WO2020084739A1 - Secondary battery circuit and production method therefor - Google Patents

Secondary battery circuit and production method therefor Download PDF

Info

Publication number
WO2020084739A1
WO2020084739A1 PCT/JP2018/039725 JP2018039725W WO2020084739A1 WO 2020084739 A1 WO2020084739 A1 WO 2020084739A1 JP 2018039725 W JP2018039725 W JP 2018039725W WO 2020084739 A1 WO2020084739 A1 WO 2020084739A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
terminal
battery circuit
plating layer
breaker
Prior art date
Application number
PCT/JP2018/039725
Other languages
French (fr)
Japanese (ja)
Inventor
高博 公文
Original Assignee
ボーンズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボーンズ株式会社 filed Critical ボーンズ株式会社
Priority to PCT/JP2018/039725 priority Critical patent/WO2020084739A1/en
Priority to CN201880097976.1A priority patent/CN112753086A/en
Publication of WO2020084739A1 publication Critical patent/WO2020084739A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting

Definitions

  • the present invention relates to a secondary battery circuit including a breaker suitable for use in a DC circuit of an electric device.
  • breakers have been used as protective devices for secondary batteries and motors of various electric devices.
  • the breaker operates when the temperature of the rechargeable battery during charging / discharging rises excessively, or when an abnormality occurs, such as when an overcurrent flows through a motor or the like installed in equipment such as automobiles and home appliances. Shut off the current to protect the secondary battery and motor.
  • the breaker used as such a protection device operates accurately following a temperature change (has good temperature characteristics) and has a stable resistance value when energized in order to ensure the safety of the device. Required to be present.
  • Patent Document 1 discloses a breaker to which a bimetal is applied as a heat responsive element.
  • a bimetal is an element that is formed by laminating two types of plate-shaped metal materials having different thermal expansion coefficients, and changes the shape according to the temperature change to control the conduction state of the contacts.
  • parts such as a fixed piece, a movable piece, a thermoresponsive element, and a PTC thermistor are housed in a case, and terminals of the fixed piece and the movable piece protrude from the case, and Used by connecting to the secondary battery circuit.
  • the breaker when used as a protective device for a secondary battery or the like that is installed in an electric device such as a notebook personal computer, a tablet type personal digital assistant, or a thin multifunctional mobile phone called a smartphone, the above-described case has occurred.
  • miniaturization is required.
  • users are strongly interested in downsizing (thinning), and devices newly released by various companies are designed to be small in size in order to secure superiority in design. The tendency to be done is remarkable.
  • the fixed piece and the movable piece are made of a metal having excellent conductivity, for example, a metal containing copper as a main component.
  • the terminals provided on the fixed piece and the movable piece are usually joined by welding to the metal piece (tab lead) that constitutes the secondary battery circuit.
  • the metal piece is comprised, for example as a main component of nickel.
  • the metal piece made of nickel which has a lower conductivity than the fixed piece and the movable piece, has a large resistance value, the resistance value of the entire secondary battery circuit increases.
  • the present invention has been made in order to solve the above problems, and its main object is to provide a secondary battery circuit that can easily reduce the resistance value of the entire circuit.
  • the first aspect of the present invention relates to a secondary battery having an electricity storage cell, a pair of electrodes exposed to the outside of the electricity storage cell, a load driven by the secondary battery, and a load between the secondary battery and the load.
  • a secondary battery circuit including a breaker connected in series, the breaker including a first terminal directly connected to a positive electrode of the secondary battery, a fixed contact, and an elastic portion that elastically deforms. And a movable piece that has a movable contact at one end of the elastic portion, and presses the movable contact against the fixed contact to make contact with the movable contact so that the state of the movable piece is changed by the deformation.
  • thermo-responsive element that transitions from a conducting state in which the movable contact contacts the fixed contact to a shut-off state in which the movable contact separates from the fixed contact, and the fixed contact, the movable piece, and the To accommodate the thermo-responsive element And a case, wherein the positive electrode and the first terminal, characterized in that it is laser-welded.
  • a first plating layer that absorbs and melts the light is formed on a first surface irradiated with the light used for the laser welding of the first terminal. Is desirable.
  • the first plating layer is locally formed on a part of the first surface.
  • the second surface of the first terminal that is welded to the positive electrode is mainly made of a metal that has a greater ionization tendency than the first terminal and a smaller ionization tendency than the positive electrode. It is desirable that the second plating layer as a component is formed.
  • the second plating layer is locally formed on a part of the second surface.
  • the first plating layer and the second plating layer are composed mainly of nickel, tin or chromium.
  • the secondary battery circuit according to the present invention includes a metal piece that connects the breaker and the load, the breaker includes a second terminal connected to the metal piece, and the metal piece and the second terminal. Is preferably laser welded.
  • a third plating layer that absorbs and melts the light is formed on a third surface of the second terminal that is irradiated with the light.
  • the third plating layer is locally formed on a part of the third surface.
  • the third plating layer is composed mainly of nickel, tin or chromium.
  • a second aspect of the present invention is to connect a storage battery, a secondary battery having a pair of electrodes exposed to the outside of the storage cell, a load driven by the storage battery, and a positive electrode of the storage battery.
  • a secondary terminal a fixed contact, an elastic portion that elastically deforms, a movable piece having a movable contact at one end of the elastic portion, and a thermal responsive element that deforms with temperature change.
  • a method for manufacturing a secondary battery circuit comprising: a breaker connected in series between a load and a load, wherein the fixed contact, the movable piece, and the present invention is characterized by including an assembling step of assembling the breaker by housing the heat responsive element in a case and a welding step of laser welding the positive electrode and the first terminal.
  • a first surface irradiated with light used in the laser welding of the first terminal absorbs and melts the light. It is preferable that the first plating step of forming the plating layer is performed.
  • the second surface of the first terminal welded to the positive electrode has a greater ionization tendency than the first terminal, Also, it is desirable that the second plating step of forming the second plating layer containing a metal having a low ionization tendency as a main component is performed.
  • the fixing contact and the second terminal connected to a metal piece provided between the load and the fixed contact are exposed. It is preferable that the movable piece and the heat responsive element are housed in the case, and the welding step includes a step of laser welding the metal piece and the second terminal.
  • a third plating layer that absorbs and melts the light is formed on a third surface of the second terminal irradiated with the light. It is desirable that the third plating step be performed.
  • the secondary battery circuit of the first invention includes a storage cell, a secondary battery, a load, and a breaker connected in series between the secondary battery and the load.
  • the breaker used in the secondary battery circuit includes a first terminal directly connected to the positive electrode of the secondary battery, a fixed contact, a movable piece having an elastic portion and a movable contact, and is deformed with a temperature change.
  • the positive electrode and the first terminal are laser-welded. As a result, the nickel metal piece disposed between the positive electrode and the first terminal of the secondary battery in the conventional secondary battery circuit becomes unnecessary, and the resistance value of the entire secondary battery circuit can be easily reduced. Is possible. Further, the secondary battery circuit is simplified, and the cost can be easily reduced.
  • the second invention is a method for manufacturing a secondary battery circuit including a storage cell, a secondary battery, a load, and a breaker connected in series between the secondary battery and the load.
  • the breaker used in the present manufacturing method includes a first terminal directly connected to the positive electrode of the secondary battery, a fixed contact, a movable piece having an elastic portion and a movable contact, and a thermal reaction that deforms with temperature change.
  • the positive electrode and the first terminal are laser-welded.
  • the nickel metal piece disposed between the positive electrode and the first terminal of the secondary battery in the conventional secondary battery circuit becomes unnecessary, and the resistance value of the entire secondary battery circuit can be easily reduced. Is possible. Further, the secondary battery circuit is simplified, and the cost can be easily reduced.
  • FIG. 3 is a perspective view before assembly showing a schematic configuration of a breaker used for the secondary battery pack.
  • Sectional drawing which shows the said breaker in a normal charge or discharge state.
  • Sectional drawing which shows the said breaker at the time of an overcharged state or an abnormality.
  • Sectional drawing which shows the structure of the said breaker and its periphery.
  • Sectional drawing which shows the modification of the said breaker, and the structure of the periphery part.
  • the flowchart which shows the manufacturing method of the secondary battery circuit of this 2nd invention.
  • the side view of the metal plate which shows a plating process.
  • FIG. 1 shows a secondary battery circuit 500 in which a breaker 1 according to an embodiment of the present invention is used.
  • the secondary battery circuit 500 is a DC circuit including the breaker 1, the secondary battery 501, and the load 502.
  • the load 502 is driven by the secondary battery 501.
  • the breaker 1 is arranged between the secondary battery 501 and the load 502.
  • the secondary battery 501, the breaker 1, and the load 502 are connected in series.
  • FIG. 2 shows a secondary battery pack 550 that constitutes at least a part of the secondary battery circuit 500.
  • the secondary battery pack 550 has a secondary battery 501, a breaker 1, and a circuit board 503.
  • the load 502 of the secondary battery circuit 500 is mounted on the circuit board 503 or outside the circuit board 503.
  • the secondary battery 501 has a storage cell 510 that stores electric charge, a positive electrode 511 exposed to the outside of the storage cell 510, and a negative electrode 512.
  • the positive electrode 511 is composed of, for example, a metal piece containing aluminum as a main component.
  • the negative electrode 512 is composed of, for example, a metal piece containing copper as a main component.
  • the positive electrode 511 and the negative electrode 512 form a pair of electrodes.
  • circuit board 503 an FPC (flexible printed circuit board) or the like is applied in addition to a general PCB (printed circuit board).
  • the breaker 1 is mounted between the positive electrode 511 of the secondary battery 501 and the circuit board 503.
  • the negative electrode 512 of the secondary battery 501 is connected to the circuit board 503.
  • the secondary battery circuit 500 including the positive electrode 511, the breaker 1, the circuit board 503, the load 502, and the negative electrode 512 is configured.
  • the breaker 1 is mounted on an electric device or the like and protects the electric device from excessive temperature rise or overcurrent.
  • the breaker 1 includes a fixed piece 2 having a fixed contact 21, a movable piece 4 having a movable contact 41 at its tip, a thermal responsive element 5 that deforms with a change in temperature, and a PTC (Positive Temperature Coefficient) thermistor 6.
  • the case 10 includes a case body (first case) 7, a lid member (second case) 8 mounted on the upper surface of the case body 7, and the like.
  • the fixing piece 2 is formed with a terminal 22 exposed from the case 10.
  • a terminal 42 is formed on the movable piece 4 exposed from the case 10.
  • the fixing piece 2 is formed, for example, by pressing a plate-shaped metal material containing copper as a main component (other than this, a metal plate of copper-titanium alloy, nickel silver, brass, etc.).
  • the fixing piece 2 is embedded in the case body 7 by insert molding and is housed in the case body 7 with the terminals 22 exposed to the outside of the case body 7.
  • the fixed contact 21 is formed at a position facing the movable contact 41 by clad, plating or coating of a material having good conductivity such as silver, nickel, nickel-silver alloy, copper-silver alloy, gold-silver alloy. It is exposed from a part of the opening 73a formed inside the case body 7.
  • the terminal 22 is formed at one end of the fixed piece 2.
  • the terminal 22 projects outward from the side wall at the edge of the case body 7.
  • the terminal 22 is electrically connected to the secondary battery 501.
  • a support portion 23 that supports the PTC thermistor 6 is formed on the other end side of the fixed piece 2.
  • the support portion 23 is exposed to the internal space of the case body 7 through an opening 73d formed inside the case body 7.
  • the PTC thermistor 6 is mounted on convex protrusions (doughs) 24 formed at three locations on the support portion 23 of the fixed piece 2 and supported by the protrusions 24.
  • the surface of the fixed piece 2 on which the fixed contact 21 is formed (that is, the upper surface in FIG. 3) is the A surface, and the opposite surface is the B surface, unless otherwise specified. is doing.
  • the direction from the fixed contact 21 to the movable contact 41 is defined as the first direction and the direction opposite to the first direction is defined as the second direction
  • the A surface faces the first direction
  • the B surface faces the second direction.
  • the movable piece 4 is formed into an arm shape symmetrical with respect to the center line in the longitudinal direction by pressing a plate-shaped metal material containing copper as a main component.
  • a movable contact 41 is formed at the tip of the movable piece 4 in the longitudinal direction.
  • the movable contact 41 is formed of, for example, a material similar to that of the fixed contact 21, and is joined to the tip end of the movable piece 4 by a method such as welding, clad, crimping, or the like.
  • a terminal 42 electrically connected to the secondary battery circuit 500 outside the breaker 1 is formed at the other end of the movable piece 4 in the longitudinal direction.
  • the terminal 42 projects outward from the side wall at the edge of the case body 7.
  • the movable piece 4 has a contact portion 43 and an elastic portion 44 between the movable contact 41 and the terminal 42.
  • the contact portion 43 contacts the case body 7 and the lid member 8 between the terminal 42 and the elastic portion 44.
  • the contact portion 43 has a protruding portion 43a that protrudes like a wing in the lateral direction of the movable piece 4. Since the protrusion 43a is provided, the contact portion 43 is sandwiched by the case body 7 and the lid member 8 in a wide and large area, and the movable piece 4 is firmly fixed to the case 10.
  • the elastic portion 44 extends from the contact portion 43 to the movable contact 41 side.
  • the movable piece 4 is cantilevered by the case 10 at the abutting portion 43 on the proximal end side of the elastic portion 44, and is elastically deformed in this state to be formed at the tip portion of the elastic portion 44.
  • the movable contact 41 that is present is pressed against the fixed contact 21 side and comes into contact with it, so that the fixed piece 2 and the movable piece 4 can be energized.
  • the movable piece 4 is curved or bent in the elastic portion 44 by press working.
  • the degree of bending or bending is not particularly limited as long as the thermoresponsive element 5 can be housed therein, and may be appropriately set in consideration of the elastic force at the reversal operation temperature and the normal rotation return temperature, the pressing force of the contacts, and the like.
  • a pair of protrusions 44 a and 44 b is formed on the surface B of the elastic portion 44 so as to face the thermoresponsive element 5.
  • the protrusion 44a projects toward the thermoresponsive element 5 at the base end side and contacts the thermoresponsive element 5 in a blocked state.
  • the protrusion 44b projects toward the thermoresponsive element 5 on the tip side (that is, the movable contact 41 side) of the protrusion 44a, and contacts the thermoresponsive element 5 in a blocked state.
  • the thermal responsive element 5 is deformed by overheating, the thermal responsive element 5 contacts the protrusions 44a and 44b, the deformation of the thermal responsive element 5 is transmitted to the elastic portion 44 via the protrusions 44a and 44b, and the movable piece 4 moves.
  • the tip is pushed up (see Fig. 5).
  • the heat responsive element 5 shifts the state of the movable piece 4 from a conductive state in which the movable contact 41 contacts the fixed contact 21 to a cutoff state in which the movable contact 41 is separated from the fixed contact 21.
  • the thermal response element 5 has an initial shape in which the cross section is curved in an arc shape, and is formed in a plate shape by stacking thin plate materials having different thermal expansion coefficients. When the operating temperature is reached due to overheating, the curved shape of the thermal responsive element 5 reversely warps with snap motion, and is restored when the temperature falls below the return temperature due to cooling.
  • the initial shape of the heat responsive element 5 can be formed by pressing.
  • thermoresponsive element 5 are not particularly limited as long as the elastic portion 44 of the movable piece 4 is pushed up by the backward warping operation of the thermoresponsive element 5 at the desired temperature and returned to its original state by the elastic force of the elastic portion 44.
  • a rectangular shape is desirable from the viewpoint of productivity and the efficiency of reverse warping operation.
  • thermoresponsive element 5 As the material of the heat responsive element 5, two kinds of plate-shaped metal materials, which are made of various alloys such as nickel silver, brass and stainless steel and have different coefficients of thermal expansion, are laminated and used in combination according to the required conditions. To be done.
