WO2020083622A1 - Use of an optical current sensor for measuring currents in compensation reactors and transformers - Google Patents

Use of an optical current sensor for measuring currents in compensation reactors and transformers Download PDF

Info

Publication number
WO2020083622A1
WO2020083622A1 PCT/EP2019/076726 EP2019076726W WO2020083622A1 WO 2020083622 A1 WO2020083622 A1 WO 2020083622A1 EP 2019076726 W EP2019076726 W EP 2019076726W WO 2020083622 A1 WO2020083622 A1 WO 2020083622A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
current sensor
optical current
optical
bushing
Prior art date
Application number
PCT/EP2019/076726
Other languages
German (de)
French (fr)
Inventor
Hannes BACHKÖNIG
Jürgen HOCHEGGER
Thomas JUDENDORFER
Kurt KAINEDER
Gerald Leber
Alexander Nijhuis
Udo Prucker
Alfons-Karl Schrammel
Stefan Schuberth
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2020083622A1 publication Critical patent/WO2020083622A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements

Definitions

  • the present invention relates to a switching line or a bushing for a transformer or a compensation choke.
  • the present invention relates to a transformer or a compensation choke and the use of an optical current sensor for measuring currents in a transformer or a compensation choke.
  • inductive current transformers for example toroidal core current transformers
  • toroidal core current transformers are usually used in the prior art for the purpose of this measurement, the specific current transformer used in each case having to be adapted to the special type of transformer in which the current transformer is to be installed.
  • the present invention is therefore based on the object of solving the problems described above in connection with the measurement of currents in transformers and compensation chokes.
  • means are to be provided with the aid of which the currents in transformers and compensation chokes can be measured with a reduced space requirement and wiring complexity compared to the prior art.
  • these means should cover a wide measuring range and should therefore be universally applicable for a wide variety of transformer or compensation choke types and for a wide variety of load points.
  • a switching line or a bushing for a transformer or a compensation choke comprises an optical current sensor for measuring an electrical current, preferably based on the Faraday effect.
  • an optical current sensor known per se
  • a magnetic field which is caused by an electrical current flowing in a current conductor, can first be measured and the current intensity itself thereby determined.
  • the Faraday effect is used here.
  • the Faraday effect is understood to mean the rotation of the plane of polarization of a linearly polarized, electromagnetic wave, for example of linearly polarized light, which propagates in a transparent medium in the presence of a magnetic field. The angle of this rotation is proportional to the prevailing magnetic flux density and the path covered by the wave in the medium.
  • the Verdet constant forms the proportionality factor of this dependency; their value depends on the medium in which the electromagnetic wave propagates and on the wavelength of the propagating electromagnetic wave.
  • a Faraday element in the form of an optically transparent material which shows the Faraday effect is arranged in the vicinity of the current conductor. Linearly polarized light is injected into this Faraday element.
  • the magnetic field generated by the electrical current flowing through the current conductor causes the plane of polarization of the light propagating in the Faraday element to rotate by an angle, which is determined by an evaluation unit of the electrical current sensor as a measure of the strength of the magnetic field and thus also of the strength of the electrical Electricity is evaluated.
  • EP 1 101 124 A2 Siemens AG
  • the optical current sensor can particularly preferably be designed as an optical ring sensor, that is to say have an annular design.
  • the available space within the transformer or the compensation choke can be taken into account particularly well.
  • the Faraday element of the optical current sensor is designed as a prism block, preferably made of BSO or BGO single crystal, ferromagnetic material or flint glass, or as a glass fiber optical waveguide.
  • BSO and BGO are bismuth silicon or bismuth germanium oxides. Possible designs are Bi12Si020, Bi4Si3012, Bil2GeO20 or Bi4Ge3012.
