape, a magnetic disk, an optical disk, and a semiconductor memory. It goes without saying that the present invention is not construed as being limited by the configuration of the figure.
  • a program written in a computer-readable format according to a preferred embodiment of the present invention is programmed so as to sequentially proceed with the procedures shown in the flowcharts of FIGS. Specifically, the step of reading the bright spot information emitted by the thermoplastic resin flat molded article or the multilayered body (such as the thermoplastic resin flat molded article) and the detected bright spot information are It is a program for causing a computer to execute these operations, including a genuineness determining step of determining whether or not it is point information. Further, the embodiment will be described with reference to FIG. 6 in a series of steps. When the program is started, the flat plate-shaped molded product of the thermoplastic resin or the like is irradiated with light through a predetermined device.
  • the light is as defined above and the preferred range is also the same.
  • the bright spot information generated by the light emission preferably light emission in the visible light region
  • the detection at this time may be performed by visual observation, and the result may be input and sent to the computer, but it is preferably performed by an optical sensor (detection unit) connected to the computer.
  • the genuine bright spot information is registered by previously irradiating the flat plate-shaped molded product of the thermoplastic resin or the like with light at the manufacturing stage or thereafter, and detecting the bright spot information emitted from the flat molded product. If the detected bright spot information matches that registered in advance and the information is judged to be authentic (Yes in FIG. 6), the tested thermoplastic resin plate-shaped molded product is judged to be authentic. It Otherwise (No in FIG. 6), it is determined to be a forgery.
  • the determination is performed using a true light emission database (FIG. 7). That is, in the determination step, the bright spot information emitted from the detected thermoplastic resin flat molded article is queried with respect to the true light emission database (true light emission DB) in which many true light emissions are recorded, and the corresponding flat molding is performed. If the bright spot information of the body exists in the database and the true bright spot information and the detected bright spot information match, it is determined that the thermoplastic resin flat plate-shaped molded product is a genuine product. If the true bright spot information and the detected bright spot information do not match, it is determined that the thermoplastic resin flat plate-shaped molded product is a counterfeit product.
  • a true light emission database FIG. 7
  • the true light emission database may be recorded and stored as a data structure in this program, but it is also preferable to retain it in a different place from this program such as a server or a cloud service platform in another form.
  • the number of bright spot information in the database is not particularly limited, but from the viewpoint that the effect of the present invention becomes remarkable, for example, it is preferably 1 million or more, more preferably 10 million or more, More preferably, it is 100 million or more.
  • data is stored as a big data by a super computer or the like, it is preferably 1 billion or more, more preferably 10 billion or more, still more preferably 100 billion or more.
  • the upper limit is not particularly limited, and virtually infinite data can be handled when using cloud computing or the like.
  • the flat plate-shaped molded product and the multilayered product of the thermoplastic resin of the present invention are suitably used as cards such as ID cards, passports (particularly, data pages for passports), non-contact type IC cards, security cards and the like.
  • cards such as ID cards, passports (particularly, data pages for passports), non-contact type IC cards, security cards and the like.
  • its use is not limited, and it can be widely used in fields where it is desired to prevent forgery, such as product tags, distribution information, personal data management, and crime prevention systems.
  • a test piece film FL1 was manufactured as follows. Using a T-die melt extruder composed of a twin-screw extruder having a barrel diameter of 32 mm and a screw L / D of 31.5, a mirror-finished film having a width of 300 mm and a discharge rate of 20 kg / h and a screw rotation speed of 200 rpm was formed. The cylinder / die head temperature was 280 ° C. and the mirror surface was manufactured. Further, FL2 to FL10 were produced using the resin compositions RE2 to RE10 in the same manner as in FL1. In the above, each component is part by mass.
  • N 0 Number of specific luminescent spots per area of 46.2 cm 2 in the film (flat molded article) (specific bright point: maximum length is 10 ⁇ m or more and bright spots having a size not larger than the thickness of the film (flat molded article) )
  • N 1 Number of specific bright spots per area of 1.4 mm 2 in the film (flat plate-shaped molded product) (specific bright spot: bright spot having maximum length of 10 ⁇ m or more and film thickness or less)
  • w Content of the luminescent material [g] present in an area of 10,000 mm 2 in the film (flat body). For convenience of notation, w is displayed after adjusting the number of digits by 1000 times. For convenience of notation, N c and Ne 2 are displayed with the number of digits reduced to 1/1000.
  • the lower limit threshold value 24 and the upper limit threshold value 255 are set for this grayscale image, and "binarization by two threshold values" is performed in the range of density values of 24 or more and 255 or less, and the area of the white portion corresponding to the bright spot is determined as the entire image. The value obtained by dividing by the area was calculated as the area ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Credit Cards Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Luminescent Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a flat molded-body, a multi-layered body, a method of determining authenticity thereof, a system of determining authenticity thereof, and a program that can control same; the foregoing making it possible to improve anticounterfeit performance in a technology using a luminous body that is made to emit light by being irradiated with light. This flat molded-body of thermoplastic resin comprises a luminous body that emits light when irradiated with light, wherein when the flat molded-body of thermoplastic resin is irradiated with light and is observed with a microscope: a number N0 of bright spots is at least 1, and a number N1 of bright spots is at most Ne1 represented by (F1); N0 is a number of specific bright spots per 46.2 cm2 of surface area in plan view of the flat molded-body of thermoplastic resin; N1 is a number of specific bright spots per 1.4 mm2 of surface area in plan view of the flat molded-body of thermoplastic resin; D50 is a median diameter [μm] of the luminous body; and the specific bright spots are bright spots having a maximum length of at least 10 μm but no more than the thickness of the flat molded-body.

Description

熱可塑性樹脂の平板状成形体、多層体、真贋判定方法、真贋判定システムおよびプログラムFlat plate molded body of thermoplastic resin, multi-layered body, authenticity judging method, authenticity judging system and program
 本発明は、熱可塑性樹脂の平板状成形体、多層体、真贋判定方法、真贋判定システムおよびプログラムに関する。 The present invention relates to a thermoplastic resin plate-shaped molded article, a multilayer body, an authenticity determination method, an authenticity determination system, and a program.
 従来、IDカード、e-パスポート、および非接触型ICカード等において、樹脂フィルムやその積層体を含むカード類が使用されてきている。偽造を防止することを目的に、この樹脂フィルムの表面にQRコード(登録商標)等の暗号化コードや所持者の写真等を貼付する例がある。しかし、これでは、QRコード等の印字ごと複写されたり、写真を剥がして挿げ替えたりするなどの処理により、偽造される可能性が残るものであった。
 これに対して、発光体(特に、発光体粒子)を利用して偽造防止性を高めることが提案されている。
 特許文献1では、発光体を熱可塑性樹脂中に分散させた光発光体フィルムであって、前記発光体粒子として、紫外光または可視光の照射により赤外光を発光する赤外光発光体粒子を用いたフィルムが提案されている。
 特許文献2では、赤外線発光蛍光剤を含有する第1の情報パターン部を形成してなる基材上に顔写真などの画像が形成され、受像層、ホログラム層、剥離性保護層のいずれかの層間に第2の情報パターン部を形成した画像表示体であって、所定波長の赤外線および紫外線の照射によって設けられた情報パターン部が発光し、情報パターンを目視確認することができる画像表示体が提案されている。
Heretofore, cards including a resin film and a laminate thereof have been used in ID cards, e-passports, non-contact type IC cards and the like. For the purpose of preventing forgery, there is an example in which an encryption code such as QR code (registered trademark) or a photograph of the owner is attached to the surface of this resin film. However, in this case, there is a possibility that forgery may occur due to a process such as copying the QR code or the like as it is printed, or removing the photo and replacing it.
On the other hand, it has been proposed to enhance the anti-counterfeit property by utilizing a luminescent material (in particular, luminescent particles).
In Patent Document 1, a photoluminescent film in which a luminous body is dispersed in a thermoplastic resin, wherein the luminous body particles emit infrared light when irradiated with ultraviolet light or visible light. A film using is proposed.
In Patent Document 2, an image such as a facial photograph is formed on a base material formed with a first information pattern portion containing an infrared emitting fluorescent agent, and any one of an image receiving layer, a hologram layer, and a peelable protective layer is formed. An image display body having a second information pattern portion formed between layers, wherein the information pattern portion provided by irradiation of infrared rays and ultraviolet rays having a predetermined wavelength emits light, and the information pattern can be visually confirmed. Proposed.
特開2015-168728号公報JP, 2005-168728, A 特開平10-129107号公報JP, 10-129107, A
 上記の特許文献1で開示された技術では、紫外光または可視光の照射による赤外光の発光を利用している。特許文献2では、紫外光の照射による赤外光の発光を利用している。いずれも、目には見えない赤外光の発光を利用しており、表面に印字したり写真を貼付したりするものと比較し、偽造の防止性は改善されている。しかしながら、特許文献1や特許文献2では、真贋判定方法としては十分とは言えない。 The technique disclosed in Patent Document 1 above utilizes the emission of infrared light by irradiation with ultraviolet light or visible light. In patent document 2, the light emission of infrared light by irradiation of ultraviolet light is utilized. Both of them utilize infrared light emission that is invisible to the eyes, and the anti-counterfeiting property is improved as compared with the case of printing on the surface or attaching a photograph. However, in Patent Document 1 and Patent Document 2, it cannot be said that the authenticity determining method is sufficient.
 そこで本発明は、光の照射によって発光する発光体を用いた技術において、偽造防止性を高めることができる熱可塑性樹脂の平板状成形体、多層体、その真贋判定方法、真贋判定システム、およびこれらを制御することができるプログラムの提供を目的とする。 Therefore, the present invention is a technique using a light-emitting body that emits light upon irradiation with light, in which a thermoplastic resin flat molded article capable of enhancing anti-counterfeiting properties, a multilayer body, an authenticity determining method thereof, an authenticity determining system, and these. The purpose is to provide a program that can control the.
 上記の課題は以下の手段により解決された。
<1>光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、前記熱可塑性樹脂の平板状成形体に光を照射し、顕微鏡で観察したとき、下記輝点の数Nが1以上であり、下記輝点の数Nが下記式(F1)で表されるNe1以下である熱可塑性樹脂の平板状成形体;
Figure JPOXMLDOC01-appb-M000003
:熱可塑性樹脂の平板状成形体の平面視における面積46.2cm当たりの特定輝点の数;
:熱可塑性樹脂の平板状成形体の平面視における面積1.4mm当たりの特定輝点の数;
50:発光体のメジアン径[μm];
特定輝点:最大長が10μm以上であり平板状成形体の厚み以下である輝点。
<2>光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、前記発光体のメジアン径が、10μm以上、かつ、平板状成形体の厚み以下であり、前記熱可塑性樹脂の平板状成形体10,000mm当たりの前記発光体の含有量をw[g]としたとき、下記の関係式(F2)を満たす、熱可塑性樹脂の平板状成形体;
Figure JPOXMLDOC01-appb-M000004
 式中、D50は発光体のメジアン径[μm]であり、dは発光体の密度[g/mm]である。
<3>光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、前記発光体のメジアン径が、10μm以上、かつ、平板状成形体の厚み以下であり、下記計測方法で規定される輝点の面積率が60%以下である熱可塑性樹脂の平板状成形体;
計測方法:画像解析ソフトウエア WinROOF2013(登録商標)を用い、8.07cmとなるよう範囲指定して、モノクロ化を実施する;得られた濃淡画像は0~255の階調をもつ濃度値にて表示されている;本濃淡画像に下限閾値24、上限閾値255を設定して濃度値24以上255以下の範囲で2つの閾値による二値化を実施し、輝点に該当する白の部分の面積を画像全体の面積で割った値を面積率として求める。
<4>光の照射により発光体から発せられる光が、可視光または赤外光である、<1>~<3>のいずれか1つに記載の平板状成形体。
<5>前記熱可塑性樹脂が、ポリカーボネート樹脂およびポリエステル樹脂の少なくとも1種を含む、<1>~<4>のいずれか1つに記載の平板状成形体。
<6>前記発光体がB、F、Mg、Al、Si、P、S、Cl、Na、K、Li、Ca、V、Mn、Cu、Mo、Zn、Sn、Ge、Sr、Y、Ba、La、Bi、W、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む、<1>~<5>のいずれか1つに記載の平板状成形体。
<7>真贋の判定に用いられる、<1>~<6>のいずれか1つに記載の平板状成形体。
<8>前記発光体が、紫外光および赤外光の少なくとも1種である、<1>~<7>のいずれか1つに記載の平板状成形体。
<9>前記平板状成形体が、フィルム、シートまたはカードである、<1>~<8>のいずれか1つに記載の平板状成形体。
<10><1>~<9>のいずれか1つに記載の平板状成形体を有する多層体。
<11>さらに、光遮蔽層を有する、<10>に記載の多層体。
<12>セキュリティカードである、<10>または<11>に記載の多層体。
<13>パスポート用データ頁である、<10>または<11>に記載の多層体。
<14><1>~<9>のいずれか1つに記載の平板状成形体あるいは<10>~<13>のいずれか1つに記載の多層体に光を照射することと、光を照射したときに現れる輝点情報を検出することとを含む、真贋判定方法。
<15>前記輝点情報が、輝点の大きさ、輝点の発光波長、輝点の発光強度および輝点の位置情報から選ばれる少なくとも1つである、<14>に記載の真贋の判定方法。
<16><1>~<9>のいずれか1つに記載の平板状成形体あるいは<10>~<13>のいずれか1つに記載の多層体と、<1>~<9>のいずれか1つに記載の平板状成形体あるいは<10>~<13>のいずれか1つに記載の多層体に光を照射する光照射部と、光の照射により検出される輝点情報が真正であることを判断する真贋判定部とを有する真贋判定システム。
<17>コンピュータにより読み取り可能な形式で記述されたプログラムであって、<1>~<9>のいずれか1つに記載の平板状成形体あるいは<10>~<13>のいずれか1つに記載の多層体に光を照射したときに検出される輝点情報を読み取るステップと、前記読み取った輝点情報が真正な輝点情報を示すことを判断する真贋判定ステップとを含む処理をコンピュータに実行させるためのプログラム。
The above problems have been solved by the following means.
<1> A flat plate-shaped molded body of a thermoplastic resin, which includes a light-emitting body that emits light when irradiated with light, and when the flat plate-shaped molded body of the thermoplastic resin is irradiated with light and observed with a microscope, the following brightness is obtained. A flat plate-shaped molded product of a thermoplastic resin, in which the number N 0 of points is 1 or more and the number N 1 of bright points below is N e1 or less represented by the following formula (F1);
Figure JPOXMLDOC01-appb-M000003
N 0 : Number of specific bright spots per area of 46.2 cm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
N 1 : Number of specific bright spots per area of 1.4 mm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
D 50 : Median diameter [μm] of luminescent material;
Specific bright point: A bright point having a maximum length of 10 μm or more and not more than the thickness of the flat plate-shaped molded product.
<2> A thermoplastic resin plate-shaped molded body including a light-emitting body that emits light when irradiated with light, wherein the light-emitting body has a median diameter of 10 μm or more and a thickness of the flat-plate molded body or less, When the content of the luminescent material per 10,000 mm 2 of the thermoplastic resin plate-shaped molded product is w [g], the thermoplastic resin plate-shaped molded product that satisfies the following relational expression (F2):
Figure JPOXMLDOC01-appb-M000004
In the formula, D 50 is the median diameter [μm] of the luminescent material, and d is the density [g / mm 3 ] of the luminescent material.
<3> A thermoplastic resin plate-shaped molded article including a light-emitting body that emits light when irradiated with light, wherein the light-emitting body has a median diameter of 10 μm or more and a thickness of the flat-plate molded body or less, A flat plate-shaped molded product of a thermoplastic resin having an area ratio of bright spots of 60% or less as defined by the following measuring method;
Measurement method: Image analysis software WinROOF2013 (registered trademark) is used to specify a range of 8.07 cm 2, and monochrome is performed; the obtained gray-scale image has density values having gradations of 0 to 255. The lower and upper thresholds 24 and 255 are set for the gray image, and binarization is performed using two thresholds within a density value range of 24 to 255, and the white portion corresponding to the bright spot is displayed. The value obtained by dividing the area by the area of the entire image is obtained as the area ratio.
<4> The flat plate-shaped molded product according to any one of <1> to <3>, in which the light emitted from the light-emitting body upon irradiation with light is visible light or infrared light.
<5> The flat-plate shaped article according to any one of <1> to <4>, in which the thermoplastic resin contains at least one of a polycarbonate resin and a polyester resin.
<6> The luminous body is B, F, Mg, Al, Si, P, S, Cl, Na, K, Li, Ca, V, Mn, Cu, Mo, Zn, Sn, Ge, Sr, Y, Ba. , La, Bi, W, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, including an element selected from the group of <1> to <5> The flat plate shaped article according to any one of 5>.
<7> The flat plate-shaped molded article according to any one of <1> to <6>, which is used for determining authenticity.
<8> The flat plate-shaped molded article according to any one of <1> to <7>, wherein the luminescent material is at least one of ultraviolet light and infrared light.
<9> The flat plate molded article according to any one of <1> to <8>, wherein the flat plate molded body is a film, a sheet or a card.
<10> A multilayer body having the flat plate-shaped molded article according to any one of <1> to <9>.
<11> The multilayer body according to <10>, further including a light shielding layer.
<12> The multilayer body according to <10> or <11>, which is a security card.
<13> The multilayer body according to <10> or <11>, which is a passport data page.
<14> irradiating light onto the flat plate-shaped molded article according to any one of <1> to <9> or the multilayer body according to any one of <10> to <13>, and Detecting the bright spot information that appears when illuminated, and a method for determining authenticity.
<15> The authenticity determination according to <14>, wherein the bright spot information is at least one selected from a bright spot size, a bright spot emission wavelength, a bright spot emission intensity, and a bright spot position information. Method.
<16><1> to <9>, the flat plate-shaped article according to any one of <10> to <13>, and <1> to <9>. A flat plate shaped article according to any one of the above or a multilayered article according to any one of <10> to <13> is provided with a light irradiation section for irradiating light, and bright spot information detected by the light irradiation. An authenticity determination system having an authenticity determination unit for determining authenticity.
<17> A program written in a computer-readable format, wherein the flat plate-shaped product according to any one of <1> to <9> or any one of <10> to <13> A step of reading bright spot information detected when the multilayer body according to claim 1 is irradiated with light, and a genuineness determining step of determining that the read bright spot information indicates true bright spot information Program to run on.
 本発明によれば、光の照射により発光する発光体を用いた技術において、偽造防止性を高めることができる熱可塑性樹脂の平板状成形体、多層体、その真贋判定方法、真贋判定システム、およびこれらを制御することができるプログラムの提供が可能になった。 According to the present invention, in a technique using a light-emitting body that emits light upon irradiation with light, a flat plate-shaped molded product of a thermoplastic resin capable of enhancing anti-counterfeiting properties, a multilayer body, an authenticity determining method thereof, an authenticity determining system, and It has become possible to provide programs that can control these.