  • a material of the thermoresponsive element 5 that can obtain a stable operating temperature and a return temperature it is desirable to combine a copper-nickel-manganese alloy on the high expansion side and an iron-nickel alloy on the low expansion side.
  • a material in which an iron-nickel-chromium alloy is combined on the high expansion side and an iron-nickel alloy is combined on the low expansion side can be mentioned.
  • a material in which an iron-nickel-chromium alloy is combined on the high expansion side and an iron-nickel-cobalt alloy is combined on the low expansion side can be mentioned.
  • the PTC thermistor 6 makes the fixed piece 2 and the movable piece 4 electrically conductive when the movable piece 4 is in the cutoff state.
  • the PTC thermistor 6 is arranged between the fixed piece 2 and the thermoresponsive element 5. That is, the support portion 23 of the fixed piece 2 is located immediately below the thermoresponsive element 5 with the PTC thermistor 6 interposed therebetween.
  • the type can be selected according to the needs of the operating current, the operating voltage, the operating temperature, the return temperature, The material and shape are not particularly limited as long as these characteristics are not impaired.
  • a ceramic sintered body containing barium titanate, strontium titanate or calcium titanate is used.
  • so-called polymer PTC in which conductive particles such as carbon are contained in polymer may be used.
  • the case body 7 and the lid member 8 constituting the case 10 are made of a thermoplastic resin such as flame-retardant polyamide, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), etc., which has excellent heat resistance. Has been done. A material other than the resin may be applied as long as the characteristics equal to or higher than those of the resin described above can be obtained.
  • a thermoplastic resin such as flame-retardant polyamide, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), etc.
  • the case main body 7 is formed with a recess 73 which is an internal space for housing the movable piece 4, the thermoresponsive element 5, the PTC thermistor 6, and the like.
  • the recess 73 has openings 73a and 73b for accommodating the movable piece 4, an opening 73c for accommodating the movable piece 4 and the thermoresponsive element 5, an opening 73d for accommodating the PTC thermistor 6, and the like. ing. It should be noted that the movable piece 4 incorporated in the case body 7 and the end edges of the thermal responsive element 5 are brought into contact with each other by a frame formed inside the recess 73, and are guided when the thermal responsive element 5 warps backward.
  • a metal plate containing copper or the like as a main component or a metal plate such as stainless steel may be embedded in the lid member 8 by insert molding.
  • the metal plate appropriately contacts the surface A of the movable piece 4 to restrict the movement of the movable piece 4, and contributes to downsizing of the breaker 1 while increasing the rigidity and strength of the lid member 8 and thus the case 10 as a housing. To do.
  • the openings 73a and 73b of the case body 7 accommodating the fixed piece 2 (fixed contact 21), the movable piece 4 (movable contact 41, elastic portion 44), the thermoresponsive element 5, the PTC thermistor 6 and the like. , 73c, etc., the lid member 8 is attached to the case body 7.
  • the case body 7 and the lid member 8 are joined by ultrasonic welding, for example.
  • the breaker 1 is assembled with the terminals 22 and 42 exposed.
  • FIG. 4 shows the operation of the breaker 1 in a normal charging or discharging state.
  • the thermoresponsive element 5 maintains the initial shape before the reverse warp.
  • the thermal responsive element 5 may be separated from the protrusions 44a and 44b of the movable piece 4 in the conductive state. As a result, the contact pressure between the movable contact 41 and the fixed contact 21 is increased, and the contact resistance between them is reduced.
  • FIG. 5 shows the operation of the breaker 1 in an overcharged state or an abnormality.
  • the thermal responsive element 5 that has reached the operating temperature reversely warps and contacts the elastic portion 44 of the movable piece 4, and the elastic portion 44 is pushed up and the fixed contact 21 and the movable contact 41 are connected. Are separated. At this time, the current flowing between the fixed contact 21 and the movable contact 41 is cut off.
  • the thermoresponsive element 5 comes into contact with the movable piece 4, and a slight leakage current flows through the thermoresponsive element 5 and the PTC thermistor 6.
  • the PTC thermistor 6 brings the fixed piece 2 and the movable piece 4 into conduction via the thermal response element 5 that shifts the movable piece 4 to the cutoff state.
  • the PTC thermistor 6 continues to generate heat as long as such a leakage current flows, and dramatically increases the resistance value while maintaining the thermoresponsive element 5 in the reverse warped state, so that the current flows through the path between the fixed contact 21 and the movable contact 41. Does not flow, and there is only the above-mentioned slight leakage current (constituting a self-holding circuit). This leakage current can be used for other functions of the safety device.
  • the terminal 22 of the breaker 1 is directly connected to the positive electrode 511 of the secondary battery 501. “Directly connected” means that the terminal 22 is connected to the positive electrode 511 without a metal piece such as a tab lead.
  • the terminal 22 and the positive electrode 511 are connected by laser welding.
  • Laser welding is a welding method in which laser light is irradiated and the energy is used to melt and join the metal.
  • a YAG laser having a wavelength of 1064 nm is used, and laser light is emitted from the front to the back in FIG. 2 (from the upper side to the lower side in FIG. 6 described later).
  • the positive electrode 511 and the terminal 22 are laser-welded, the nickel metal piece disposed between the positive electrode and the first terminal of the secondary battery in the conventional DC circuit is unnecessary, and the secondary battery circuit is eliminated. It is possible to easily reduce the resistance value of the entire 500. Further, the secondary battery circuit 500 is simplified, and the cost can be easily reduced.
  • FIG. 6 shows the configuration of the breaker 1 and its peripheral portion.
  • a plating layer 25 that absorbs and melts the laser light is formed on the surface 22a of the terminal 22 that is irradiated with the laser light (in the present embodiment, the surface A).
  • the plating layer 25 is made of nickel, tin or chromium or an alloy containing them as a main component.
  • the melting of the plated layer 25 triggers the terminal 22 and the positive electrode 511 of the secondary battery 501 to sequentially melt, and the terminal 22 and the positive electrode 511 are well welded. Therefore, the contact resistance between the positive electrode 511 and the terminal 22 can be easily reduced, and the resistance value of the entire secondary battery circuit 500 can be further reduced.
  • the plating layer 25 may be formed on the surface 22b (the above-mentioned B surface) opposite to the surface 22a. In this case, for example, it becomes possible to connect the positive electrode 511 and the terminal 22 by reversing the top and bottom of the breaker 1 with respect to the secondary battery 501.
  • a plating layer 26 is formed on the surface 22 b of the terminal 22 that is welded to the positive electrode 511.
  • the plating layer 26 is mainly composed of a metal having a greater ionization tendency than the terminal 22 and a smaller ionization tendency than the positive electrode 511.
  • the plating layer 26 is made of nickel, tin or chromium or an alloy containing them as a main component. Thereby, corrosion between the terminal 22 and the positive electrode 511 is suppressed.
  • the plating layer 25 is preferably formed locally on a part of the surface 22a of the terminal 22.
  • the plating layer 25 is formed on the area of the surface 22a excluding the vicinity of the side wall of the case 10. Thereby, when the terminal 22 is deformed, the stress applied to the plating layer 25 is reduced, and damage (for example, crack) of the plating layer 25 can be suppressed.
  • the plated layer 25 is formed in the area excluding the bent portion and the vicinity thereof. As a result, damage to the plating layer 25 when forming the bent portion can be suppressed.
  • the plated layer 26 is locally formed on a part of the surface 22b of the terminal 22.
  • a metal piece 520 is provided between the breaker 1 and the circuit board 503, that is, between the breaker 1 and the load 502.
  • the metal piece 520 may be a part of the metal foil formed on the PCB or FPC.
  • the metal piece 520 is made of, for example, a metal whose main component is copper having excellent conductivity.
  • the terminal 42 of the breaker 1 is connected to the metal piece 520 by laser welding.
  • a plating layer 45 that absorbs and melts the laser light is formed on the surface 42a of the terminal 42 that is irradiated with the laser light (in the present embodiment, the surface A).
  • the plating layer 45 is made of nickel, tin or chromium or an alloy containing them as a main component. As a result, the plating layer 45 is melted and the terminal 42 and the metal piece 520 are sequentially melted, and the terminal 42 and the metal piece 520 are well welded. Therefore, the contact resistance between the terminal 42 and the metal piece 520 is easily reduced, and the resistance value of the entire secondary battery circuit 500 can be further reduced.
  • the plating layer 45 may be formed on the surface 42b (the above-mentioned B surface) opposite to the surface 42a. In this case, the metal piece 520 and the terminal 42 can be connected by reversing the top and bottom of the breaker 1 with respect to the secondary battery 501.
  • the plating layer 45 is preferably formed locally on a part of the surface 42 a of the terminal 42.
  • the plating layer 45 is formed in the area of the surface 42a excluding the vicinity of the side wall of the case 10. Thereby, when the terminal 42 is deformed, the stress applied to the plating layer 45 is reduced, and the damage of the plating layer 45 can be suppressed.
  • the plating layer is locally formed on a part of the surface 42b of the terminal 42.
  • the bent portion 47 may be formed on the terminal 42 by pressing or the like.
  • the plated layer 45 it is desirable that the plated layer 45 be formed in a region other than the bent portion 47 and its vicinity. This can prevent damage to the plating layer 45 when forming the bent portion 47.
  • the terminals 22 and 42 extend from the side wall of the case 10 in the longitudinal direction of the movable piece 4 and project therefrom.
  • the protruding length L1 of the terminal 22 from the case 10 may be different from the protruding length L2 of the terminal 42 from the case 10.
  • the protruding length L1 of the terminal 22 is set to be larger than the protruding length L2 of the terminal 42.
  • the contact area between the terminal 42 and the metal piece 520 is enlarged, and the contact resistance between them can be easily reduced. Is possible.
  • the length L3 of the plating layer 25 and the length L4 of the plating layer 45 may be different.
  • the length L3 is the length of the plating layer 25 in the direction in which the terminal 22 projects from the case 10 (the same applies to the length L4).
  • the length L3 of the plating layer 25 is set to be larger than the length L4 of the plating layer 45. Thereby, the terminal 22 and the positive electrode 511 are well welded over a wide area.
  • the terminal 42 and the metal piece 520 are welded well in a wide area.
  • the corrosion between the terminal 22 and the positive electrode 511 is suppressed.
  • the metal layer formed by such a technique as the clad has a large thickness dimension, when a metal having a low conductivity is applied, the resistance value between the positive electrode 511 and the terminal 22 becomes large, and The voltage drop in the layer is large.
  • the plating layer 26 formed on the surface 22b of the terminal 22 has a smaller thickness dimension than the metal layer formed by a method such as a clad. Therefore, the resistance value between the positive electrode 511 and the terminal 22 is suppressed even when the plating layer 26 is made of a metal having a conductivity lower than that of the metal forming the fixing piece 2.
  • the present invention relates to a secondary battery 501 having at least a storage cell 510, a pair of electrodes exposed to the outside of the storage cell 510, a load 502 driven by the secondary battery 501, and a secondary battery 501.
  • a breaker 1 including a breaker 1 connected in series between a load 502 and a load 502, wherein the breaker 1 is fixed to a terminal 22 directly connected to a positive electrode 511 of a rechargeable battery 501.
  • the thermal responsive element 5 that shifts the state of the movable piece 4 from the conductive state in which the movable contact 41 contacts the fixed contact 21 to the cutoff state in which the movable contact 41 is separated from the fixed contact 21 and the terminal 22 are In a state of out, the fixed contact 21, and a case 10 for housing the movable piece 4 and the thermal actuator element 5, the positive electrode 511 and the terminal 22 need only be laser welded.
  • the breaker 1 used in the secondary battery circuit 500 of the present embodiment has a self-holding circuit by the PTC thermistor 6, but the configuration without such a configuration is also applicable.
  • the resistance value of the entire DC circuit can be easily reduced.
  • the movable piece 4 may be formed of a laminated metal such as bimetal or trimetal so that the movable piece 4 and the thermoresponsive element 5 are integrally formed.
  • the structure of the breaker is simplified, and the size can be further reduced.
  • the movable piece 4 of the present embodiment is integrally formed from the elastic portion 44 to the terminal 42, the invention is not limited to such a form, and is disclosed in, for example, JP-A-2017-37757.
  • the movable piece 4 in a form in which the movable arm on the movable contact 41 side and the terminal piece on the terminal 42 side are separated may be applied to the present invention.
  • the movable arm and the terminal piece may be fixed by welding or the like.
  • the terminal piece on the terminal 42 side may be insert-molded in the case body 7 together with the fixing piece 2 and the like.
  • the terminal 22 formed on the fixed piece 2 is the first terminal directly laser-welded to the positive electrode 511 of the secondary battery 501
  • the terminal 42 formed on the movable piece 4 is the metal piece 520.
  • a breaker 1 in the form of a second terminal to be laser-welded is described. Accordingly, the plating layer 25 formed on the surface 22a is the first plating layer and the plating layer 26 formed on the surface 22b is the second plating layer, and the plating layer formed on the surface 42a. 45 is the third plating layer.
  • FIG. 7 shows a configuration of a breaker 1A which is a modified example of the breaker 1 and its peripheral portion.
  • the terminal 42 formed on the movable piece 4 is the first terminal directly laser-welded to the positive electrode 511 of the secondary battery 501. May be.
  • the terminal 22 formed on the fixed piece 2 may be a second terminal laser-welded to the metal piece 520.
  • the plating layer 45 formed on the surface 42a is the first plating layer
  • the plating layer 46 formed on the surface 42b is the second plating layer
  • the plating layer 25 formed on the surface 22a is the second plating layer. It is the third plating layer.
  • the other configurations of the breaker 1A are the same as those of the breaker 1.
  • FIG. 8 is a flowchart showing a method for manufacturing the secondary battery circuit 500.
  • the method for manufacturing the secondary battery circuit 500 includes an assembling step S10 for assembling the breaker 1 and a welding step S20 for laser welding the positive electrode 511 of the secondary battery 501 and the terminal 22 of the breaker 1.
  • the fixed piece 2 including the fixed contact 21, the movable piece 4, and the thermoresponsive element 5 are housed in the case 10 with the terminal 22 exposed.
  • the welding step S20 laser light is emitted from the terminal 22 side in a state where the terminal 22 is placed on the positive electrode 511, and the positive electrode 511 and the terminal 22 are laser-welded.
  • the metal piece made of nickel which is arranged between the positive electrode and the terminal of the secondary battery in the conventional secondary battery circuit, becomes unnecessary, and the resistance value of the entire secondary battery circuit 500 can be easily reduced. It will be possible. Further, the secondary battery circuit 500 is simplified, and the cost can be easily reduced.
  • the plating step S5 includes a plating step S1 for forming the plating layer 25 on the surface 22a of the terminal 22.
  • FIG. 9 shows the plating step S5.
  • the plating layer 25 is formed on the one surface 200a of the sheet-shaped metal plate (original material) 200.
  • a pressing step (not shown)
  • the metal plate 200 is punched out to form the fixing piece 2 including the terminal 22.
  • the plating layer 25 may be formed on the surface 22a of the terminal 22 and the plating process S1 may be performed.
  • the plating step S1 may be performed after the assembly step S10.
  • the plating step S5 may include a plating step S2 for forming the plating layer 26 on the surface 22b of the terminal 22.
  • a plating step S2 for forming the plating layer 26 on the surface 22b of the terminal 22.
  • the plating step S2 is executed, for example, after the plating step S1.
  • the plating step S2 may be performed simultaneously with the plating step S1.
  • the plating step S2 may be performed before the plating step S1.
  • the plating step S2 may be performed after the pressing step or after the assembling step S10.
  • the plating step S5 may include a plating step S3 for forming the plating layer 45 on the surface 42a of the terminal 42.
  • a plating step S3 for forming the plating layer 45 on the surface 42a of the terminal 42.
  • the plating step S3 is performed, for example, before or after the plating step S1, or simultaneously with the plating step S1.
  • the plating step S3 may be performed after the pressing step or after the assembling step S10. In this case, it is desirable that the plating step S3 be performed at the same time as the plating step S1.
  • the present invention relates to a secondary battery 501 having at least a storage cell 510, a pair of electrodes exposed to the outside of the storage cell 510, a load 502 driven by the secondary battery 501, and a secondary battery 501.
  • Terminal 22 connected to the positive electrode 511, the fixed contact 21, the elastic portion 44 that elastically deforms, and the movable piece 4 that has the movable contact 41 at one end of the elastic portion 44, and the thermal response that deforms with temperature change.
  • a fixed contact 21, a movable piece 4, and a thermoresponsive element 5 are housed in a case 10 to assemble the breaker 1, and an assembling step S10 and a welding step S20 for laser welding the positive electrode 511 and the terminal 22. It may be put.