  • a rare earth garnet is particularly suitable as a ferromagnetic material.
  • a suitable substance of this type is, for example, yttrium iron garnet.
  • the formation of the Faraday element of the optical current sensor as a prism block has the advantage that the measurement is comparatively insensitive to temperature; a Faraday element designed as a glass fiber optical waveguide is in turn much easier to install and thus facilitates installation in the transformer according to the invention or the compensation choke according to the invention.
  • the advantages described above are also achieved by a transformer according to the invention or by a compensation choke according to the invention, namely when at least one voltage system of the transformer or the compensation choke is designed according to one of the embodiments described above.
  • the transformer or the compensation choke according to the invention is characterized in that at least one switching line or bushing of the transformer or the compensation choke is designed according to one of the embodiments described above.
  • the transformer according to the invention is particularly preferably designed as a power transformer.
  • the optical current sensor is in one Active part of the transformer is arranged.
  • the optical current sensor is particularly preferably arranged in a bushing of the transformer.
  • the outlay associated with the installation of the current sensor can be kept very low, which enables inexpensive manufacture of transformers of this embodiment. Maintenance is also simplified by this arrangement of the current sensor in the transformer.
  • the optical current sensor is arranged in the region of switching lines or the wiring of the transformer. This arrangement of the optical current sensor within the transformer enables the currents to be measured by means integrated in the transformer. Since the wiring complexity associated with the installation of the optical current sensor in transformers of this embodiment is low, manufacturing costs can be kept lower.
  • the objects on which the invention is based are generally achieved by using an optical current sensor for measuring currents in a transformer or in a compensation choke.
  • the optical current sensor preferably comprises a Faraday element, which Faraday element is designed as a prism block, preferably made of BSO or BGO single crystal, ferromagnetic material or flint glass, or as a glass fiber optical waveguide.
  • Fig. 1 shows a transformer according to the invention with a
  • Fig. 1 shows a dome 4 and a bushing 5 of a high-performance transformer.
  • the dome 4 is part of a rejection area of the transformer, the section in FIG. 1 running through the dome 4.
  • winding ends of the various voltage systems are led out of the windings and connected (e.g. in a delta or star connection) with a so-called switching line.
  • the switching line connects the windings to each other and to the corresponding bushings of the transformer depending on the desired connection.
  • the switching cables are led out of the transformer tank by means of bushings.
  • the design of the bushings depends on the rated voltage and the associated test voltage levels as well as the Bernessungsstrom.
  • the winding end 6 of a coil 1 is arranged within the calotte 4 in such a way that an electrical current flowing through the coil 1 can be measured by means of an optical current sensor 2.
  • an optical current sensor 2 Via a Faraday element 3 of the optical current sensor 2, which consists of a suitable, optically transparent material, a magnetic field caused by the current flow is measured and, based on this measurement, calculated back to the current intensity in the coil 1 itself (for example via the Biot-Savart Law).
  • the magnetic flux density prevailing in the region of the Faraday element 3 leads to a rotation of a plane of polarization of a linearly polarized light wave by a certain angle, while the light wave propagates through the Faraday element 3. Knowing the material properties and dimensions of the Faraday element 3 thus makes it possible to precisely determine the current intensity of the electrical current flowing in the coil 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The invention relates to a switching line or bushing (5) for a transformer or compensation reactor, said switching line or bushing (5) comprising at least one optical current sensor (2) for measuring an electric current, preferably on the basis of the Faraday effect.