本発明の好ましい実施形態に係る平板状成形体の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the flat shaped body which concerns on preferable embodiment of this invention. 顕微鏡観察により検出される輝点の一例を示した模式図である。It is a schematic diagram which showed an example of the bright spot detected by microscope observation. 本発明の好ましい実施形態に係る平板状成形体の一例を拡大して模式的に示す断面図である。It is sectional drawing which expands an example of the flat shaped body which concerns on preferable embodiment of this invention, and is shown typically. 本発明の実施例および比較例をプロットした図である。It is the figure which plotted the Example and comparative example of this invention. 本発明の好ましい実施形態に係る多層体の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the multilayer body which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る真贋判定方法の一例を示すフローチャートである。It is a flow chart which shows an example of the authenticity judging method concerning a preferred embodiment of the present invention. 図6に示した真贋判定方法の変形例を示すフローチャートの一部である。7 is a part of a flowchart showing a modified example of the authenticity determination method shown in FIG. 6. 図6に示した真贋判定方法の好ましい実施形態に係る利用態様を示したフローチャートである。7 is a flowchart showing a usage mode according to a preferred embodiment of the authenticity determination method shown in FIG. 6. 本発明の好ましい実施形態に係る真贋判定システムの構成図である。It is a block diagram of the authenticity determination system which concerns on preferable embodiment of this invention. 平板状成形体を発光させたときの顕微鏡像(実施例4)である。It is a microscope image (Example 4) at the time of making a flat molded body light-emit. 平板状成形体を発光させたときの顕微鏡像(比較例4)であるIt is a microscope image (Comparative Example 4) when a flat plate-shaped molded product is caused to emit light. 比較例の平板状成形体を拡大して模式的に示す断面図である。It is sectional drawing which expands and shows the plate-shaped molded object of a comparative example typically.
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 なお、本発明は、以下の実施の形態に限定されるものではなく、発明の効果を有する範囲において任意に変更して実施することができる。
Hereinafter, the content of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
It should be noted that the present invention is not limited to the following embodiments and can be implemented by being arbitrarily modified within the scope of the effects of the invention.
 本発明の実施形態1にかかる熱可塑性樹脂の平板状成形体は、光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、前記熱可塑性樹脂の平板状成形体に光を照射し、顕微鏡で観察したとき、下記輝点の数Nが1以上であり、下記輝点の数Nが下記式(F1)で表されるNe1以下であることを特徴とする。
Figure JPOXMLDOC01-appb-M000005
:熱可塑性樹脂の平板状成形体の平面視における面積46.2cm当たりの特定輝点の数;
:熱可塑性樹脂の平板状成形体の平面視における面積1.4mm当たりの特定輝点の数;
50:発光体のメジアン径[μm];
特定輝点:最大長が10μm以上であり平板状成形体の厚み以下である輝点。
A flat plate-shaped molded body of a thermoplastic resin according to Embodiment 1 of the present invention is a flat plate-shaped molded body of a thermoplastic resin, which includes a light-emitting body that emits light when irradiated with light. When the body is irradiated with light and observed with a microscope, the number N 0 of the following bright points is 1 or more, and the number N 1 of the following bright points is N e1 or less represented by the following formula (F1). Characterize.
Figure JPOXMLDOC01-appb-M000005
N 0 : Number of specific bright spots per area of 46.2 cm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
N 1 : Number of specific bright spots per area of 1.4 mm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
D 50 : Median diameter [μm] of luminescent material;
Specific bright point: A bright point having a maximum length of 10 μm or more and not more than the thickness of the flat plate-shaped molded product.
 平板状成形体の特定の面積に、所定の数の特定輝点が存在するように調整することにより、平板状成形体の表面に、輝点のパターンを確認できるようになる。この輝点のパターンは、事実上、再現不可能なパターンとなる。結果として、真贋の判定が可能になる。 By adjusting so that a predetermined number of specific bright spots are present in a specific area of the flat plate molded product, it becomes possible to confirm the pattern of bright spots on the surface of the flat plate molded product. This bright spot pattern is virtually unreproducible. As a result, it becomes possible to judge the authenticity.
 本発明の実施形態2にかかる熱可塑性樹脂の平板状成形体は、光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、前記発光体のメジアン径が、10μm以上、かつ、平板状成形体の厚み以下であり、前記熱可塑性樹脂の平板状成形体10,000mm当たりの発光体の含有量をw[g]としたとき、下記の関係式(F2)を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-M000006
 式中、D50は発光体のメジアン径[μm]であり、dは発光体の密度[g/mm]である。
A thermoplastic resin flat-plate molded article according to Embodiment 2 of the present invention is a thermoplastic resin flat-plate molded article that includes a light-emitting body that emits light when irradiated with light, and the median diameter of the light-emitting body is: When the content of the luminous body per 10,000 mm 2 of the thermoplastic resin flat plate-shaped molded product is 10 μm or more and less than or equal to the thickness of the flat-shaped molded product, the following relational expression (F2 ) Is satisfied.
Figure JPOXMLDOC01-appb-M000006
In the formula, D 50 is the median diameter [μm] of the luminescent material, and d is the density [g / mm 3 ] of the luminescent material.
 実施形態2では、一定の面積の平板状成形体内に、10μm以上のメジアン径を有する発光体を分散させることにより、発光していない部分と明確に区別した輝点として観察される。また、輝点のメジアン径が平板状成形体の厚みを超えると平板状成形体の外観が悪くなる、すなわち、例えば、図12で示されるように発光体が平板状成形体表面に露出し、外観が著しく悪化するため、実用には適さなくなる。本発明では、発光体のメジアン径を10μm以上かつ平板状成形体の厚み以下とすることにより、輝点としての観察が可能であり、良好な外観を有した平板状成形体の製造を可能としている。さらに、平板状成形体の単位面積当たりの発光体の量を調整することにより、平板状成形体の表面に、輝点のパターンを確認できるようになる。この輝点のパターンは、事実上、再現不可能なパターンとなる。結果として、真贋の判定が可能になる。 In the second embodiment, by dispersing a light-emitting body having a median diameter of 10 μm or more in a flat plate-shaped molded body having a certain area, it is observed as a bright spot clearly distinguished from a non-light-emitting portion. Further, when the median diameter of the bright spot exceeds the thickness of the flat plate-shaped molded body, the appearance of the flat plate-shaped molded body is deteriorated, that is, for example, as shown in FIG. Since the appearance is significantly deteriorated, it is not suitable for practical use. In the present invention, when the median diameter of the luminescent material is 10 μm or more and not more than the thickness of the flat plate-shaped molded product, it is possible to observe as a bright spot, and it is possible to manufacture a flat plate-shaped molded product having a good appearance. There is. Further, by adjusting the amount of the luminescent material per unit area of the flat plate-shaped molded product, it becomes possible to confirm the pattern of bright spots on the surface of the flat plate-shaped molded product. This bright spot pattern is virtually unreproducible. As a result, it becomes possible to judge the authenticity.
 本発明の実施形態3にかかる熱可塑性樹脂の平板状成形体は、光を照射したとき発光し、メジアン径が、10μm以上、かつ、平板状成形体の厚み以下である発光体を含む、熱可塑性樹脂の平板状成形体であって、下記計測方法で規定される輝点の面積率が60%以下であることを特徴とする。
計測方法:画像解析ソフトウエア WinROOF2013(登録商標)を用い、8.07cmとなるよう範囲指定して、モノクロ化を実施する。得られた濃淡画像は0~255の階調をもつ濃度値にて表示されている。本濃淡画像に下限閾値24、上限閾値255を設定して濃度値24以上255以下の範囲で「2つの閾値による二値化」を実施し、輝点に該当する白の部分の面積を画像全体の面積で割った値を面積率として求める。
The thermoplastic resin flat plate-shaped molded body according to Embodiment 3 of the present invention emits light when irradiated with light, and includes a light-emitting body having a median diameter of 10 μm or more and a thickness of the flat plate-shaped molded body or less. It is a flat plate-shaped molded product of a plastic resin, characterized in that the area ratio of bright spots defined by the following measuring method is 60% or less.
Measurement method: Image analysis software WinROOF2013 (registered trademark) is used, and the range is specified to be 8.07 cm 2, and monochromeization is performed. The obtained grayscale image is displayed with density values having gradations of 0 to 255. The lower limit threshold value 24 and the upper limit threshold value 255 are set for this grayscale image, and "binarization by two threshold values" is performed in the range of density values of 24 or more and 255 or less, and the area of the white portion corresponding to the bright spot is determined as the entire image. The value obtained by dividing by the area is calculated as the area ratio.
 実施形態3では、一定の面積の平板状成形体内に、10μm以上のメジアン径を有する発光体を分散させることにより、発光していない部分と明確に区別した輝点として観察される。また、輝点のメジアン径が平板状成形体の厚みを超えると平板状成形体の外観が悪くなる、すなわち、例えば、図12で示されるように発光体が平板状成形体表面に露出し、外観が著しく悪化するため、実用には適さなくなる。本発明では、発光体のメジアン径を10μm以上かつ平板状成形体の厚み以下とすることにより、輝点としての観察が可能であり、良好な外観を有した平板状成形体の製造を可能としている。さらに、平板状成形体の表面の輝点の面積率が60%以下となるように調整することにより、平板状成形体の表面に、輝点のパターンを確認できるようになる。この輝点のパターンは、事実上、再現不可能なパターンとなる。結果として、真贋の判定が可能になる。 In the third embodiment, by dispersing a light-emitting body having a median diameter of 10 μm or more in a flat plate-shaped molded body having a certain area, it is observed as a bright spot clearly distinguished from a non-light-emitting portion. Further, when the median diameter of the bright spot exceeds the thickness of the flat plate-shaped molded body, the appearance of the flat plate-shaped molded body is deteriorated, that is, for example, as shown in FIG. Since the appearance is significantly deteriorated, it is not suitable for practical use. In the present invention, when the median diameter of the luminescent material is 10 μm or more and not more than the thickness of the flat plate-shaped molded product, it is possible to observe as a bright spot, and it is possible to manufacture a flat plate-shaped molded product having a good appearance. There is. Furthermore, by adjusting the area ratio of the bright spots on the surface of the flat plate-shaped article to be 60% or less, the pattern of bright spots can be confirmed on the surface of the flat plate-shaped article. This bright spot pattern is virtually unreproducible. As a result, it becomes possible to judge the authenticity.
 以下に本発明の好ましい実施形態を、図面を参照しつつ説明する。本発明が以下の実施形態に限定されるわけではないことは言うまでもない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. It goes without saying that the present invention is not limited to the embodiments described below.
 図1は本発明の好ましい実施形態に係る熱可塑性樹脂の平板状成形体の一例を模式的に示す斜視図である。
 本実施形態の熱可塑性樹脂の平板状成形体10は、平面視において四角形(例えば、長方形)の形状に成形されている。大きさは、パスポートやカード類として用いられるものを想定しているが必ずしもこの限りではない。
 本発明の平板状成形体は、フィルム、シート、カードなどを含む趣旨である。
FIG. 1 is a perspective view schematically showing an example of a flat plate-shaped molded product of a thermoplastic resin according to a preferred embodiment of the present invention.
The flat plate-shaped molded body 10 of the thermoplastic resin of the present embodiment is molded into a quadrangular (for example, rectangular) shape in a plan view. The size is assumed to be used as a passport or card, but is not limited to this.
The flat molded article of the present invention is intended to include films, sheets, cards and the like.
 熱可塑性樹脂の平板状成形体10の表面には、通常、目視で視認できる識別表示(識別デザイン)2が印字ないし描画(描画等)されている。これにより、ユーザーはこの熱可塑性樹脂の平板状成形体を別の平板状成形体と目視により区別することができる。識別表示は通常は有色の塗料等により描画等されるものであり、熱可塑性樹脂の平板状成形体の表面(上面)に描画等されても、裏面(下面)に描画等されていてもよい。
 本実施形態の熱可塑性樹脂の平板状成形体10は、熱可塑性樹脂を含み、その熱可塑性樹脂には発光体1が分散されている。
 発光体1は、光の照射により発光する。発光する光は、紫外光および赤外光の少なくとも1種が好ましく、紫外光がより好ましい。これを用いた真贋判定方法の詳細は後述するが、本実施形態の熱可塑性樹脂の平板状成形体においては、上記の発光により現れる輝点情報を検出することにより、熱可塑性樹脂の平板状成形体の真贋を識別することができる。
 発光体1の熱可塑性樹脂への分散方法は特に限定されないが、一般的には、下記の手順で行うことができる。熱可塑性樹脂と発光体1を混合した材料を作製し、これを溶融混練する。この溶融混練された熱可塑性樹脂と発光体を含む組成物を押出成形等によって、平板状の成形体にする。これにより、発光体1が熱可塑性樹脂に分散した平板状成形体を得ることができる。押出成形による場合は長尺の平板状成形体にした後に、所望の大きさに切断することで、本実施形態の熱可塑性樹脂の平板状成形体10を得ることができる。
An identification mark (identification design) 2 that can be visually recognized is usually printed or drawn (drawing, etc.) on the surface of the thermoplastic resin plate-shaped molded product 10. As a result, the user can visually distinguish this thermoplastic resin flat-plate molded article from another flat-plate molded article. The identification display is usually drawn with a colored paint or the like, and may be drawn on the front surface (upper surface) or the back surface (lower surface) of the thermoplastic resin plate-shaped molded product. .
The thermoplastic resin flat plate-shaped molded body 10 of the present embodiment contains a thermoplastic resin, and the light emitting body 1 is dispersed in the thermoplastic resin.
The light emitter 1 emits light when irradiated with light. The emitted light is preferably at least one of ultraviolet light and infrared light, more preferably ultraviolet light. Although the details of the authenticity determination method using this will be described later, in the thermoplastic resin flat plate-shaped molded product of the present embodiment, the thermoplastic resin flat plate-shaped molded product is detected by detecting the bright spot information generated by the above-mentioned light emission. The authenticity of the body can be identified.
The method of dispersing the light emitting body 1 in the thermoplastic resin is not particularly limited, but generally, the following procedure can be performed. A material in which a thermoplastic resin and the light emitting body 1 are mixed is prepared and melt-kneaded. The composition containing the melt-kneaded thermoplastic resin and the luminescent material is extruded into a flat-plate shaped body. This makes it possible to obtain a flat plate-shaped molded body in which the light emitting body 1 is dispersed in the thermoplastic resin. In the case of extrusion molding, the thermoplastic resin flat plate-shaped molded body 10 of the present embodiment can be obtained by cutting it into a desired size after forming a long flat plate-shaped molded body.
 本実施形態の熱可塑性樹脂の平板状成形体10に分散された発光体1は、平板状成形体中に分散して存在している。図1の円の中の拡大図は、発光体1の分散状態の一例を示したものである。この分散状態は、上述のような樹脂を溶融して得た場合、意図的に作出されるものではなく、偶発的に作出されるものである。つまり、意図的にその状態を再現することは極めて困難であり、通常、平板状成形体として二つとして存在しえないものである。したがって、このような任意の発光体の分散状態を持つ平板状成形体は、光の照射により、それに応じた発光による輝点の状態(輝点情報)が得られる。これは、分散状態(輝点間の距離またはその分布等)だけではなく、大きさ、発光波長、発光強度等についても同様である。本発明の好ましい実施形態によれば、そのような個別の識別性のある熱可塑性樹脂の平板状成形体を真贋の判定に用いることで、セキュリティ性の観点で、指紋認証に匹敵する、あるいはこれを凌駕する判定が可能となる。なお、図1では発光体1を黒丸で示しているが光を照射しない状態では、発光体は視認できなくてもよい。例えば、光を照射することにより発光し、その輝点が確認できればよい。 The light-emitting body 1 dispersed in the thermoplastic resin plate-shaped molded body 10 of the present embodiment is dispersed and present in the plate-shaped molded body. The enlarged view in the circle of FIG. 1 shows an example of the dispersed state of the light emitting body 1. This dispersed state is not created intentionally, but is created accidentally when it is obtained by melting the resin as described above. That is, it is extremely difficult to intentionally reproduce that state, and normally, there cannot be two flat plate-shaped molded products. Therefore, in the flat plate-shaped molded product having such an arbitrary light-emitting body dispersion state, the state of bright spots (bright spot information) due to light emission can be obtained by irradiation of light. This applies not only to the dispersed state (distance between bright spots or distribution thereof) but also to size, emission wavelength, emission intensity, and the like. According to a preferred embodiment of the present invention, by using such a flat plate-shaped molded product of a thermoplastic resin having individual distinguishability for authenticity determination, in terms of security, it is comparable to fingerprint authentication, or It is possible to make a judgment that surpasses. In FIG. 1, the light emitter 1 is shown by a black circle, but the light emitter may not be visible when light is not emitted. For example, it suffices that light is emitted by irradiating light and the bright spot can be confirmed.
<実施形態1に係る熱可塑性樹脂の平板状成形体>
 本発明の好ましい実施形態1に係る熱可塑性樹脂の平板状成形体(以下、単に「本発明の平板状成形体」と称することがある)は、熱可塑性樹脂の平板状成形体に光を照射し、顕微鏡で観察したとき、熱可塑性樹脂の平板状成形体の平面視における面積46.2cm当たりの特定輝点の数Nが1以上である。
<Plate-shaped molded body of thermoplastic resin according to Embodiment 1>
The flat plate-shaped molded product of the thermoplastic resin according to the first preferred embodiment of the present invention (hereinafter, may be simply referred to as “the flat plate-shaped molded product of the present invention”) is irradiated with light on the flat plate-shaped molded product of the thermoplastic resin. However, when observed under a microscope, the number N 0 of specific bright points per area of 46.2 cm 2 in a plan view of the thermoplastic resin flat plate-shaped product is 1 or more.
 図2は本発明の一実施形態に係る特定輝点の形状を模式的に示したものである。図示した特定輝点は円形を崩した不定形の輪郭を有する。本発明においては、特定輝点の大きさを輝点の最大長Lで評価する。輝点の最大長とは、輝点の輪郭線P上の任意の2点を選択し、この2点を直線で結んだときの距離が最も大きくなるときの距離(長さ)を指す。図2では輝点の最大長Lが補助線で示されている。なお、輝点の形状は図示したものに限られず、円形、楕円形以外にも、矩形のものや、所定の方向に長さのある偏平の形状であってもよい。 FIG. 2 schematically shows the shape of the specific bright spot according to the embodiment of the present invention. The illustrated specific bright spot has an irregular contour which is not a circle. In the present invention, the size of the specific bright spot is evaluated by the maximum length L 2 of the bright spot. The maximum length of the bright spot refers to the distance (length) at which the distance when the arbitrary two points on the outline P of the bright spot are selected and the two points are connected by a straight line becomes the largest. In FIG. 2, the maximum length L 2 of the bright spot is shown by an auxiliary line. The shape of the bright spot is not limited to that shown in the figure, and may be a rectangular shape or a flat shape having a length in a predetermined direction in addition to the circular shape and the elliptical shape.
 輝点の最大長Lは、10μm以上であり、12μm以上であることが好ましく、15μm以上であることがより好ましい。上限値として具体的には、1mm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることがさらに好ましく、200μm以下であることが一層好ましく、160μm以下であることがより一層好ましく、140μm以下であることがさらに一層好ましい。輝点の最大長を上記下限値以上とすることで、十分な大きさをもち、漏れがなく精度の良い輝点情報の検出につながり好ましい。上記上限値以下とすることにより、発光体が平板状成形体面に露出することを防ぎ、良好な平板状成形体の外観となるため好ましい。 The maximum length L 2 of the bright spot is 10 μm or more, preferably 12 μm or more, and more preferably 15 μm or more. Specifically, the upper limit is preferably 1 mm or less, more preferably 500 μm or less, further preferably 300 μm or less, further preferably 200 μm or less, and more preferably 160 μm or less. More preferably, it is even more preferably 140 μm or less. It is preferable to set the maximum length of the bright spots to the above lower limit value or more because the bright spot information having a sufficient size and no leakage can be detected accurately. When the content is not more than the above upper limit, it is preferable that the luminescent material is prevented from being exposed on the surface of the flat plate-shaped molded product and the appearance of the flat plate-shaped molded product is good.
