WO2020084582A1 - Dispositif photovoltaïque semi-transparent en couches minces pourvu d'un contact électrique métal/oxyde natif/métal optimisé - Google Patents

Dispositif photovoltaïque semi-transparent en couches minces pourvu d'un contact électrique métal/oxyde natif/métal optimisé Download PDF

Info

Publication number
WO2020084582A1
WO2020084582A1 PCT/IB2019/059164 IB2019059164W WO2020084582A1 WO 2020084582 A1 WO2020084582 A1 WO 2020084582A1 IB 2019059164 W IB2019059164 W IB 2019059164W WO 2020084582 A1 WO2020084582 A1 WO 2020084582A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
semi
photovoltaic
layer
zones
Prior art date
Application number
PCT/IB2019/059164
Other languages
English (en)
Inventor
Mohamed Bouchoucha
Original Assignee
Garmin Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garmin Switzerland filed Critical Garmin Switzerland
Priority to EP19795358.1A priority Critical patent/EP3871271A1/fr
Publication of WO2020084582A1 publication Critical patent/WO2020084582A1/fr
Priority to US17/238,891 priority patent/US20210242359A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • TITLE Semi-transparent thin-film photovoltaic device with optimized metal / native oxide / metal electrical contact
  • the present invention relates to a semi-transparent photovoltaic device in thin layers optimizing the resumption of metal / native oxide / metal contact by dimensioning the contact surface of the second deposited metal.
  • a photovoltaic device designates any type of photovoltaic cells or modules.
  • Photovoltaic modules are composed of a plurality of photovoltaic cells all connected together according to a series, parallel, parallel series or parallel series architecture.
  • a thin-film photovoltaic device refers to photovoltaic devices made up of a stack of thin layers with a thickness of less than 20 ⁇ m (excluding substrate).
  • This thin layer of native oxide a few nanometers thick is most often electrically insulating. This is particularly the case for aluminum and copper oxides.
  • the stack consisting of the metal electrode A, its oxide and the conductor B does not have an improved conductivity as expected by the posterior thickening of the metal electrode because the electrical contact resistance between the two metals is very important, due to the presence between the two metals of the native oxide.
  • the same phenomenon is observed when one seeks to put in series or in parallel a posteriori several photovoltaic cells in order to control the voltage and current levels at the output of the photovoltaic modules.
  • Semi-transparent thin-film photovoltaic devices (based on amorphous silicon for example) are composed of:
  • Photovoltaic zones can be of any shape.
  • the critical dimension of said shape is the smallest of the sizes which characterize it. It is for example a side for a square, the width for a rectangle, the height for a triangle.
  • the critical dimension CD corresponds to the width of said strip.
  • metal / metal type contact resumptions are necessary in order to connect the electrically active zones to the collection and connect the unit cells together (in series and / or parallel) in order to obtain a photovoltaic module.
  • the problem of resumption of metal / metal contact is reinforced in the case of semi-transparent photovoltaic devices, because contact resumption is carried out on surfaces whose widest sides do not exceed a few tens of micrometers, thus generating surfaces contact recovery of a few hundred square micrometers.
  • the metal electrode is aluminum, its native oxide (alumina) can have a thickness of 3 nm to 6 nm.
  • alumina aluminum
  • the combination of this material with a contact surface of just a few hundred square micrometers gives precarious electrical contact, which results in a degradation of the electrical efficiency of the device.
  • a first solution consists in removing the layer of alumina which has formed on its surface before the deposition of the second metal allowing the resumption of contact. It is possible, for example, to use plasma etching, and to deposit the second metal immediately afterwards without having broken the vacuum conditions between the etching step and that of the metallic deposition. This step requires deposition equipment having a plasma module in the deposition chamber or in an annex chamber. This configuration may not be available in production equipment, in which case the investment to upgrade them may be substantial.
  • the present invention seeks to solve the problem of optimizing the recovery of metal / metal contact by considering the case of the use of aluminum and the presence of its native oxide within semi-transparent photovoltaic devices.
  • the object of the invention is to propose a semi-transparent photovoltaic device in thin layers, the metal / metal oxide / metal contact recovery surface has been optimized in order to increase the electrical performance of said photovoltaic device.
  • the invention applies to a semi-transparent photovoltaic device with thin layers comprising at least:
  • a front electrode made of an electrically conductive and transparent material, disposed on the transparent substrate; o an absorber composed of one or more thin photo-active layer (s);
  • a rear electrode consisting of a stack of at least:
  • CDT areas of transparency of critical dimension denoted CDT separating at least two active photovoltaic areas
  • the skilled person would use a Ra ratio of the order of 0.02%.
  • the electrical optimization of contact resumption is not achieved.
  • the invention provides that a ratio Ra of between 0.2% and 2% must be used, i.e. 0.2% ⁇ Ra ⁇ 2%.
  • the subject of the invention is therefore a semi-transparent photovoltaic device with thin layers comprising at least:
  • a front electrode made of an electrically conductive and transparent material, disposed on the transparent substrate; o an absorber composed of one or more thin photo-active layer (s);
  • a rear electrode consisting of a stack of at least: o a metallic conductive layer;
  • a metallic contact recovery layer having a contact surface S with the rear electrode
  • the ratio Ra is between 1.2% and 1.6%, i.e. 1.6% ⁇ Ra ⁇ 1.8%.
  • the metallic conductive layer is made of aluminum and its native oxide is therefore alumina.
  • the metallic contact recovery layer is made of aluminum.
  • the contact surface of the metallic contact recovery layer can be of any shape. It can also be composed of several patterns of any shape, all electrically linked together.
  • the active photovoltaic zones are strips of length L5 and of critical dimension CD5.
  • the contact surface S between the metallic contact recovery layer and the rear electrode is of rectangular shape whose width, ie the critical dimension CD is less than the critical dimension CD5 of the photovoltaic zones.
  • FIG IA is a sectional view of a photovoltaic stack in thin layers.
  • FIG IB is a top view of the photovoltaic stack of [Fig IA] in which several thin layers have been etched in places to form transparency zones and active photovoltaic zones.