Description

Beschreibung description
Verwendung eines optischen Stromsensors zur Messung von Using an optical current sensor to measure
Strömen in Kompensationsdrosseln und Transformatoren Currents in compensation chokes and transformers
Gebiet der Erfindung Field of the Invention
Die vorliegende Erfindung betrifft eine Schaltleitung oder eine Durchführung für einen Transformator oder eine Kompensationsdrossel . The present invention relates to a switching line or a bushing for a transformer or a compensation choke.
Außerdem betrifft die vorliegende Erfindung einen Transformator oder eine Kompensationsdrossel sowie die Verwendung eines optischen Stromsensors zur Messung von Strömen in einem Transformator oder einer Kompensationsdrossel . In addition, the present invention relates to a transformer or a compensation choke and the use of an optical current sensor for measuring currents in a transformer or a compensation choke.
Stand der Technik State of the art
Zum sicheren Betrieb von Transformatoren, insbesondere Leistungs- bzw. Hochspannungstransformatoren, ist es erforderlich, jene Ströme zu messen, welche im Betriebszustand in den Spulen fließen. Diese Messgrößen werden in weiterer Folge einer Schutzeinrichtung, insbesondere einem Überlastschutz für den Transformator, zur Verfügung gestellt, wodurch Beschädigungen des Transformators vermieden werden können. For the safe operation of transformers, in particular power or high-voltage transformers, it is necessary to measure those currents which flow in the coils in the operating state. These measured variables are subsequently made available to a protective device, in particular an overload protection for the transformer, whereby damage to the transformer can be avoided.
Selbiges gilt für den Betrieb von Kompensationsdrosseln. The same applies to the operation of compensation chokes.
Im Stand der Technik werden zum Zwecke dieser Messung üblicherweise konventionelle, induktive Stromwandler, beispielsweise Ringkern-Stromwandler, eingesetzt, wobei der konkret verwendete Stromwandler jeweils an den speziellen Transformatorentyp, in welchen der Stromwandler eingebaut werden soll, angepasst sein muss. Insbesondere muss der verwendete Stromwandler an den jeweiligen Last- bzw. Arbeitspunkt des Transformators angepasst sein. Conventional inductive current transformers, for example toroidal core current transformers, are usually used in the prior art for the purpose of this measurement, the specific current transformer used in each case having to be adapted to the special type of transformer in which the current transformer is to be installed. In particular, the current transformers used to be adapted to the respective load or operating point of the transformer.
Der Einsatz solcher Stromwandler zur Messung von Strömen in Transformatoren geht mit einem entsprechend hohen Platzbedarf sowie einem entsprechenden Verdrahtungsaufwand, üblicherweise im Bereich der Durchführungen oder an Schaltleitungen im Kessel des Transformators, einher. Insbesondere bei mobilen Transformatoren stellt dies ein erhebliches technisches Problem dar. The use of such current transformers for measuring currents in transformers is associated with a correspondingly high space requirement and a corresponding wiring outlay, usually in the area of the bushings or on switching lines in the boiler of the transformer. This is a significant technical problem, particularly with mobile transformers.
Aufgabe der Erfindung Object of the invention
Somit liegt der vorliegenden Erfindung die Aufgabe zu Grunde, die oben beschriebenen Probleme im Zusammenhang mit der Messung von Strömen in Transformatoren und Kompensationsdrosseln zu lösen. The present invention is therefore based on the object of solving the problems described above in connection with the measurement of currents in transformers and compensation chokes.
Insbesondere sollen Mittel bereitgestellt werden, mit deren Hilfe die Ströme in Transformatoren und Kompensationsdrosseln mit im Vergleich zum Stand der Technik vermindertem Platzbedarf und Verdrahtungsaufwand gemessen werden können. Zudem sollen diese Mittel einen weiten Messbereich abdecken und somit universal für verschiedenste Transformator- bzw. Kompensationsdrossel-Typen und für verschiedenste Lastpunkte einsetzbar sein. In particular, means are to be provided with the aid of which the currents in transformers and compensation chokes can be measured with a reduced space requirement and wiring complexity compared to the prior art. In addition, these means should cover a wide measuring range and should therefore be universally applicable for a wide variety of transformer or compensation choke types and for a wide variety of load points.
Darstellung der Erfindung Presentation of the invention