Abstract

A second battery circuit 500 including: a secondary battery 501 having a power storage cell 510 and a pair of electrodes exposed outside the power storage cell 510; a load 502 driven by the secondary battery 501; and a breaker 1 connected in series between the secondary battery 501 and the load 502. The breaker 1 comprises: a terminal 22 serially connected to a positive electrode 511 in the secondary battery 501; a fixed contact 21; a movable piece 4 having an elastic section 44 that elastically deforms and a movable contact 41 on one end of the elastic section 44, said movable piece 4 pressing the movable contact 41 against the fixed contact 21 to make contact therewith; a thermally responsive element 5 that, by deforming in conjunction with temperature change, moves the movable piece 4 from a conductive state in which the movable contact 41 makes contact with the fixed contact 21 to a disconnected state in which the movable contact 41 separates from the fixed contact 21; and a case 10 for housing the fixed contact 21, the movable piece 4, and the thermally responsive element 5, in a state in which the terminal 22 is exposed. The positive electrode 511 and the terminal 22 are laser welded.

Description

2次電池回路及びその製造方法Secondary battery circuit and manufacturing method thereof
 本発明は、電気機器の直流回路に用いて好適なブレーカーを含む2次電池回路に関するものである。 The present invention relates to a secondary battery circuit including a breaker suitable for use in a DC circuit of an electric device.
 従来、各種電気機器の2次電池やモーター等の保護装置としてブレーカーが使用されている。ブレーカーは、充放電中の2次電池の温度が過度に上昇した場合、又は自動車、家電製品等の機器に装備されるモーター等に過電流が流れた場合等の異常が生じた際に、2次電池やモーター等を保護するために電流を遮断する。このような保護装置として用いられるブレーカーは、機器の安全を確保するために、温度変化に追従して正確に動作する(良好な温度特性を有する)ことと、通電時の抵抗値が安定していることが求められる。 Conventionally, breakers have been used as protective devices for secondary batteries and motors of various electric devices. The breaker operates when the temperature of the rechargeable battery during charging / discharging rises excessively, or when an abnormality occurs, such as when an overcurrent flows through a motor or the like installed in equipment such as automobiles and home appliances. Shut off the current to protect the secondary battery and motor. The breaker used as such a protection device operates accurately following a temperature change (has good temperature characteristics) and has a stable resistance value when energized in order to ensure the safety of the device. Required to be present.
 ブレーカーには、温度変化に応じて作動し、電流を導通又は遮断する熱応動素子が備えられている。特許文献1には、熱応動素子としてバイメタルを適用したブレーカーが示されている。バイメタルとは、熱膨張率の異なる2種類の板状の金属材料が積層されてなり、温度変化に応じて形状を変えることにより、接点の導通状態を制御する素子である。同文献に示されたブレーカーは、固定片、可動片、熱応動素子、PTCサーミスター等の部品が、ケースに収納されてなり、固定片及び可動片の端子がケースから突出し、電気機器の2次電池回路に接続されて使用される。 The breaker is equipped with a thermo-responsive element that operates according to temperature changes and conducts or blocks current. Patent Document 1 discloses a breaker to which a bimetal is applied as a heat responsive element. A bimetal is an element that is formed by laminating two types of plate-shaped metal materials having different thermal expansion coefficients, and changes the shape according to the temperature change to control the conduction state of the contacts. In the breaker shown in the same document, parts such as a fixed piece, a movable piece, a thermoresponsive element, and a PTC thermistor are housed in a case, and terminals of the fixed piece and the movable piece protrude from the case, and Used by connecting to the secondary battery circuit.
 また、ブレーカーが、ノート型パーソナルコンピュータ、タブレット型携帯情報端末機器又はスマートフォンと称される薄型の多機能携帯電話機等の電気機器に装備される2次電池等の保護装置として用いられる場合、上述した安全性の確保に加えて、小型化が要求される。特に、近年の携帯情報端末機器にあっては、ユーザーの小型化(薄型化)の志向が強く、各社から新規に発売される機器は、デザイン上の優位性を確保するために、小型に設計される傾向が顕著である。こうした背景の下、携帯情報端末機器を構成する一部品として、2次電池と共に実装されるブレーカーもまた、さらなる小型化が強く要求されている。 In addition, when the breaker is used as a protective device for a secondary battery or the like that is installed in an electric device such as a notebook personal computer, a tablet type personal digital assistant, or a thin multifunctional mobile phone called a smartphone, the above-described case has occurred. In addition to ensuring safety, miniaturization is required. In particular, with regard to mobile information terminal devices in recent years, users are strongly interested in downsizing (thinning), and devices newly released by various companies are designed to be small in size in order to secure superiority in design. The tendency to be done is remarkable. Against this background, there is a strong demand for further downsizing of the breaker, which is mounted together with the secondary battery as one component of the portable information terminal device.
WO2011/105175号公報WO2011 / 105175
 近年の電気機器では、高性能化及び2次電池の充電時間の短縮のために、通電時の電気抵抗が小さく電流容量の大きいブレーカーが望まれている。このため、上記固定片及び可動片は、導電性に優れた金属、例えば、銅等を主成分とする金属によって構成されている。 In recent years, electrical equipment is required to have breakers with low electric resistance and large current capacity in order to improve performance and shorten the charging time of secondary batteries. Therefore, the fixed piece and the movable piece are made of a metal having excellent conductivity, for example, a metal containing copper as a main component.
 上記固定片及び可動片に設けられた端子は、通常、2次電池回路を構成する金属片(タブリード)と溶接によって接合されている。そして、金属片は、例えば、ニッケルを主成分として構成されている。 The terminals provided on the fixed piece and the movable piece are usually joined by welding to the metal piece (tab lead) that constitutes the secondary battery circuit. And the metal piece is comprised, for example as a main component of nickel.
 しかしながら、固定片及び可動片よりも導電率の低いニッケル製の金属片は抵抗値が大きいため、2次電池回路全体の抵抗値が増大する。 However, since the metal piece made of nickel, which has a lower conductivity than the fixed piece and the movable piece, has a large resistance value, the resistance value of the entire secondary battery circuit increases.
 本発明は、上記課題を解決するためになされたものであり、回路全体の抵抗値を容易に低減できる2次電池回路を提供することを主たる目的とする。 The present invention has been made in order to solve the above problems, and its main object is to provide a secondary battery circuit that can easily reduce the resistance value of the entire circuit.
 本第1発明は、蓄電セルと、前記蓄電セルの外部に露出された一対の電極とを有する2次電池と、前記2次電池によって駆動される負荷と、前記2次電池と負荷との間に、直列に接続されるブレーカーとを含む2次電池回路であって、前記ブレーカーは、前記2次電池の正極に直接的に接続される第1端子と、固定接点と、弾性変形する弾性部及び該弾性部の一端部に可動接点を有し、前記可動接点を前記固定接点に押圧して接触させる可動片と、温度変化に伴って変形することにより、前記可動片の状態を前記可動接点が前記固定接点に接触する導通状態から前記可動接点が前記固定接点から離隔する遮断状態に移行させる熱応動素子と、前記第1端子を露出させた状態で、前記固定接点、前記可動片及び前記熱応動素子を収容するためのケースとを備え、前記正極と前記第1端子とは、レーザー溶接されていることを特徴とする。 The first aspect of the present invention relates to a secondary battery having an electricity storage cell, a pair of electrodes exposed to the outside of the electricity storage cell, a load driven by the secondary battery, and a load between the secondary battery and the load. A secondary battery circuit including a breaker connected in series, the breaker including a first terminal directly connected to a positive electrode of the secondary battery, a fixed contact, and an elastic portion that elastically deforms. And a movable piece that has a movable contact at one end of the elastic portion, and presses the movable contact against the fixed contact to make contact with the movable contact so that the state of the movable piece is changed by the deformation. A thermal responsive element that transitions from a conducting state in which the movable contact contacts the fixed contact to a shut-off state in which the movable contact separates from the fixed contact, and the fixed contact, the movable piece, and the To accommodate the thermo-responsive element And a case, wherein the positive electrode and the first terminal, characterized in that it is laser-welded.
 本発明に係る前記2次電池回路において、前記第1端子の前記レーザー溶接で用いられる光が照射される第1面には、前記光を吸収し溶融する第1メッキ層が形成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, a first plating layer that absorbs and melts the light is formed on a first surface irradiated with the light used for the laser welding of the first terminal. Is desirable.
 本発明に係る前記2次電池回路において、前記第1メッキ層は、前記第1面の一部に局所的に形成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, it is desirable that the first plating layer is locally formed on a part of the first surface.
 本発明に係る前記2次電池回路において、前記第1端子の前記正極と溶接される第2面には、前記第1端子よりもイオン化傾向が大きく、前記正極よりもイオン化傾向が小さい金属を主成分とする第2メッキ層が形成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, the second surface of the first terminal that is welded to the positive electrode is mainly made of a metal that has a greater ionization tendency than the first terminal and a smaller ionization tendency than the positive electrode. It is desirable that the second plating layer as a component is formed.
 本発明に係る前記2次電池回路において、前記第2メッキ層は、前記第2面の一部に局所的に形成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, it is preferable that the second plating layer is locally formed on a part of the second surface.
 本発明に係る前記2次電池回路において、前記第1メッキ層及び前記第2メッキ層は、ニッケル、すず又はクロムを主成分として構成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, it is preferable that the first plating layer and the second plating layer are composed mainly of nickel, tin or chromium.
 本発明に係る前記2次電池回路において、前記ブレーカーと前記負荷とを接続する金属片を含み、前記ブレーカーは、前記金属片と接続される第2端子を備え、前記金属片と前記第2端子とは、レーザー溶接されている、ことが望ましい。 The secondary battery circuit according to the present invention includes a metal piece that connects the breaker and the load, the breaker includes a second terminal connected to the metal piece, and the metal piece and the second terminal. Is preferably laser welded.
 本発明に係る前記2次電池回路において、前記第2端子の前記光が照射される第3面には、前記光を吸収し溶融する第3メッキ層が形成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, it is preferable that a third plating layer that absorbs and melts the light is formed on a third surface of the second terminal that is irradiated with the light.
 本発明に係る前記2次電池回路において、前記第3メッキ層は、前記第3面の一部に局所的に形成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, it is preferable that the third plating layer is locally formed on a part of the third surface.
 本発明に係る前記2次電池回路において、前記第3メッキ層は、ニッケル、すず又はクロムを主成分として構成されている、ことが望ましい。 In the secondary battery circuit according to the present invention, it is preferable that the third plating layer is composed mainly of nickel, tin or chromium.
 本第2発明は、蓄電セルと、前記蓄電セルの外部に露出された一対の電極とを有する2次電池と、前記2次電池によって駆動される負荷と、前記2次電池の正極と接続される第1端子と、固定接点と、弾性変形する弾性部及び該弾性部の一端部に可動接点を有する可動片と、温度変化に伴って変形する熱応動素子とを有し、前記2次電池と負荷との間に、直列に接続されるブレーカーとを備えた2次電池回路の製造方法であって、前記第1端子を露出させた状態で、前記固定接点と、前記可動片と、前記熱応動素子とをケースに収容して前記ブレーカーを組立てる組立工程と、前記正極と前記第1端子とをレーザー溶接する溶接工程とを含むことを特徴とする。 A second aspect of the present invention is to connect a storage battery, a secondary battery having a pair of electrodes exposed to the outside of the storage cell, a load driven by the storage battery, and a positive electrode of the storage battery. A secondary terminal, a fixed contact, an elastic portion that elastically deforms, a movable piece having a movable contact at one end of the elastic portion, and a thermal responsive element that deforms with temperature change. A method for manufacturing a secondary battery circuit, comprising: a breaker connected in series between a load and a load, wherein the fixed contact, the movable piece, and the The present invention is characterized by including an assembling step of assembling the breaker by housing the heat responsive element in a case and a welding step of laser welding the positive electrode and the first terminal.
 本発明に係る前記2次電池回路の製造方法において、前記溶接工程に先だって、前記第1端子の前記レーザー溶接で用いられる光が照射される第1面に、前記光を吸収し溶融する第1メッキ層を形成する第1メッキ工程が実行される、ことが望ましい。 In the method for manufacturing a secondary battery circuit according to the present invention, prior to the welding step, a first surface irradiated with light used in the laser welding of the first terminal absorbs and melts the light. It is preferable that the first plating step of forming the plating layer is performed.
 本発明に係る前記2次電池回路の製造方法において、前記溶接工程に先だって、前記第1端子の前記正極と溶接される第2面に、前記第1端子よりもイオン化傾向が大きく、前記正極よりもイオン化傾向が小さい金属を主成分とする第2メッキ層を形成する第2メッキ工程が実行される、ことが望ましい。 In the method for manufacturing a secondary battery circuit according to the present invention, prior to the welding step, the second surface of the first terminal welded to the positive electrode has a greater ionization tendency than the first terminal, Also, it is desirable that the second plating step of forming the second plating layer containing a metal having a low ionization tendency as a main component is performed.
 本発明に係る前記2次電池回路の製造方法において、前記組立工程では、前記負荷との間に設けられた金属片と接続される第2端子が露出された状態で、前記固定接点と、前記可動片と、前記熱応動素子とが前記ケースに収容され、前記溶接工程は、前記金属片と前記第2端子とをレーザー溶接する工程を含む、ことが望ましい。 In the method for manufacturing a secondary battery circuit according to the present invention, in the assembling step, the fixed contact and the second terminal connected to a metal piece provided between the load and the fixed contact are exposed. It is preferable that the movable piece and the heat responsive element are housed in the case, and the welding step includes a step of laser welding the metal piece and the second terminal.
 本発明に係る前記2次電池回路の製造方法において、前記溶接工程に先だって、前記第2端子の前記光が照射される第3面に、前記光を吸収し溶融する第3メッキ層を形成する第3メッキ工程が実行される、ことが望ましい。 In the method for manufacturing a secondary battery circuit according to the present invention, prior to the welding step, a third plating layer that absorbs and melts the light is formed on a third surface of the second terminal irradiated with the light. It is desirable that the third plating step be performed.
 本第1発明の2次電池回路は、蓄電セルと、2次電池と、負荷と、2次電池と負荷との間に、直列に接続されるブレーカーとを含む。本2次電池回路に用いられるブレーカーは、2次電池の正極に直接的に接続される第1端子と、固定接点と、弾性部及び可動接点を有する可動片と、温度変化に伴って変形する熱応動素子と、第1端子を露出させた状態で、固定接点、可動片及び熱応動素子を収容するためのケースとを備える。正極と第1端子とは、レーザー溶接されている。これにより、従来の2次電池回路において2次電池の正極と第1端子との間に配されていたニッケル製の金属片が不要となり、2次電池回路全体の抵抗値を容易に低減することが可能となる。また、2次電池回路が簡素化され、容易にコストダウンを図ることが可能となる。 The secondary battery circuit of the first invention includes a storage cell, a secondary battery, a load, and a breaker connected in series between the secondary battery and the load. The breaker used in the secondary battery circuit includes a first terminal directly connected to the positive electrode of the secondary battery, a fixed contact, a movable piece having an elastic portion and a movable contact, and is deformed with a temperature change. The thermoresponsive element and a case for accommodating the fixed contact, the movable piece, and the thermoresponsive element with the first terminal exposed. The positive electrode and the first terminal are laser-welded. As a result, the nickel metal piece disposed between the positive electrode and the first terminal of the secondary battery in the conventional secondary battery circuit becomes unnecessary, and the resistance value of the entire secondary battery circuit can be easily reduced. Is possible. Further, the secondary battery circuit is simplified, and the cost can be easily reduced.
 本第2発明は、蓄電セルと、2次電池と、負荷と、2次電池と負荷との間に、直列に接続されるブレーカーとを含む2次電池回路の製造方法である。本製造方法に用いられるブレーカーは、2次電池の正極に直接的に接続される第1端子と、固定接点と、弾性部及び可動接点を有する可動片と、温度変化に伴って変形する熱応動素子と、第1端子を露出させた状態で、固定接点、可動片及び熱応動素子を収容するためのケースとを備える。正極と第1端子とは、レーザー溶接されている。これにより、従来の2次電池回路において2次電池の正極と第1端子との間に配されていたニッケル製の金属片が不要となり、2次電池回路全体の抵抗値を容易に低減することが可能となる。また、2次電池回路が簡素化され、容易にコストダウンを図ることが可能となる。 The second invention is a method for manufacturing a secondary battery circuit including a storage cell, a secondary battery, a load, and a breaker connected in series between the secondary battery and the load. The breaker used in the present manufacturing method includes a first terminal directly connected to the positive electrode of the secondary battery, a fixed contact, a movable piece having an elastic portion and a movable contact, and a thermal reaction that deforms with temperature change. An element and a case for accommodating the fixed contact, the movable piece, and the thermoresponsive element with the first terminal exposed. The positive electrode and the first terminal are laser-welded. As a result, the nickel metal piece disposed between the positive electrode and the first terminal of the secondary battery in the conventional secondary battery circuit becomes unnecessary, and the resistance value of the entire secondary battery circuit can be easily reduced. Is possible. Further, the secondary battery circuit is simplified, and the cost can be easily reduced.