  • FIG IC is a top view of the photovoltaic device of [Fig IB] to which have been added the metallic contact recovery zones according to the invention.
  • FIG 1D is a sectional view along the direction X of [Fig IC].
  • FIG 1E is a sectional view from [Fig 1D] to which the insulation layer has been added.
  • FIG 1F is a sectional view from [Fig 1E] to which the metallic contact recovery layers have been added.
  • FIG 2A is a diagram of a part of semi-transparent photovoltaic cell according to the invention.
  • FIG 2B represents the evolution of the total electrical resistance R of photovoltaic devices with the same intrinsic characteristics as a function of the length L of the rectangular contact surface.
  • FIG 3A and FIG 3B are diagrams of photovoltaic cells similar to [Fig 2A] and corresponding to other embodiments of the invention.
  • FIG 3C illustrates an embodiment of a photovoltaic cell not in accordance with the invention.
  • FIG IA is a sectional view of a photovoltaic stack known from the state of the art.
  • the stack is made up:
  • a front electrode (2) formed of a transparent conductive oxide, for example zinc oxide doped with aluminum (ZnO: AI); - an absorber (3) composed of several layers based on amorphous silicon (a_Si) forming a pin junction;
  • the first step of this process consists in making the transparency zones (6T) and in electrically isolating the collection buses (7 +, 7-) by isolation zones (6i).
  • the transparency and insulation zones (6T and 6i) are produced by successive etchings of the thin layers forming the rear electrode, the absorber and the front electrode.
  • FIG IB is a top view of semi-transparent photovoltaic cells whose transparency zones (6T) have the form of horizontal bands parallel to each other and separating in pairs the active photovoltaic zones (5) opaque of critical size CDs (corresponding here to their width) and of length L 5 .
  • the surface S 5 of the photovoltaic strip is therefore equal to the product of the critical dimension CD 5 by the length L 5 .
  • the vertical opaque bands are the collection buses (7 + and 7) electrically isolated from the active photovoltaic zones (5).
  • the collection buses (7 + respectively 7) have a critical dimension denoted CD + ' respectively CD-.
  • the transparency zones (6T) electrically isolate the active photovoltaic strips (5), each of said strips forming unitary photovoltaic cells.
  • the transparency zones (6T) have a critical dimension denoted CDT.
  • Step 1 Within the active photovoltaic zones (5) are engraved contact recovery zones of the VIA type (8). An active photovoltaic zone (4A) near the collection bus (7) is left without VIA. It is precisely within this zone that contact is made between the rear electrode (4) and the metal layer (14), the dimensioning of which is the subject of the invention.
  • FIG 1D is a sectional view of [Fig IC] in direction X where the contact recovery areas of VIA type (8) and the active photovoltaic area (4A) appear near the collection bus (7 ) left without VIA.
  • Step 2 An electrical insulation layer (9) is introduced to electrically isolate the front electrode (2) from the rear electrode (4).
  • FIG 1E is a sectional view from [Fig 1D] to which the insulation layer (9) has been added.
  • This electrical insulation layer is for example a transparent, permanent and photosensitive resin.
  • Rear contact resumption zones (4B) are left vacant within the active photovoltaic zones (4A) available for contact resumption of the rear electrode in order to effect contact resumption on the metal (4).
  • Step 3 A metallic contact recovery layer is then deposited and etched. It is then split into two distinct zones (18 and 14) as shown in [Fig 1F]. It can be engraved for example, thanks to a new photolithography step, to connect the front electrode (2) to the collection bus (7 + ) and the rear electrode (4) to the collection bus (7), and this in order to make the semi-transparent photovoltaic module functional.
  • the invention aims to improve the resumption of contact between the rear electrode (4) and the collection bus (7) by optimizing the contact area S between the rear electrode (4) and the metallic contact resumption layer ( 14).
  • the total surface of said devices is 2.5 cm by 2.5 cm, or 6.26 cm 2 with an area ratio of the transparency zones of 50%.
  • These devices include:
  • a front electrode (2) consisting of zinc oxide doped with aluminum (ZnO: AI);
  • An absorber (3) essentially composed of amorphous silicon (a_Si);
  • the theoretical total electrical resistance was calculated from a modeling of the resistances of the different materials that make up said devices, known to those skilled in the art. Also, the interface resistances, including the metal / native oxide / metal contact resistance, are not taken into account in this calculation.
  • the theoretical total electrical resistance RTH is estimated at 120 W.
  • Current-voltage (IV) measurements made it possible to determine the actual values of the total electrical resistances of each device.
  • Curve 9 TM in [Fig 2B] represents the evolution of the theoretical total electrical resistance RTH as a function of length L. Curve 9 TM is actually a horizontal line which means that the contact resistance does not depend on the length L and is negligible compared to the resistance of the different materials that make up the device, in accordance with the state of the art.
  • Curve 9 of [Fig 2B] represents the evolution of the total electrical resistance R of the devices produced as a function of the length L. Surprisingly, said curve exhibits an exponential type decrease as a function of the length L. For a length of 80 pm, the overall electrical resistance is 2500 W, or about 20 times greater than the theoretical total electrical resistance estimated at 120 W for these devices. The greater the length L, the lower the total electrical resistance R. The shape of the curve tends towards a horizontal asymptote around 150 W. The difference of 30 W with the theoretical value can be explained by errors of the estimation of resistivities and thicknesses of materials, and / or not taking into account interface resistances.
  • the contact surface can take any shape.
  • patterns different from those represented in [Fig 2A] can be chosen to solve problems of definition of patterns for lithography or engraving for example.
  • An example is presented in [Fig 3A].
  • the contact surface is then formed by small rectangles of the same size as the VIAs, electrically connected to each other.
  • all the continuous shapes can be suitable to meet the criteria of the invention, even a heart-shaped pattern as proposed in [Fig 3B].
  • the optimization of the contact surface is only carried out if all of the different parts of said surface are in electrical contact.
  • the surface S is composed of the surfaces Si + S 2 .
  • this arrangement therefore does not allow optimization according to the invention.