Erfindungsgemäß wird diese Aufgabe gelöst, indem eine Schaltleitung oder eine Durchführung für einen Transformator oder eine Kompensationsdrossel einen optischen Stromsensor zur Messung eines elektrischen Stromes, vorzugsweise auf Basis des Faraday-Effekts , umfasst. Mittels eines an sich bekannten optischen Stromsensors kann zunächst ein Magnetfeld, welches durch einen in einem Stromleiter fließenden elektrischen Strom hervorgerufen wird, gemessen und dadurch die Stromstärke selbst bestimmt werden. Dabei wird der Faraday-Effekt genutzt. Unter dem Faraday- Effekt versteht man die Drehung der Polarisationsebene einer linear polarisierten, elektromagnetischen Welle, etwa von linear polarisiertem Licht, welche sich in einem transparenten Medium in Anwesenheit eines Magnetfelds ausbreitet. Der Winkel dieser Drehung ist dabei proportional zur vorherrschenden magnetischen Flussdichte sowie dem von der Welle zurückgelegten Weg im Medium. Die Verdet-Konstante bildet den Proportionalitätsfaktor dieser Abhängigkeit; ihr Wert hängt von dem Medium, in dem sich die elektromagnetische Welle ausbreitet, sowie von der Wellenlänge der propagierenden elektromagnetischen Welle ab. Zum Messen des elektrischen Stromes mittels des optischen Faraday-Effektes ist ein Faraday-Element in Form eines optisch transparenten, den Faraday-Effekt zeigenden Materials in der Nähe des Stromleiters angeordnet. In dieses Faraday-Element wird linear polarisiertes Licht eingekoppelt. Das von dem den Stromleiter durchfließenden elektrischen Strom erzeugte Magnetfeld bewirkt eine Drehung der Polarisationsebene des sich in dem Faraday-Element ausbreitenden Lichtes um einen Winkel, der von einer Auswerteeinheit des elektrischen Stromsensors als Maß für die Stärke des Magnetfeldes und damit auch für die Stärke des elektrischen Stroms ausgewertet wird. Für eine detaillierte Auseinandersetzung mit optischen Stromsensoren sei auf EP 1 101 124 A2 (Siemens AG) verwiesen. According to the invention, this object is achieved in that a switching line or a bushing for a transformer or a compensation choke comprises an optical current sensor for measuring an electrical current, preferably based on the Faraday effect. By means of an optical current sensor known per se, a magnetic field, which is caused by an electrical current flowing in a current conductor, can first be measured and the current intensity itself thereby determined. The Faraday effect is used here. The Faraday effect is understood to mean the rotation of the plane of polarization of a linearly polarized, electromagnetic wave, for example of linearly polarized light, which propagates in a transparent medium in the presence of a magnetic field. The angle of this rotation is proportional to the prevailing magnetic flux density and the path covered by the wave in the medium. The Verdet constant forms the proportionality factor of this dependency; their value depends on the medium in which the electromagnetic wave propagates and on the wavelength of the propagating electromagnetic wave. To measure the electrical current by means of the optical Faraday effect, a Faraday element in the form of an optically transparent material which shows the Faraday effect is arranged in the vicinity of the current conductor. Linearly polarized light is injected into this Faraday element. The magnetic field generated by the electrical current flowing through the current conductor causes the plane of polarization of the light propagating in the Faraday element to rotate by an angle, which is determined by an evaluation unit of the electrical current sensor as a measure of the strength of the magnetic field and thus also of the strength of the electrical Electricity is evaluated. For a detailed discussion of optical current sensors, reference is made to EP 1 101 124 A2 (Siemens AG).
Mittels der erfindungsgemäßen Schaltleitung oder Durchführung bzw. mittels eines eine solche Schaltleitung oder Durchführung umfassenden, erfindungsgemäßen Transformators oder einer eine solche Schaltleitung oder Durchführung umfassenden, erfindungsgemäßen Kompensationsdrossel ist es somit möglich, dass eine Vielzahl unterschiedlicher Stromwandler-Typen im Messbereich von einigen Ampere bis etwa lOOkA oder mehr, die bisher in Abhängigkeit von der jeweiligen Bauart oder dem Lastpunkt des Transformators bzw. der Kompensationsdrossel zur Anwendung kamen, durch einen einzigen, universal einsetzbaren optischen Stromsensor substituiert werden kann. By means of the switching line or implementation according to the invention or by means of a transformer according to the invention comprising such a switching line or implementation or a compensation choke according to the invention comprising such a switching line or implementation, it is thus possible for a large number of different current transformer types in the measuring range from a few amperes to approximately 100 kA or more so far depending on the respective design or the load point of the transformer or the compensation choke were used, can be substituted by a single, universal optical current sensor.
Besonders bevorzugt kann der optische Stromsensor als optischer Ring-Sensor ausgebildet sein, also eine ringförmige Bauart aufweisen. The optical current sensor can particularly preferably be designed as an optical ring sensor, that is to say have an annular design.
Durch diese Ausführungsform der erfindungsgemäßen Schaltleitung oder Durchführung bzw. des erfindungsgemäßen Transformators oder der erfindungsgemäßen Kompensationsdrossel kann dem zur Verfügung stehenden Bauraum innerhalb des Transformators bzw. der Kompensationsdrossel besonders gut Rechnung getragen werden. With this embodiment of the switching line or bushing according to the invention or of the transformer according to the invention or the compensation choke according to the invention, the available space within the transformer or the compensation choke can be taken into account particularly well.
Bei einer weiteren bevorzugten Ausführungsform ist es vorgesehen, dass das Faraday-Element des optischen Stromsensors als, vorzugsweise aus BSO- oder BGO-Einkristall , ferromagnetischem Material oder Flintglas gefertigter, Prismablock oder als Glasfaser-Lichtwellenleiter ausgebildet ist . In a further preferred embodiment, it is provided that the Faraday element of the optical current sensor is designed as a prism block, preferably made of BSO or BGO single crystal, ferromagnetic material or flint glass, or as a glass fiber optical waveguide.