本第1発明の2次電池回路の回路図。The circuit diagram of the secondary battery circuit of the first invention. 2次電池パックを示す平面図。The top view which shows a secondary battery pack. 2次電池パックに用いられるブレーカーの概略構成を示す組み立て前の斜視図。FIG. 3 is a perspective view before assembly showing a schematic configuration of a breaker used for the secondary battery pack. 通常の充電又は放電状態における上記ブレーカーを示す断面図。Sectional drawing which shows the said breaker in a normal charge or discharge state. 過充電状態又は異常時などにおける上記ブレーカーを示す断面図。Sectional drawing which shows the said breaker at the time of an overcharged state or an abnormality. 上記ブレーカーとその周辺部の構成を示す断面図。Sectional drawing which shows the structure of the said breaker and its periphery. 上記ブレーカーの変形例とその周辺部の構成を示す断面図。Sectional drawing which shows the modification of the said breaker, and the structure of the periphery part. 本第2発明の2次電池回路の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the secondary battery circuit of this 2nd invention. メッキ工程を示す金属板の側面図。The side view of the metal plate which shows a plating process.
 図1は、本発明の一実施形態によるブレーカー1が用いられる2次電池回路500を示している。2次電池回路500は、ブレーカー1、2次電池501及び負荷502を含む直流回路である。負荷502は、2次電池501によって駆動される。ブレーカー1は、2次電池501と負荷502との間に配されている。2次電池501と、ブレーカー1と、負荷502とは、直列に接続されている。 FIG. 1 shows a secondary battery circuit 500 in which a breaker 1 according to an embodiment of the present invention is used. The secondary battery circuit 500 is a DC circuit including the breaker 1, the secondary battery 501, and the load 502. The load 502 is driven by the secondary battery 501. The breaker 1 is arranged between the secondary battery 501 and the load 502. The secondary battery 501, the breaker 1, and the load 502 are connected in series.
 図2は、2次電池回路500の少なくとも一部を構成する2次電池パック550を示している。2次電池パック550は、2次電池501と、ブレーカー1と、回路基板503とを有している。2次電池回路500の負荷502は、回路基板503上又は回路基板503の外部に実装されている。 FIG. 2 shows a secondary battery pack 550 that constitutes at least a part of the secondary battery circuit 500. The secondary battery pack 550 has a secondary battery 501, a breaker 1, and a circuit board 503. The load 502 of the secondary battery circuit 500 is mounted on the circuit board 503 or outside the circuit board 503.
 2次電池501は、電荷を蓄える蓄電セル510と、蓄電セル510の外部に露出された正極511と、負極512とを有する。正極511は、例えば、アルミニウムを主成分とする金属片によって構成される。負極512は、例えば、銅を主成分とする金属片によって構成される。正極511と、負極512とによって一対の電極が構成される。 The secondary battery 501 has a storage cell 510 that stores electric charge, a positive electrode 511 exposed to the outside of the storage cell 510, and a negative electrode 512. The positive electrode 511 is composed of, for example, a metal piece containing aluminum as a main component. The negative electrode 512 is composed of, for example, a metal piece containing copper as a main component. The positive electrode 511 and the negative electrode 512 form a pair of electrodes.
 回路基板503には、一般的なPCB(プリント回路基板)の他、FPC(フレキシブルプリント回路基板)等が適用される。 As the circuit board 503, an FPC (flexible printed circuit board) or the like is applied in addition to a general PCB (printed circuit board).
 2次電池501の正極511と回路基板503との間には、ブレーカー1が実装されている。一方、2次電池501の負極512は、回路基板503と接続されている。これにより、正極511、ブレーカー1、回路基板503、負荷502、負極512を含む2次電池回路500が構成される。 The breaker 1 is mounted between the positive electrode 511 of the secondary battery 501 and the circuit board 503. On the other hand, the negative electrode 512 of the secondary battery 501 is connected to the circuit board 503. Thereby, the secondary battery circuit 500 including the positive electrode 511, the breaker 1, the circuit board 503, the load 502, and the negative electrode 512 is configured.
 図3乃至図5は、ブレーカー1の構成を示している。ブレーカー1は、電気機器等に実装され、過度な温度上昇又は過電流から電気機器を保護する。 3 to 5 show the configuration of the breaker 1. The breaker 1 is mounted on an electric device or the like and protects the electric device from excessive temperature rise or overcurrent.
 ブレーカー1は、固定接点21を有する固定片2と、先端部に可動接点41を有する可動片4と、温度変化に伴って変形する熱応動素子5と、PTC(Positive Temperature Coefficient)サーミスター6と、固定片2、可動片4、熱応動素子5及びPTCサーミスター6を収容するケース10等によって構成されている。ケース10は、ケース本体(第1ケース)7とケース本体7の上面に装着される蓋部材(第2ケース)8等によって構成されている。 The breaker 1 includes a fixed piece 2 having a fixed contact 21, a movable piece 4 having a movable contact 41 at its tip, a thermal responsive element 5 that deforms with a change in temperature, and a PTC (Positive Temperature Coefficient) thermistor 6. , The fixed piece 2, the movable piece 4, the thermoresponsive element 5, and the case 10 that houses the PTC thermistor 6. The case 10 includes a case body (first case) 7, a lid member (second case) 8 mounted on the upper surface of the case body 7, and the like.
 固定片2には、ケース10から露出する端子22が形成されている。ケース10から露出する可動片4には、端子42が形成されている。 The fixing piece 2 is formed with a terminal 22 exposed from the case 10. A terminal 42 is formed on the movable piece 4 exposed from the case 10.
 固定片2は、例えば、銅等を主成分とする板状の金属材料(この他、銅-チタニウム合金、洋白、黄銅などの金属板)をプレス加工することにより形成されている。固定片2は、端子22をケース本体7の外側に露出させた状態で、ケース本体7にインサート成形により埋め込まれ、ケース本体7に収容されている。 The fixing piece 2 is formed, for example, by pressing a plate-shaped metal material containing copper as a main component (other than this, a metal plate of copper-titanium alloy, nickel silver, brass, etc.). The fixing piece 2 is embedded in the case body 7 by insert molding and is housed in the case body 7 with the terminals 22 exposed to the outside of the case body 7.
 固定接点21は、銀、ニッケル、ニッケル-銀合金の他、銅-銀合金、金-銀合金などの導電性の良い材料のクラッド、メッキ又は塗布等により可動接点41に対向する位置に形成され、ケース本体7の内部に形成されている開口73aの一部から露出されている。 The fixed contact 21 is formed at a position facing the movable contact 41 by clad, plating or coating of a material having good conductivity such as silver, nickel, nickel-silver alloy, copper-silver alloy, gold-silver alloy. It is exposed from a part of the opening 73a formed inside the case body 7.
 端子22は、固定片2の一端に形成されている。端子22はケース本体7の端縁の側壁から外側に突出している。端子22は、2次電池501と電気的に接続される。固定片2の他端側には、PTCサーミスター6を支持する支持部23が形成されている。支持部23は、ケース本体7の内部に形成されている開口73dからケース本体7の内部空間に露出されている。PTCサーミスター6は、固定片2の支持部23に3箇所形成された凸状の突起(ダボ)24の上に載置されて、突起24に支持される。固定片2が階段状に曲げられることにより、固定接点21と支持部23とが段違いに配置され、PTCサーミスター6を収納する内部空間が容易に確保される。 The terminal 22 is formed at one end of the fixed piece 2. The terminal 22 projects outward from the side wall at the edge of the case body 7. The terminal 22 is electrically connected to the secondary battery 501. On the other end side of the fixed piece 2, a support portion 23 that supports the PTC thermistor 6 is formed. The support portion 23 is exposed to the internal space of the case body 7 through an opening 73d formed inside the case body 7. The PTC thermistor 6 is mounted on convex protrusions (doughs) 24 formed at three locations on the support portion 23 of the fixed piece 2 and supported by the protrusions 24. By bending the fixed piece 2 in a stepwise manner, the fixed contact 21 and the support portion 23 are arranged in different steps, and the internal space for housing the PTC thermistor 6 is easily secured.
 本出願においては、特に断りのない限り、固定片2において、固定接点21が形成されている側の面(すなわち図3において上側の面)をA面、その反対側の面をB面として説明している。固定接点21から可動接点41に向く方向を第1方向と、第1方向とは反対の方向を第2方向とそれぞれ定義した場合、A面は第1方向を向き、B面は第2方向を向く。他の部品、例えば、可動片4及び熱応動素子5、PTCサーミスター6等についても同様である。 In the present application, unless otherwise specified, the surface of the fixed piece 2 on which the fixed contact 21 is formed (that is, the upper surface in FIG. 3) is the A surface, and the opposite surface is the B surface, unless otherwise specified. is doing. When the direction from the fixed contact 21 to the movable contact 41 is defined as the first direction and the direction opposite to the first direction is defined as the second direction, the A surface faces the first direction and the B surface faces the second direction. Turn to. The same applies to other parts, such as the movable piece 4, the thermal actuator 5, the PTC thermistor 6, and the like.
 可動片4は、銅等を主成分とする板状の金属材料をプレス加工することにより、長手方向の中心線に対して対称なアーム状に形成されている。 The movable piece 4 is formed into an arm shape symmetrical with respect to the center line in the longitudinal direction by pressing a plate-shaped metal material containing copper as a main component.
 可動片4の長手方向の先端部には、可動接点41が形成されている。可動接点41は、例えば、固定接点21と同等の材料によって形成され、溶接の他、クラッド、かしめ(crimping)等の手法によって可動片4の先端部に接合されている。 A movable contact 41 is formed at the tip of the movable piece 4 in the longitudinal direction. The movable contact 41 is formed of, for example, a material similar to that of the fixed contact 21, and is joined to the tip end of the movable piece 4 by a method such as welding, clad, crimping, or the like.
 可動片4の長手方向の他端部には、ブレーカー1の外部の2次電池回路500と電気的に接続される端子42が形成されている。端子42はケース本体7の端縁の側壁から外側に突出している。 A terminal 42 electrically connected to the secondary battery circuit 500 outside the breaker 1 is formed at the other end of the movable piece 4 in the longitudinal direction. The terminal 42 projects outward from the side wall at the edge of the case body 7.
 可動片4は、可動接点41と端子42の間に、当接部43及び弾性部44を有している。当接部43は、端子42と弾性部44との間でケース本体7及び蓋部材8と当接する。当接部43は、可動片4の短手方向に翼状に突出する突出部43aを有する。突出部43aが設けられていることにより、当接部43が幅広く大きな領域でケース本体7及び蓋部材8によって挟み込まれ、可動片4がケース10に対して強固に固定される。 The movable piece 4 has a contact portion 43 and an elastic portion 44 between the movable contact 41 and the terminal 42. The contact portion 43 contacts the case body 7 and the lid member 8 between the terminal 42 and the elastic portion 44. The contact portion 43 has a protruding portion 43a that protrudes like a wing in the lateral direction of the movable piece 4. Since the protrusion 43a is provided, the contact portion 43 is sandwiched by the case body 7 and the lid member 8 in a wide and large area, and the movable piece 4 is firmly fixed to the case 10.
 弾性部44は、当接部43から可動接点41の側に延出されている。可動片4は、弾性部44の基端側の当接部43で、ケース10によって片持ち支持され、その状態で弾性部44が弾性変形することにより、弾性部44の先端部に形成されている可動接点41が固定接点21の側に押圧されて接触し、固定片2と可動片4とが通電可能となる。 The elastic portion 44 extends from the contact portion 43 to the movable contact 41 side. The movable piece 4 is cantilevered by the case 10 at the abutting portion 43 on the proximal end side of the elastic portion 44, and is elastically deformed in this state to be formed at the tip portion of the elastic portion 44. The movable contact 41 that is present is pressed against the fixed contact 21 side and comes into contact with it, so that the fixed piece 2 and the movable piece 4 can be energized.
 可動片4は、弾性部44において、プレス加工により湾曲又は屈曲されている。湾曲又は屈曲の度合いは、熱応動素子5を収納できる限り特に限定はなく、反転動作温度及び正転復帰温度における弾性力、接点の押圧力などを考慮して適宜設定すればよい。また、弾性部44のB面には、熱応動素子5に対向して一対の突起44a,44bが形成されている。突起44aは、基端側で熱応動素子5に向って突出し、遮断状態で熱応動素子5と当接する。突起44bは、突起44aよりも先端側(すなわち可動接点41側)で熱応動素子5に向って突出し、遮断状態で熱応動素子5と当接する。過熱により熱応動素子5が変形すると、熱応動素子5が突起44a及び突起44bと当接し、熱応動素子5の変形が突起44a及び突起44bを介して弾性部44に伝達され、可動片4の先端部が押し上げられる(図5参照)。 The movable piece 4 is curved or bent in the elastic portion 44 by press working. The degree of bending or bending is not particularly limited as long as the thermoresponsive element 5 can be housed therein, and may be appropriately set in consideration of the elastic force at the reversal operation temperature and the normal rotation return temperature, the pressing force of the contacts, and the like. A pair of protrusions 44 a and 44 b is formed on the surface B of the elastic portion 44 so as to face the thermoresponsive element 5. The protrusion 44a projects toward the thermoresponsive element 5 at the base end side and contacts the thermoresponsive element 5 in a blocked state. The protrusion 44b projects toward the thermoresponsive element 5 on the tip side (that is, the movable contact 41 side) of the protrusion 44a, and contacts the thermoresponsive element 5 in a blocked state. When the thermal responsive element 5 is deformed by overheating, the thermal responsive element 5 contacts the protrusions 44a and 44b, the deformation of the thermal responsive element 5 is transmitted to the elastic portion 44 via the protrusions 44a and 44b, and the movable piece 4 moves. The tip is pushed up (see Fig. 5).
 熱応動素子5は、可動片4の状態を可動接点41が固定接点21に接触する導通状態から可動接点41が固定接点21から離隔する遮断状態に移行させる。熱応動素子5は、断面が円弧状に湾曲した初期形状をなし、熱膨張率の異なる薄板材を積層することにより、板状に形成されている。過熱により作動温度に達すると、熱応動素子5の湾曲形状は、スナップモーションを伴って逆反りし、冷却により復帰温度を下回ると復元する。熱応動素子5の初期形状は、プレス加工により形成することができる。所期の温度で熱応動素子5の逆反り動作により可動片4の弾性部44が押し上げられ、かつ弾性部44の弾性力により元に戻る限り、熱応動素子5の材質及び形状は特に限定されるものでないが、生産性及び逆反り動作の効率性の観点から矩形状が望ましい。 The heat responsive element 5 shifts the state of the movable piece 4 from a conductive state in which the movable contact 41 contacts the fixed contact 21 to a cutoff state in which the movable contact 41 is separated from the fixed contact 21. The thermal response element 5 has an initial shape in which the cross section is curved in an arc shape, and is formed in a plate shape by stacking thin plate materials having different thermal expansion coefficients. When the operating temperature is reached due to overheating, the curved shape of the thermal responsive element 5 reversely warps with snap motion, and is restored when the temperature falls below the return temperature due to cooling. The initial shape of the heat responsive element 5 can be formed by pressing. The material and shape of the thermoresponsive element 5 are not particularly limited as long as the elastic portion 44 of the movable piece 4 is pushed up by the backward warping operation of the thermoresponsive element 5 at the desired temperature and returned to its original state by the elastic force of the elastic portion 44. Although not limited, a rectangular shape is desirable from the viewpoint of productivity and the efficiency of reverse warping operation.
 熱応動素子5の材料としては、洋白、黄銅、ステンレス鋼等の各種の合金からなる熱膨張率が異なる2種類の板状の金属材料を積層したものが、所要条件に応じて組み合わせて使用される。例えば、安定した作動温度及び復帰温度が得られる熱応動素子5の材料としては、高膨脹側に銅-ニッケル-マンガン合金、低膨脹側に鉄-ニッケル合金を組み合わせたものが望ましい。また、化学的安定性の観点からさらに望ましい材料として、高膨脹側に鉄-ニッケル-クロム合金、低膨脹側に鉄-ニッケル合金を組み合わせたものが挙げられる。さらにまた、化学的安定性及び加工性の観点からさらに望ましい材料として、高膨脹側に鉄-ニッケル-クロム合金、低膨脹側に鉄-ニッケル-コバルト合金を組み合わせたものが挙げられる。 As the material of the heat responsive element 5, two kinds of plate-shaped metal materials, which are made of various alloys such as nickel silver, brass and stainless steel and have different coefficients of thermal expansion, are laminated and used in combination according to the required conditions. To be done. For example, as a material of the thermoresponsive element 5 that can obtain a stable operating temperature and a return temperature, it is desirable to combine a copper-nickel-manganese alloy on the high expansion side and an iron-nickel alloy on the low expansion side. Further, as a more desirable material from the viewpoint of chemical stability, a material in which an iron-nickel-chromium alloy is combined on the high expansion side and an iron-nickel alloy is combined on the low expansion side can be mentioned. Further, as a more desirable material from the viewpoint of chemical stability and workability, a material in which an iron-nickel-chromium alloy is combined on the high expansion side and an iron-nickel-cobalt alloy is combined on the low expansion side can be mentioned.