Abstract

L'invention concerne un dispositif photovoltaïque semi-transparent à couches minces comportant au moins : - des zones photovoltaïques actives (5), de surface S5, formées: - d'un substrat transparent (1); - d'une électrode avant (2) constituée d'un matériau électriquement conducteur et transparent, disposée sur le substrat transparent; - d'un absorbeur (3) composé d'une ou plusieurs couche(s) mince(s) photo-active(s); - d'une électrode arrière (4) constituée d'un empilement d'au moins : - une couche conductrice métallique (40); - une couche d'oxyde métallique natif (41) d'épaisseur nanométrique; - des zones de transparence (6T) séparant au moins deux zones photovoltaïques actives (5); - une couche métallique de reprise de contact présentant une surface de contact S avec l'électrode arrière (4); caractérisé en ce que le rapport Ra entre la surface de contact S de la couche métallique de reprise de contact et la surface S5 d'une zone photovoltaïque active (5) est tel que 0,2%<Ra<2%.

Description

DESCRIPTION
TITRE : Dispositif photovoltaïque semi-transparent en couches minces pourvu d'un contact électrique métal/oxyde natif/métal optimisé
La présente invention se rapporte à un dispositif photovoltaïque semi- transparent en couches minces optimisant la reprise de contact métal/oxyde natif/métal par le dimensionnement de la surface de contact du second métal déposé.
ETAT DE LA TECHNIQUE
Dans la suite du document, un dispositif photovoltaïque désigne tout type de cellules ou modules photovoltaïques. Les modules photovoltaïques sont composés d'une pluralité de cellules photovoltaïques toutes connectées entre elles selon une architecture série, parallèle, série parallèle ou parallèle série. Un dispositif photovoltaïque en couches minces fait référence à des dispositifs photovoltaïques constitués d'un empilement de couches minces d'épaisseur inférieure à 20 pm (hors substrat).
On distingue dans la littérature plusieurs types de matériaux semi-conducteurs employés dans les dispositifs photovoltaïques, tels que les matériaux solides cristallisés, les matériaux organiques (polymères ou petites molécules) ou encore les couches minces inorganiques (amorphes ou poly cristallines). Dans la plupart des cas, une couche métallique est employée pour collecter les charges électriques générées par ces dispositifs sous illumination. Ces couches métalliques forment généralement une électrode, des bus de collecte ou les interconnexions entre les différentes cellules composant le module photovoltaïque.
Dans la suite du document, on ne considère que les dispositifs photovoltaïques possédant des couches métalliques pour la collecte desdites charges électriques.
Afin d'améliorer les performances des modules photovoltaïques, il est connu de l'homme du métier qu'augmenter par exemple l'épaisseur des électrodes métalliques permet de diminuer les pertes par effet Joule. Dans ce cas, il faut donc mettre en contact un métal A ayant été à l'air libre (l'électrode métallique de la cellule initiale) avec un autre conducteur B pour épaissir ladite électrode, et donc augmenter sa conductivité globale. Cependant, certains métaux, dont l'aluminium (Al) et le cuivre (Cu), couramment utilisés pour former par exemple l'électrode métallique des dispositifs photovoltaïques en couches minces, s'oxydent en surface à l'air libre, voire même dans des atmosphères dont les taux d'oxygène sont contrôlés. Il y a alors formation d'un oxyde appelé couramment oxyde natif. Cette fine couche d'oxyde natif de quelques nanomètres d'épaisseur est le plus souvent isolante électriquement. C'est le cas notamment des oxydes d'aluminium et de cuivre. Dans ce cas, l'empilement constitué de l'électrode métallique A, de son oxyde et du conducteur B ne présente pas une conductivité améliorée telle qu'espérée par l'épaississement a posteriori de l'électrode métallique car la résistance électrique de contact entre les deux métaux est très importante, du fait de la présence entre les deux métaux de l'oxyde natif. Le même phénomène est observé lorsque l'on cherche à mettre en série ou en parallèle à posteriori plusieurs cellules photovoltaïques afin de contrôler les niveaux de tension et de courant en sortie des modules photovoltaïques.
Pour résoudre cette problématique, il existe une solution qui consiste à utiliser une soudure active telle que décrite par la société S-Bond Technologies sur leur site internet à la page httD://www.s-bond.com/bloa/2015/01/12/active-solders-for-solar- panel- manufacture en date du 12 octobre 2018. Cet article explique comment est réalisée la soudure active qui permet de supprimer l'oxyde natif et donc d'augmenter les performances des cellules solaires. Cependant cette technique de soudure n'est pas applicable aux dispositifs photovoltaïques en couches minces.
Les dispositifs photovoltaïques semi-transparents en couches minces (à base de silicium amorphe par exemple) sont composés :
- De surfaces pleines et opaques contenant l'empilement des couches photovoltaïques actives ;
- De surfaces transparentes formées du substrat transparent et éventuellement de matériaux transparents conducteurs ou isolants.
La semi-transparence peut par exemple être réalisée à partir de modules photovoltaïques pleins, c'est-à-dire ne présentant pas de zones de transparence tel que décrit dans le document WO2014/188092 Al. Les zones photovoltaïques (respectivement les zones de transparence) peuvent être de formes quelconques. On définit alors la dimension critique de ladite forme comme étant la plus petite des tailles qui la caractérisent. Il s'agit par exemple d'un côté pour un carré, de la largeur pour un rectangle, de la hauteur pour un triangle. Par exemple, dans le cas d'une bande photovoltaïque, la dimension critique CD correspond à la largeur de ladite bande. Lorsqu'un aspect homogène transparent est recherché (c'est-à-dire lorsqu'on ne souhaite pas distinguer à l'œil nu les zones opaques des zones de transparence), la dimension critique des bandes photovoltaïques est de préférence inférieure à 200 microns.