Unter BSO und BGO werden hier Wismutsilicium- bzw. Wismutgermaniumoxide verstanden. Mögliche Ausführungen sind Bi12Si020 , Bi4Si3012, Bil2GeO20 oder Bi4Ge3012. Als ferromagnetisches Material kommt hier insbesondere ein Seltene-Erden-Granat in Frage. Eine geeignete derartige Substanz ist beispielsweise Yttrium-Eisengranat. Here, BSO and BGO are bismuth silicon or bismuth germanium oxides. Possible designs are Bi12Si020, Bi4Si3012, Bil2GeO20 or Bi4Ge3012. A rare earth garnet is particularly suitable as a ferromagnetic material. A suitable substance of this type is, for example, yttrium iron garnet.
Die Ausbildung des Faraday-Elementes des optischen Stromsensors als Prismablock hat den Vorteil, dass die Messung vergleichsweise temperaturunempfindlich ist; ein als Glasfaser-Lichtwellenleiter ausgebildetes Faraday-Element ist wiederum viel einfacher zu verlegen und erleichtert somit den Einbau in den erfindungsgemäßen Transformator oder die erfindungsgemäße Kompensationsdrossel . Die oben beschriebenen Vorteile werden auch durch einen erfindungsgemäßen Transformator oder durch eine erfindungsgemäße Kompensationsdrossel erzielt, nämlich dann, wenn zumindest ein Spannungssystem des Transformators bzw. der Kompensationsdrossel gemäß einer der oben beschriebenen Ausführungsformen ausgebildet ist. The formation of the Faraday element of the optical current sensor as a prism block has the advantage that the measurement is comparatively insensitive to temperature; a Faraday element designed as a glass fiber optical waveguide is in turn much easier to install and thus facilitates installation in the transformer according to the invention or the compensation choke according to the invention. The advantages described above are also achieved by a transformer according to the invention or by a compensation choke according to the invention, namely when at least one voltage system of the transformer or the compensation choke is designed according to one of the embodiments described above.
Der erfindungsgemäße Transformator bzw. die erfindungsgemäße Kompensationsdrossel ist dadurch gekennzeichnet, dass zumindest eine Schaltleitung oder Durchführung des Transformators bzw. der Kompensationsdrossel gemäß einer der oben beschriebenen Ausführungsformen ausgebildet ist. The transformer or the compensation choke according to the invention is characterized in that at least one switching line or bushing of the transformer or the compensation choke is designed according to one of the embodiments described above.
Besonders bevorzugt ist der erfindungsgemäße Transformator als Leistungstransformator ausgebildet. The transformer according to the invention is particularly preferably designed as a power transformer.
Um den im Transformator zur Verfügung stehenden Bauraum optimal zu nutzen und den durch die notwendige Messung der Ströme bedingten zusätzlichen Platzbedarf im Transformator so gering wie nur möglich zu halten, ist es bei einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Transformators vorgesehen, dass der optische Stromsensor in einem Aktivteil des Transformators angeordnet ist. In order to make optimal use of the installation space available in the transformer and to keep the additional space required in the transformer due to the necessary measurement of the currents as small as possible, it is provided in another preferred embodiment of the transformer according to the invention that the optical current sensor is in one Active part of the transformer is arranged.
Besonders bevorzugt ist der optische Stromsensor in einer Durchführungskalotte des Transformators angeordnet. The optical current sensor is particularly preferably arranged in a bushing of the transformer.
Dadurch kann der mit dem Einbau des Stromsensors verbundene Aufwand sehr gering gehalten werden, was eine kostengünstige Herstellung von Transformatoren dieser Ausführungsform ermöglicht. Auch wird die Wartung durch diese Anordnung des Stromsensors im Transformator vereinfacht. As a result, the outlay associated with the installation of the current sensor can be kept very low, which enables inexpensive manufacture of transformers of this embodiment. Maintenance is also simplified by this arrangement of the current sensor in the transformer.
Bei einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Transformators ist es vorgesehen, dass der optische Stromsensor im Bereich von Schaltleitungen bzw. der Verschaltung des Transformators angeordnet ist. Diese Anordnung des optischen Stromsensors innerhalb des Transformators ermöglicht eine Messung der Ströme mittels in den Transformator integrierter Mittel. Da der mit dem Einbau des optischen Stromsensors einhergehende Verdrahtungsaufwand bei Transformatoren dieser Ausführungsform niedrig ist, können Herstellungskosten niedriger gehalten werden. In another preferred embodiment of the transformer according to the invention, it is provided that the optical current sensor is arranged in the region of switching lines or the wiring of the transformer. This arrangement of the optical current sensor within the transformer enables the currents to be measured by means integrated in the transformer. Since the wiring complexity associated with the installation of the optical current sensor in transformers of this embodiment is low, manufacturing costs can be kept lower.