 PTCサーミスター6は、可動片4が遮断状態にあるとき、固定片2と可動片4とを導通させる。PTCサーミスター6は、固定片2と熱応動素子5との間に配設されている。すなわち、PTCサーミスター6を挟んで、固定片2の支持部23は熱応動素子5の直下に位置している。熱応動素子5の逆反り動作により固定片2と可動片4との通電が遮断されたとき、PTCサーミスター6に流れる電流が増大する。PTCサーミスター6は、温度上昇と共に抵抗値が増大して電流を制限する正特性サーミスターであれば、作動電流、作動電圧、作動温度、復帰温度などの必要に応じて種類を選択でき、その材料及び形状はこれらの諸特性を損なわない限り特に限定されるものではない。本実施形態では、チタニウム酸バリウム、チタニウム酸ストロンチウム又はチタニウム酸カルシウムを含むセラミック焼結体が用いられる。セラミック焼結体の他、ポリマーにカーボン等の導電性粒子を含有させたいわゆるポリマーPTCを用いてもよい。 The PTC thermistor 6 makes the fixed piece 2 and the movable piece 4 electrically conductive when the movable piece 4 is in the cutoff state. The PTC thermistor 6 is arranged between the fixed piece 2 and the thermoresponsive element 5. That is, the support portion 23 of the fixed piece 2 is located immediately below the thermoresponsive element 5 with the PTC thermistor 6 interposed therebetween. When the electric current between the fixed piece 2 and the movable piece 4 is cut off due to the backward warping operation of the thermal actuator 5, the current flowing through the PTC thermistor 6 increases. If the PTC thermistor 6 is a positive temperature coefficient thermistor in which the resistance value increases as the temperature rises and limits the current, the type can be selected according to the needs of the operating current, the operating voltage, the operating temperature, the return temperature, The material and shape are not particularly limited as long as these characteristics are not impaired. In this embodiment, a ceramic sintered body containing barium titanate, strontium titanate or calcium titanate is used. In addition to the ceramic sintered body, so-called polymer PTC in which conductive particles such as carbon are contained in polymer may be used.
 ケース10を構成するケース本体7及び蓋部材8は、難燃性のポリアミド、耐熱性に優れたポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)などの熱可塑性樹脂により成形されている。上述した樹脂と同等以上の特性が得られるのであれば、樹脂以外の材料を適用してもよい。 The case body 7 and the lid member 8 constituting the case 10 are made of a thermoplastic resin such as flame-retardant polyamide, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), etc., which has excellent heat resistance. Has been done. A material other than the resin may be applied as long as the characteristics equal to or higher than those of the resin described above can be obtained.
 ケース本体7には、可動片4、熱応動素子5及びPTCサーミスター6などを収容するための内部空間である凹部73が形成されている。凹部73は、可動片4を収容するための開口73a,73b、可動片4及び熱応動素子5を収容するための開口73c、並びに、PTCサーミスター6を収容するための開口73d等を有している。なお、ケース本体7に組み込まれた可動片4、熱応動素子5の端縁は、凹部73の内部に形成されている枠によってそれぞれ当接され、熱応動素子5の逆反り時に案内される。 The case main body 7 is formed with a recess 73 which is an internal space for housing the movable piece 4, the thermoresponsive element 5, the PTC thermistor 6, and the like. The recess 73 has openings 73a and 73b for accommodating the movable piece 4, an opening 73c for accommodating the movable piece 4 and the thermoresponsive element 5, an opening 73d for accommodating the PTC thermistor 6, and the like. ing. It should be noted that the movable piece 4 incorporated in the case body 7 and the end edges of the thermal responsive element 5 are brought into contact with each other by a frame formed inside the recess 73, and are guided when the thermal responsive element 5 warps backward.
 蓋部材8には、銅等を主成分とする金属板又はステンレス鋼等の金属板がインサート成形によって埋め込まれていてもよい。金属板は、可動片4のA面と適宜当接し、可動片4の動きを規制すると共に、蓋部材8のひいては筐体としてのケース10の剛性・強度を高めつつブレーカー1の小型化に貢献する。 A metal plate containing copper or the like as a main component or a metal plate such as stainless steel may be embedded in the lid member 8 by insert molding. The metal plate appropriately contacts the surface A of the movable piece 4 to restrict the movement of the movable piece 4, and contributes to downsizing of the breaker 1 while increasing the rigidity and strength of the lid member 8 and thus the case 10 as a housing. To do.
 図3が示すように、固定片2(固定接点21)、可動片4(可動接点41、弾性部44)、熱応動素子5及びPTCサーミスター6等を収容したケース本体7の開口73a、73b、73c等を塞ぐように、蓋部材8が、ケース本体7に装着される。ケース本体7と蓋部材8とは、例えば超音波溶着によって接合される。これにより、端子22及び42を露出させた状態で、ブレーカー1が組み立てられる。 As shown in FIG. 3, the openings 73a and 73b of the case body 7 accommodating the fixed piece 2 (fixed contact 21), the movable piece 4 (movable contact 41, elastic portion 44), the thermoresponsive element 5, the PTC thermistor 6 and the like. , 73c, etc., the lid member 8 is attached to the case body 7. The case body 7 and the lid member 8 are joined by ultrasonic welding, for example. As a result, the breaker 1 is assembled with the terminals 22 and 42 exposed.
 図4及び5は、ブレーカー1の動作の概略を示している。図4は、通常の充電又は放電状態におけるブレーカー1の動作を示している。通常の充電又は放電状態においては、熱応動素子5は逆反り前の初期形状を維持している。弾性部44によって可動接点41が固定接点21の側に押圧されることにより、可動接点41と固定接点21とが接触し、ブレーカー1の固定片2と可動片4とが導通可能な状態とされる。 4 and 5 show an outline of the operation of the breaker 1. FIG. 4 shows the operation of the breaker 1 in a normal charging or discharging state. In a normal charge or discharge state, the thermoresponsive element 5 maintains the initial shape before the reverse warp. When the movable contact 41 is pressed toward the fixed contact 21 by the elastic portion 44, the movable contact 41 and the fixed contact 21 come into contact with each other, and the fixed piece 2 and the movable piece 4 of the breaker 1 are brought into a conductive state. It
 図4に示されるように、熱応動素子5は、導通状態の可動片4の突起44a及び突起44bと離隔していてもよい。これにより、可動接点41と固定接点21との接触圧力が高められ、両者間の接触抵抗が低減される。 As shown in FIG. 4, the thermal responsive element 5 may be separated from the protrusions 44a and 44b of the movable piece 4 in the conductive state. As a result, the contact pressure between the movable contact 41 and the fixed contact 21 is increased, and the contact resistance between them is reduced.
 図5は、過充電状態又は異常時などにおけるブレーカー1の動作を示している。過充電又は異常により高温状態となると、動作温度に達した熱応動素子5は逆反りして可動片4の弾性部44と接触し、弾性部44が押し上げられて固定接点21と可動接点41とが離隔する。このとき、固定接点21と可動接点41の間を流れていた電流は遮断される。一方、熱応動素子5は、可動片4と接触して、僅かな漏れ電流が熱応動素子5及びPTCサーミスター6を通して流れることとなる。すなわち、PTCサーミスター6は、可動片4を遮断状態に移行させている熱応動素子5を介して、固定片2と可動片4とを導通させる。PTCサーミスター6は、このような漏れ電流の流れる限り発熱を続け、熱応動素子5を逆反り状態に維持させつつ抵抗値を激増させるので、電流は固定接点21と可動接点41の間の経路を流れず、上述の僅かな漏れ電流のみが存在する(自己保持回路を構成する)。この漏れ電流は安全装置の他の機能に充てることができる。 FIG. 5 shows the operation of the breaker 1 in an overcharged state or an abnormality. When it becomes a high temperature state due to overcharging or abnormality, the thermal responsive element 5 that has reached the operating temperature reversely warps and contacts the elastic portion 44 of the movable piece 4, and the elastic portion 44 is pushed up and the fixed contact 21 and the movable contact 41 are connected. Are separated. At this time, the current flowing between the fixed contact 21 and the movable contact 41 is cut off. On the other hand, the thermoresponsive element 5 comes into contact with the movable piece 4, and a slight leakage current flows through the thermoresponsive element 5 and the PTC thermistor 6. That is, the PTC thermistor 6 brings the fixed piece 2 and the movable piece 4 into conduction via the thermal response element 5 that shifts the movable piece 4 to the cutoff state. The PTC thermistor 6 continues to generate heat as long as such a leakage current flows, and dramatically increases the resistance value while maintaining the thermoresponsive element 5 in the reverse warped state, so that the current flows through the path between the fixed contact 21 and the movable contact 41. Does not flow, and there is only the above-mentioned slight leakage current (constituting a self-holding circuit). This leakage current can be used for other functions of the safety device.
 過充電状態を解除し、又は異常状態を解消すると、PTCサーミスター6の発熱も収まり、熱応動素子5は復帰温度に戻り、元の初期形状に復元する。そして、可動片4の弾性部44の弾性力によって可動接点41と固定接点21とは再び接触し、回路は遮断状態を解かれ、図4に示す導通状態に復帰する。 When the overcharged state is released or the abnormal state is resolved, the heat generated by the PTC thermistor 6 also subsides, and the thermoresponsive element 5 returns to the return temperature and restores the original initial shape. Then, due to the elastic force of the elastic portion 44 of the movable piece 4, the movable contact 41 and the fixed contact 21 come into contact again, the circuit is released from the disconnected state, and the circuit returns to the conductive state shown in FIG.
 図2に示されるように、ブレーカー1の端子22は、2次電池501の正極511に直接的に接続されている。「直接的に接続されている」とは、端子22がタブリード等の金属片を介さずに正極511に接続されている状態を意味している。 As shown in FIG. 2, the terminal 22 of the breaker 1 is directly connected to the positive electrode 511 of the secondary battery 501. “Directly connected” means that the terminal 22 is connected to the positive electrode 511 without a metal piece such as a tab lead.
 本実施形態では、端子22と正極511とがレーザー溶接によって接続されている。「レーザー溶接」とは、レーザー光を照射し、そのエネルギーによって金属を溶融させて接合させる溶接手法である。例えば、本実施形態では、波長が1064nmのYAGレーザーが用いられ、図2において手前から奥に向って(後述する図6においては、上方から下方に向って)レーザー光が照射される。 In this embodiment, the terminal 22 and the positive electrode 511 are connected by laser welding. "Laser welding" is a welding method in which laser light is irradiated and the energy is used to melt and join the metal. For example, in the present embodiment, a YAG laser having a wavelength of 1064 nm is used, and laser light is emitted from the front to the back in FIG. 2 (from the upper side to the lower side in FIG. 6 described later).
 正極511と端子22とがレーザー溶接されていることにより、従来の直流回路において2次電池の正極と第1端子との間に配されていたニッケル製の金属片が不要となり、2次電池回路500全体の抵抗値を容易に低減することが可能となる。また、2次電池回路500が簡素化され、容易にコストダウンを図ることが可能となる。 Since the positive electrode 511 and the terminal 22 are laser-welded, the nickel metal piece disposed between the positive electrode and the first terminal of the secondary battery in the conventional DC circuit is unnecessary, and the secondary battery circuit is eliminated. It is possible to easily reduce the resistance value of the entire 500. Further, the secondary battery circuit 500 is simplified, and the cost can be easily reduced.
 図6は、ブレーカー1とその周辺部の構成を示している。端子22のレーザー光が照射される面22a(本実施形態では、上記A面)には、レーザー光を吸収し溶融するメッキ層25が形成されている。本実施形態では、メッキ層25は、ニッケル、すず又はクロム又はそれらを主成分とする合金によって構成されている。これにより、メッキ層25の溶融がきっかけとなって端子22及び2次電池501の正極511が順次溶融し、端子22と正極511とが良好に溶接される。従って、正極511と端子22との間の接触抵抗が容易に低減され、2次電池回路500全体の抵抗値をより一層低減できるようになる。なお、メッキ層25は、面22aとは反対側の面22b(上記B面)に形成されていてもよい。この場合、例えば、2次電池501に対してブレーカー1の天地を逆にして、正極511と端子22とを接続可能となる。 FIG. 6 shows the configuration of the breaker 1 and its peripheral portion. A plating layer 25 that absorbs and melts the laser light is formed on the surface 22a of the terminal 22 that is irradiated with the laser light (in the present embodiment, the surface A). In the present embodiment, the plating layer 25 is made of nickel, tin or chromium or an alloy containing them as a main component. As a result, the melting of the plated layer 25 triggers the terminal 22 and the positive electrode 511 of the secondary battery 501 to sequentially melt, and the terminal 22 and the positive electrode 511 are well welded. Therefore, the contact resistance between the positive electrode 511 and the terminal 22 can be easily reduced, and the resistance value of the entire secondary battery circuit 500 can be further reduced. The plating layer 25 may be formed on the surface 22b (the above-mentioned B surface) opposite to the surface 22a. In this case, for example, it becomes possible to connect the positive electrode 511 and the terminal 22 by reversing the top and bottom of the breaker 1 with respect to the secondary battery 501.
 端子22の正極511と溶接される面22bには、メッキ層26が形成されている。メッキ層26は、端子22よりもイオン化傾向が大きく、正極511よりもイオン化傾向が小さい金属を主成分としている。本実施形態では、メッキ層26は、ニッケル、すず又はクロム又はそれらを主成分とする合金によって構成されている。これにより、端子22から正極511までの間での腐食が抑制される。 A plating layer 26 is formed on the surface 22 b of the terminal 22 that is welded to the positive electrode 511. The plating layer 26 is mainly composed of a metal having a greater ionization tendency than the terminal 22 and a smaller ionization tendency than the positive electrode 511. In the present embodiment, the plating layer 26 is made of nickel, tin or chromium or an alloy containing them as a main component. Thereby, corrosion between the terminal 22 and the positive electrode 511 is suppressed.
 メッキ層25は、端子22の面22aの一部に局所的に形成されているのが望ましい。本実施形態では、面22aのうち、ケース10の側壁の近傍を除く領域にメッキ層25が形成されている。これにより、端子22が変形する際、メッキ層25にかかる応力が低減され、メッキ層25の損傷(例えば、クラック等)を抑制できる。また、プレス加工等により、端子22に曲げ部が形成されている形態にあっては、曲げ部及びその近傍を除く領域にメッキ層25が形成されるのが望ましい。これにより、曲げ部を形成する際のメッキ層25の損傷を抑制できる。メッキ層26についても同様に、端子22の面22bの一部に局所的に、メッキ層26が形成されているのが望ましい。 The plating layer 25 is preferably formed locally on a part of the surface 22a of the terminal 22. In the present embodiment, the plating layer 25 is formed on the area of the surface 22a excluding the vicinity of the side wall of the case 10. Thereby, when the terminal 22 is deformed, the stress applied to the plating layer 25 is reduced, and damage (for example, crack) of the plating layer 25 can be suppressed. Further, in the form in which the bent portion is formed in the terminal 22 by press working or the like, it is desirable that the plated layer 25 is formed in the area excluding the bent portion and the vicinity thereof. As a result, damage to the plating layer 25 when forming the bent portion can be suppressed. Similarly, with respect to the plated layer 26, it is desirable that the plated layer 26 is locally formed on a part of the surface 22b of the terminal 22.
 図2に示されるように、ブレーカー1と回路基板503との間、すなわち、ブレーカー1と負荷502との間には、金属片520が設けられている。金属片520は、上記PCB又はFPCに形成されている金属箔の一部であってもよい。金属片520は、例えば、導電性に優れた銅を主成分とする金属によって構成されている。ブレーカー1の端子42は、金属片520とレーザー溶接によって接続されている。 As shown in FIG. 2, a metal piece 520 is provided between the breaker 1 and the circuit board 503, that is, between the breaker 1 and the load 502. The metal piece 520 may be a part of the metal foil formed on the PCB or FPC. The metal piece 520 is made of, for example, a metal whose main component is copper having excellent conductivity. The terminal 42 of the breaker 1 is connected to the metal piece 520 by laser welding.
 端子42のレーザー光が照射される面42a(本実施形態では、上記A面)には、レーザー光を吸収し溶融するメッキ層45が形成されている。本実施形態では、メッキ層45は、ニッケル、すず又はクロム又はそれらを主成分とする合金によって構成されている。これにより、メッキ層45の溶融がきっかけとなって端子42及び金属片520が順次溶融し、端子42と金属片520とが良好に溶接される。従って、端子42と金属片520との間の接触抵抗が容易に低減され、2次電池回路500全体の抵抗値をより一層低減できるようになる。なお、メッキ層45は、面42aとは反対側の面42b(上記B面)に形成されていてもよい。この場合、2次電池501に対してブレーカー1の天地を逆にして、金属片520と端子42とを接続可能となる。 A plating layer 45 that absorbs and melts the laser light is formed on the surface 42a of the terminal 42 that is irradiated with the laser light (in the present embodiment, the surface A). In the present embodiment, the plating layer 45 is made of nickel, tin or chromium or an alloy containing them as a main component. As a result, the plating layer 45 is melted and the terminal 42 and the metal piece 520 are sequentially melted, and the terminal 42 and the metal piece 520 are well welded. Therefore, the contact resistance between the terminal 42 and the metal piece 520 is easily reduced, and the resistance value of the entire secondary battery circuit 500 can be further reduced. The plating layer 45 may be formed on the surface 42b (the above-mentioned B surface) opposite to the surface 42a. In this case, the metal piece 520 and the terminal 42 can be connected by reversing the top and bottom of the breaker 1 with respect to the secondary battery 501.
 メッキ層45は、端子42の面42aの一部に局所的に形成されているのが望ましい。本実施形態では、面42aのうち、ケース10の側壁の近傍を除く領域にメッキ層45が形成されている。これにより、端子42が変形する際、メッキ層45にかかる応力が低減され、メッキ層45の損傷を抑制できる。面42bにメッキ層が形成される形態についても同様に、端子42の面42bの一部に局所的に、メッキ層が形成されているのが望ましい。 The plating layer 45 is preferably formed locally on a part of the surface 42 a of the terminal 42. In the present embodiment, the plating layer 45 is formed in the area of the surface 42a excluding the vicinity of the side wall of the case 10. Thereby, when the terminal 42 is deformed, the stress applied to the plating layer 45 is reduced, and the damage of the plating layer 45 can be suppressed. Similarly, regarding the form in which the plating layer is formed on the surface 42b, it is desirable that the plating layer is locally formed on a part of the surface 42b of the terminal 42.
 また、本実施形態のブレーカー1のように、端子42には、プレス加工等により曲げ部47が形成されていてもよい。この場合、メッキ層45は、曲げ部47及びその近傍を除く領域に形成されるのが望ましい。これにより、曲げ部47を形成する際のメッキ層45の損傷を抑制できる。 Also, like the breaker 1 of the present embodiment, the bent portion 47 may be formed on the terminal 42 by pressing or the like. In this case, it is desirable that the plated layer 45 be formed in a region other than the bent portion 47 and its vicinity. This can prevent damage to the plating layer 45 when forming the bent portion 47.