Après la gravure des différentes couches constituant l'empilement photovoltaïque (la première électrode, la couche active photovoltaïque et la seconde électrode), des reprises de contact de type métal/métal sont nécessaires afin de connecter les zones électriquement actives aux bus de collecte et de connecter les cellules unitaires entre elles (en série et/ou parallèle) afin d'obtenir un module photovoltaïque. La problématique de reprise de contact métal/métal est renforcée dans le cas des dispositifs photovoltaïques semi-transparents, car les reprises de contact sont réalisées sur des surfaces dont les côtés les plus larges n'excèdent pas quelques dizaines de micromètres, générant ainsi des surfaces de reprises de contact de quelques centaines de micromètres carrés. Or si l'électrode métallique est de l'aluminium, son oxyde natif (l'alumine) peut avoir une épaisseur de 3 nm à 6 nm. La combinaison de ce matériau avec une surface de contact d'à peine quelques centaines de micromètres carrés donne un contact électrique précaire, qui se traduit par une dégradation de l'efficacité électrique du dispositif.
Une première solution consiste à supprimer la couche d'alumine qui s'est formée à sa surface avant le dépôt du second métal permettant la reprise de contact. Il est possible d'utiliser par exemple une gravure plasma, et de déposer le second métal immédiatement après sans avoir cassé les conditions de vide entre l'étape de gravure et celle du dépôt métallique. Cette étape nécessite un équipement de dépôt ayant un module plasma dans la chambre de dépôt ou dans une chambre annexe. Cette configuration peut ne pas être disponible dans les équipements de production, auquel cas l'investissement pour les mettre à niveau peut être conséquent.
Une seconde solution pour pallier cette problématique serait de modifier la nature de l'électrode métallique. Cette solution n'est pas intéressante d'un point de vue industriel car l'aluminium est un matériau privilégié dans le cadre des modules photovoltaïques à base de silicium amorphe de par :
- son faible coût ;
- sa faible résistivité ;
- sa compatibilité avec le matériau de la couche active photovoltaïque dans le cas notamment du silicium amorphe ;
- sa facilité à enchaîner des étapes de gravure pour générer la semi- transparence ;
- sa disponibilité et sa maîtrise par les industriels des procédés de dépôt et de gravure.
On connaît également de par les documents US 2010/163106 Al et US 2011/287568 Al des dispositifs photovoltaïques semi-transparents à couches minces cherchant à améliorer la tenue des couches des dispositifs à des contraintes mécaniques, mais ces dispositifs ne se préoccupent pas de la dimension de la reprise de contact et de ses conséquences électriques.
La présente invention cherche à résoudre la problématique d'optimisation de la reprise de contact métal/métal en considérant le cas de l'utilisation de l'aluminium et de la présence de son oxyde natif au sein des dispositifs photovoltaïques semi- transparents.
BUT DE L'INVENTION
L'invention a pour but de proposer un dispositif photovoltaïque semi- transparent en couches minces dont la surface de reprise de contact métal/oxyde métallique/métal a été optimisée afin d'augmenter les performances électriques dudit dispositif photovoltaïque.
OBJETS DE L'INVENTION
L'invention s'applique à un dispositif photovoltaïque semi-transparent à couches minces comportant au moins :
- des zones photovoltaïques actives, de surface notée S5, formées: o d'un substrat transparent ;
o d'une électrode avant constituée d'un matériau électriquement conducteur et transparent, disposée sur le substrat transparent ; o d'un absorbeur composé d'une ou plusieurs couche(s) mince(s) photo-active(s) ;
- d'une électrode arrière constituée d'un empilement d'au moins :
o une couche conductrice métallique ;
o une couche d'oxyde métallique natif d'épaisseur nanométrique ;
- des zones de transparence de dimension critique notée CDT séparant au moins deux zones photovoltaïques actives ;
- une couche métallique de reprise de contact de surface de contact S avec l'électrode arrière.
On définit le rapport Ra comme le rapport entre la surface de contact S de la couche métallique de reprise de contact et la surface S5 d'une zone photovoltaïque active, i.e. Ra=S/Ss. Lors de la fabrication de reprises de contact au sein de dispositifs semi-conducteur, l'homme du métier utiliserait un rapport Ra de l'ordre de 0,02%. Cependant, en utilisant ce rapport dans le dispositif photovoltaïque semi-transparent en couches minces décrit ci-dessus, l'optimisation électrique de la reprise de contact n'est pas atteinte. Pour atteindre cette optimisation électrique, de manière surprenante, l'invention prévoit qu'il faut utiliser un rapport Ra compris entre 0,2% et 2%, i.e. 0,2%<Ra<2%.
L'invention a par conséquent pour objet un dispositif photovoltaïque semi- transparent à couches minces comportant au moins :
- des zones photovoltaïques actives, de surface S5, formées:
o d'un substrat transparent ;
o d'une électrode avant constituée d'un matériau électriquement conducteur et transparent, disposée sur le substrat transparent ; o d'un absorbeur composé d'une ou plusieurs couche(s) mince(s) photo-active(s) ;
- d'une électrode arrière constituée d'un empilement d'au moins : o une couche conductrice métallique ;
o une couche d'oxyde métallique natif d'épaisseur nanométrique ;
- des zones de transparence séparant au moins deux zones photovoltaïques actives;
- une couche métallique de reprise de contact présentant une surface de contact S avec l'électrode arrière ;
caractérisé en ce que le rapport Ra=S/Ss entre la surface de contact S de la couche métallique de reprise de contact et la surface S5 d'une zone photovoltaïque active est tel que 0,2%<Ra<2%.
Afin de garantir le meilleur compromis entre surface active photovoltaïque et optimisation électrique, avantageusement, le rapport Ra est compris entre 1,2% et 1,6%, i.e. l,6%<Ra< l,8%.
Préférentiellement, la couche conductrice métallique est en aluminium et son oxyde natif est donc de l'alumine. Avantageusement, la couche métallique de reprise de contact est en aluminium.