Die der Erfindung zu Grunde liegenden Aufgaben werden im Allgemeinen durch die Verwendung eines optischen Stromsensors zur Messung von Strömen in einem Transformator oder in einer Kompensationsdrossel gelöst. The objects on which the invention is based are generally achieved by using an optical current sensor for measuring currents in a transformer or in a compensation choke.
Dabei umfasst der optische Stromsensor vorzugsweise ein Faraday-Element, welches Faraday-Element als, vorzugsweise aus BSO- oder BGO-Einkristall , ferromagnetischem Material oder Flintglas gefertigter, Prismablock oder als Glasfaser- Lichtwellenleiter ausgebildet ist. The optical current sensor preferably comprises a Faraday element, which Faraday element is designed as a prism block, preferably made of BSO or BGO single crystal, ferromagnetic material or flint glass, or as a glass fiber optical waveguide.
Kurze Beschreibung der Figuren Brief description of the figures
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Die Zeichnungen sind beispielhaft und sollen den Erfindungsgedanken zwar darlegen, ihn aber keinesfalls einengen oder gar abschließend wiedergeben. Dabei zeigt The invention is explained in more detail below using an exemplary embodiment. The drawings are exemplary and are intended to illustrate the inventive concept, but in no way to narrow it down or even reproduce it conclusively. It shows
Fig. 1 einen erfindungsgemäßen Transformator mit einem im Fig. 1 shows a transformer according to the invention with a
Bereich einer Durchführungskalotte des Area of an implementation calotte of the
Transformators angeordneten optischen Stromsensor. Transformer arranged optical current sensor.
Ausführliche Beschreibung der Figuren Detailed description of the figures
Fig. 1 zeigt eine Kalotte 4 sowie eine Durchführung 5 eines Hochleistungstransformators . Die Kalotte 4 ist Teil eines Ausleitungsbereiches des Transformators, wobei der Schnitt in Fig. 1 durch die Kalotte 4 verläuft. Im Ausleitungsbereich werden Wicklungsenden der verschiedenen Spannungssysteme aus den Wicklungen herausgeführt und (z. B. in Dreieck- oder Sternschaltung) mit einer sogenannten Schaltleitung verbunden. Die Schaltleitung verbindet die Wicklungen in Abhängigkeit von der gewünschten Verschaltung untereinander und mit den entsprechenden Durchführungen des Transformators . Fig. 1 shows a dome 4 and a bushing 5 of a high-performance transformer. The dome 4 is part of a rejection area of the transformer, the section in FIG. 1 running through the dome 4. In the rejection area, winding ends of the various voltage systems are led out of the windings and connected (e.g. in a delta or star connection) with a so-called switching line. The switching line connects the windings to each other and to the corresponding bushings of the transformer depending on the desired connection.
Die Schaltleitungen werden mittels Durchführungen aus dem Transformatorkessel herausgeführt. Die Bauform der Durchführungen hängt ab von der Bemessungsspannung und den damit verbundenen Prüfspannungspegeln sowie vom Bernessungsström. The switching cables are led out of the transformer tank by means of bushings. The design of the bushings depends on the rated voltage and the associated test voltage levels as well as the Bernessungsstrom.
Im gezeigten Ausführungsbeispiel ist das Wicklungsende 6 einer Spule 1 derart innerhalb der Kalotte 4 angeordnet, dass ein durch die Spule 1 fließender elektrischer Strom mittels eines optischen Stromsensors 2 gemessen werden kann. Über ein Faraday-Element 3 des optischen Stromsensors 2, welches aus einem geeigneten, optisch transparenten Material besteht, wird ein durch den Stromfluss hervorgerufenes Magnetfeld gemessen und auf Basis dieser Messung auf die Stromstärke in der Spule 1 selbst zurückgerechnet (beispielsweise über das Biot-Savart-Gesetz ) . Die im Bereich des Faraday-Elementes 3 vorherrschende magnetische Flussdichte führt zu einer Rotation einer Polarisationsebene einer linear polarisierten Lichtwelle um einen bestimmten Winkel, während die Lichtwelle durch das Faraday-Element 3 propagiert. In Kenntnis der Materialeigenschaften und Abmessungen des Faraday-Elementes 3 wird es somit möglich, die Stromstärke des in der Spule 1 fließenden elektrischen Stromes genau zu bestimmen. In the exemplary embodiment shown, the winding end 6 of a coil 1 is arranged within the calotte 4 in such a way that an electrical current flowing through the coil 1 can be measured by means of an optical current sensor 2. Via a Faraday element 3 of the optical current sensor 2, which consists of a suitable, optically transparent material, a magnetic field caused by the current flow is measured and, based on this measurement, calculated back to the current intensity in the coil 1 itself (for example via the Biot-Savart Law). The magnetic flux density prevailing in the region of the Faraday element 3 leads to a rotation of a plane of polarization of a linearly polarized light wave by a certain angle, while the light wave propagates through the Faraday element 3. Knowing the material properties and dimensions of the Faraday element 3 thus makes it possible to precisely determine the current intensity of the electrical current flowing in the coil 1.
BezugsZeichen Reference calibrate Z
1 Spule 1 spool
2 optischer Stromsensor Faraday-Element Kalotte 2 optical current sensor Faraday element calotte
Durchführung Wicklungsende Implementation of winding end