 端子22及び端子42は、ケース10の側壁から可動片4の長手方向に延び突出している。端子22のケース10からの突出長さL1と、端子42のケース10からの突出長さL2とは異なっていてもよい。本実施形態では、端子22の突出長さL1は、端子42の突出長さL2よりも大きく設定されている。これにより、端子22と正極511との接触面積が拡大され、両者間の接触抵抗を容易に低減することが可能となる。端子42の突出長さL2が端子22の突出長さL1よりも大きく設定されている形態では、端子42と金属片520との接触面積が拡大され、両者間の接触抵抗を容易に低減することが可能となる。 The terminals 22 and 42 extend from the side wall of the case 10 in the longitudinal direction of the movable piece 4 and project therefrom. The protruding length L1 of the terminal 22 from the case 10 may be different from the protruding length L2 of the terminal 42 from the case 10. In this embodiment, the protruding length L1 of the terminal 22 is set to be larger than the protruding length L2 of the terminal 42. As a result, the contact area between the terminal 22 and the positive electrode 511 is increased, and the contact resistance between the two can be easily reduced. In the mode in which the protruding length L2 of the terminal 42 is set to be larger than the protruding length L1 of the terminal 22, the contact area between the terminal 42 and the metal piece 520 is enlarged, and the contact resistance between them can be easily reduced. Is possible.
 メッキ層25の長さL3と、メッキ層45の長さL4は異なっていてもよい。長さL3は、ケース10から端子22が突出する方向でのメッキ層25の長さである(長さL4についても同様である)。本実施形態では、メッキ層25の長さL3は、メッキ層45の長さL4よりも大きく設定されている。これにより、端子22と正極511とが広い面積で良好に溶接される。メッキ層45の長さL4がメッキ層25の長さL3よりも大きく設定されている形態では、端子42と金属片520とが広い面積で良好に溶接される。 The length L3 of the plating layer 25 and the length L4 of the plating layer 45 may be different. The length L3 is the length of the plating layer 25 in the direction in which the terminal 22 projects from the case 10 (the same applies to the length L4). In this embodiment, the length L3 of the plating layer 25 is set to be larger than the length L4 of the plating layer 45. Thereby, the terminal 22 and the positive electrode 511 are well welded over a wide area. In the mode in which the length L4 of the plating layer 45 is set larger than the length L3 of the plating layer 25, the terminal 42 and the metal piece 520 are welded well in a wide area.
 ところで、端子22の面22bにメッキ層26と同等の金属層がクラッド等の手法により形成される形態にあっても、端子22から正極511までの間での腐食が抑制される。しかしながら、このようなクラッド等の手法によって形成された金属層は厚さ寸法が大きいので、導電率が低い金属が適用された場合、正極511と端子22との間の抵抗値が大きくなり、金属層における電圧降下が大きくなる。 By the way, even when the metal layer equivalent to the plating layer 26 is formed on the surface 22b of the terminal 22 by a method such as a clad, the corrosion between the terminal 22 and the positive electrode 511 is suppressed. However, since the metal layer formed by such a technique as the clad has a large thickness dimension, when a metal having a low conductivity is applied, the resistance value between the positive electrode 511 and the terminal 22 becomes large, and The voltage drop in the layer is large.
 一方、本実施形態において端子22の面22bに形成されるメッキ層26は、クラッド等の手法によって形成された金属層よりも厚さ寸法が小さい。従って、固定片2を構成する金属よりも導電率が低い金属によってメッキ層26が構成される場合であっても、正極511と端子22との間の抵抗値が抑制される。 On the other hand, in the present embodiment, the plating layer 26 formed on the surface 22b of the terminal 22 has a smaller thickness dimension than the metal layer formed by a method such as a clad. Therefore, the resistance value between the positive electrode 511 and the terminal 22 is suppressed even when the plating layer 26 is made of a metal having a conductivity lower than that of the metal forming the fixing piece 2.
 以上、本発明の2次電池回路500が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、本発明は、少なくとも、蓄電セル510と、蓄電セル510の外部に露出された一対の電極とを有する2次電池501と、2次電池501によって駆動される負荷502と、2次電池501と負荷502との間に、直列に接続されるブレーカー1とを含む2次電池回路500であって、ブレーカー1は、2次電池501の正極511に直接的に接続される端子22と、固定接点21と、弾性変形する弾性部44及び該弾性部44の一端部に可動接点41を有し、可動接点41を固定接点21に押圧して接触させる可動片4と、温度変化に伴って変形することにより、可動片4の状態を可動接点41が固定接点21に接触する導通状態から可動接点41が固定接点21から離隔する遮断状態に移行させる熱応動素子5と、端子22を露出させた状態で、固定接点21、可動片4及び熱応動素子5を収容するためのケース10とを備え、正極511と端子22とは、レーザー溶接されていればよい。 Although the secondary battery circuit 500 of the present invention has been described in detail above, the present invention is not limited to the specific embodiments described above and can be carried out in various modes. That is, the present invention relates to a secondary battery 501 having at least a storage cell 510, a pair of electrodes exposed to the outside of the storage cell 510, a load 502 driven by the secondary battery 501, and a secondary battery 501. A breaker 1 including a breaker 1 connected in series between a load 502 and a load 502, wherein the breaker 1 is fixed to a terminal 22 directly connected to a positive electrode 511 of a rechargeable battery 501. The contact 21, the elastic portion 44 that elastically deforms, and the movable contact 41 that has the movable contact 41 at one end of the elastic portion 44, presses the movable contact 41 against the fixed contact 21, and deforms with temperature change. By doing so, the thermal responsive element 5 that shifts the state of the movable piece 4 from the conductive state in which the movable contact 41 contacts the fixed contact 21 to the cutoff state in which the movable contact 41 is separated from the fixed contact 21 and the terminal 22 are In a state of out, the fixed contact 21, and a case 10 for housing the movable piece 4 and the thermal actuator element 5, the positive electrode 511 and the terminal 22 need only be laser welded.
 例えば、本実施形態の2次電池回路500に用いられるブレーカー1は、PTCサーミスター6による自己保持回路を有しているが、このような構成を省いた形態であっても適用可能であり、直流回路全体の抵抗値を容易に低減できる。 For example, the breaker 1 used in the secondary battery circuit 500 of the present embodiment has a self-holding circuit by the PTC thermistor 6, but the configuration without such a configuration is also applicable. The resistance value of the entire DC circuit can be easily reduced.
 また、可動片4は、バイメタル又はトリメタル等の積層金属によって形成することにより、可動片4と熱応動素子5を一体的に形成する構成であってもよい。この場合、ブレーカーの構成が簡素化されて、さらなる小型化を図ることができる。 The movable piece 4 may be formed of a laminated metal such as bimetal or trimetal so that the movable piece 4 and the thermoresponsive element 5 are integrally formed. In this case, the structure of the breaker is simplified, and the size can be further reduced.
 また、本実施形態の可動片4は、弾性部44から端子42に亘って一体的に形成されているが、このような形態に限られることなく、例えば、特開2017-37757号公報に示されるような、可動接点41の側の可動アームと端子42の側の端子片とに分離している形態の可動片4が本発明に適用されてもよい。また、可動アームと端子片が溶接等によって固定されていてもよい。この場合において、端子42の側の端子片は、固定片2等と共にケース本体7にインサート成形されていてもよい。 Further, although the movable piece 4 of the present embodiment is integrally formed from the elastic portion 44 to the terminal 42, the invention is not limited to such a form, and is disclosed in, for example, JP-A-2017-37757. As described above, the movable piece 4 in a form in which the movable arm on the movable contact 41 side and the terminal piece on the terminal 42 side are separated may be applied to the present invention. Further, the movable arm and the terminal piece may be fixed by welding or the like. In this case, the terminal piece on the terminal 42 side may be insert-molded in the case body 7 together with the fixing piece 2 and the like.
 図5、6では、固定片2に形成された端子22が2次電池501の正極511に直接的にレーザー溶接される第1端子であり、可動片4に形成された端子42が金属片520にレーザー溶接される第2端子である形態のブレーカー1が記載されている。そして、これに伴い、面22aに形成されているメッキ層25が第1メッキ層と、面22bに形成されているメッキ層26が第2メッキ層とされ、面42aに形成されているメッキ層45が第3メッキ層とされている。 5 and 6, the terminal 22 formed on the fixed piece 2 is the first terminal directly laser-welded to the positive electrode 511 of the secondary battery 501, and the terminal 42 formed on the movable piece 4 is the metal piece 520. A breaker 1 in the form of a second terminal to be laser-welded is described. Accordingly, the plating layer 25 formed on the surface 22a is the first plating layer and the plating layer 26 formed on the surface 22b is the second plating layer, and the plating layer formed on the surface 42a. 45 is the third plating layer.
 これに対して、図7は、上記ブレーカー1の変形例であるブレーカー1Aとその周辺部の構成を示している。ブレーカー1Aに示されるように、本発明の2次電池回路500では、可動片4に形成された端子42が、2次電池501の正極511に直接的にレーザー溶接される第1端子とされていてもよい。この場合、固定片2に形成された端子22は、金属片520にレーザー溶接される第2端子とされていてもよい。これに伴い、面42aに形成されているメッキ層45が第1メッキ層と、面42bに形成されているメッキ層46が第2メッキ層とされ、面22aに形成されているメッキ層25が第3メッキ層とされる。ブレーカー1Aにおいて、その他の構成は、ブレーカー1と同等である。 On the other hand, FIG. 7 shows a configuration of a breaker 1A which is a modified example of the breaker 1 and its peripheral portion. As shown in the breaker 1A, in the secondary battery circuit 500 of the present invention, the terminal 42 formed on the movable piece 4 is the first terminal directly laser-welded to the positive electrode 511 of the secondary battery 501. May be. In this case, the terminal 22 formed on the fixed piece 2 may be a second terminal laser-welded to the metal piece 520. Accordingly, the plating layer 45 formed on the surface 42a is the first plating layer, the plating layer 46 formed on the surface 42b is the second plating layer, and the plating layer 25 formed on the surface 22a is the second plating layer. It is the third plating layer. The other configurations of the breaker 1A are the same as those of the breaker 1.
 図8は、2次電池回路500の製造方法を示すフローチャートである。2次電池回路500の製造方法は、ブレーカー1を組み立てる組立工程S10と、2次電池501の正極511とブレーカー1の端子22とをレーザー溶接する溶接工程S20とを含んでいる。 FIG. 8 is a flowchart showing a method for manufacturing the secondary battery circuit 500. The method for manufacturing the secondary battery circuit 500 includes an assembling step S10 for assembling the breaker 1 and a welding step S20 for laser welding the positive electrode 511 of the secondary battery 501 and the terminal 22 of the breaker 1.
 図3に示されるように、組立工程S10では、端子22を露出させた状態で、固定接点21を含む固定片2と、可動片4と、熱応動素子5とがケース10に収容される。 As shown in FIG. 3, in the assembly step S10, the fixed piece 2 including the fixed contact 21, the movable piece 4, and the thermoresponsive element 5 are housed in the case 10 with the terminal 22 exposed.
 図6に示されるように、溶接工程S20では、正極511に端子22が重ねられた状態で、端子22の側からレーザー光が照射され、正極511と端子22とがレーザー溶接される。これにより、従来の2次電池回路において2次電池の正極と端子との間に配されていたニッケル製の金属片が不要となり、2次電池回路500全体の抵抗値を容易に低減することが可能となる。また、2次電池回路500が簡素化され、容易にコストダウンを図ることが可能となる。 As shown in FIG. 6, in the welding step S20, laser light is emitted from the terminal 22 side in a state where the terminal 22 is placed on the positive electrode 511, and the positive electrode 511 and the terminal 22 are laser-welded. As a result, the metal piece made of nickel, which is arranged between the positive electrode and the terminal of the secondary battery in the conventional secondary battery circuit, becomes unnecessary, and the resistance value of the entire secondary battery circuit 500 can be easily reduced. It will be possible. Further, the secondary battery circuit 500 is simplified, and the cost can be easily reduced.
 図8に示されるように、本ブレーカー1の製造方法では、溶接工程S20に先だって、メッキ工程S5が実行されるのが望ましい。メッキ工程S5は、端子22の面22aに、メッキ層25を形成するメッキ工程S1を含んでいる。 As shown in FIG. 8, in the method of manufacturing the breaker 1, it is desirable that the plating step S5 be performed prior to the welding step S20. The plating step S5 includes a plating step S1 for forming the plating layer 25 on the surface 22a of the terminal 22.
 図9は、メッキ工程S5を示している。メッキ工程S1では、シート状の金属板(原反)200の一方側の面200aにメッキ層25が形成される。この後、プレス工程(図示せず)で、金属板200が打ち抜かれ、端子22を含む固定片2が形成される。プレス工程で金属板200が打ち抜かれた後、端子22の面22aにメッキ層25が形成され、メッキ工程S1が実行されてもよい。なお、メッキ工程S1は、組立工程S10の後に実行されてもよい。 FIG. 9 shows the plating step S5. In the plating step S1, the plating layer 25 is formed on the one surface 200a of the sheet-shaped metal plate (original material) 200. Then, in a pressing step (not shown), the metal plate 200 is punched out to form the fixing piece 2 including the terminal 22. After the metal plate 200 is punched in the pressing process, the plating layer 25 may be formed on the surface 22a of the terminal 22 and the plating process S1 may be performed. The plating step S1 may be performed after the assembly step S10.
 メッキ工程S5は、端子22の面22bに、メッキ層26を形成するメッキ工程S2を含んでいてもよい。本実施形態では、メッキ工程S2で金属板の他方側の面200bにメッキ層26が形成された後、金属板200が打ち抜かれ、固定片2が形成される。メッキ工程S2は、例えば、メッキ工程S1の後に実行される。メッキ工程S2は、メッキ工程S1と同時に実行されてもよい。メッキ工程S2は、メッキ工程S1の前に実行されてもよい。メッキ工程S2は、プレス工程の後、又は、組立工程S10の後に実行されてもよい。 The plating step S5 may include a plating step S2 for forming the plating layer 26 on the surface 22b of the terminal 22. In this embodiment, after the plating layer 26 is formed on the other surface 200b of the metal plate in the plating step S2, the metal plate 200 is punched out to form the fixing piece 2. The plating step S2 is executed, for example, after the plating step S1. The plating step S2 may be performed simultaneously with the plating step S1. The plating step S2 may be performed before the plating step S1. The plating step S2 may be performed after the pressing step or after the assembling step S10.
 メッキ工程S5は、端子42の面42aに、メッキ層45を形成するメッキ工程S3を含んでいてもよい。本実施形態では、メッキ工程S3で金属板400の一方側の面400aにメッキ層26が形成された後、金属板400が打ち抜かれ、可動片4が形成される。メッキ工程S3は、例えば、メッキ工程S1の前後、又はメッキ工程S1と同時に実行される。メッキ工程S3は、プレス工程の後、又は、組立工程S10の後に実行されてもよい。この場合、メッキ工程S3は、メッキ工程S1と同時に実行されるのが望ましい。 The plating step S5 may include a plating step S3 for forming the plating layer 45 on the surface 42a of the terminal 42. In this embodiment, after the plating layer 26 is formed on the surface 400a on one side of the metal plate 400 in the plating step S3, the metal plate 400 is punched out to form the movable piece 4. The plating step S3 is performed, for example, before or after the plating step S1, or simultaneously with the plating step S1. The plating step S3 may be performed after the pressing step or after the assembling step S10. In this case, it is desirable that the plating step S3 be performed at the same time as the plating step S1.
 以上、本発明の2次電池回路500の製造方法が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、本発明は、少なくとも、蓄電セル510と、蓄電セル510の外部に露出された一対の電極とを有する2次電池501と、2次電池501によって駆動される負荷502と、2次電池501の正極511と接続される端子22と、固定接点21と、弾性変形する弾性部44及び該弾性部44の一端部に可動接点41を有する可動片4と、温度変化に伴って変形する熱応動素子5とを有し、2次電池501と負荷502との間に、直列に接続されるブレーカー1とを備えた2次電池回路500の製造方法であって、端子22を露出させた状態で、固定接点21と、可動片4と、熱応動素子5とをケース10に収容してブレーカー1を組み立てる組立工程S10と、正極511と端子22とをレーザー溶接する溶接工程S20とを含んでいればよい。 Although the method for manufacturing the secondary battery circuit 500 of the present invention has been described in detail above, the present invention is not limited to the specific embodiments described above, and various modifications may be made. That is, the present invention relates to a secondary battery 501 having at least a storage cell 510, a pair of electrodes exposed to the outside of the storage cell 510, a load 502 driven by the secondary battery 501, and a secondary battery 501. Terminal 22 connected to the positive electrode 511, the fixed contact 21, the elastic portion 44 that elastically deforms, and the movable piece 4 that has the movable contact 41 at one end of the elastic portion 44, and the thermal response that deforms with temperature change. A method of manufacturing a secondary battery circuit 500 including an element 5 and a breaker 1 connected in series between a secondary battery 501 and a load 502, wherein a terminal 22 is exposed. , A fixed contact 21, a movable piece 4, and a thermoresponsive element 5 are housed in a case 10 to assemble the breaker 1, and an assembling step S10 and a welding step S20 for laser welding the positive electrode 511 and the terminal 22. It may be put.
1    :ブレーカー
2    :固定片
4    :可動片
5    :熱応動素子
10   :ケース
21   :固定接点
22   :端子
22a  :面
22b  :面
25   :メッキ層
26   :メッキ層
41   :可動接点
42   :端子
42a  :面
42b  :面
44   :弾性部
45   :メッキ層
500  :2次電池回路
501  :2次電池
502  :負荷
503  :回路基板
510  :蓄電セル
511  :正極
520  :金属片
550  :2次電池パック
S10  :組立工程
S20  :溶接工程
S5   :メッキ工程
1: Breaker 2: Fixed piece 4: Movable piece 5: Thermal actuator 10: Case 21: Fixed contact 22: Terminal 22a: Surface 22b: Surface 25: Plating layer 26: Plating layer 41: Moving contact 42: Terminal 42a: Surface 42b: surface 44: elastic part 45: plating layer 500: secondary battery circuit 501: secondary battery 502: load 503: circuit board 510: storage cell 511: positive electrode 520: metal piece 550: secondary battery pack S10: assembly process S20: Welding process S5: Plating process