La surface de contact de la couche métallique de reprise de contact peut être de forme quelconque. Elle peut aussi être composée de plusieurs motifs de forme quelconque tous électriquement reliés entre eux.
Lorsque les modules photovoltaïques semi-transparents présentent une architecture en bandes, les zones photovoltaïques actives sont des bandes de longueur L5 et de dimension critique CD5. Avantageusement, la surface S de contact entre la couche métallique de reprise de contact et l'électrode arrière est de forme rectangulaire dont la largeur, i.e. la dimension critique CD est inférieure à la dimension critique CD5 des zones photovoltaïques. DESCRIPTION DETAILLEE
L'invention est maintenant décrite plus en détail à l'aide de la description des [Fig 1] à [Fig 3].
La [Fig IA] est une vue en coupe d'un empilement photovoltaïque en couches minces.
La [Fig IB] est une vue de dessus de l'empilement photovoltaïque de la [Fig IA] au sein duquel plusieurs couches minces ont été gravées par endroits pour former des zones de transparence et des zones photovoltaïques actives.
La [Fig IC] est une vue de dessus du dispositif photovoltaïque de la [Fig IB] auquel ont été ajoutées les zones de reprise de contact métalliques selon l'invention.
La [Fig 1D] est une vue en coupe selon la direction X de la [Fig IC].
La [Fig 1E] est une vue en coupe issue de la [Fig 1D] à laquelle a été ajoutée la couche d'isolation.
La [Fig 1F] est une vue en coupe issue de la [Fig 1E] à laquelle ont été ajoutées les couches métalliques de reprise de contact.
La [Fig 2A] est un schéma d'une partie de cellule photovoltaïque semi- transparente selon l'invention.
La [Fig 2B] représente l'évolution de la résistance R électrique totale de dispositifs photovoltaïques de mêmes caractéristiques intrinsèques en fonction de la longueur L de la surface rectangulaire de contact.
Les [Fig 3A] et [Fig 3B] sont des schémas de cellules photovoltaïques similaires à la [Fig 2A] et correspondant à d'autres modes de réalisation de l'invention ;
La [Fig 3C] illustre un mode de réalisation de cellule photovoltaïque non conforme à l'invention.
La [Fig IA] est une vue en coupe d'un empilement photovoltaïque connu de l'état de l'art. Dans cet exemple, l'empilement est constitué :
- d'un substrat en verre (1) ;
- d'une électrode avant (2) formée d'un oxyde conducteur transparent, par exemple de l'oxyde de zinc dopé à l'aluminium (ZnO:AI); - d'un absorbeur (3) composé de plusieurs couches à base de silicium amorphe (a_Si) formant une jonction p-i-n ;
- d'une électrode arrière (4) formée :
o d'une couche d'aluminium (41) ;
o d'une couche d'oxyde natif (42) d'alumine.
Il est possible de transformer cet empilement, par des procédés de gravure photo lithographique et de dépôt connus de l'homme du métier, pour obtenir un module photovoltaïque semi-transparent. La première étape de ce procédé consiste à réaliser les zones de transparence (6T) et à isoler électriquement les bus de collecte (7+,7-) par des zones d'isolation (6i) . Les zones de transparence et d'isolation (6T et 6i) sont réalisées par gravures successives des couches minces formant l'électrode arrière, l'absorbeur et l'électrode avant.
La [Fig IB] est une vue de dessus des cellules photovoltaïques semi- transparentes dont les zones de transparence (6T) ont la forme de bandes horizontales parallèles entre elles et séparant deux à deux les zones photovoltaïques actives (5) opaques de dimension critique CDs (correspondant ici à leur largeur) et de longueur L5. La surface S5 de la bande photovoltaïque est donc égale au produit de la dimension critique CD5 par la longueur L5. Les bandes opaques verticales sont les bus de collecte (7+et 7 ) isolés électriquement des zones photovoltaïques actives (5). Les bus de collecte (7+ respectivement 7 ) ont une dimension critique notée CD+ ' respectivement CD-. Les zones de transparence (6T) isolent électriquement les bandes photovoltaïques actives (5), chacune desdites bandes formant des cellules photovoltaïques unitaires. Les zones de transparence (6T) ont une dimension critique notée CDT.
Afin de connecter électriquement (en série et/ou parallèle) ces zones photovoltaïques actives isolées aux bus de collecte (7+ et 7 ) pour obtenir un module photovoltaïque, il est nécessaire de réaliser d'une part un contact électrique entre l'électrode avant (2) et l'un des bus de collecte (7+) et d'autre part un contact électrique entre l'électrode arrière (4) et l'autre bus de collecte (7 ).
La réalisation d'une reprise de contact de type VIA (8) et de type électrode arrière (4) comprend plusieurs étapes successives qui peuvent être réalisées simultanément. Etape 1 : Au sein des zones photovoltaïques actives (5) sont gravées des zones de reprise de contact de type VIA (8). Une zone photovoltaïque active (4A) à proximité du bus de collecte (7 ) est laissée sans VIA. C'est précisément au sein de cette zone qu'est réalisée la reprise de contact entre électrode arrière (4) et couche métallique (14) dont le dimensionnement est objet de l'invention. La [Fig 1D] est une vue en coupe de la [Fig IC] selon la direction X où apparaissent les zones de reprise de contact de type VIA (8) et la zone photovoltaïque active (4A) à proximité du bus de collecte (7 ) laissé sans VIA.
Etape 2 : Une couche d'isolation électrique (9) est introduite pour isoler électriquement l'électrode avant (2) de l'électrode arrière (4). La [Fig 1E] est une vue en coupe issue de la [Fig 1D] à laquelle a été ajoutée la couche d'isolation (9). Cette couche d'isolation électrique est par exemple une résine transparente, permanente et photosensible. Des zones de reprise du contact arrière (4B) sont laissées vacantes au sein des zones photovoltaïques actives (4A) disponibles pour la reprise de contact de l'électrode arrière afin de réaliser la reprise de contact sur le métal (4).
Etape 3 : Une couche métallique de reprise de contact est alors déposée et gravée. Elle est alors scindée en deux zones distinctes (18 et 14) tel que représenté à la [Fig 1F]. Elle peut être gravée par exemple, grâce à une nouvelle étape de photolithographie, pour connecter l'électrode avant (2) au bus de collecte (7+) et l'électrode arrière (4) au bus de collecte (7 ), et ce afin de rendre fonctionnel le module photovoltaïque semi-transparent.
L'invention vise à améliorer la reprise de contact entre l'électrode arrière (4) et le bus de collecte (7 ) en optimisant la surface S de contact entre l'électrode arrière (4) et la couche métallique de reprise de contact (14).
Afin de déterminer les caractéristiques optimales de ladite surface de contact, plusieurs dispositifs photovoltaïques semi-transparents à couches minces ont été réalisés dont un exemple est décrit à la [Fig 2A]. Lesdits dispositifs possèdent les mêmes caractéristiques physiques et architecturales. Le processus de fabrication est entièrement identique pour toutes les versions desdits dispositifs réalisés. Ces dispositifs ne diffèrent que par la surface S de contact entre l'électrode arrière (4) et la couche métallique de reprise de contact (14). La surface S est dans ces dispositifs de forme rectangulaire, de dimension critique CD de 8 pm et de longueur L. Cette longueur L varie de 80 pm à 960 pm selon le dispositif considéré.
La surface totale desdits dispositifs est de 2,5 cm par 2,5 cm, soit 6,26 cm2 avec un taux surfacique des zones de transparence de 50%. Ces dispositifs comportent :
- Un substrat transparent (1) en verre ;
- Une électrode avant (2) constituée d'oxyde de zinc dopé à l'aluminium (ZnO:AI) ;
- Un absorbeur (3) composé essentiellement de silicium amorphe (a_Si) ;
- Une électrode arrière (4) métallique formée :
o d'une couche d'aluminium (40) de 500 nm et d'une rugosité superficielle moyenne quadratique de 15 nm ;
o d'une couche d'oxyde natif (41) d'alumine de 4 nm ;
- deux bus de collecte (7+ et 7 ) de dimension critique CD+ et CD- de 1 mm ;
- des zones photovoltaïques actives (5) dont la dimension critique CDs est de 15 pm et dont la longueur Ls est de 23 mm, donc une surface Ss de 345 000 pm2;
- des zones de transparence (6T) dont la dimension critique CDT est de 15 pm,
- une couche métallique de reprise de contact (14) métal/oxyde natif/métal en aluminium de 500 nm d'épaisseur, déposée par pulvérisation dans un équipement ne permettant pas de réaliser une gravure plasma de l'alumine natif.
La résistance électrique totale théorique a été calculée à partir d'une modélisation des résistances des différents matériaux qui composent lesdits dispositifs, connue de l'homme du métier. Aussi, les résistances d'interfaces, y compris la résistance de contact métal/oxyde natif/métal, ne sont pas prises en compte dans ce calcul. La résistance électrique totale théorique RTH est estimée à 120 W. Des mesures courant-tension (I-V) ont permis de déterminer les valeurs réelles des résistances électriques totales de chaque dispositif. La courbe 9™ de la [Fig 2B] représente l'évolution de la résistance électrique totale théorique RTH en fonction de la longueur L. La courbe 9™ est en réalité une droite horizontale qui signifie que la résistance de contact ne dépend pas de la longueur L et est négligeable par rapport à la résistance des différents matériaux qui composent le dispositif, conformément à l'état de l'art. La courbe 9 de la [Fig 2B] représente l'évolution de la résistance électrique totale R des dispositifs réalisés en fonction de la longueur L. De manière surprenante, ladite courbe présente une décroissance de type exponentielle en fonction de la longueur L. Pour une longueur de 80 pm, la résistance électrique globale est de 2500 W, soit environ 20 fois supérieure à la résistance électrique totale théorique estimée à 120 W pour ces dispositifs. Plus la longueur L est grande, plus faible est la résistance électrique totale R. L'allure de la courbe tend vers une asymptote horizontale aux alentours de 150 W. La différence de 30 W avec la valeur théorique peut s'expliquer par des erreurs de l'estimation des résistivités et des épaisseurs de matériaux, et/ou la non prise en compte des résistances d'interfaces.
On considère que le contact est optimisé lorsque la résistance R électrique totale atteint 125% de la valeur obtenue grâce à l'asymptote à la courbe. Dans notre cas, cela correspond à une valeur L=800 pm et donc à une surface S de 6 400 pm2. Le rapport de la surface de Ra = S/S5 = 6400/345000 = 0,018 = 1,8%. Or l'homme du métier, aurait utilisé une couche métallique de reprise de contact métal/oxyde natif/métal de l'ordre de grandeur de la dimension critique de la bande photovoltaïque mais légèrement inférieure à cette dernière, c'est-à-dire par exemple, une surface de l'ordre de 14*14 pm2 = 196 pm2 soit un rapport d'à peine Ra=196/345000=0,057%. Dans cet exemple, entre l'optimisation selon l'invention et le choix prévisible de l'homme du métier, il y a un rapport 32 entre les deux surfaces de la couche métallique de reprise de contact métal/oxyde natif/métal.
Bien que l'exemple de la [Fig 2A] explicité ci-dessus concerne une forme rectangulaire, la surface de contact peut prendre n'importe quelle forme. Pour des raisons de procédés photo -lithographiques, des motifs différents de ceux représentés dans la [Fig 2A] peuvent être choisis pour résoudre des problématiques de définition des motifs pour la lithographie ou la gravure par exemple. Un exemple est présenté à la [Fig 3A]. La surface de contact est alors formée par des petits rectangles de même dimension que les VIAs, reliés électriquement entre eux. Cependant, toutes les formes continues peuvent convenir pour répondre aux critères de l'invention, même un motif en forme de cœur tel que proposé à la [Fig 3B].
Selon l'invention, l'optimisation de la surface de contact n'est réalisée que si l'ensemble des différentes parties de ladite surface sont en contact électrique. Par exemple, dans l'exemple de la [Fig 3C], la surface S est composée des surfaces Si + S2. Cependant Si et S2 ne sont pas reliées électriquement ensemble, cet agencement ne permet donc pas l'optimisation selon l'invention.
[Table 1]
Figure imgf000014_0001
Figure imgf000015_0001

Claims

REVENDICATIONS
1) Dispositif photovoltaïque semi-transparent à couches minces comportant au moins :
- des zones photovoltaïques actives (5), de surface Ss, formées :
- d'un substrat transparent (1) ;
- d'une électrode avant (2) constituée d'un matériau électriquement conducteur et transparent, disposée sur le substrat transparent ;
- d'un absorbeur (3) composé d'une ou plusieurs couche(s) mince(s) photo-active(s) ;
- d'une électrode arrière (4) constituée d'un empilement d'au moins :
- une couche conductrice métallique (40);
- une couche d'oxyde métallique natif (41) d'épaisseur nanométrique ;
- des zones de transparence (6T) séparant au moins deux zones
photovoltaïques actives (5);
- une couche métallique de reprise de contact présentant une surface de contact S avec l'électrode arrière (4) ;
caractérisé en ce que le rapport Ra=S/Ss entre la surface de contact S de la couche métallique de reprise de contact et la surface Ss d'une zone
photovoltaïque active (5) est tel que 0,2%<Ra<2%.
2) Dispositif photovoltaïque semi-transparent à couches minces selon la
revendication précédente, caractérisé en ce que le rapport Ra est tel que l,6%<Ra<2%.
3) Dispositif photovoltaïque semi-transparent à couches minces selon l'une
quelconque des revendications précédentes, caractérisé en ce que la couche conductrice métallique (40) est en aluminium et sa couche d'oxyde natif (41) en alumine.
4) Dispositif photovoltaïque semi-transparent à couches minces selon l'une
quelconque des revendications précédentes, caractérisé en ce que la couche métallique de reprise de contact est en aluminium.
5) Dispositif photovoltaïque semi-transparent à couches minces selon l'une
quelconque des revendications précédentes, caractérisé en ce que la surface de contact de la couche métallique de reprise de contact est composée de plusieurs motifs de forme quelconque tous électriquement reliés entre eux.
6) Dispositif photovoltaïque semi-transparent à couches minces selon l'une
quelconque des revendications précédentes, caractérisé en ce que lesdites zones photovoltaïques actives sont des bandes de longueur l_5 et de dimension critique CD5.
7) Dispositif photovoltaïque semi-transparent à couches minces selon la
revendication précédente, caractérisé en ce que la surface S de contact entre la couche métallique de reprise de contact et l'électrode arrière (4) est de forme rectangulaire dont la dimension critique CD est inférieure à la dimension critique CD5 des zones photovoltaïques.
PCT/IB2019/059164 2018-10-26 2019-10-25 Dispositif photovoltaïque semi-transparent en couches minces pourvu d'un contact électrique métal/oxyde natif/métal optimisé WO2020084582A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19795358.1A EP3871271A1 (fr) 2018-10-26 2019-10-25 Dispositif photovoltaïque semi-transparent en couches minces pourvu d'un contact électrique métal/oxyde natif/métal optimisé
US17/238,891 US20210242359A1 (en) 2018-10-26 2021-04-23 Semi-transparent thin-film photovoltaic device provided with an optimized metal/native oxide/metal electrical contact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1801136A FR3087940B1 (fr) 2018-10-26 2018-10-26 Dispositif photovoltaique semi-transparent en couches minces pourvu d'un contact electrique métal/oxyde natif/métal optimisé
FRFR1801136 2018-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/238,891 Continuation US20210242359A1 (en) 2018-10-26 2021-04-23 Semi-transparent thin-film photovoltaic device provided with an optimized metal/native oxide/metal electrical contact

Publications (1)

Publication Number Publication Date
WO2020084582A1 true WO2020084582A1 (fr) 2020-04-30

Family

ID=65685405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/059164 WO2020084582A1 (fr) 2018-10-26 2019-10-25 Dispositif photovoltaïque semi-transparent en couches minces pourvu d'un contact électrique métal/oxyde natif/métal optimisé

Country Status (4)

Country Link
US (1) US20210242359A1 (fr)
EP (1) EP3871271A1 (fr)
FR (1) FR3087940B1 (fr)
WO (1) WO2020084582A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115719769B (zh) * 2022-11-23 2023-10-17 信利半导体有限公司 一种薄膜光伏电池、电池组及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163106A1 (en) 2007-06-12 2010-07-01 Shinsuke Tachibana Thin film solar cell and method of manufacturing the same
US20110287568A1 (en) 2009-02-06 2011-11-24 Yuji Suzuki Method of manufacturing thin film solar cell
US20120305071A1 (en) * 2009-11-26 2012-12-06 Constellium Switzerland Ag Substrate having a metal film for producing photovoltaic cells
WO2014188092A1 (fr) 2013-05-23 2014-11-27 Sunpartner Technologies Mono cellule photovoltaïque semi-transparente en couches minces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100163106A1 (en) 2007-06-12 2010-07-01 Shinsuke Tachibana Thin film solar cell and method of manufacturing the same
US20110287568A1 (en) 2009-02-06 2011-11-24 Yuji Suzuki Method of manufacturing thin film solar cell
US20120305071A1 (en) * 2009-11-26 2012-12-06 Constellium Switzerland Ag Substrate having a metal film for producing photovoltaic cells
WO2014188092A1 (fr) 2013-05-23 2014-11-27 Sunpartner Technologies Mono cellule photovoltaïque semi-transparente en couches minces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNGSEOK CHAE ET AL: "Metal-dielectric-metal resonators with deep subwavelength dielectric layers increase the near-field SEIRA enhancement", OPTICS EXPRESS, vol. 23, no. 20, 24 September 2015 (2015-09-24), pages 25912 - 25922, XP055596628, DOI: 10.1364/OE.23.025912 *

Also Published As

Publication number Publication date
EP3871271A1 (fr) 2021-09-01
FR3087940B1 (fr) 2021-07-23
FR3087940A1 (fr) 2020-05-01
US20210242359A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
EP0500451B1 (fr) Dispositif photovoltaique et module solaire à transparence partielle, et procédé de fabrication
WO2014188092A1 (fr) Mono cellule photovoltaïque semi-transparente en couches minces
FR2906406A1 (fr) Procede de realisation de cellule photovoltaique a heterojonction en face arriere.
EP2135293A2 (fr) Dispositif photovoltaïque a structure a heterojonctions interdigitee discontinue
FR2985606A1 (fr) Procede pour realiser un module photovoltaique avec deux etapes de gravure p2 et p3 et module photovoltaique correspondant.
EP3042398B1 (fr) Module photovoltaïque semi-transparent et procédé d&#39;obtention correspondant
FR3023067A1 (fr) Cellules tandem multifils
EP2845227A1 (fr) Gravure par laser d&#39;un empilement de couches minces pour une connexion de cellule photovoltaïque
FR2961022A1 (fr) Cellule photovoltaïque pour application sous flux solaire concentre
FR2939239A1 (fr) Module photovoltaique comprenant une electrode transparente conductrice d&#39;epaisseur variable et procedes de fabrication d&#39;un tel module
EP3871271A1 (fr) Dispositif photovoltaïque semi-transparent en couches minces pourvu d&#39;un contact électrique métal/oxyde natif/métal optimisé
WO2017103350A1 (fr) Dispositif optique pour diminuer la visibilite des interconnexions electriques dans des modules photovoltaiques semi-transparents en couches minces
EP3776665B1 (fr) Optimisation du contact électrique métal/métal dans un dispositif photovoltaïque semi-transparent en couches minces
WO2013105024A1 (fr) Procede pour realiser un module photovoltaïque avec deux etapes de gravure p1 et p3 et module photovoltaïque correspondant
WO2006077342A1 (fr) Procede de metallisation d&#39;un dispositif semi-conducteur
EP2842170B1 (fr) Procédé de réalisation d&#39;un réflecteur texturé pour une cellule photovoltaïque en couches minces et réflecteur texturé ainsi obtenu
EP3968397B1 (fr) Dispositif piézoélectrique à nano-objets allongés piézoélectriques
FR3086458A1 (fr) Dispositif photovoltaique semi-transparent avec une grille de collecte du courant electrique optimisee
WO2016041986A1 (fr) Dispositif photovoltaïque semi-transparent avec trou traversant
WO2014029836A2 (fr) Procede de realisation de contacts electriques d&#39;un dispositif semi-conducteur
EP3371838A1 (fr) Substrat pour encre conductrice
FR3026228A1 (fr) Dispositif semi-photovoltaique semi-transparent a cellules en serie par interconnexion monolithique
FR3023062A1 (fr) Cellule photovoltaique a heterojonction de silicium et procede de fabrication d&#39;une telle cellule
FR2675633A1 (fr) Dispositif photovoltauique a isolation renforcee et son procede de realisation.
FR3021808A1 (fr) Procede ameliore de realisation d&#39;une cellule solaire dotee de regions d&#39;oxyde transparent de conductivite modifiee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019795358

Country of ref document: EP

Effective date: 20210526