 本実施形態1に係る熱可塑性樹脂の平板状成形体は、そこに光を照射したときに顕微鏡観察により検出される特定輝点の数が、輝点の数Nにおいて1以上である。Nは、20以上であってもよく、50以上であってもよく、90以上であってもよく、100超であってもよい。輝点の数Nは、熱可塑性樹脂の平板状成形体の平面視における面積で46.2cm当たりに存在する特定輝点の数である。この面積は一般的に取り扱われるカードのサイズを考慮したものである。カードの具体的な寸法としては、85.60mm×53.98mm×0.76mm(縦×横×厚み)のものが挙げられる。上記輝点の数Nが上記下限値以上であることにより、観察視野に十分な数の輝点が検出され、精度の良い輝点の検出が可能となる。Nの上限値としては、1,000,000以下であることが好ましく、500,000以下であることがより好ましく、100,000以下であることがさらに好ましい。Nの上限値を上記の範囲とすることにより、光の照射による発光が面発光となりにくく好ましい。 In the thermoplastic resin flat plate-shaped molded product according to the first embodiment, the number of specific bright spots detected by microscope observation when irradiating with light is 1 or more in the number of bright spots N 0 . N 0 may be 20 or more, 50 or more, 90 or more, and more than 100. The number of bright spots N 0 is the number of specific bright spots present per 46.2 cm 2 in plan view of the flat plate-shaped molded product of the thermoplastic resin. This area takes into consideration the size of cards that are generally handled. Specific dimensions of the card include 85.60 mm × 53.98 mm × 0.76 mm (length × width × thickness). When the number N 0 of the bright spots is equal to or more than the lower limit value, a sufficient number of bright spots are detected in the observation visual field, and the bright spots can be detected with high accuracy. The upper limit of N 0 is preferably 1,000,000 or less, more preferably 500,000 or less, and further preferably 100,000 or less. By setting the upper limit of N 0 in the above range, it is preferable that light emission by light irradiation is less likely to be surface emission.
 さらに本実施形態1に係る熱可塑性樹脂の平板状成形体においては、輝点の数Nが下記式(F1)のNe1以下となる。
Figure JPOXMLDOC01-appb-M000007
 輝点の数Nは、熱可塑性樹脂の平板状成形体の平面視において面積で1.4mm当たりに存在する特定輝点の数である。特定輝点については先に述べたことと同義である。輝点の数Nは5以上であることが好ましく、15以上であることがより好ましく、20以上であることがさらに好ましい。このNが上記下限値以上であることで、顕微鏡観察において輝点を好適にとらえることができ精度の良い検出を行うことができる。
 一方、特定輝点の数NはNe1以下であり、0.8×Ne1以下であることが好ましく、0.6×Ne1以下であることがより好ましく、0.5×Ne1以下であることがさらに好ましい。特定輝点の数Nが上記上限値以下となることで、輝点がまとまって面発光とならず、好適に輝点を検出し解析することができる点で好ましい。
Further, in the thermoplastic resin flat plate-shaped molded product according to the first embodiment, the number N 1 of bright spots is N e1 or less in the following formula (F1).
Figure JPOXMLDOC01-appb-M000007
The number N 1 of bright spots is the number of specific bright spots existing per 1.4 mm 2 in area in a plan view of the thermoplastic resin flat plate-shaped molded article. The specific bright spot is synonymous with the one described above. The number N 1 of bright spots is preferably 5 or more, more preferably 15 or more, and further preferably 20 or more. When N 1 is equal to or more than the above lower limit value, bright spots can be appropriately captured during microscopic observation, and accurate detection can be performed.
On the other hand, the number N 1 of specific bright spots is N e1 or less, preferably 0.8 × N e1 or less, more preferably 0.6 × N e1 or less, and 0.5 × N e1 or less. Is more preferable. When the number N 1 of specific bright spots is equal to or less than the above upper limit, it is preferable that the bright spots are not gathered to form the surface emission and the bright spots can be detected and analyzed appropriately.
 添加する発光体のメジアン径D50は10μm以上であることが好ましい。メジアン径の下限値としてはさらに、12μm以上であることが好ましく、15μm以上であることがより好ましい。上限値として具体的には、1mm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることがさらに好ましく、200μm以下であることが一層好ましく、160μm以下であることがより一層好ましく、140μm以下であることがさらに一層好ましい。発光体の大きさを上記下限値以上とすることで、輝点が観察に十分な大きさをもち、発光していない部分との差異を明確にすることができる。上記上限値以下とすることにより、良好な外観を有した平板状成形体の製造が可能となる。 The median diameter D 50 of the added luminous body is preferably 10 μm or more. The lower limit of the median diameter is preferably 12 μm or more, more preferably 15 μm or more. Specifically, the upper limit is preferably 1 mm or less, more preferably 500 μm or less, further preferably 300 μm or less, further preferably 200 μm or less, and more preferably 160 μm or less. More preferably, it is even more preferably 140 μm or less. By setting the size of the luminescent material to be equal to or larger than the above lower limit value, the bright spot has a size sufficient for observation, and the difference from the non-luminous portion can be clarified. By setting the content to the upper limit or less, it becomes possible to manufacture a flat plate-shaped molded product having a good appearance.
 本発明の実施形態1に係る熱可塑性樹脂の平板状成形体は、後述する実施形態2および実施形態3で規定する要件の1つ以上を満たしていてもよい。 The flat plate-shaped molded body of the thermoplastic resin according to the first embodiment of the present invention may satisfy one or more of the requirements defined in the second and third embodiments described later.
<実施形態2に係る熱可塑性樹脂の平板状成形体>
 本発明の好ましい実施形態2に係る熱可塑性樹脂の平板状成形体は、発光体のメジアン径D50が10μm以上で平板状成形体の厚みT以下である。顕微鏡で観察したときの発光体のメジアン径は、実施形態1と同様であり、好ましい範囲も同様である。
<Plate-shaped molded body of thermoplastic resin according to Embodiment 2>
In the thermoplastic resin flat plate-shaped molded body according to the second preferred embodiment of the present invention, the median diameter D 50 of the light emitting body is 10 μm or more and the flat plate-shaped molded body thickness T or less. The median diameter of the light emitting body when observed with a microscope is the same as that of the first embodiment, and the preferable range is also the same.
 図3は、本実施形態に係る平板状成形体10について、その厚みTと発光体の大きさLとの関係を模式的に示した断面図である。図示したもののように、本発明の好ましい実施形態に係る熱可塑性樹脂の平板状成形体10は、平板状成形体の熱可塑性樹脂を主成分とする基部3と発光体1とで構成されている(ただし、本発明の平板状成形体においては、その他の成分を排除するものではないことは言うまでもない)。本実施形態において、発光体1の大きさL(例えば、発光体のメジアン径D50および/または数平均粒子径)は、平板状成形体の厚みTを超えないように設定されている。
 一方、図12に示した比較例の平板状成形体90では、平板状成形体基部3の厚みTよりも粒子1の大きさLが大きい例を模式的に示している。つまり、この例は輝点の最大長が平板状成形体の厚みを超える例に対応する。この比較例のように、発光体の大きさLが平板状成形体の厚みTを上回ると、発光体が平板状成形体面に露出し、平板状成形体の外観が著しく悪くなることや、加工上の不具合を引き起こす可能性がある。本実施形態の熱可塑性樹脂の平板状成形体10においては、そのように粒子が平板状成形体面を超えて突出するようなことを抑制することができ好ましい。
 また、本実施形態2に係る熱可塑性樹脂の平板状成形体は、熱可塑性樹脂の平板状成形体の平面視における面積で10,000mm当たりに存在する発光体の含有量をw[g]としたとき、下記の関係式(F2)を満たす。
Figure JPOXMLDOC01-appb-M000008
 式中、D50は、発光体のメジアン径[μm]であり、dは発光体の密度[g/mm]である。
 ここで、本明細書では式(F2)の中央の項をNと称する(下記式(F3)参照)。
Figure JPOXMLDOC01-appb-M000009
 この技術的意義を説明すると、Nはw、D50、dから、10,000mm当たりに含まれる粒子数を算出した値である。式(F3)の値を上記上限値以下と設定したのは、実施例1~4、比較例3~5のデータ等に基づくものである。すなわち、図4は、横軸にN、縦軸に粒子のメジアン径をとり、実施例1~4、比較例3~5をプロットしたものを示す。この図および他の発明者の測定事実に基づき、Nが輝点の測定に好適となる範囲として直線Xに対応する上記の式(F2)の上限の範囲が定められる。式(F3)の下限は、発光体が1超であれば、樹脂成形体毎の個別化が可能であることに基づく。Nの下限値は、5以上であることが好ましく、100以上であることがより好ましく、1000以上であることがさらに好ましい。
 式(F2)の右の項を本明細書ではNe2と称する(下記式(F4)参照)。
Figure JPOXMLDOC01-appb-M000010
 NはNe2未満であるが、0.7×Ne2以下であることが好ましく、0.5×Ne2以下であることがより好ましく、0.3×Ne2以下であることがさらに好ましい。Nを上記下限値超とすることで、検出漏れのない精度の高い検出が可能となる。一方、上記上限値を下回るものとすることで、面発光となってしまうことなく、精度よく輝点の検出ができる点で好ましい。
FIG. 3 is a cross-sectional view schematically showing the relationship between the thickness T and the size L 1 of the light emitting body of the flat plate-shaped molded body 10 according to this embodiment. As shown in the drawing, a flat plate molded body 10 of a thermoplastic resin according to a preferred embodiment of the present invention is composed of a base portion 3 whose main component is the thermoplastic resin of the flat plate molded body and a light emitting body 1. (However, it goes without saying that the flat molded article of the present invention does not exclude other components). In the present embodiment, the size L 1 (for example, the median diameter D 50 and / or the number average particle diameter of the light emitting body) of the light emitting body 1 is set so as not to exceed the thickness T of the flat plate-shaped molded body.
On the other hand, in the flat plate-shaped molded body 90 of the comparative example shown in FIG. 12, an example in which the size L 1 of the particle 1 is larger than the thickness T of the flat plate-shaped molded body base 3 is schematically shown. That is, this example corresponds to an example in which the maximum length of the bright spot exceeds the thickness of the flat plate-shaped molded body. When the size L 1 of the luminous body exceeds the thickness T of the flat molded body as in this comparative example, the luminous body is exposed on the surface of the flat molded body, and the appearance of the flat molded body is significantly deteriorated. It may cause processing defects. In the thermoplastic resin flat plate-shaped molded product 10 of the present embodiment, it is preferable that particles are prevented from protruding beyond the flat plate-shaped molded product surface.
In addition, the thermoplastic resin flat plate-shaped molded product according to the second embodiment has a light emitting body content w [g] per 10,000 mm 2 in plan view of the thermoplastic resin flat plate-shaped molded product. Then, the following relational expression (F2) is satisfied.
Figure JPOXMLDOC01-appb-M000008
In the formula, D 50 is the median diameter [μm] of the light emitter, and d is the density [g / mm 3 ] of the light emitter.
Here, in this specification, the central term of the formula (F2) is referred to as N c (see the formula (F3) below).
Figure JPOXMLDOC01-appb-M000009
To explain this technical significance, N c is a value obtained by calculating the number of particles contained per 10,000 mm 2 from w, D50, and d. The reason why the value of the formula (F3) is set to be equal to or less than the upper limit value is based on the data of Examples 1 to 4 and Comparative Examples 3 to 5 and the like. That is, FIG. 4 shows plots of Examples 1 to 4 and Comparative Examples 3 to 5, with the horizontal axis representing N c and the vertical axis representing the median diameter of particles. Based on this figure and the measurement facts of other inventors, the upper limit range of the above formula (F2) corresponding to the straight line X is determined as the range in which N c is suitable for the measurement of the bright spot. The lower limit of the formula (F3) is based on the fact that if the number of light emitting bodies is more than 1, individual resin moldings can be individualized. The lower limit value of N c is preferably 5 or more, more preferably 100 or more, and further preferably 1000 or more.
The term on the right side of the formula (F2) is referred to as N e2 in the present specification (see the formula (F4) below).
Figure JPOXMLDOC01-appb-M000010
N c is less than N e2, more preferably preferably at 0.7 × N e2 or less, more preferably less 0.5 × N e2, is 0.3 × N e2 less . By setting N c above the above lower limit value, highly accurate detection without omission of detection becomes possible. On the other hand, when the value is less than the above upper limit, it is preferable in that the bright spot can be detected accurately without causing surface emission.
 本発明の実施形態2に係る熱可塑性樹脂の平板状成形体は、上記実施形態1および後述する実施形態3で規定する要件の1つ以上を満たしていてもよい。 The flat plate-shaped molded article of the thermoplastic resin according to the second embodiment of the present invention may satisfy one or more of the requirements defined in the first embodiment and the third embodiment described later.
<実施形態3に係る熱可塑性樹脂の平板状成形体>
 本発明の好ましい実施形態3に係る熱可塑性樹脂の平板状成形体は、発光体のメジアン径が、10μm以上、かつ、平板状成形体の厚み以下である。この好ましい範囲は、実施形態1で述べたとおりである。
 また、本実施形態3に係る熱可塑性樹脂の平板状成形体は、熱可塑性樹脂の平板状成形体に光を照射し顕微鏡により観察したとき、下記計測方法で規定される輝点の面積率が60%以下である。
計測方法:画像解析ソフトウエア WinROOF2013(登録商標)を用い、8.07cmとなるよう範囲指定して、モノクロ化を実施する得られた濃淡画像は0~255の階調をもつ濃度値にて表示されている。本濃淡画像に下限閾値24、上限閾値255を設定して濃度値24以上255以下の範囲で「2つの閾値による二値化」を実施し、輝点に該当する白の部分の面積を画像全体の面積で割った値を面積率として求める。
 上記輝点の面積率を上記上限値以下とすることにより、面発光となってしまうことなく、精度のよい輝点の検出が可能となる。上記輝点の面積率は、さらに、55%以下であることが好ましく、50%以下であることがより好ましい。下限値としては、1%以上であることが好ましく、10%以上、25%以上であってもよい。上記下限値以上とすることで、漏れのない確実な輝点の検出が可能となり好ましい。
 面積率を算出するための画像の取得は、平板状成形体を平らな黒い板の上に置き、暗室内で照明には紫外光を使用し、被写体からレンズの先端までの距離を42mmに保ち、以下の条件で撮影を行うことによる。
絞り値 f/3.2
露出時間 1秒
ISO速度 ISO-80
焦点距離 4 mm
最大絞り 3.34
 詳細は後述する実施例の記載に従う。
<Plate-shaped molded body of thermoplastic resin according to Embodiment 3>
In the thermoplastic resin flat plate-shaped molded product according to Preferred Embodiment 3 of the present invention, the median diameter of the light-emitting body is 10 μm or more and the flat plate-shaped molded product thickness or less. This preferable range is as described in the first embodiment.
Further, when the thermoplastic resin flat plate-shaped molded product according to the third embodiment is irradiated with light to the thermoplastic resin flat plate-shaped molded product and observed with a microscope, the area ratio of the bright spots defined by the following measurement method is It is 60% or less.
Measurement method: Image analysis software WinROOF2013 (registered trademark) is used to specify the range to be 8.07 cm 2, and monochrome processing is performed. The obtained grayscale image has density values having gradations of 0 to 255. It is displayed. The lower limit threshold value 24 and the upper limit threshold value 255 are set for this grayscale image, and "binarization by two threshold values" is performed in the range of density values of 24 or more and 255 or less, and the area of the white portion corresponding to the bright spot is determined as the entire image. The value obtained by dividing by the area is calculated as the area ratio.
By setting the area ratio of the bright spots to be equal to or less than the upper limit value, it becomes possible to detect the bright spots with high accuracy without causing surface emission. Further, the area ratio of the bright spots is preferably 55% or less, more preferably 50% or less. The lower limit value is preferably 1% or more, and may be 10% or more, 25% or more. It is preferable that the content is not less than the above lower limit because it is possible to reliably detect bright spots without leakage.
To obtain the image for calculating the area ratio, place the flat molded object on a flat black plate, use ultraviolet light for illumination in a dark room, and keep the distance from the subject to the tip of the lens at 42 mm. , By shooting under the following conditions.
Aperture value f / 3.2
Exposure time 1 second ISO speed ISO-80
Focal length 4 mm
Maximum aperture 3.34
The details are as described in the examples below.
 本発明の好ましい実施形態に係る熱可塑性樹脂の平板状成形体によれば、発光体による輝点が十分な大きさをもち、その粒子(輝点)間の距離が適切に確保されているため、輝点を検出する際のコントラストが高く優れた識別性を発揮することができる。逆に、発光体(輝点)の間隔が狭くなりすぎると各輝点の周辺部が明るくなるため、コントラストが低下する。輝点の間隔がさらに狭くとなると、輝点が重なり合い全面発光ないしそれに近い状態となり識別性が劣ることとなる。 According to the thermoplastic resin flat plate-shaped molded product according to the preferred embodiment of the present invention, the bright spots by the luminescent material have a sufficient size, and the distance between the particles (bright spots) is appropriately secured. Therefore, the contrast at the time of detecting a bright spot is high, and excellent distinguishability can be exhibited. On the other hand, if the interval between the light emitters (bright spots) becomes too narrow, the peripheral portion of each bright spot becomes bright, and the contrast decreases. If the spacing between the bright spots becomes narrower, the bright spots will overlap and the entire surface will emit light or will be in a state close to that, resulting in poor discrimination.
 本発明の実施形態3に係る熱可塑性樹脂の平板状成形体は、上記実施形態1および実施形態2で規定する要件の1つ以上を満たしていてもよい。
 本発明では、さらに、上記実施形態1~3で規定する各要件の2つ以上を組み合わせて満たすことが好ましい。
The flat plate-shaped molded product of the thermoplastic resin according to the third embodiment of the present invention may satisfy one or more of the requirements defined in the first and second embodiments.
In the present invention, it is preferable that two or more of the requirements defined in Embodiments 1 to 3 are combined and satisfied.
 以下に、上記実施形態1~3に共通する好ましい態様について説明する。
 本発明においては、熱可塑性樹脂の平板状成形体の厚みTは特に限定されるものではないが、平板状成形体単独でカード等の製品とする場合には、例えば、1μm以上であることが好ましく、10μm以上であることがより好ましく、100μm以上であることがさらに好ましく、500μm以上、800μm以上であってもよい。上限値としては、10mm以下であることが実際的であり、5mm以下、3mm以下であってもよい。後述する多層体とするような場合には、熱可塑性樹脂の平板状成形体としては薄くてもよく、100nm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることがさらに好ましい。上限値としては、2mm以下であってもよい。
 なお、平板状成形体の厚みは、発光体による表面の凹凸があるような場合には、平板状成形体基部3(図3、図12)の厚みをいうこととする。平板状成形体の厚みは、ミツトヨ(Mitutoyo)製デジマチック標準外側マイクロメータを用いて、平板状成形体の押し出し方向、幅方向それぞれ2cm毎に厚みを測定して、その平均値を採用する。
Hereinafter, preferable aspects common to the first to third embodiments will be described.