Claims (15)

  1.  蓄電セルと、前記蓄電セルの外部に露出された一対の電極とを有する2次電池と、
     前記2次電池によって駆動される負荷と、
     前記2次電池と負荷との間に、直列に接続されるブレーカーとを含む2次電池回路であって、
     前記ブレーカーは、
      前記2次電池の正極に直接的に接続される第1端子と、
      固定接点と、
      弾性変形する弾性部及び該弾性部の一端部に可動接点を有し、前記可動接点を前記固定接点に押圧して接触させる可動片と、
      温度変化に伴って変形することにより、前記可動片の状態を前記可動接点が前記固定接点に接触する導通状態から前記可動接点が前記固定接点から離隔する遮断状態に移行させる熱応動素子と、
      前記第1端子を露出させた状態で、前記固定接点、前記可動片及び前記熱応動素子を収容するためのケースとを備え、
     前記正極と前記第1端子とは、レーザー溶接されていることを特徴とする、2次電池回路。
    A secondary battery having a storage cell and a pair of electrodes exposed to the outside of the storage cell;
    A load driven by the secondary battery,
    A secondary battery circuit including a breaker connected in series between the secondary battery and a load, comprising:
    The breaker is
    A first terminal directly connected to the positive electrode of the secondary battery;
    Fixed contact,
    An elastic portion that elastically deforms and a movable piece at one end of the elastic portion, and a movable piece that presses the movable contact against the fixed contact to make contact
    A thermal responsive element that transforms the state of the movable piece from a conducting state in which the movable contact contacts the fixed contact to a cut-off state in which the movable contact separates from the fixed contact by deforming with a change in temperature,
    A case for accommodating the fixed contact, the movable piece, and the thermoresponsive element in a state where the first terminal is exposed,
    The secondary battery circuit, wherein the positive electrode and the first terminal are laser-welded.
  2.  前記第1端子の前記レーザー溶接で用いられる光が照射される第1面には、前記光を吸収し溶融する第1メッキ層が形成されている、請求項1記載の2次電池回路。 The secondary battery circuit according to claim 1, wherein a first plating layer that absorbs and melts the light is formed on a first surface of the first terminal that is irradiated with light used for the laser welding.
  3.  前記第1メッキ層は、前記第1面の一部に局所的に形成されている、請求項2記載の2次電池回路。 The secondary battery circuit according to claim 2, wherein the first plating layer is locally formed on a part of the first surface.
  4.  前記第1端子の前記正極と溶接される第2面には、前記第1端子よりもイオン化傾向が大きく、前記正極よりもイオン化傾向が小さい金属を主成分とする第2メッキ層が形成されている、請求項2又は3に記載の2次電池回路。 On the second surface of the first terminal that is welded to the positive electrode, a second plating layer containing a metal having a larger ionization tendency than the first terminal and a smaller ionization tendency than the positive electrode as a main component is formed. The secondary battery circuit according to claim 2, wherein the secondary battery circuit is provided.
  5.  前記第2メッキ層は、前記第2面の一部に局所的に形成されている、請求項4記載の2次電池回路。 The secondary battery circuit according to claim 4, wherein the second plating layer is locally formed on a part of the second surface.
  6.  前記第1メッキ層及び前記第2メッキ層は、ニッケル、すず又はクロムを主成分として構成されている、請求項4又は5に記載の2次電池回路。 The secondary battery circuit according to claim 4 or 5, wherein the first plating layer and the second plating layer are composed mainly of nickel, tin or chromium.
  7.  前記ブレーカーと前記負荷とを接続する金属片を含み、
     前記ブレーカーは、前記金属片と接続される第2端子を備え、
     前記金属片と前記第2端子とは、レーザー溶接されている、請求項1乃至6のいずれかに記載の2次電池回路。
    Including a metal piece connecting the breaker and the load,
    The breaker includes a second terminal connected to the metal piece,
    The secondary battery circuit according to claim 1, wherein the metal piece and the second terminal are laser-welded.
  8.  前記第2端子の前記光が照射される第3面には、前記光を吸収し溶融する第3メッキ層が形成されている、請求項7記載の2次電池回路。 The secondary battery circuit according to claim 7, wherein a third plating layer that absorbs and melts the light is formed on a third surface of the second terminal irradiated with the light.
  9.  前記第3メッキ層は、前記第3面の一部に局所的に形成されている、請求項8記載の2次電池回路。 The secondary battery circuit according to claim 8, wherein the third plating layer is locally formed on a part of the third surface.
  10.  前記第3メッキ層は、ニッケル、すず又はクロムを主成分として構成されている、請求項8又は9に記載の2次電池回路。 The secondary battery circuit according to claim 8 or 9, wherein the third plating layer is composed mainly of nickel, tin or chromium.
  11.  蓄電セルと、前記蓄電セルの外部に露出された一対の電極とを有する2次電池と、
     前記2次電池によって駆動される負荷と、
     前記2次電池の正極と接続される第1端子と、固定接点と、弾性変形する弾性部及び該弾性部の一端部に可動接点を有する可動片と、温度変化に伴って変形する熱応動素子とを有し、前記2次電池と負荷との間に、直列に接続されるブレーカーとを備えた2次電池回路の製造方法であって、
     前記第1端子を露出させた状態で、前記固定接点と、前記可動片と、前記熱応動素子とをケースに収容して前記ブレーカーを組み立てる組立工程と、
     前記正極と前記第1端子とをレーザー溶接する溶接工程とを含むことを特徴とする、2次電池回路の製造方法。
    A secondary battery having a storage cell and a pair of electrodes exposed to the outside of the storage cell;
    A load driven by the secondary battery,
    A first terminal connected to the positive electrode of the secondary battery, a fixed contact, an elastic portion that elastically deforms, a movable piece having a movable contact at one end of the elastic portion, and a thermoresponsive element that deforms with temperature change. And a breaker connected in series between the secondary battery and a load, the method comprising:
    An assembling step of assembling the breaker by housing the fixed contact, the movable piece, and the thermoresponsive element in a case with the first terminal exposed.
    A method of manufacturing a secondary battery circuit, comprising a welding step of laser welding the positive electrode and the first terminal.
  12.  前記溶接工程に先だって、前記第1端子の前記レーザー溶接で用いられる光が照射される第1面に、前記光を吸収し溶融する第1メッキ層を形成する第1メッキ工程が実行される、請求項11記載の2次電池回路の製造方法。 Prior to the welding step, a first plating step of forming a first plating layer that absorbs and melts the light is performed on a first surface of the first terminal irradiated with the light used in the laser welding. The method for manufacturing a secondary battery circuit according to claim 11.
  13.  前記溶接工程に先だって、前記第1端子の前記正極と溶接される第2面に、前記第1端子よりもイオン化傾向が大きく、前記正極よりもイオン化傾向が小さい金属を主成分とする第2メッキ層を形成する第2メッキ工程が実行される、請求項11又は12に記載の2次電池回路の製造方法。 Prior to the welding step, on the second surface of the first terminal that is welded to the positive electrode, a second plating containing a metal having a larger ionization tendency than the first terminal and a smaller ionization tendency than the positive electrode as a main component. The method for manufacturing a secondary battery circuit according to claim 11, wherein a second plating step of forming a layer is performed.
  14.  前記組立工程では、前記負荷との間に設けられた金属片と接続される第2端子が露出された状態で、前記固定接点と、前記可動片と、前記熱応動素子とが前記ケースに収容され、
     前記溶接工程は、前記金属片と前記第2端子とをレーザー溶接する工程を含む、請求項11乃至13のいずれかに記載の2次電池回路の製造方法。
    In the assembling step, the fixed contact, the movable piece, and the heat responsive element are housed in the case with the second terminal connected to the metal piece provided between the load and the load exposed. Is
    The method for manufacturing a secondary battery circuit according to claim 11, wherein the welding step includes a step of laser welding the metal piece and the second terminal.
  15.  前記溶接工程に先だって、前記第2端子の前記光が照射される第3面に、前記光を吸収し溶融する第3メッキ層を形成する第3メッキ工程が実行される、請求項14記載の2次電池回路の製造方法。 15. The third plating step of forming a third plating layer that absorbs and melts the light on the third surface of the second terminal irradiated with the light, prior to the welding step. Manufacturing method of secondary battery circuit.
PCT/JP2018/039725 2018-10-25 2018-10-25 Secondary battery circuit and production method therefor WO2020084739A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/039725 WO2020084739A1 (en) 2018-10-25 2018-10-25 Secondary battery circuit and production method therefor
CN201880097976.1A CN112753086A (en) 2018-10-25 2018-10-25 Secondary battery circuit and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039725 WO2020084739A1 (en) 2018-10-25 2018-10-25 Secondary battery circuit and production method therefor