Claims

Patentansprüche Claims
1. Schaltleitung oder Durchführung (5) für einen1. switching line or bushing (5) for one
Transformator oder eine Kompensationsdrossel, dadurch gekennzeichnet, dass die Schaltleitung oder die Durchführung (5) zumindest einen optischen Stromsensor (2) zur Messung eines elektrischen Stromes, vorzugsweise auf Basis des Faraday-Effekts , umfasst. Transformer or a compensation choke, characterized in that the switching line or bushing (5) comprises at least one optical current sensor (2) for measuring an electrical current, preferably based on the Faraday effect.
2. Schaltleitung oder Durchführung (5) nach Anspruch 1, dadurch gekennzeichnet, dass der optische Stromsensor (2) als optischer Ring-Sensor ausgebildet ist. 2. switching line or bushing (5) according to claim 1, characterized in that the optical current sensor (2) is designed as an optical ring sensor.
3. Schaltleitung oder Durchführung (5) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass ein3. switching line or bushing (5) according to one of claims 1 or 2, characterized in that a
Faraday-Element (3) des optischen Stromsensors (2) als, vorzugsweise aus BSO- oder BGO-Einkristall , ferromagnetischem Material oder Flintglas gefertigter, Prismablock oder als Glasfaser-Lichtwellenleiter ausgebildet ist. Faraday element (3) of the optical current sensor (2) is designed as a prism block, preferably made of BSO or BGO single crystal, ferromagnetic material or flint glass, or as a glass fiber optical waveguide.
4. Transformator oder Kompensationsdrossel, dadurch gekennzeichnet, dass zumindest eine Schaltleitung oder Durchführung des Transformators bzw. eine Schaltleitung oder Durchführung der Kompensationsdrossel gemäß Anspruch 1, 2 oder 3 ausgebildet ist. 4. transformer or compensation choke, characterized in that at least one switching line or implementation of the transformer or a switching line or implementation of the compensation choke is formed according to claim 1, 2 or 3.
5. Transformator nach Anspruch 4, dadurch gekennzeichnet, dass dieser als Leistungstransformator ausgebildet ist. 5. Transformer according to claim 4, characterized in that it is designed as a power transformer.
6. Transformator nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der optische Stromsensor (2) in einem Aktivteil des Transformators angeordnet ist. 6. Transformer according to one of claims 4 or 5, characterized in that the optical current sensor (2) is arranged in an active part of the transformer.
7. Transformator nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der optische Stromsensor (2) in einer Durchführungskalotte (4) des Transformators angeordnet ist. 7. Transformer according to one of claims 4 or 5, characterized in that the optical current sensor (2) is arranged in a bushing (4) of the transformer.
8. Transformator nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der optische Stromsensor (2) im Bereich von Schaltleitungen des Transformators angeordnet ist. 8. Transformer according to one of claims 4 or 5, characterized in that the optical current sensor (2) is arranged in the region of switching lines of the transformer.
9. Verwendung eines optischen Stromsensors (2) zur Messung von Strömen der verschiedenen Spannungssysteme in einem Transformator oder zur Messung des Stroms in einer Kompensationsdrossel, wobei der optische Stromsensor (2) vorzugsweise ein Faraday-Element (3) umfasst, welches Faraday-Element (3) als, vorzugsweise aus BSO- oder BGO- Einkristall, ferromagnetischem Material oder Flintglas gefertigter, Prismablock oder als Glasfaser- Lichtwellenleiter ausgebildet ist. 9. Use of an optical current sensor (2) for measuring currents of the various voltage systems in a transformer or for measuring the current in a compensation choke, the optical current sensor (2) preferably comprising a Faraday element (3), which Faraday element ( 3) is designed as a prism block, preferably made of BSO or BGO single crystal, ferromagnetic material or flint glass, or as a glass fiber optical waveguide.
PCT/EP2019/076726 2018-10-24 2019-10-02 Use of an optical current sensor for measuring currents in compensation reactors and transformers WO2020083622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018218207.8A DE102018218207A1 (en) 2018-10-24 2018-10-24 Use of an optical current sensor to measure currents in compensation chokes and transformers
DE102018218207.8 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020083622A1 true WO2020083622A1 (en) 2020-04-30

Family

ID=68240704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/076726 WO2020083622A1 (en) 2018-10-24 2019-10-02 Use of an optical current sensor for measuring currents in compensation reactors and transformers

Country Status (2)

Country Link
DE (1) DE102018218207A1 (en)
WO (1) WO2020083622A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3431769A1 (en) * 1984-08-29 1986-03-13 Siemens AG, 1000 Berlin und 8000 München Fibre-optical current sensor
EP0596566A2 (en) * 1992-10-28 1994-05-11 AEG Schorch Transformatoren GmbH High-voltage transformer
DE68919684T2 (en) * 1989-05-29 1995-06-14 Ngk Insulators Ltd System for fault localization in a substation.
EP1101124A2 (en) 1998-07-29 2001-05-23 Siemens Aktiengesellschaft Polarimetric sensor for optical detection of a measured variable and utilization of said polarimetric sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3431769A1 (en) * 1984-08-29 1986-03-13 Siemens AG, 1000 Berlin und 8000 München Fibre-optical current sensor
DE68919684T2 (en) * 1989-05-29 1995-06-14 Ngk Insulators Ltd System for fault localization in a substation.
EP0596566A2 (en) * 1992-10-28 1994-05-11 AEG Schorch Transformatoren GmbH High-voltage transformer
EP1101124A2 (en) 1998-07-29 2001-05-23 Siemens Aktiengesellschaft Polarimetric sensor for optical detection of a measured variable and utilization of said polarimetric sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BENSHUN YI ET AL: "New Design of Optical Electric-Current Sensor for Sensitivity Improvement", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 49, no. 2, 1 April 2000 (2000-04-01), XP011024991, ISSN: 0018-9456 *

Also Published As

Publication number Publication date
DE102018218207A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
DE102010039820A1 (en) Circuit breaker with Rogowski current transformers for measuring the current in the circuit breaker conductors
AT393421B (en) CURRENT TRANSFORMER ARRANGEMENT FOR THREE-WIRE THREE-PHASE SYSTEMS FOR DETECTING THE CURRENT VALUE
CH414010A (en) Arrangement for measuring currents in high-voltage lines
DE102014214160A1 (en) Device for detecting a fault current in a charging cable and charging cable which has the same
DE102009036107A1 (en) High Current Sensor
DE112019000129T5 (en) PCB-CT DEVICE FOR MOMENTARY CURRENT DETECTION OF THE INDEPENDENT TYPE APPLIED TO A CIRCUIT BREAKER
DE102012102398B4 (en) Power transformer with electronic components
WO2020083622A1 (en) Use of an optical current sensor for measuring currents in compensation reactors and transformers
DE102018201359A1 (en) Power converter
DE102007013634A1 (en) Device for measuring a direct current component of a current flowing in conductors of alternating current paths superimposed by an alternating current component
EP0596566B1 (en) High-voltage transformer
DE102018128469A1 (en) Magnetic field sensor with low noise and high bandwidth
EP0861442B1 (en) Current measurement in turbogenerators
DE102012216553A1 (en) Method for current measurement in primary conductor for e.g. long overhead lines for distributing electrical energy, involves adjusting compensation current based on regulating signal, and determining current based on adjusted current
EP1312929B1 (en) Method for monitoring the electrical isolation of a rotor in an electrical machine
DE2130047A1 (en) Measuring device for currents
DE2906445A1 (en) POWER CONVERTER
DE1248157B (en) Arrangement for measuring currents in high-voltage lines
DE974154C (en) Converter for preferably small direct current quantities based on magnetic amplifiers
DE3822051C2 (en)
DE102012216554B4 (en) DC measurement
DD157981A3 (en) MEASURING ARRANGEMENT FOR ELECTRIC STROEME
DE2555432C2 (en) Circuit arrangement for compensating the effect of a power line on a telecommunication cable
EP2700956A2 (en) Current transducer and current measuring device
AT132217B (en) Protection circuit.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19786913

Country of ref document: EP

Kind code of ref document: A1