In the present invention, the thickness T of the thermoplastic resin flat molded article is not particularly limited, but when the flat molded article alone is used as a product such as a card, it may be 1 μm or more, for example. It is preferably 10 μm or more, more preferably 100 μm or more, and may be 500 μm or more and 800 μm or more. The upper limit is practically 10 mm or less, and may be 5 mm or less and 3 mm or less. In the case of a multilayer body to be described later, the thermoplastic resin flat plate-shaped molded body may be thin, preferably 100 nm or more, more preferably 1 μm or more, and further preferably 5 μm or more. More preferable. The upper limit may be 2 mm or less.
It should be noted that the thickness of the flat plate-shaped molded product refers to the thickness of the flat plate-shaped molded product base 3 (FIGS. 3 and 12) when the surface of the flat-shaped molded product is uneven. As for the thickness of the flat plate-shaped product, the thickness is measured every 2 cm in each of the extrusion direction and the width direction of the flat plate-shaped product using a Digimatic standard outside micrometer manufactured by Mitutoyo, and the average value is adopted.
 本発明においては、平板状成形体中の発光体の数平均粒子径は、10μm以上であることが好ましく、12μm以上であることがより好ましく、15μm以上であることがさらに好ましい。上限値として具体的には、1mm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることがさらに好ましく、200μm以下であることが一層好ましく、160μm以下であることがより一層好ましく、140μm以下であることがさらに一層好ましい。樹脂成形体中の発光体の数平均粒子径を上記下限値以上とすることで、輝点が観察に十分な大きさをもち、発光していない部分との差異を明確にすることができる。上記上限値以下とすることにより、良好な外観を有した平板状成形体の製造が可能となる。
 樹脂成形体中の発光体の数平均粒子径は、樹脂成形体の任意の面積(例えば、46.2cmの面積)に含まれる発光体の数平均粒子径をいう。発光体が二次粒子となっている場合は、二次粒子を1つの粒子として、数平均粒子径を測定する。前記樹脂成形体の任意の面積は、3か所の平均値とすることが好ましい。
 本発明においては、熱可塑性樹脂の平板状成形体の厚みTと発光体の大きさ(D50または数平均粒子径、好ましくは、数平均粒子径)Lとの比率(L/T)が、0.5以下であることが好ましく、0.3以下であることがより好ましく、0.2以下であることがさらに好ましい。下限値としては、0.005以上であることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。この比率(L/T)を上記の範囲とすることで、上記好ましい実施形態をより好適に満たすことができ、精度の良い輝点の検出につなげることができる。
 本発明で用いる発光体は、粒子状(発光体粒子)が好ましいが、繊維状等の形態であってもよい。発光体の大きさ(D50または数平均粒子径、好ましくは、数平均粒子径)は、同体積の球相当径として算出される。
In the present invention, the number average particle diameter of the luminescent material in the flat plate-shaped molded body is preferably 10 μm or more, more preferably 12 μm or more, and further preferably 15 μm or more. Specifically, the upper limit is preferably 1 mm or less, more preferably 500 μm or less, further preferably 300 μm or less, further preferably 200 μm or less, and more preferably 160 μm or less. More preferably, it is even more preferably 140 μm or less. By setting the number average particle diameter of the luminescent material in the resin molded body to the above lower limit or more, the bright spot has a size sufficient for observation, and the difference from the non-luminous portion can be clarified. By setting the content to the upper limit or less, it becomes possible to manufacture a flat plate-shaped molded product having a good appearance.
The number average particle diameter of the luminescent material in the resin molded body refers to the number average particle diameter of the luminescent material included in an arbitrary area (for example, an area of 46.2 cm 2 ) of the resin molded body. When the luminescent material is secondary particles, the secondary particles are regarded as one particle, and the number average particle diameter is measured. It is preferable that the arbitrary area of the resin molded body is an average value of three places.
In the present invention, the ratio (L 1 / T) of the thickness T of the flat plate-shaped molded product of the thermoplastic resin and the size (D 50 or the number average particle size, preferably the number average particle size) L 1 of the luminescent material. Is preferably 0.5 or less, more preferably 0.3 or less, and further preferably 0.2 or less. The lower limit value is preferably 0.005 or more, more preferably 0.01 or more, and further preferably 0.02 or more. By setting this ratio (L 1 / T) within the above range, the above preferred embodiment can be more preferably satisfied, and it is possible to lead to accurate detection of bright spots.
The light-emitting body used in the present invention is preferably in the form of particles (light-emitting body particles), but may be in the form of fibers or the like. The size of the luminescent material (D 50 or number average particle size, preferably number average particle size) is calculated as the equivalent spherical diameter of the same volume.
 熱可塑性樹脂の平板状成形体の厚みTと輝点の最大長(算術平均)Lとの比率(L/T)としても同様の範囲が好ましく、この比率(L/T)が、0.5以下であることが好ましく、0.3以下であることがより好ましく、0.2以下であることがさらに好ましい。下限値としては、0.005以上であることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。この比率(L/T)を上記の範囲とすることで、上記好ましい実施形態をより好適に満たすことができ、精度の良い輝点の検出につなげることができる。 The same range is preferable as the ratio (L 3 / T) between the thickness T of the thermoplastic resin flat plate-shaped product and the maximum length (arithmetic mean) L 3 of the bright spots, and this ratio (L 3 / T) is It is preferably 0.5 or less, more preferably 0.3 or less, and further preferably 0.2 or less. The lower limit value is preferably 0.005 or more, more preferably 0.01 or more, and further preferably 0.02 or more. By setting this ratio (L 3 / T) within the above range, the above preferred embodiment can be more preferably satisfied, and it is possible to lead to accurate detection of bright spots.
 本発明の熱可塑性樹脂の平板状成形体の坪量は特に限定されないが、カード類やパスポートなどの日常携帯されるような厚みのものとする場合には、9.6×10-1g/m以上であることが好ましく、9.6g/m以上であることがより好ましく、9.6×10g/m以上であることがさらに好ましい。上限値としては、9.6×10g/m以下であることが実際的である。本発明の平板状成形体を上述したカード類等に貼付される薄肉のフィルム片とする場合には、9.6×10-7g/m以下であることが好ましく、9.6×10-6g/m以下であることがより好ましく、9.6×10-5g/m以下であることがさらに好ましい。下限値としては、9.6×10-9g/m以上であることが実際的である。 The basis weight of the thermoplastic resin flat plate-shaped molded product of the present invention is not particularly limited, but when it has a thickness such as cards and passports that can be carried on a daily basis, it is 9.6 × 10 −1 g / is preferably m 2 or more, more preferably 9.6 g / m 2 or more, further preferably 9.6 × 10 g / m 2 or more. As an upper limit value, it is practical that it is 9.6 × 10 4 g / m 2 or less. When the flat molded article of the present invention is used as a thin film piece to be attached to the above-mentioned cards and the like, it is preferably 9.6 × 10 −7 g / m 2 or less, and 9.6 × 10. It is more preferably −6 g / m 2 or less, further preferably 9.6 × 10 −5 g / m 2 or less. It is practical that the lower limit value is 9.6 × 10 −9 g / m 2 or more.
<発光体>
 本発明に用いられる発光体を構成する発光体としては、光(例えば、紫外光および赤外光から選ばれる少なくとも1種)の照射により発光するものであれば特に制限されず、好ましくは紫外光等の照射により可視光または赤外光を発光するものが好ましい。
 発光体となる化合物として、具体的には、B、F、Mg、Al、Si、P、S、Cl、Na、K、Li、Ca、V、Mn、Cu、Mo、Zn、Sn、Ge、Sr、Y、Ba、La、Bi、W、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む化合物が挙げられる。なかでも好ましくは、B、F、Mg、Al、Si、P、S、Cl、Ca、V、Mn、Cu、Zn、Ge、Sr、Y、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む化合物であり、より好ましくはAl、P、Li、Cu、Zn、Sr、Y、Ce、Eu、DyおよびLuからなる群から選択される元素を含む化合物である。発光体を構成する化合物としては、例えば、上記の元素と酸素原子の複合酸化物や、有機基と組み合わせた有機金属化合物などが挙げられる。また、これらの化合物に付活剤を添加したものが挙げられる。
<Light emitter>
The light-emitting body that constitutes the light-emitting body used in the present invention is not particularly limited as long as it emits light upon irradiation with light (for example, at least one selected from ultraviolet light and infrared light), and preferably ultraviolet light. Those that emit visible light or infrared light by irradiation with the above are preferable.
Specific examples of the compound serving as a light emitting body include B, F, Mg, Al, Si, P, S, Cl, Na, K, Li, Ca, V, Mn, Cu, Mo, Zn, Sn, Ge, and A compound containing an element selected from the group consisting of Sr, Y, Ba, La, Bi, W, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Is mentioned. Among them, preferably B, F, Mg, Al, Si, P, S, Cl, Ca, V, Mn, Cu, Zn, Ge, Sr, Y, Ba, La, Ce, Pr, Nd, Pm, Sm. , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and a compound containing an element selected from the group consisting of Lu, more preferably Al, P, Li, Cu, Zn, Sr, Y, Ce. , Eu, Dy and Lu are compounds containing an element selected from the group consisting of. Examples of the compound constituting the light emitting body include a composite oxide of the above element and an oxygen atom, an organometallic compound in combination with an organic group, and the like. Moreover, what added the activator to these compounds is mentioned.
 発光体となる化合物として、さらに具体的には、下記式(1)~(3)のいずれかで表される化合物が挙げられる。 More specifically, the compound serving as a luminescent material may be a compound represented by any one of the following formulas (1) to (3).
[式(1)]
  Ba1-XSnA(0<X<0.4、AはLiまたはNaである)
[Formula (1)]
Ba 1-X SnA X O 3 (0 <X <0.4, A is Li or Na)
 式(1)で表される化合物としては、下記の組成(i)の原料を次の手順で処理して得られる無機複合金属酸化物が挙げられる。この無機複合金属酸化物は、紫外光で赤外発光する材料として用いることができる。
 下記組成(i)の原料を均一に混合した後、大気下にてアルミナ坩堝に充填して電気炉で3時間かけて1450℃まで昇温させ10時間保持する。その後、室温まで冷却する。
  組成(i)
  BaCO : 1.9537g(0.0099mol)
  SnO : 1.5071g(0.01mol)
  NaCO・10HO : 0.0286g(0.0001mol)
Examples of the compound represented by the formula (1) include an inorganic composite metal oxide obtained by treating a raw material having the following composition (i) by the following procedure. This inorganic composite metal oxide can be used as a material that emits infrared light by ultraviolet light.
After uniformly mixing the raw materials having the following composition (i), the alumina crucible is filled in the air under the atmosphere and the temperature is raised to 1450 ° C. over 3 hours in an electric furnace and kept for 10 hours. Then, it cools to room temperature.
Composition (i)
BaCO 3 : 1.9537 g (0.0099 mol)
SnO 2: 1.5071g (0.01mol)
Na 2 CO 3 · 10H 2 O: 0.0286 g (0.0001 mol)
[式(2)]
  CaMoO:M(Mは、Nd3+、Yb3+、およびEr3+からなる群よ
          り選択される1種または2種以上のランタン族金属イ
          オンである。)
[Formula (2)]
CaMoO 4 : M (M is one or more lanthanum group metal ions selected from the group consisting of Nd 3+ , Yb 3+ , and Er 3+ .)
 式(2)で表される化合物としては、下記の組成(ii)の原料を次の手順で処理して得られる無機複合金属酸化物が挙げられる。なお、本明細書においては、主成分である母体結晶とその中に分散した付活剤または発光中心に分け、(:)で繋いで表記する。例えばZnS:Mnの「ZnS」が母体結晶、「Mn」が付活剤となる。
 密閉式反応機に下記組成(ii)の原料を均一に混合した後、100℃にて加熱して水分を揮発させる。その後、200℃まで序々に昇温させて有機酸であるクエン酸の分解反応を行わせ、混合物を得る。この混合物を電気炉に入れて900℃にて2時間高温熱処理させる。その後、室温まで冷却する。
  組成(ii)
  (NH)6Mo 4・4HO : 3.530g(0.02mol)
  Nd(NOO・5HO : 0.068g(0.0002mol)
  Ca(NO・4HO : 4.722g(0.02mol)
  クエン酸 : 4.620g(0.022mol)
  水 : 15mL
Examples of the compound represented by the formula (2) include an inorganic mixed metal oxide obtained by treating a raw material having the following composition (ii) by the following procedure. In the present specification, the host crystal as the main component and the activator or luminescent center dispersed in the host crystal are divided and connected by (:). For example, “ZnS” of ZnS: Mn serves as a host crystal and “Mn” serves as an activator.
A raw material having the following composition (ii) is uniformly mixed in a closed reactor, and then heated at 100 ° C. to volatilize water. Then, the temperature is gradually raised to 200 ° C. to cause a decomposition reaction of citric acid, which is an organic acid, to obtain a mixture. The mixture is put in an electric furnace and subjected to high temperature heat treatment at 900 ° C. for 2 hours. Then, it cools to room temperature.
Composition (ii)
(NH 4) 6Mo 7 O 2 4 · 4H 2 O: 3.530g (0.02mol)
Nd (NO 3) 3 O · 5H 2 O: 0.068g (0.0002mol)
Ca (NO 3) 2 · 4H 2 O: 4.722g (0.02mol)
Citric acid: 4.620 g (0.022 mol)
Water: 15mL
[式(3)]
  YSiV10:Nd3+,Er3+
[Formula (3)]
Y 2 SiV 2 O 10 : Nd 3+ , Er 3+
 式(3)で表される化合物としては、下記の組成(iii)の原料を次の手順で処理して得られる無機複合金属酸化物が挙げられる。この無機複合金属酸化物は、紫外光で赤外発光する材料として用いることができる。
 下記組成(iii)の原料をボールミルにて均一に混合した後、下記3段階の焼成を行う。得られた焼成物は粉砕し、平均粒子径1μm程度の発光体を得ることができる。
〔第1段階〕上記混合物をアルミナ坩堝に充填して大気下、電気炉中で650℃、4時間加熱した後、室温まで冷却して粗粉砕して平均粒子径10μm程度の粒子を得る。
〔第2段階〕次に、第1段階で得られた焼成物を大気下、電気炉で1100℃、4時間加熱した後、室温まで冷却して粗粉砕して平均粒子径3μm程度の粒子を得る。
〔第3段階〕次に、第2段階で得られた焼成物を大気下、電気炉で600℃、2時間加熱した後、室温まで冷却する。
Examples of the compound represented by the formula (3) include an inorganic composite metal oxide obtained by treating a raw material having the following composition (iii) by the following procedure. This inorganic composite metal oxide can be used as a material that emits infrared light by ultraviolet light.
After raw materials having the following composition (iii) are uniformly mixed in a ball mill, firing is performed in the following three stages. The obtained calcined product can be pulverized to obtain a luminescent material having an average particle diameter of about 1 μm.
[First stage] The above mixture was filled in an alumina crucible, heated in an electric furnace at 650 ° C for 4 hours in the air, cooled to room temperature and coarsely pulverized to obtain particles having an average particle diameter of about 10 µm.
[Second Step] Next, the fired product obtained in the first step is heated in an electric furnace at 1100 ° C. for 4 hours in the air, cooled to room temperature and coarsely pulverized to obtain particles having an average particle diameter of about 3 μm. obtain.
[Third Step] Next, the fired product obtained in the second step is heated in an electric furnace at 600 ° C. for 2 hours in the air, and then cooled to room temperature.
 組成(iii)
  Y : 49.68g(0.22mol)
  SiO : 12.02g(0.20mol)
  V : 37.85g(0.21mol)
  Nd : 0.336g(0.001mol)
  Er : 0.114g(0.0003mol)
Composition (iii)
Y 2 O 3 : 49.68 g (0.22 mol)
SiO 2 : 12.02 g (0.20 mol)
V 2 O 5 : 37.85 g (0.21 mol)
Nd 2 O 3 : 0.336 g (0.001 mol)
Er 2 O 3 : 0.114 g (0.0003 mol)
 本発明においては、発光体として、特定の光で発光する発光体を用いることが好ましく、なかでも可視光または赤外光を発光するものであることが好ましく、可視光を発光するものであることがより好ましい。なお、本明細書において紫外光とは波長10nm~400nm(好ましくは50nm~350nm)の電磁波を言い、可視光とは波長360nm~830nm(好ましくは410~690nm)の電磁波を言い、赤外光とは波長700nm~1,000,000nm(好ましくは880nm~1,000nm)の電磁波を言う。
 紫外光で発光する発光体としては、紫外光により励起され、これよりも低いエネルギー準位に戻るときに発するスペクトルのピークが青、緑、赤等の可視光の波長域にあるものが挙げられる。具体的には、硫化亜鉛やアルカリ土類金属の硫化物などの高純度蛍光体に発光をより強くするために微量の金属(銅、銀、マンガン、ビスマス、鉛など)を付活剤として加え高温焼成して得られるものが挙げられる。紫外光で発光する発光体は、母体結晶と付活剤の組み合わせにより色相、明るさ、色の減衰の度合いを調整することができる。具体例としてはCaCl:Eu2+、CaWO、ZnO:Zn、ZnSiO:Mn、YS:Eu、ZnS:Ag、YVO:Eu、Y:Eu、GdS:Tb、LaS:Tb、YAl12:Ce、Sr(POCl:Eu、3(Ba,Mg)O・8Al:Eu、ZnGeO:Mn、Y(P,V)O:Eu、0.5MgF・3.5MgO・GeO:Mn、ZnS:Cu、ZnS:Mnなどがあり、これらを単体、またはこれらから数種類を任意に選択して混合して使用することができる。これらの蛍光スペクトルはピークを青、緑、赤等の可視光の波長域以外に持つものであり、所望の蛍光スペクトルに応じて適宜選択することができる。
In the present invention, it is preferable to use, as the light-emitting body, a light-emitting body that emits a specific light, and among them, it is preferable that it emits visible light or infrared light, and that it emits visible light. Is more preferable. In this specification, ultraviolet light means an electromagnetic wave having a wavelength of 10 nm to 400 nm (preferably 50 nm to 350 nm), visible light means an electromagnetic wave having a wavelength of 360 nm to 830 nm (preferably 410 to 690 nm), and infrared light. Means an electromagnetic wave having a wavelength of 700 nm to 1,000,000 nm (preferably 880 nm to 1,000 nm).
Examples of the luminescent material that emits ultraviolet light include those that are excited by ultraviolet light and have a spectral peak that is emitted when returning to an energy level lower than this in the wavelength range of visible light such as blue, green, and red. . Specifically, a small amount of metal (copper, silver, manganese, bismuth, lead, etc.) is added as an activator to high-purity phosphors such as zinc sulfide and alkaline earth metal sulfides in order to enhance the emission. The thing obtained by baking at high temperature is mentioned. The luminescent material that emits ultraviolet light can be adjusted in hue, brightness, and degree of color attenuation by a combination of a host crystal and an activator. As a specific example, Ca 2 B 5 O 9 Cl: Eu 2+ , CaWO 4 , ZnO: Zn, Zn 2 SiO 4 : Mn, Y 2 O 2 S: Eu, ZnS: Ag, YVO 4 : Eu, Y 2 O 3 : Eu, Gd 2 O 2 S : Tb, La 2 O 2 S: Tb, Y 3 Al 5 O 12: Ce, Sr 5 (PO 4) 3 Cl: Eu, 3 (Ba, Mg) O · 8Al 2 O 3 : Eu, Zn 2 GeO 4 : Mn, Y (P, V) O 4 : Eu, 0.5MgF 2 · 3.5MgO · GeO 2 : Mn, ZnS: Cu, ZnS: Mn, etc., and these are simple substances. Alternatively, it is possible to arbitrarily select and mix several kinds from these. These fluorescence spectra have peaks outside the wavelength range of visible light such as blue, green, and red, and can be appropriately selected according to the desired fluorescence spectrum.
 発光体としては、赤外光で発光する発光体も用いることができる。具体的には、赤外光(約800~約1200nm)で励起し可視光(約400~約800nm)を発光する発光体と、赤外光(約800~約900nm)で励起しより長波長の赤外光(約980~約1020nm)で発光するものがある。前者の発光体は、非常に特殊な励起機構を持つ蛍光体であり、エネルギーの小さな赤外線の光子を複数個用いて可視発光の励起を行なう。この励起機構は2つのタイプがあり、一方は付活剤イオンの中の他段階の励起により励起する、Er3+やHo3+(希土類)等を付活剤とする多くの母体結晶で観測されるものと、他方は増感剤からの複数回の共鳴エネルギー伝達、つまり増感剤Yb3+が赤外線を吸収し多段階のエネルギー伝達により発光中心のEr3+、Tm3+、Ho3+等を高い準位に励起するものがある。具体例としてはYF:Yb+Er、YF:Yb+Tm、BaFCI:Yb+Erなどがある。 A light-emitting body that emits infrared light can also be used as the light-emitting body. Specifically, a light-emitting body that is excited by infrared light (about 800 to about 1200 nm) and emits visible light (about 400 to about 800 nm) and a longer wavelength by being excited by infrared light (about 800 to about 900 nm) Some infrared rays (about 980 to about 1020 nm) emit light. The former luminescent material is a fluorescent material having a very special excitation mechanism, and it excites visible light emission by using a plurality of infrared photons having low energy. There are two types of this excitation mechanism, one of which is observed in many host crystals that use Er 3+ , Ho 3+ (rare earth), etc. as an activator, which are excited by excitation at other stages in the activator ion. On the other hand, the resonance energy transfer from the sensitizer is performed a plurality of times, that is, the sensitizer Yb 3+ absorbs infrared rays, and multi-step energy transfer causes multi-step energy transfer, such as Er 3+ , Tm 3+ , and Ho 3+, which are high levels. There is something that excites you. YF Specific examples 3: Yb + Er, YF 3 : Yb + Tm, BaFCI: Yb + Er , and the like.
 後者は、その組成がLiNd0.9Yb0.112、LiBi0.2Nd0.7Yb0.112、Nd0.9Yb0.1Nd(MoO、NaNd0.9Yb0.112、Nd0.8Yb0.2Na(WO、Nd0.8Yb0.2Na(Mo0.50.5、Ce0.05Gd0.05Nd0.75Yb0.15Na(W0.7Mo0.3、Nd0.9Yb0.1Al(BO、Nd0.9Yb0.1Al2.7Cr0.3(BO、Nd0.6Yb0.414Nd0.8Yb0.2(PO等がある。 The latter has a composition of LiNd 0.9 Yb 0.1 P 4 O 12 , LiBi 0.2 Nd 0.7 Yb 0.1 P 4 O 12 , Nd 0.9 Yb 0.1 Nd 5 (MoO 4 ). 4 , NaNd 0.9 Yb 0.1 P 4 O 12 , Nd 0.8 Yb 0.2 Na 5 (WO 4 ) 4 , Nd 0.8 Yb 0.2 Na 5 (Mo 0.5 W 0.5) O 4 ) 4 , Ce 0.05 Gd 0.05 Nd 0.75 Yb 0.15 Na 5 (W 0.7 Mo 0.3 O 4 ) 4 , Nd 0.9 Yb 0.1 Al 3 (BO 3 ) 4 , Nd 0.9 Yb 0.1 Al 2.7 Cr 0.3 (BO 3 ) 4 , Nd 0.6 Yb 0.4 P 5 O 14 Nd 0.8 Yb 0.2 K 3 (PO 4) ) There are 2 etc.
 本発明において発光体として用いることができる化合物としては、例えば、特開2015-168728号公報の段落0019、0090~0097の記載等、特開平10-129107号公報の段落0033、0034、0069等を参照することができ、これらの記載を本明細書に組み込む。 Examples of the compound that can be used as a light-emitting body in the present invention include those described in paragraphs 0019 and 0090 to 0097 of JP-A-2005-168728, and paragraphs 0033, 0034, and 0069 of JP-A-10-129107. Reference may be made to the above documents, and these descriptions are incorporated herein.
 本発明の発光体は光の照射によって、平板状成形体中の発光体が発光する。なかでも、上記のとおり、光の照射によって発光体が発光し、可視光または赤外光が返される態様が好ましい。このように、可視光以外の電磁波の照射によって発光することで、平板状成形体の色の状態を目視によって認識されることがなく、情報の拡散や、安易な偽造を防ぐことができる。一方、光の照射により可視光を発光させる態様とすれば、この段階で偽造品であるか、真贋の確認を簡便に行うことができる。 The light-emitting body of the present invention emits light when irradiated with light. Among them, as described above, a mode in which the light-emitting body emits light upon irradiation with light and visible light or infrared light is returned is preferable. In this way, by emitting light by irradiation with electromagnetic waves other than visible light, it is possible to prevent information diffusion and easy forgery without visually recognizing the color state of the flat plate-shaped molded product. On the other hand, if a mode is adopted in which visible light is emitted by light irradiation, it can be easily confirmed at this stage whether the product is a counterfeit product or not.
 発光体の密度は、0.0001g/mm以上であることが好ましく、0.001g/mm以上であることがより好ましい。また、0.01g/mm以下であることが好ましく、0.008g/mm以下であることがより好ましい。 The density of emitters, is preferably 0.0001 g / mm 3 or more, more preferably 0.001 g / mm 3 or more. Further, it is preferably 0.01 g / mm 3 or less, and more preferably 0.008 g / mm 3 or less.
 本発明の平板状成形体に用いられる発光体の含有量は、平板状成形体を形成するための熱可塑性樹脂組成物中の固形分中で、1×10-4質量%以上であることが好ましく、5×10-4質量%以上であることがより好ましく、1×10-3質量%以上であることがさらに好ましい。上限値としては、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。ここで固形分とは、平板状成形体を形成する樹脂組成物全体の重量をいう。
 本発明の平板状成形体に用いられる発光体の含有量は、熱可塑性樹脂との比率で規定すると、熱可塑性樹脂の平板状成形体100質量部に対して、1×10-4質量部以上であることが好ましく、5×10-4質量部以上であることがより好ましく、1×10-3質量部以上であることがさらに好ましい。上限値としては、5質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.5質量部以下であることがさらに好ましい。
 発光体は1種のみ用いてもよいし、2種以上用いてもよい。
 平板状成形体中の発光体の含有量の計測方法としては、平板状成形体製品の元素分析等により熱可塑性樹脂と発光体の質量を求めてもよいが、製造段階での情報があるのであれば、製造時に製造装置に投入する熱可塑性樹脂等の質量と発光体の質量から求めてもよい。ただし、製造段階の処方が不明で、平板状成形体中の熱可塑性樹脂の質量を平板状成形体から求めるとき、これと他の有機成分とを区別して計測することが難しいときは、平板状成形体中の有機化合物の総質量に対する発光体の質量の割合として評価してもよい。
The content of the luminescent material used in the flat shaped article of the present invention is 1 × 10 −4 mass% or more based on the solid content in the thermoplastic resin composition for forming the flat shaped article. The content is preferably 5 × 10 −4 mass% or more, more preferably 1 × 10 −3 mass% or more. The upper limit value is preferably 5% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less. Here, the solid content refers to the weight of the entire resin composition forming the flat plate-shaped molded product.
The content of the luminescent material used in the flat shaped article of the present invention is 1 × 10 −4 parts by mass or more based on 100 parts by weight of the flat shaped article of the thermoplastic resin, as defined by the ratio with the thermoplastic resin. Is more preferable, 5 × 10 −4 parts by mass or more is more preferable, and 1 × 10 −3 parts by mass or more is still more preferable. The upper limit is preferably 5 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass or less.
The luminescent material may be used alone or in combination of two or more.
As a method of measuring the content of the luminescent material in the flat molded article, the mass of the thermoplastic resin and the luminescent material may be obtained by elemental analysis of the flat molded article product, but since there is information at the manufacturing stage. If there is any, it may be calculated from the mass of the thermoplastic resin or the like to be charged into the manufacturing apparatus at the time of manufacturing and the mass of the light emitting body. However, when the formulation of the manufacturing stage is unknown and it is difficult to measure the mass of the thermoplastic resin in the flat plate-shaped product from the flat plate-shaped product, it is difficult to distinguish it from other organic components. It may be evaluated as the ratio of the mass of the luminescent material to the total mass of the organic compounds in the molded body.
 平板状成形体中の発光体の含有量を上記上限値以下とすることで、平板状成形体の透明性が低下して発光色が不鮮明となることを防ぐことができる。また、発光体の輝点が近接しすぎずに済み照合・判定に適合する。発光体の含有量を上記下限値以上とすることで、検出器での検出が困難となることを防ぐことができる。また、発光体の輝点が疎になって分散しすぎることを防ぎ、識別性のある分布を有する輝点情報とすることができ、検出および判定に資するものである。 By setting the content of the light-emitting body in the flat-plate molded body to the above upper limit or less, it is possible to prevent the transparency of the flat-plate molded body from decreasing and the emission color from becoming unclear. In addition, the luminous points of the light emitters are not too close to each other, which is suitable for collation and judgment. By making the content of the luminescent material equal to or higher than the above lower limit value, it becomes possible to prevent the detection by the detector from becoming difficult. Further, it is possible to prevent the bright spots of the light emitting body from becoming sparse and disperse too much, and to obtain bright spot information having a discriminative distribution, which contributes to detection and determination.
<熱可塑性樹脂>
 本発明の平板状成形体は、その連続層(基部)が、熱可塑性樹脂で構成されていることが好ましい。本発明の平板状成形体の製造方法は特に限定されないが、平板状成形体の成形に適した樹脂組成物を用いて成形されたものであることが好ましい。
<Thermoplastic resin>
In the flat plate-shaped molded product of the present invention, it is preferable that the continuous layer (base) thereof is made of a thermoplastic resin. The method for producing the flat shaped article of the present invention is not particularly limited, but it is preferable that the flat shaped article is molded using a resin composition suitable for shaping the flat shaped article.
 熱可塑性樹脂としては、なかでも、ポリカーボネート樹脂およびポリエステル樹脂の少なくとも1種を含むことが好ましい。 Among them, the thermoplastic resin preferably contains at least one of a polycarbonate resin and a polyester resin.
 ポリカーボネート樹脂は、分子主鎖中に炭酸エステル結合を含む-[O-R-OCO]-単位(Rは、脂肪族基、芳香族基、または脂肪族基と芳香族基の双方を含む基であり、脂肪族基は直鎖構造でも分岐構造でもよい)を含むことが好ましい。本発明においては、各平板状成形体が芳香族ポリカーボネート樹脂を含むことが特に好ましい。
 ポリカーボネート樹脂の重量平均分子量は、20,000~80,000が好ましく、21,000~50,000がより好ましく、22,000~40,000がさらに好ましい。
 ポリカーボネート樹脂のガラス転移温度は、120℃以上であることが好ましく、130℃以上であることがより好ましい。上限としては、160℃以下であることが好ましく、155℃以下であることがより好ましい。ガラス転移温度は、示差走査熱量測定(DSC)によって測定される。
A polycarbonate resin is a — [O—R—OCO]-unit (R is an aliphatic group, an aromatic group, or a group containing both an aliphatic group and an aromatic group) containing a carbonic acid ester bond in the molecular main chain. And the aliphatic group may have a linear structure or a branched structure). In the present invention, it is particularly preferable that each flat plate-shaped molded product contains an aromatic polycarbonate resin.
The weight average molecular weight of the polycarbonate resin is preferably 20,000 to 80,000, more preferably 21,000 to 50,000, and even more preferably 22,000 to 40,000.
The glass transition temperature of the polycarbonate resin is preferably 120 ° C. or higher, and more preferably 130 ° C. or higher. The upper limit is preferably 160 ° C. or lower, more preferably 155 ° C. or lower. The glass transition temperature is measured by differential scanning calorimetry (DSC).
 ポリエステル樹脂としては、非晶性ポリエステル樹脂であっても、結晶性ポリエステル樹脂であってもよい。
 非晶性ポリエステル樹脂としては、例えば、PETG樹脂およびPCTG樹脂が挙げられる。
 PETG樹脂は、テレフタル酸単位を主とするジカルボン酸単位、エチレングリコール単位、および1,4-シクロヘキサンジメタノール単位を主とするグリコール単位からなるポリエステルコポリマーであり、1,4-シクロヘキサンジメタノール単位が、モル基準で全てのグリコール単位の50%未満を占める。テレフタル酸単位は、これが全てのジカルボン酸単位を占めることが好ましい。
 また、PCTG樹脂は、テレフタル酸単位を主とするジカルボン酸単位、エチレングリコール単位、および1,4-シクロヘキサンジメタノール単位を主とするグリコール単位からなるポリエステルコポリマーであり、1,4-シクロヘキサンジメタノール単位が、モル基準で全てのグリコール単位の50%以上を占める。テレフタル酸単位は、これが全てのジカルボン酸単位を占めることが好ましい。
The polyester resin may be an amorphous polyester resin or a crystalline polyester resin.
Examples of the amorphous polyester resin include PETG resin and PCTG resin.
PETG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly containing terephthalic acid units, an ethylene glycol unit, and a glycol unit mainly containing 1,4-cyclohexanedimethanol units. , Occupy less than 50% of all glycol units on a molar basis. The terephthalic acid unit preferably accounts for all dicarboxylic acid units.
PCTG resin is a polyester copolymer composed of a dicarboxylic acid unit mainly containing terephthalic acid unit, an ethylene glycol unit, and a glycol unit mainly containing 1,4-cyclohexanedimethanol unit, and is 1,4-cyclohexanedimethanol. The units account for 50% or more of all glycol units on a molar basis. The terephthalic acid unit preferably accounts for all dicarboxylic acid units.
 結晶性ポリエステル樹脂としては、ポリカプロラクトンが挙げられる。 As the crystalline polyester resin, polycaprolactone can be mentioned.
 熱可塑性樹脂においては、ポリカーボネート樹脂とポリエステル樹脂とを組み合わせても、ポリカーボネート樹脂またはポリエステル樹脂と他の熱可塑性樹脂とを組み合わせても、ポリカーボネート樹脂とポリエステル樹脂と他の熱可塑性樹脂とを組み合わせてもよい。本発明においては、ポリカーボネート樹脂またはポリエステル樹脂(好ましくはポリカーボネート樹脂)が熱可塑性樹脂全体の50質量%以上を占めることが好ましく、60質量%以上を占めることがより好ましく、80質量%以上を占めることがさらに好ましく、90質量%以上であってもよい。上限としては特に制限されず、ポリカーボネート樹脂またはポリエステル樹脂が100質量%であってもよい。ポリカーボネート樹脂は1種を用いても複数のものを用いてもよい。ポリエステル樹脂についても、1種を用いても複数のものを用いてもよい。いずれも複数のものを用いる場合はその合計量が上記の範囲となる。 In the thermoplastic resin, a combination of a polycarbonate resin and a polyester resin, a combination of a polycarbonate resin or a polyester resin and another thermoplastic resin, or a combination of a polycarbonate resin, a polyester resin and another thermoplastic resin Good. In the present invention, the polycarbonate resin or the polyester resin (preferably polycarbonate resin) preferably accounts for 50% by mass or more of the entire thermoplastic resin, more preferably 60% by mass or more, and 80% by mass or more. Is more preferable, and may be 90% by mass or more. The upper limit is not particularly limited, and the polycarbonate resin or the polyester resin may be 100% by mass. As the polycarbonate resin, one kind or a plurality of kinds may be used. Regarding the polyester resin, one kind or a plurality of kinds may be used. When a plurality of materials are used in each case, the total amount is within the above range.
 平板状成形体を構成する樹脂を樹脂組成物とする場合は、上述の成分に加えて、酸化防止剤、熱安定剤、難燃剤、難燃助剤、離型剤、着色剤等の添加剤を含有してもよい。あるいは、本発明の効果を損なわない限り、紫外光吸収剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤等の添加剤を含有してもよい。熱可塑性樹脂における上述したような添加剤の含有量は、熱可塑性樹脂全体の質量を基準として、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。下限値としては、0質量%であってもよい。 When the resin constituting the flat molded article is a resin composition, in addition to the above-mentioned components, additives such as an antioxidant, a heat stabilizer, a flame retardant, a flame retardant aid, a release agent, a colorant, etc. May be included. Alternatively, as long as the effect of the present invention is not impaired, it contains additives such as an ultraviolet light absorber, an antistatic agent, a fluorescent brightening agent, an antifogging agent, a fluidity improving agent, a plasticizer, a dispersant, and an antibacterial agent. Good. The content of the additive as described above in the thermoplastic resin is preferably 1.0 mass% or less, more preferably 0.5 mass% or less, based on the mass of the entire thermoplastic resin. It is more preferably 0.1% by mass or less. The lower limit may be 0% by mass.
<酸化防止剤>
 本発明の平板状成形体は、酸化防止剤を含有することが好ましい。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤などが挙げられ、リン系酸化防止剤およびフェノール系酸化防止剤(より好ましくはヒンダードフェノール系酸化防止剤)が好ましく、リン系酸化防止剤がより好ましい。
 リン系酸化防止剤としての好ましいホスファイト系安定剤としては、以下の式(1)または(2)で表されるホスファイト化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、RおよびRはそれぞれ独立に、炭素原子数1~30のアルキル基または炭素原子数6~30のアリール基を表す。)
Figure JPOXMLDOC01-appb-C000012
(式(2)中、R~Rは、それぞれ独立に、水素原子、炭素原子数6~20のアリール基または炭素原子数1~20のアルキル基を表す。)
<Antioxidant>
The flat shaped article of the present invention preferably contains an antioxidant.
Examples of the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, thioether antioxidants, and the like, and phosphorus antioxidants and phenolic antioxidants (more preferably hinders Dephenolic antioxidants) are preferred, and phosphorus antioxidants are more preferred.
As a preferable phosphite-based stabilizer as the phosphorus-based antioxidant, a phosphite compound represented by the following formula (1) or (2) is preferable.
Figure JPOXMLDOC01-appb-C000011
(In the formula (1), R 1 and R 2 each independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
(In the formula (2), R 3 to R 7 each independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms.)
 上記式(1)中、R、Rで表されるアルキル基は、それぞれ独立に、炭素原子数1~10の直鎖または分岐のアルキル基であることが好ましい。R、Rがアリール基である場合、以下の式(1-a)、(1-b)、または(1-c)のいずれかで表されるアリール基が好ましい。 In the above formula (1), the alkyl groups represented by R 1 and R 2 are preferably each independently a linear or branched alkyl group having 1 to 10 carbon atoms. When R 1 and R 2 are aryl groups, an aryl group represented by any of the following formulas (1-a), (1-b), or (1-c) is preferable.
Figure JPOXMLDOC01-appb-C000013
(式(1-a)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。式(1-b)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula (1-a), R A's each independently represent an alkyl group having 1 to 10 carbon atoms. In the formula (1-b), R B's each independently have 1 to 10 carbon atoms. Represents the alkyl group of 10.)
 酸化防止剤の詳細は、特開2017-031313号公報の段落0057~0061の記載を参酌でき、これらの内容は本明細書に組み込まれる。 For details of the antioxidant, the description in paragraphs 0057 to 0061 of JP-A-2017-031313 can be referred to, and the contents thereof are incorporated in the present specification.
 酸化防止剤の含有量は、熱可塑性樹脂100質量部に対して、好ましくは0.005質量部以上であり、より好ましくは0.007質量部以上、さらに好ましくは0.01質量部以上である。また、酸化防止剤の含有量の上限値は、熱可塑性樹脂100質量部に対して、好ましくは0.4質量部以下、より好ましくは0.3質量部以下、さらに好ましくは0.2質量部以下、一層好ましくは0.1質量部以下である。
 酸化防止剤は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
The content of the antioxidant is preferably 0.005 parts by mass or more, more preferably 0.007 parts by mass or more, and further preferably 0.01 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin. . Further, the upper limit of the content of the antioxidant is preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, and further preferably 0.2 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Hereafter, it is more preferably 0.1 part by mass or less.
As the antioxidant, only one kind may be used, or two or more kinds may be used. When two or more kinds are used, the total amount is preferably within the above range.
<平板状成形体の成形>
 本発明の平板状成形体において、樹脂ないし樹脂組成物から平板状成形体として成形する方法は特に限定されず、適宜常法を採用することができる。たとえば、押出成形、キャスト成形による方法が挙げられる。押出成形の例としては、樹脂組成物のペレット、フレークあるいは粉末を押出機で溶融、混練後、Tダイ等から押出し、得られる半溶融状のフィルム(平板状成形体)をロールで挟圧しながら、冷却、固化してフィルム(平板状成形体)を形成する方法が挙げられる。多層体とする場合には、フィルム(平板状成形体)を積層させるよう共押出成形することが挙げられる。このように、共押出成形を用いて多層体を製造すると、接着剤を用いて接着層を形成しつつ積層させる製法、塗料を用いて塗膜層を形成する製法等に比べて、効率的に多層体を製造することができる。
<Molding of flat plate molded body>
In the flat plate-shaped molded product of the present invention, the method of molding the resin or the resin composition as a flat plate-shaped molded product is not particularly limited, and a usual method can be appropriately adopted. For example, extrusion molding and cast molding may be used. As an example of extrusion molding, pellets, flakes or powders of the resin composition are melted and kneaded by an extruder, then extruded from a T die or the like, and a semi-molten film (flat plate molded body) obtained is pressed with a roll. Examples of the method include cooling and solidifying to form a film (plate-shaped molded body). In the case of forming a multilayer body, coextrusion molding may be performed so that films (plate-shaped molded bodies) are laminated. As described above, when a multilayer body is manufactured by using coextrusion molding, it is more efficient than a manufacturing method of forming an adhesive layer by using an adhesive and laminating a film, a manufacturing method of forming a coating film layer by using a paint, or the like. Multilayer bodies can be produced.
 本発明の平板状成形体の平面視での大きさは特に限定されるものではないが、上述したように、カード類やパスポートとして使用する場合には、サイズに関して、カードでは85.60mm×53.98mm、パスポートでは91mm×128mmが一般的である。具体的には、1辺が5mm以上であることが好ましく、10mm以上であることがより好ましく、20mm以上であることがさらに好ましく、40mm以上、60mm以上、70mm以上であってもよい。上限値としては、150mm以下であることが実際的である。また、平板状成形体はほぼ長方形であることが好ましい。熱可塑性樹脂の平板状成形体をカード類等の一部に貼付する小さなものとする場合には、1辺が20mm以下であることが好ましく、10mm以下であることがより好ましく、5mm以下であることがさらに好ましい。下限値としては10μm以上であることが実際的である。 The size of the flat plate-shaped molded product of the present invention in plan view is not particularly limited, but as described above, when used as a card or a passport, the size of the card is 85.60 mm × 53. It is generally 0.98 mm and 91 mm × 128 mm in a passport. Specifically, one side is preferably 5 mm or more, more preferably 10 mm or more, further preferably 20 mm or more, and may be 40 mm or more, 60 mm or more, 70 mm or more. It is practical that the upper limit value is 150 mm or less. Moreover, it is preferable that the flat plate-shaped molded body is substantially rectangular. When the flat plate-shaped molded product of the thermoplastic resin is attached to a part of a card or the like and is small, one side is preferably 20 mm or less, more preferably 10 mm or less, and 5 mm or less. Is more preferable. It is practical that the lower limit value is 10 μm or more.
<多層体>
 図5は本発明の好ましい実施形態として、図1の平板状成形体の一例として熱可塑性樹脂フィルムを基材に積層した例を示している。本実施形態の多層体20は、基材12の上に熱可塑性樹脂フィルム11が積層されている。この熱可塑性樹脂フィルム11を上述の本発明に係る熱可塑性樹脂の平板状成形体とすることができる。したがって、熱可塑性樹脂フィルム11は上記図1で示したものと同様に、特定の含有量で特定の大きさをもつ発光体が内部に分散されている。これにより、光の照射により、指紋認証と同様あるいはそれ以上の識別が可能となっている。
 基材12の特徴は特に限定されないが、上述した熱可塑性樹脂ないしその組成物で構成された透明フィルムであってもよい。その他、紙等による無地の台紙となっていたり、有彩色の樹脂フィルムであったり、他の蛍光フィルムと組み合わせたものであったりしてもよい。
 このように積層体とする場合には、図1の識別情報(情報デザイン)を上面と下面のどちらに付与しても構わない。本実施形態において、上面に識別表示を付与するのであれば、熱可塑性樹脂フィルムとの組合せで、図1と同様の効果が得られる。下面の基材に識別表示を付与するのであれば、上面において熱可塑性樹脂フィルムの表面を遮ることがないため、光の照射にあたって、これに影響することがなく好ましい。
 本発明の多層体は図示したものに限定されるものではない。例えば、熱可塑性樹脂フィルム/基材フィルム/熱可塑性樹脂フィルムの三層構造としてもよいし、それ以上に積層させた構造としてもよい。また、光遮蔽層を設けてもよい。
<Multilayer>
FIG. 5 shows, as a preferred embodiment of the present invention, an example in which a thermoplastic resin film is laminated on a substrate as an example of the flat plate-shaped molded article of FIG. In the multilayer body 20 of the present embodiment, the thermoplastic resin film 11 is laminated on the base material 12. This thermoplastic resin film 11 can be used as the thermoplastic resin flat plate-shaped molded product according to the present invention. Therefore, in the thermoplastic resin film 11, as in the case shown in FIG. 1, the luminous body having a specific content and a specific size is dispersed inside. With this, by irradiation of light, it is possible to perform identification similar to or more than fingerprint authentication.
The characteristics of the base material 12 are not particularly limited, but may be a transparent film composed of the above-mentioned thermoplastic resin or its composition. In addition, it may be a plain mount such as paper, a chromatic resin film, or a combination with another fluorescent film.
In the case of a laminated body as described above, the identification information (information design) of FIG. 1 may be given to either the upper surface or the lower surface. In the present embodiment, if the identification display is provided on the upper surface, the same effect as in FIG. 1 can be obtained by combining with the thermoplastic resin film. If the base material on the lower surface is provided with the identification mark, it does not obstruct the surface of the thermoplastic resin film on the upper surface, and therefore it is preferable that it does not affect the irradiation of light.
The multilayer body of the present invention is not limited to the one shown. For example, it may have a three-layer structure of thermoplastic resin film / base film / thermoplastic resin film, or may have a structure in which more layers are laminated. Further, a light shielding layer may be provided.
 多層体の厚みや平面視の大きさは特に限定されるものではないが、その好ましい範囲は、上記熱可塑性樹脂フィルムの厚みや大きさとして説明した寸法と同様である。 The thickness and size of the multilayer body in plan view are not particularly limited, but the preferred range is the same as the dimensions described as the thickness and size of the thermoplastic resin film.
<真贋判定方法>
 本発明の多層体は、これを用いた真贋判定方法に好適に利用することができる。本発明の好ましい実施形態に係る真贋判定方法を図6にフローチャートにして示している。本実施形態の真贋判定方法では、上述した本発明に係る熱可塑性樹脂の平板状成形体に、特定の光を照射して、その発光により作出された輝点に関する情報(輝点情報)を検出することを含む。光は上記で述べたものと同じであり、好ましい範囲も同様である。輝点は上記発光体に光を照射したときに発せられる光により生じるものである。したがって、輝点の大きさや分布等は、平板状成形体内の発光体の種類や分布等により決定される(ただし、一部の発光体の発光を遮って、または何らかの理由により発光が遮られて、部分的に輝点が得られる状態であってもよい。)。
<Authenticity judgment method>
The multilayer body of the present invention can be suitably used for an authenticity judging method using the same. FIG. 6 is a flowchart showing the authenticity determination method according to the preferred embodiment of the present invention. In the authenticity determining method of the present embodiment, the flat plate-shaped molded product of the thermoplastic resin according to the present invention described above is irradiated with specific light, and information regarding a bright spot created by the light emission (bright spot information) is detected. Including doing. The light is the same as described above, and the preferable range is also the same. The bright spots are generated by the light emitted when the light emitting body is irradiated with light. Therefore, the size and distribution of the bright spots are determined by the type and distribution of the light emitters in the flat molded body (provided that the light emission of some light emitters is blocked or the light emission is blocked for some reason). , It may be in a state where bright spots are partially obtained.)
 輝点情報としては、例えば、輝点の大きさ、輝点の発光波長、輝点の発光強度および輝点の位置情報(分布、間隔、配置等)等が挙げられる。輝点の大きさ、発光波長、発光強度、位置情報等(以下、大きさ等)は上述した発光体の大きさ等に即して定まるものであり、概ね発光体の大きさや種類、配置状態によって決定される。したがって、輝点の好ましい大きさ等は、発光体の好ましい大きさやその分布、種類として規定した内容に準じて定まる範囲であることが好ましい。ただし、上述したとおり、一部の発光体の発光は意図的に、あるいは偶発的に遮られてもよい。例えば、検出装置にとって不要な部分について、意図的に発光体の発光を遮ることにより、検出の精度を高めることができる。 The bright spot information includes, for example, the size of the bright spot, the emission wavelength of the bright spot, the emission intensity of the bright spot, and the position information of the bright spot (distribution, interval, arrangement, etc.). The size of the bright spot, the emission wavelength, the emission intensity, the position information, etc. (hereinafter, the size, etc.) are determined according to the size of the above-mentioned light-emitting body, etc. Determined by Therefore, it is preferable that the preferable size of the bright spots and the like be in a range determined according to the preferable size of the luminescent material, its distribution, and the contents specified as types. However, as described above, the light emission of some of the light emitters may be intentionally or accidentally blocked. For example, the accuracy of detection can be improved by intentionally blocking the light emission of the light-emitting body with respect to a portion unnecessary for the detection device.
 本発明の方法では、発光体からの発光を漠然と検知するのではなく、輝点を情報として体系的に読み取って検出する。それにより、上述したように、指紋認証と同様あるいはそれ以上の識別が可能となる。指紋は焼けど等により損傷したり、読み取りにくい状態になったりすることがある。その点を考慮すれば、指紋認証以上の精度となることも考慮される。このような輝点情報をより精度よく検出するために、輝点の距離は近くなりすぎず、個々の輝点が分離しており、かつ、所定の大きさの範囲で過度の偏りなく検知されることが好ましい。この点は、輝点情報をコンピュータで画像ソフト等を介して自動解析し予め登録された輝点情報のデータベースと照合する場合に重要になる。例えば、検出した輝点情報を、輝点のある部分を白とし、それ以外の部分を黒として、座標ごとに白/黒の二値表示した場合、白黒の区別に読み取り不良がでれば、それは誤った判定につながってしまう。本発明の好ましい実施形態によれば、そうしたことを抑制ないし防止しうる。つまり、発光体の含有量と大きさの分布が規定されているため、検知される輝点が近くなりすぎることが効果的に防止されている。その結果、高い精度の検出および画像解析を通じた真贋の判定につなげることができる。特に、予め登録された輝点情報が膨大な量に及ぶ場合に、その効果は顕著となる。なお、輝点情報の検出は、機械的にセンサーなどで行ってもよいが、人が目視で確認してもよい。次に説明する真贋の判定も同様であり、コンピュータなどによって機械的に行ってもよいが、人が判断してもよい。 In the method of the present invention, the light emission from the light emitter is not detected vaguely, but the bright spots are systematically read and detected as information. As a result, as described above, it is possible to perform identification similar to or higher than the fingerprint authentication. Fingerprints may be damaged by burns, etc., or may become difficult to read. Considering that point, it is considered that the accuracy is higher than that of fingerprint authentication. In order to detect such bright spot information more accurately, the distance between the bright spots does not become too short, the individual bright spots are separated, and they are detected without excessive bias in a predetermined size range. Preferably. This point becomes important when the bright spot information is automatically analyzed by a computer through image software or the like and collated with a previously registered database of bright spot information. For example, when the detected bright spot information is displayed in binary with white / black for each part and white for the part with bright spots and black for the other parts, if there is a reading failure in the distinction between black and white, That leads to a false decision. According to the preferred embodiment of the present invention, such a situation can be suppressed or prevented. That is, since the distribution of the content and size of the luminous body is defined, it is possible to effectively prevent the detected bright spots from becoming too close. As a result, it is possible to lead to highly accurate detection and authenticity determination through image analysis. In particular, the effect becomes remarkable when the bright spot information registered in advance reaches a huge amount. The bright spot information may be mechanically detected by a sensor or the like, but may be visually confirmed by a person. The determination of authenticity described below is also the same, and may be performed mechanically by a computer or the like, but may be determined by a person.
 本発明の好ましい実施形態に係る真贋判定方法では、上記で検出した輝点情報が真正な輝点情報か、つまり熱可塑性樹脂の平板状成形体や多層体が偽造されたものではないかを判定する。これが真正な輝点情報に該当すれば、真贋の試験をされた熱可塑性樹脂の平板状成形体等は真正物と判定され(図6のYes)、そうでなければ偽造物と判定される(図6のNo)。上記の判定には、真正な輝点情報を予め多数登録し格納した真正発光データベース(真正発光DB)を用いることが好ましい(図7)。 In the authenticity determination method according to a preferred embodiment of the present invention, it is determined whether the bright spot information detected above is the true bright spot information, that is, whether the flat plate-shaped molded body or the multilayer body of the thermoplastic resin is forged. To do. If this corresponds to the true bright spot information, the flat plate-shaped molded product of the thermoplastic resin, which has been tested for authenticity, is determined to be a genuine product (Yes in FIG. 6), and otherwise it is determined to be a counterfeit product ( No of FIG. 6). For the above determination, it is preferable to use a true light emission database (true light emission DB) in which a large number of true bright spot information are registered and stored in advance (FIG. 7).
 上記熱可塑性樹脂の平板状成形体を用いた本発明の真贋判定方法の一致率、すなわち予め登録した輝点情報と事後的に検出した輝点情報とが一致する確率(一致する輝点情報の数/検定した輝点情報の数)は90%以上であることが好ましく、95%以上であることがより好ましく、99%以上であることがさらに好ましい。上限値としては特に限定されず、検定した回数によっては100%となってもよい。本発明の好ましい実施形態によれば、好ましくは、犯罪捜査に適用される指紋認証システムに匹敵する一致率と同等とすることも可能である。輝点情報の具体的な検出および判定の項目は特に限定されないが、例えば、輝点の大きさ、輝点の発光波長、輝点の発光強度および輝点の位置情報(輝点間の距離およびその分布等)等が挙げられる。 Consistency rate of the authenticity determination method of the present invention using the thermoplastic resin plate-shaped molded article, that is, the probability that the pre-registered bright spot information and the subsequently detected bright spot information will match (matching bright spot information (Number / number of bright spot information tested) is preferably 90% or more, more preferably 95% or more, and further preferably 99% or more. The upper limit is not particularly limited, and may be 100% depending on the number of times of testing. According to a preferred embodiment of the present invention, it is possible to achieve a matching rate which is preferably comparable to the fingerprint authentication system applied to criminal investigation. Although specific items for detecting and determining the bright spot information are not particularly limited, for example, the size of the bright spot, the emission wavelength of the bright spot, the emission intensity of the bright spot, and the position information of the bright spot (distance between bright spots and Distribution etc.) and the like.
<真贋判定方法の利用態様>
 図8は本発明の真贋判定方法を利用したカードAの利用態様の全体像を示したフローチャートである。本実施形態の利用態様では、まず、発光体を分散させたカードを製造する(製造過程)。この製造過程では、例えば、上述したような、樹脂中に発光体を分散し、押出等により平板状成形体を成形する方法が適用される。
<Usage mode of authenticity determination method>
FIG. 8 is a flowchart showing an overall image of the usage mode of the card A using the authenticity determination method of the present invention. In the usage mode of the present embodiment, first, a card in which the light emitting elements are dispersed is manufactured (manufacturing process). In this manufacturing process, for example, the above-described method of dispersing the luminescent material in the resin and molding a flat plate-shaped molded body by extrusion or the like is applied.
 次いで、製造されたカードAに光を照射し、カードAからの発光で作出される輝点情報を読み取る。輝点情報は、これを多数登録した真正発光データベース(真正発光DB)を格納する記録装置に送られ、ここに記録し格納される(登録過程)。真正発光データベースは多数の輝点情報を格納するため、大容量のサーバあるいはクラウドサービスプラットフォームに設けられることが好ましい。 Next, the manufactured card A is irradiated with light, and the bright spot information created by the light emitted from the card A is read. The bright spot information is sent to a recording device that stores a true light emission database (true light emission DB) in which a large number of these are registered, and is recorded and stored here (registration process). Since the true light emission database stores a large number of bright spot information, it is preferably provided in a large-capacity server or cloud service platform.
 次いで、輝点情報が登録されたカードAは、流通下に置かれる(流通過程)。例えば、金融機関のカードAであれば、口座情報がカード内に印字ないし磁気的に書き込まれ、ユーザーに引き渡される。この間にカードAは偽造のリスクにさらされることとなる。 Next, the card A with the bright spot information registered is placed in the distribution (distribution process). For example, in the case of a card A of a financial institution, account information is printed or magnetically written in the card and delivered to the user. During this time, the card A is exposed to the risk of forgery.
 所定の時期に、カードAはその識別ないし認証を求められることがある。例えばカードAが金融情報を格納したカードであれば、偽造されたものではないかを確認し、カードAの所持者に融資等をすることがありえる。したがって、このカードAが真正なものか否かの見極めは、極めて重要な確認事項となる。このとき、本実施形態の使用態様では、カードAに光を照射し輝点情報を検出し(検出過程)、非破壊の方法で、検出された輝点情報を真正発光データベースの情報と照合し(照合過程)、検出された輝点情報とデータベース内の輝点情報とが一致するかの判定を行う(判定過程)。この、検出過程、照合過程、判定過程は、図6および図7で示した態様と同様である。本フローチャートに基づいて補足しておくと、このユーザーに引き渡されたカードAの輝点情報は、予め真正発光データベースに登録されており(登録過程)、その輝点情報を同データベースから引き出して照合している(照合過程)。このようにしてデータベースを介して、時間を隔てて、同一のカードAの輝点情報が照合されるため、その不一致は本来起きるはずがなく、実質的にないこととなる(ここで、実質的にとは、人為的な手違い等がなければ全くないことを意味し、具体的には、不一致の発生頻度として1%未満であることをいう)。それでもなお、照合過程で不一致(No)となるということは、流通過程でカードの破損や偽造が行われた蓋然性が高いことを意味する。破損は過失によるものであるが、偽造は故意になされた犯罪行為であり、厳に取り締まられなければならない。場合によっては、金融機関の多額の損害に繋がりかねない。
 なお、本発明が図8の説明によって限定されるものではない。例えば、当然であるが、本発明が同図のフローの全てを包含している必要はない。また、同図に示した検出、照合、および判定過程を含め、それ以外の製造や流通の過程の態様により、本発明が限定して解釈されるものではない。
At certain times, the card A may be required to identify or authenticate it. For example, if the card A is a card in which financial information is stored, it is possible to confirm whether the card A is forged and give a loan to the holder of the card A. Therefore, determining whether the card A is authentic is a very important confirmation item. At this time, in the usage mode of the present embodiment, the card A is irradiated with light to detect the bright spot information (detection process), and the detected bright spot information is collated with the information of the true light emission database by a nondestructive method. (Comparison process), it is determined whether the detected bright spot information matches the bright spot information in the database (determination process). The detection process, the matching process, and the determination process are the same as those shown in FIGS. 6 and 7. Supplementally based on this flowchart, the bright spot information of the card A handed over to this user is registered in advance in the true light emission database (registration process), and the bright spot information is extracted from the database and collated. (Verification process). In this way, since the bright spot information of the same card A is collated at a time interval via the database, the discrepancy should not occur originally and is virtually nonexistent (substantially here). The term "ni" means that there is no human error or the like, and specifically, the frequency of occurrence of inconsistency is less than 1%). Nevertheless, a mismatch (No) in the verification process means that there is a high probability that the card is damaged or forged in the distribution process. Although the damage is due to negligence, counterfeiting is a deliberate criminal act that must be cracked down. In some cases, this can lead to a large amount of damage to financial institutions.
The present invention is not limited to the description of FIG. For example, it goes without saying that the present invention does not need to include all the flows in the figure. In addition, the present invention is not construed as being limited by aspects of the manufacturing and distribution processes other than the above, including the detection, matching, and determination processes shown in FIG.
<真贋判定システム>
 図9は、本発明の好ましい実施形態に係る真贋判定システムの構成図である。本実施形態においては、熱可塑性樹脂の平板状成形体10に光源(光照射部)51から光C1を照射している。この特定の光の好ましい範囲は、上記で説明した光と同じである。熱可塑性樹脂の平板状成形体が上記光の照射を受け、多層体を発光させ、その発光C2を光センサー(検出部)52で検出している。上記光源51と検出部52はコンピュータ(制御部/真贋判定部)53に接続され、その制御下で動作させられている。本実施形態のシステムにおいて、真贋判定装置は上記の光照射部51、検出部52、およびコンピュータ53で構成されている。
 本実施形態のシステムにおいてコンピュータ53が、そこにインストールされた画像解析ソフト(例えば、WinROOF2013(登録商標)、三谷商事株式会社)を介して、前記熱可塑性樹脂の平板状成形体から発せられた輝点情報が、予め登録された真正な輝点情報であるかを判定する。このとき、コンピュータ53は外部ネットワーク57に接続され、外部ネットワーク上に設けられた真正発光データベースと通信できるようになっている。そのため、巨大なデータ(ビッグデータ)でも対応ができるようになっており、包括的かつ正確、迅速な判定が可能なシステムとなっている。本システムにおける好ましい判定の手順は、真贋判定方法で示したフローチャート(図6、図7)と同じであり、好ましい利用態様も図8に示したものと同じである。ただし、本実施形態の真贋判定システムでは、検出および判定を人の目によることを前提とせず、検出部およびコンピュータによって行っている。
 さらに、本実施形態のシステムは、判定結果を表示する画像表示手段54、判定結果やその分析結果を印字することができる印刷手段55、判定結果を記録媒体に記録しておくための媒体記録手段56等と接続され、全体がコンピュータにより制御されたシステムとされている。
 なお、本実施形態の装置は、光源(光照射部)51、光センサー(検出部)52、コンピュータ(制御部/真贋判定部)53で構成され、画像表示手段54、印刷手段55、媒体記録手段56、外部ネットワーク57等を含むときにはシステムと呼び、用語を区別している。記録媒体としては、例えば、磁気テープ、磁気ディスク、光ディスク、半導体メモリなどが挙げられる。
 本発明が同図の構成によって限定して解釈されるものではないことは言うまでもない。
<Authenticity judgment system>
FIG. 9 is a block diagram of an authenticity determination system according to a preferred embodiment of the present invention. In the present embodiment, light C1 is emitted from the light source (light emitting unit) 51 to the thermoplastic resin flat plate-shaped molded body 10. The preferred range of this particular light is the same as the light described above. The flat plate-shaped molded body of the thermoplastic resin is irradiated with the above-mentioned light to cause the multilayer body to emit light, and the light emission C2 is detected by the optical sensor (detection unit) 52. The light source 51 and the detection unit 52 are connected to a computer (control unit / authenticity determination unit) 53 and are operated under the control thereof. In the system of the present embodiment, the authenticity determination device includes the light irradiation unit 51, the detection unit 52, and the computer 53 described above.
In the system of the present embodiment, the computer 53 emits a brilliance emitted from the thermoplastic resin flat plate-shaped article through image analysis software (for example, WinROOF 2013 (registered trademark), Mitani Shoji Co., Ltd.) installed therein. It is determined whether or not the point information is genuine bright point information registered in advance. At this time, the computer 53 is connected to the external network 57 so that it can communicate with the true light emission database provided on the external network. Therefore, even huge data (big data) can be handled, and it is a system that enables comprehensive, accurate, and quick determination. The preferred determination procedure in this system is the same as the flowchart (FIGS. 6 and 7) shown in the authenticity determination method, and the preferred usage mode is also the same as that shown in FIG. 8. However, in the authenticity determination system of the present embodiment, the detection and the determination are performed by the detection unit and the computer without assuming that they are performed by human eyes.
Further, the system according to the present embodiment includes an image display unit 54 that displays the determination result, a printing unit 55 that can print the determination result and its analysis result, and a medium recording unit that records the determination result in a recording medium. The system is connected to 56 and the like and is entirely controlled by a computer.
The apparatus according to the present embodiment includes a light source (light irradiation unit) 51, an optical sensor (detection unit) 52, a computer (control unit / authenticity determination unit) 53, an image display unit 54, a printing unit 55, and a medium recording unit. When the means 56, the external network 57, and the like are included, they are called systems, and terms are distinguished. Examples of the recording medium include a magnetic tape, a magnetic disk, an optical disk, and a semiconductor memory.
It goes without saying that the present invention is not construed as being limited by the configuration of the figure.
<真贋判定プログラム>
 本発明の好ましい実施形態に係る、コンピュータにより読み取り可能な形式で記述されたプログラムは、図6、図7のフローチャートに示した手順を順次進めていくようプログラミングされている。具体的には、熱可塑性樹脂の平板状成形体または多層体(熱可塑性樹脂の平板状成形体等)が発した輝点情報を読み取るステップと、前記検出された輝点情報が、真正な輝点情報であるか否かを判定する真贋の判定ステップとを含み、これらの動作をコンピュータに実行させるためのプログラムとなっている。
 さらに図6に基づいて一連の工程で実施態様を説明すると、プログラムが開始されると、所定の装置を介して熱可塑性樹脂の平板状成形体等に光が照射される。光は前記で規定されたとおりであり、好ましい範囲も同様である。次いで、熱可塑性樹脂の平板状成形体等から発せられた発光(好ましくは可視光領域の発光)により作出される輝点情報を検出する。このときの検出は、目視によって行い、その結果をインプットしてコンピュータに送ってもよいが、コンピュータにつながれた光センサー(検出部)によって行われることが好ましい。次いで、検出された輝点情報が熱可塑性樹脂の平板状成形体の真正な輝点情報かを判定する。真正な輝点情報は上述のとおり、製造段階またはその後に、予め、光を熱可塑性樹脂の平板状成形体等に照射し、そこから発せられる輝点情報を検出することで登録されている。検出された輝点情報が予め登録されたものと一致し、その情報が真正と判断されれば(図6のYes)、試験された熱可塑性樹脂の平板状成形体等は真正物と判定される。そうでなければ(図6のNo)、偽造物と判定される。
<Authenticity judgment program>
A program written in a computer-readable format according to a preferred embodiment of the present invention is programmed so as to sequentially proceed with the procedures shown in the flowcharts of FIGS. Specifically, the step of reading the bright spot information emitted by the thermoplastic resin flat molded article or the multilayered body (such as the thermoplastic resin flat molded article) and the detected bright spot information are It is a program for causing a computer to execute these operations, including a genuineness determining step of determining whether or not it is point information.
Further, the embodiment will be described with reference to FIG. 6 in a series of steps. When the program is started, the flat plate-shaped molded product of the thermoplastic resin or the like is irradiated with light through a predetermined device. The light is as defined above and the preferred range is also the same. Then, the bright spot information generated by the light emission (preferably light emission in the visible light region) emitted from the flat plate-shaped molded product of the thermoplastic resin or the like is detected. The detection at this time may be performed by visual observation, and the result may be input and sent to the computer, but it is preferably performed by an optical sensor (detection unit) connected to the computer. Then, it is determined whether the detected bright spot information is true bright spot information of the thermoplastic resin flat plate-shaped molded product. As described above, the genuine bright spot information is registered by previously irradiating the flat plate-shaped molded product of the thermoplastic resin or the like with light at the manufacturing stage or thereafter, and detecting the bright spot information emitted from the flat molded product. If the detected bright spot information matches that registered in advance and the information is judged to be authentic (Yes in FIG. 6), the tested thermoplastic resin plate-shaped molded product is judged to be authentic. It Otherwise (No in FIG. 6), it is determined to be a forgery.
 本発明のプログラムの好ましい実施形態においては、真正発光データベースを利用した判定が行われることが好ましい(図7)。すなわち、前記判定ステップでは、検出された熱可塑性樹脂の平板状成形体から発せられる輝点情報を、真正な発光を多数記録した真正発光データベース(真正発光DB)に照会し、該当する平板状成形体の輝点情報がデータベース内に存在し、その真正な輝点情報と検出された輝点情報とが一致する場合には、熱可塑性樹脂の平板状成形体が真正物であると判定する。真正な輝点情報と検出された輝点情報とが一致しない場合には、熱可塑性樹脂の平板状成形体が偽造物であると判定する。このとき、真正発光データベースは本プログラム内にデータ構造として記録格納されていてもよいが、サーバやクラウドサービスプラットフォームなど、本プログラムとは別の場所に別の形で保持しておくことも好ましい。
 データベース内の輝点情報の数は特に限定されないが、本発明の効果が顕著になる観点からは、例えば、百万件以上であることが好ましく、一千万件以上であることがより好ましく、一億件以上であることがさらに好ましい。ビッグデータとしてスーパーコンピューター等によりデータを保有するような場合には、さらに十億件以上であることが好ましく、百億以上であることがより好ましく、一千億以上であることがさらに好ましい。上限値としては、特に限定されず、クラウドコンピューティング等を利用する場合には事実上無限大のデータを扱うことも可能である。
In a preferred embodiment of the program of the present invention, it is preferable that the determination is performed using a true light emission database (FIG. 7). That is, in the determination step, the bright spot information emitted from the detected thermoplastic resin flat molded article is queried with respect to the true light emission database (true light emission DB) in which many true light emissions are recorded, and the corresponding flat molding is performed. If the bright spot information of the body exists in the database and the true bright spot information and the detected bright spot information match, it is determined that the thermoplastic resin flat plate-shaped molded product is a genuine product. If the true bright spot information and the detected bright spot information do not match, it is determined that the thermoplastic resin flat plate-shaped molded product is a counterfeit product. At this time, the true light emission database may be recorded and stored as a data structure in this program, but it is also preferable to retain it in a different place from this program such as a server or a cloud service platform in another form.
The number of bright spot information in the database is not particularly limited, but from the viewpoint that the effect of the present invention becomes remarkable, for example, it is preferably 1 million or more, more preferably 10 million or more, More preferably, it is 100 million or more. When data is stored as a big data by a super computer or the like, it is preferably 1 billion or more, more preferably 10 billion or more, still more preferably 100 billion or more. The upper limit is not particularly limited, and virtually infinite data can be handled when using cloud computing or the like.
<用途>
 本発明の熱可塑性樹脂の平板状成形体および多層体は、IDカード、パスポート(特に、パスポート用データ頁)、非接触型ICカード、セキュリティカード等のカード類として好適に用いられる。ただし、その用途が限定されるものではなく、製品のタグや、流通情報、個人データ管理、防犯システムなど、偽造の防止が望まれる分野で広く活用することができる。
<Use>
The flat plate-shaped molded product and the multilayered product of the thermoplastic resin of the present invention are suitably used as cards such as ID cards, passports (particularly, data pages for passports), non-contact type IC cards, security cards and the like. However, its use is not limited, and it can be widely used in fields where it is desired to prevent forgery, such as product tags, distribution information, personal data management, and crime prevention systems.
 以下、実施例を示して本発明についてさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において任意に変更して実施することができる。 Hereinafter, the present invention will be described more specifically by showing examples. However, the present invention is not limited to the following examples, and can be implemented by being arbitrarily modified without departing from the spirit of the present invention.
<フィルムの製造>
 表1に記載の樹脂組成物RE1を用いて、以下のように試験片のフィルムFL1を製造した。
 バレル直径32mm、スクリューのL/D=31.5の二軸押出機からなるTダイ溶融押出機を用い、吐出量20kg/h、スクリュー回転数200rpmで幅300mmの鏡面フィルムを成形した。シリンダー・ダイヘッド温度は、280℃鏡面のものを製造した。
 さらに樹脂組成物RE2~RE10を用いて、FL1と同様の方法でFL2~FL10を製造した。
Figure JPOXMLDOC01-appb-T000014
上記において、各成分は、質量部である。
*1 三菱エンジニアリングプラスチックス社製 「E-2000F」
*2 根本特殊化学社製 「N夜光 Gシリーズ」(組成SrAl:Eu,Dy)のうち、表2または表3に示すメジアン径(D50)を有するものを用いた。
・G-300F:メジアン径(D50)16μm
・G-300C:メジアン径(D50)36μm
・G-300L160:メジアン径(D50)137μm
・G-300FF:メジアン径(D50)4μm
*3 株式会社ADEKA社製 「AS2112」
<Production of film>
Using the resin composition RE1 described in Table 1, a test piece film FL1 was manufactured as follows.
Using a T-die melt extruder composed of a twin-screw extruder having a barrel diameter of 32 mm and a screw L / D of 31.5, a mirror-finished film having a width of 300 mm and a discharge rate of 20 kg / h and a screw rotation speed of 200 rpm was formed. The cylinder / die head temperature was 280 ° C. and the mirror surface was manufactured.
Further, FL2 to FL10 were produced using the resin compositions RE2 to RE10 in the same manner as in FL1.
Figure JPOXMLDOC01-appb-T000014
In the above, each component is part by mass.
* 1 "E-2000F" manufactured by Mitsubishi Engineering Plastics
* 2 Nemoto Co. "N luminous G series" (composition SrAl 2 O 4: Eu, Dy ) of was used having a median diameter shown in Table 2 or Table 3 (D 50).
・ G-300F: Median diameter (D 50 ) 16 μm
・ G-300C: Median diameter (D 50 ) 36 μm
・ G-300L160: Median diameter (D 50 ) 137 μm
・ G-300FF: Median diameter (D 50 ) 4 μm
* 3 "AS2112" manufactured by ADEKA Corporation
<評価>
 得られたフィルムについて、各項目の算定および測定を行った。結果を表2または表3に記載の各実施例および各比較例として示している。実施例4および比較例4の顕微鏡像をそれぞれ図10および図11に載せる。
<Evaluation>
Each item of the obtained film was calculated and measured. The results are shown as Examples and Comparative Examples shown in Table 2 or Table 3. Microscopic images of Example 4 and Comparative Example 4 are shown in FIGS. 10 and 11, respectively.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
:フィルム(平板状成形体)における46.2cmの面積当たりの特定輝点の数(特定輝点:最大長が10μm以上フィルム(平板状成形体)の厚み以下の大きさの輝点)
:フィルム(平板状成形体)における1.4mmの面積当たりの特定輝点の数(特定輝点:最大長が10μm以上フィルムの厚み以下の大きさの輝点)
w:フィルム(平板状成形体)に10,000mmの面積当たりに存在する発光体の含有量[g]
wは、表記の便宜から1000倍に桁数を調整して表示している。
、Neは表記の便宜から1000分の1に桁数を落として表示している。
Figure JPOXMLDOC01-appb-T000016
N 0 : Number of specific luminescent spots per area of 46.2 cm 2 in the film (flat molded article) (specific bright point: maximum length is 10 μm or more and bright spots having a size not larger than the thickness of the film (flat molded article) )
N 1 : Number of specific bright spots per area of 1.4 mm 2 in the film (flat plate-shaped molded product) (specific bright spot: bright spot having maximum length of 10 μm or more and film thickness or less)
w: Content of the luminescent material [g] present in an area of 10,000 mm 2 in the film (flat body).
For convenience of notation, w is displayed after adjusting the number of digits by 1000 times.
For convenience of notation, N c and Ne 2 are displayed with the number of digits reduced to 1/1000.
[輝点の最大長Lの測定方法]
 実施例および比較例のフィルム(平板状成形体)に光(本実施例では、紫外光)を照射した状態で顕微鏡を用い、46.2cmの範囲を観察して、確認された輝点の最大長Lを測定した。
 輝点の最大長Lとは、輝点の輪郭線P上の任意の2点を選択し、この2点を直線で結んだときの距離が最も大きくなるときの距離(長さ)である。顕微鏡と画像処理ソフトを用いて輝点一つずつの最大長Lを測定した。
 顕微鏡は、Nikon社製 ECLIPSE LV100NDを、画像処理ソフトは、NIS-Elements Dを用いた。
[Measurement method of maximum length L 2 of bright spot]
The films (flat shaped articles) of Examples and Comparative Examples were irradiated with light (ultraviolet light in this Example) using a microscope to observe a range of 46.2 cm 2 to confirm the observed bright spots. The maximum length L 2 was measured.
The maximum length L 2 of the bright spot is the distance (length) at which the distance when the arbitrary two points on the outline P of the bright spot are selected and the two points are connected by a straight line becomes the largest. . The maximum length L 2 of each bright spot was measured using a microscope and image processing software.
Nikon ECLIPSE LV100ND was used as the microscope, and NIS-Elements D was used as the image processing software.
[輝点の数Nの計測方法]
 実施例及び比較例のフィルム(平板状成形体)に光(本実施例では、紫外光)を照射した状態で顕微鏡を用い、46.2cmの範囲を観察した。画像処理ソフトを用いて粒子の最大長を計測しながら、範囲内に存在する最大長が10μm以上フィルム(平板状成形体)の厚み以下の大きさの輝点(特定輝点)となる粒子の個数を計測した。
 顕微鏡は、Nikon社製 ECLIPSE LV100NDを、画像処理ソフトは、NIS-Elements Dを用いた。
[Measurement method of the number N 0 of bright spots]
A film (flat shaped article) of each of Examples and Comparative Examples was irradiated with light (ultraviolet light in this example), and a microscope was used to observe a range of 46.2 cm 2 . While measuring the maximum length of the particles using image processing software, the maximum length existing within the range is 10 μm or more The number was counted.
Nikon ECLIPSE LV100ND was used as the microscope, and NIS-Elements D was used as the image processing software.
[フィルム(平板状成形体)の厚みTの測定方法]
 ミツトヨ(Mitutoyo)社製デジマチック標準外側マイクロメータを用いて、フィルム(平板状成形体)の押し出し方向、幅方向のそれぞれ2cm毎に厚みを測定して、その平均値を採用した。
[Measurement Method of Thickness T of Film (Flat Form)]
Using a Digimatic standard outside micrometer manufactured by Mitutoyo, the thickness was measured every 2 cm in the extrusion direction and the width direction of the film (flat plate-shaped body), and the average value was adopted.
[発光体粒子の含有量wの求め方]
 フィルム(平板状成形体)製造時に製造装置に投入する熱可塑性樹脂等の質量と発光体粒子の質量から求めた。
[How to Determine Content w of Luminescent Particles]
It was determined from the mass of the thermoplastic resin and the like to be charged into the manufacturing apparatus at the time of manufacturing the film (plate-shaped molded body) and the mass of the luminescent particles.
[発光体粒子のメジアン径D50の測定方法]
 添加する発光体粒子のメジアン径は、JIS Z8825:2013に準拠して測定した。
 測定装置は、Malvern社製 Mastersizer 3000を用いた。
[Measurement Method of Median Diameter D 50 of Luminescent Particles]
The median diameter of the added phosphor particles was measured according to JIS Z8825: 2013.
As the measuring device, a Mastersizer 3000 manufactured by Malvern was used.
[発光体の密度dの算定方法]
 ISO R1183に準拠して測定した。
[Method of calculating the density d of the luminous body]
It was measured according to ISO R1183.
[輝点の面積率の計測方法]
 平板状成形体を平らな黒い板の上に置き、暗室内で照明には紫外光を使用し、被写体からレンズの先端までの距離を42mmに保ち、以下の条件で撮影を行い、画像を取得した。
絞り値 f/3.2
露出時間 1秒
ISO速度 ISO-80
焦点距離 4 mm
最大絞り 3.34
 画像の取得には、Canon社製 PowerShot SX620 HSを使用した。
 画像解析ソフトウエア WinROOF2013(登録商標)を用い、8.07cmとなるよう範囲指定して、モノクロ化を実施した。得られた濃淡画像は0~255の階調をもつ濃度値にて表示されている。本濃淡画像に下限閾値24、上限閾値255を設定して濃度値24以上255以下の範囲で「2つの閾値による二値化」を実施し、輝点に該当する白の部分の面積を画像全体の面積で割った値を面積率として求めた。
[Measurement method of area ratio of bright spots]
Place the flat molded object on a flat black plate, use ultraviolet light for illumination in a dark room, keep the distance from the subject to the tip of the lens at 42 mm, shoot under the following conditions, and acquire an image did.
Aperture value f / 3.2
Exposure time 1 second ISO speed ISO-80
Focal length 4 mm
Maximum aperture 3.34
PowerShot SX620 HS manufactured by Canon Inc. was used to acquire the image.
Using the image analysis software WinROOF2013 (registered trademark), the range was specified to be 8.07 cm 2, and monochromeization was performed. The obtained grayscale image is displayed with density values having gradations of 0 to 255. The lower limit threshold value 24 and the upper limit threshold value 255 are set for this grayscale image, and "binarization by two threshold values" is performed in the range of density values of 24 or more and 255 or less, and the area of the white portion corresponding to the bright spot is determined as the entire image. The value obtained by dividing by the area was calculated as the area ratio.
[輝点発光観察による評価]
 良好:輝点の検出に適した輝点の適度な大きさと分散状態が得られた
 観測不可:輝点がその検出に十分な大きさまたは数で捉えられなかった
 面発光:輝点どうしの境界が連続し検出に不適切な状態で面状に発光していた
[Evaluation by bright spot emission observation]
Good: An appropriate size and dispersed state of the bright spots suitable for the detection of the bright spots were obtained. Observable: The bright spots were not captured in a size or number sufficient for the detection. Surface emission: The boundary between the bright spots. Was emitting light in a planar manner in an unsuitable state for continuous detection.
[フィルム(平板状成形体)外観]
 良好:フィルム(平板状成形体)の表面に異物がない
 不良:フィルム(平板状成形体)の表面に異物がある
[Film (flat plate molded product) appearance]
Good: There is no foreign matter on the surface of the film (plate-shaped molding) Poor: There is foreign matter on the surface of the film (plate-shaped molding)
[総合評価]
[輝点発光観察による評価]が良好かつ、[フィルム(平板状成形体)外観]が良好だった場合をA、それ以外をBとした。
[Comprehensive evaluation]
The case where [Evaluation by bright spot emission observation] was good and the [Film (tabular molded article) appearance] was good was A, and the other cases were B.
1 発光体
2 識別表示(識別デザイン)
3 フィルム基部
10、11、90 熱可塑性樹脂フィルム
12 基材
20 多層体
51 光源(光照射部)
52 光センサー(検出部)
53 コンピュータ(制御部/真贋判定部)
54 画像表示手段
55 印刷手段
56 媒体記録手段
57 外部ネットワーク
C1 照射光
C2 発光
1 Light emitter 2 Identification display (identification design)
3 Film Bases 10, 11, 90 Thermoplastic Resin Film 12 Base Material 20 Multilayer Body 51 Light Source (Light Irradiation Section)
52 Optical sensor (detector)
53 Computer (control unit / authenticity determination unit)
54 image display means 55 printing means 56 medium recording means 57 external network C1 irradiation light C2 emission

Claims (17)

  1.  光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、
     前記熱可塑性樹脂の平板状成形体に光を照射し、顕微鏡で観察したとき、下記輝点の数Nが1以上であり、下記輝点の数Nが下記式(F1)で表されるNe1以下である熱可塑性樹脂の平板状成形体;
    Figure JPOXMLDOC01-appb-M000001
    :熱可塑性樹脂の平板状成形体の平面視における面積46.2cm当たりの特定輝点の数;
    :熱可塑性樹脂の平板状成形体の平面視における面積1.4mm当たりの特定輝点の数;
    50:発光体のメジアン径[μm];
    特定輝点:最大長が10μm以上であり平板状成形体の厚み以下である輝点。
    A flat plate-shaped molded article of a thermoplastic resin, including a light-emitting body that emits light when irradiated with light,
    When the flat plate-shaped molded product of the thermoplastic resin is irradiated with light and observed with a microscope, the number N 0 of the following bright points is 1 or more, and the number N 1 of the following bright points is represented by the following formula (F1). A flat plate-shaped molded product of a thermoplastic resin having N e1 or less;
    Figure JPOXMLDOC01-appb-M000001
    N 0 : Number of specific bright spots per area of 46.2 cm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
    N 1 : Number of specific bright spots per area of 1.4 mm 2 in a plan view of the thermoplastic resin flat plate-shaped molded article;
    D 50 : Median diameter [μm] of luminescent material;
    Specific bright point: A bright point having a maximum length of 10 μm or more and not more than the thickness of the flat plate-shaped molded product.
  2.  光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、
     前記発光体のメジアン径が、10μm以上、かつ、平板状成形体の厚み以下であり、
     前記熱可塑性樹脂の平板状成形体10,000mm当たりの前記発光体の含有量をw[g]としたとき、下記の関係式(F2)を満たす、熱可塑性樹脂の平板状成形体;
    Figure JPOXMLDOC01-appb-M000002
     式中、D50は発光体のメジアン径[μm]であり、dは発光体の密度[g/mm]である。
    A flat plate-shaped molded article of a thermoplastic resin, including a light-emitting body that emits light when irradiated with light,
    The median diameter of the light-emitting body is 10 μm or more and not more than the thickness of the flat plate-shaped molded body,
    When the content of the luminescent material per 10,000 mm 2 of the thermoplastic resin plate-shaped molded product is w [g], the thermoplastic resin plate-shaped molded product that satisfies the following relational expression (F2):
    Figure JPOXMLDOC01-appb-M000002
    In the formula, D 50 is the median diameter [μm] of the luminescent material, and d is the density [g / mm 3 ] of the luminescent material.
  3.  光を照射したとき発光する発光体を含む、熱可塑性樹脂の平板状成形体であって、
     前記発光体のメジアン径が、10μm以上、かつ、平板状成形体の厚み以下であり、
     下記計測方法で規定される輝点の面積率が60%以下である熱可塑性樹脂の平板状成形体;
    計測方法:画像解析ソフトウエア WinROOF2013(登録商標)を用い、8.07cmとなるよう範囲指定して、モノクロ化を実施する;得られた濃淡画像は0~255の階調をもつ濃度値にて表示されている;本濃淡画像に下限閾値24、上限閾値255を設定して濃度値24以上255以下の範囲で2つの閾値による二値化を実施し、輝点に該当する白の部分の面積を画像全体の面積で割った値を面積率として求める。
    A flat plate-shaped molded article of a thermoplastic resin, including a light-emitting body that emits light when irradiated with light,
    The median diameter of the light-emitting body is 10 μm or more and not more than the thickness of the flat plate-shaped molded body,
    A flat plate-shaped molded product of a thermoplastic resin having an area ratio of bright spots of 60% or less as defined by the following measuring method;
    Measurement method: Image analysis software WinROOF2013 (registered trademark) is used to specify a range of 8.07 cm 2, and monochrome is performed; the obtained gray-scale image has density values having gradations of 0 to 255. The lower and upper thresholds 24 and 255 are set for the gray image, and binarization is performed using two thresholds within a density value range of 24 to 255, and the white portion corresponding to the bright spot is displayed. The value obtained by dividing the area by the area of the entire image is obtained as the area ratio.
  4.  光の照射により発光体から発せられる光が、可視光または赤外光である、請求項1~3のいずれか1項に記載の平板状成形体。 The flat plate-shaped molded product according to any one of claims 1 to 3, wherein the light emitted from the light-emitting body upon irradiation with light is visible light or infrared light.
  5.  前記熱可塑性樹脂が、ポリカーボネート樹脂およびポリエステル樹脂の少なくとも1種を含む、請求項1~4のいずれか1項に記載の平板状成形体。 The flat plate-shaped molded product according to any one of claims 1 to 4, wherein the thermoplastic resin contains at least one of a polycarbonate resin and a polyester resin.
  6.  前記発光体がB、F、Mg、Al、Si、P、S、Cl、Na、K、Li、Ca、V、Mn、Cu、Mo、Zn、Sn、Ge、Sr、Y、Ba、La、Bi、W、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択される元素を含む、請求項1~5のいずれか1項に記載の平板状成形体。 The luminous body is B, F, Mg, Al, Si, P, S, Cl, Na, K, Li, Ca, V, Mn, Cu, Mo, Zn, Sn, Ge, Sr, Y, Ba, La, 6. Any one of claims 1 to 5 containing an element selected from the group consisting of Bi, W, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The flat plate-shaped molded article according to item 1.
  7.  真贋の判定に用いられる、請求項1~6のいずれか1項に記載の平板状成形体。 The flat plate-shaped molded product according to any one of claims 1 to 6, which is used for judging authenticity.
  8.  発光体に照射する光が、紫外光および赤外光の少なくとも1種である、請求項1~7のいずれか1項に記載の平板状成形体。 The flat plate-shaped molded product according to any one of claims 1 to 7, wherein the light with which the light-emitting body is irradiated is at least one of ultraviolet light and infrared light.
  9.  前記平板状成形体が、フィルム、シートまたはカードである、請求項1~8のいずれか1項に記載の平板状成形体。 The flat plate-shaped molded body according to any one of claims 1 to 8, wherein the flat plate-shaped molded body is a film, a sheet or a card.
  10.  請求項1~9のいずれか1項に記載の平板状成形体を有する多層体。 A multilayer body having the flat plate-shaped molded body according to any one of claims 1 to 9.
  11.  さらに、光遮蔽層を有する、請求項10に記載の多層体。 The multilayer body according to claim 10, further comprising a light shielding layer.
  12.  セキュリティカードである、請求項10または11に記載の多層体。 The multilayer body according to claim 10 or 11, which is a security card.
  13.  パスポート用データ頁である、請求項10または11に記載の多層体。 The multilayer body according to claim 10 or 11, which is a passport data page.
  14.  請求項1~9のいずれか1項に記載の平板状成形体あるいは請求項10~13のいずれか1項に記載の多層体に光を照射することと、光を照射したときに現れる輝点情報を検出することとを含む、真贋判定方法。 Irradiating the flat plate-shaped molded product according to any one of claims 1 to 9 or the multilayer body according to any one of claims 10 to 13 with light, and a bright spot appearing when the light is irradiated. A method for determining authenticity, comprising detecting information.
  15.  前記輝点情報が、輝点の大きさ、輝点の発光波長、輝点の発光強度および輝点の位置情報から選ばれる少なくとも1つである、請求項14に記載の真贋の判定方法。 The authenticity determination method according to claim 14, wherein the bright spot information is at least one selected from the size of the bright spot, the emission wavelength of the bright spot, the emission intensity of the bright spot, and the position information of the bright spot.
  16.  請求項1~9のいずれか1項に記載の平板状成形体あるいは請求項10~13のいずれか1項に記載の多層体と、
     請求項1~9のいずれか1項に記載の平板状成形体あるいは請求項10~13のいずれか1項に記載の多層体に光を照射する光照射部と、
     光の照射により検出される輝点情報が真正であることを判断する真贋判定部と
     を有する真贋判定システム。
    A flat plate-shaped body according to any one of claims 1 to 9 or a multilayer body according to any one of claims 10 to 13,
    A light irradiation section for irradiating the flat plate-shaped molded product according to any one of claims 1 to 9 or the multilayer body according to any one of claims 10 to 13 with light.
    An authenticity determination system having an authenticity determination unit that determines whether the bright spot information detected by irradiation of light is authentic.
  17.  コンピュータにより読み取り可能な形式で記述されたプログラムであって、
     請求項1~9のいずれか1項に記載の平板状成形体あるいは請求項10~13のいずれか1項に記載の多層体に光を照射したときに検出される輝点情報を読み取るステップと、
     前記読み取った輝点情報が真正な輝点情報を示すことを判断する真贋判定ステップとを含む処理をコンピュータに実行させるためのプログラム。
    A program written in a computer-readable format,
    A step of reading bright spot information detected when light is radiated to the flat plate-shaped molded article according to any one of claims 1 to 9 or the multilayer body according to any one of claims 10 to 13. ,
    A program for causing a computer to execute a process including an authenticity determination step of determining that the read bright spot information indicates authentic bright spot information.
PCT/JP2019/041010 2018-10-22 2019-10-18 Flat molded-body of thermoplastic resin, multilayered body, method of determining authenticity, system of determining authenticity, and program WO2020085221A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-198476 2018-10-22
JP2018198476 2018-10-22
JP2018228779 2018-12-06
JP2018-228779 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020085221A1 true WO2020085221A1 (en) 2020-04-30

Family

ID=70331430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041010 WO2020085221A1 (en) 2018-10-22 2019-10-18 Flat molded-body of thermoplastic resin, multilayered body, method of determining authenticity, system of determining authenticity, and program

Country Status (2)

Country Link
JP (1) JP7457313B2 (en)
WO (1) WO2020085221A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070006127A1 (en) * 2003-05-19 2007-01-04 Matthias Kuntz Dual security mark
WO2007072795A1 (en) * 2005-12-19 2007-06-28 International Frontier Technology Laboratory, Inc. Card capable of performing true/false judgment by a fluorescent particle chip
CN102690438A (en) * 2012-06-14 2012-09-26 东华大学 Polymer-based fluorescent functional composite material and fusing process method thereof
JP2012236369A (en) * 2011-05-12 2012-12-06 Dainippon Printing Co Ltd Fine particle, and ink, toner, sheet and medium containing the same for anti-counterfeiting
JP2015168728A (en) * 2014-03-05 2015-09-28 日本カラリング株式会社 security film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070006127A1 (en) * 2003-05-19 2007-01-04 Matthias Kuntz Dual security mark
WO2007072795A1 (en) * 2005-12-19 2007-06-28 International Frontier Technology Laboratory, Inc. Card capable of performing true/false judgment by a fluorescent particle chip
JP2012236369A (en) * 2011-05-12 2012-12-06 Dainippon Printing Co Ltd Fine particle, and ink, toner, sheet and medium containing the same for anti-counterfeiting
CN102690438A (en) * 2012-06-14 2012-09-26 东华大学 Polymer-based fluorescent functional composite material and fusing process method thereof
JP2015168728A (en) * 2014-03-05 2015-09-28 日本カラリング株式会社 security film

Also Published As

Publication number Publication date
JP2020094183A (en) 2020-06-18
JP7457313B2 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US9250183B2 (en) Luminescent materials, articles incorporating luminescent materials, and methods for performing article authentication
US4598205A (en) Security paper with authenticity features in the form of substances luminescing only in the invisible region of the optical spectrum and process for testing the same
CN1132126C (en) Document of value
Mokhtar et al. Production of photochromic nanocomposite film via spray‐coating of rare‐earth strontium aluminate for anti‐counterfeit applications
Baride et al. A NIR-to-NIR upconversion luminescence system for security printing applications
US20110140002A1 (en) Photoluminescent Compositions, Methods of Manufacture and Novel Uses
US8791428B2 (en) Authentication systems for discriminating value documents based on variable luminescence and magnetic properties
CN104507698A (en) Articles, methods of validating the same, and validation systems employing decay constant modulation
EP2069461A2 (en) Phosphorescent compositions for identification
RU2460141C2 (en) Identity feature in form of luminophore
WO2015133412A1 (en) Security film
US20190255874A1 (en) Thermoplastic resin film laminate and resin sheet for card
US20230242756A1 (en) Resin composition, resin sheet, multilayered article and card
WO2020085221A1 (en) Flat molded-body of thermoplastic resin, multilayered body, method of determining authenticity, system of determining authenticity, and program
US11887427B2 (en) Security print media
US20120153184A1 (en) Luminescent phosphor-containing materials, and methods for their production and use in authenticating articles
WO2020067087A1 (en) Multilayered structure, authenticity determination method, authenticity determination system, and program
JPH1086563A (en) Recognition mark, mark recording medium and mark recognizing method
JPWO2018211829A1 (en) Afterglow oxysulfide phosphor and luminescent composition for authenticity judgment
JP2005238813A (en) Information recording medium, and authenticity/forgery discriminating method
JP2007234910A (en) Magnetic oxide particles, and determination system of real from false of article or the like using them
JPH1076781A (en) Recognizing mark, mark recorded matter, and mark recognizing method
JP2012242410A (en) Hologram sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876972

Country of ref document: EP

Kind code of ref document: A1