Publications (1)

Publication Number Publication Date
WO2020084739A1 true WO2020084739A1 (en) 2020-04-30

Family

ID=70331475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039725 WO2020084739A1 (en) 2018-10-25 2018-10-25 Secondary battery circuit and production method therefor

Country Status (2)

Country Link
CN (1) CN112753086A (en)
WO (1) WO2020084739A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093178A (en) * 2008-10-10 2010-04-22 Panasonic Corp Electrochemical capacitance and method of manufacturing the same
JP2013084443A (en) * 2011-10-07 2013-05-09 Otsuka Techno Kk Battery pack
JP2014120302A (en) * 2012-12-14 2014-06-30 Otsuka Techno Kk Breaker
JP2014164966A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal
JP2017098186A (en) * 2015-11-27 2017-06-01 ボーンズ株式会社 Breaker, safety circuit with the same, and secondary battery circuit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591432B1 (en) * 2004-05-31 2006-06-22 삼성에스디아이 주식회사 Secondary battery
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
WO2013094725A1 (en) * 2011-12-22 2013-06-27 株式会社小松ライト製作所 Breaker, and safety circuit and secondary battery pack equipped with same
JP5355767B1 (en) * 2012-11-26 2013-11-27 株式会社小松ライト製作所 Breaker, safety circuit including the same, and secondary battery circuit
WO2014171516A1 (en) * 2013-04-19 2014-10-23 タイコエレクトロニクスジャパン合同会社 Protective device
JP2016213121A (en) * 2015-05-12 2016-12-15 株式会社小松ライト製作所 Circuit breaker and secondary battery circuit and safety circuit using the same
WO2017086486A1 (en) * 2015-11-20 2017-05-26 ボーンズ株式会社 Electronic device housing, method for manufacturing electronic device housing, and circuit breaker provided with electronic device housing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093178A (en) * 2008-10-10 2010-04-22 Panasonic Corp Electrochemical capacitance and method of manufacturing the same
JP2013084443A (en) * 2011-10-07 2013-05-09 Otsuka Techno Kk Battery pack
JP2014120302A (en) * 2012-12-14 2014-06-30 Otsuka Techno Kk Breaker
JP2014164966A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Method of manufacturing terminal, terminal material for use in manufacturing method, terminal manufactured by manufacturing method, terminal connection structure of wire and manufacturing method therefor, and copper or copper alloy plate material for terminal
JP2017098186A (en) * 2015-11-27 2017-06-01 ボーンズ株式会社 Breaker, safety circuit with the same, and secondary battery circuit

Also Published As

Publication number Publication date
CN112753086A (en) 2021-05-04

Similar Documents

Publication Publication Date Title
JP5695695B2 (en) Breaker and secondary battery provided with the same
CN111418038B (en) Circuit breaker and safety circuit with same
WO2019167568A1 (en) Breaker and safety circuit equipped with same
US11551895B2 (en) Breaker, safety circuit and secondary battery pack
JP6967932B2 (en) A breaker and a safety circuit equipped with it.
WO2020121896A1 (en) Thermal reaction element, breaker, safety circuit, and secondary battery pack
JP6560548B2 (en) Breaker and safety circuit equipped with it.
US11329325B2 (en) Breaker and safety circuit provided with same
WO2020084739A1 (en) Secondary battery circuit and production method therefor
WO2020022298A1 (en) Circuit breaker, safety circuit and secondary battery pack
JP6204721B2 (en) Breaker, safety circuit including the same, and secondary battery circuit
JP6984038B2 (en) breaker
JP2017037757A (en) Breaker and safety circuit and secondary battery circuit including the same
WO2022085611A1 (en) Breaker, safety circuit equipped therewith, and secondary battery pack
JP2019008920A (en) Current cutoff device and secondary battery pack including the same
WO2024069853A1 (en) Breaker and secondary battery pack including same
WO2023119887A1 (en) Breaker, safety circuit, and secondary battery pack
JP2018060746A (en) Breaker, and safety circuit and secondary battery pack each equipped with breaker
JP6831186B2 (en) A breaker, a safety circuit equipped with the breaker, and a secondary battery circuit.
WO2020095694A1 (en) Thermally-actuated element, breaker, safety circuit, and secondary battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP