WO2020083340A1 - 一种射频电源的功率传输方法 - Google Patents

一种射频电源的功率传输方法 Download PDF

Info

Publication number
WO2020083340A1
WO2020083340A1 PCT/CN2019/113036 CN2019113036W WO2020083340A1 WO 2020083340 A1 WO2020083340 A1 WO 2020083340A1 CN 2019113036 W CN2019113036 W CN 2019113036W WO 2020083340 A1 WO2020083340 A1 WO 2020083340A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
value
power transmission
network
power
Prior art date
Application number
PCT/CN2019/113036
Other languages
English (en)
French (fr)
Inventor
韦刚
成晓阳
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2020083340A1 publication Critical patent/WO2020083340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017545Coupling arrangements; Impedance matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma

Definitions

  • the present disclosure relates to the technical field of semiconductor manufacturing, and in particular to a power transmission method of an RF power supply.
  • the output power of the RF power supply of the inductively coupled plasma processing equipment is distributed to the coil through the power transmission network, and the magnetic field generated by the coil excites the process gas to generate plasma.
  • the power transmission network is used to match the output impedance of the RF power supply, so that the power emitted by the RF power supply can be transmitted to the reaction chamber with maximum efficiency.
  • the power transmission network is also used to adjust the current distribution ratio of multiple coils distributed in different areas to achieve the target distribution ratio.
  • the existing technology uses a power transmission network to directly perform impedance matching and current distribution in parallel. This has the following problems in practical application, namely:
  • the present disclosure aims to at least partially solve the technical problems existing in the prior art, and proposes a power transmission method of an RF power supply.
  • a power transmission method of an RF power supply which uses a power transmission network to transmit the power output by the RF power supply to a reaction chamber to excite the process gas in the reaction chamber, the power
  • the transmission method includes the following steps:
  • the power transmission network includes: an impedance matching sub-network, the impedance matching sub-network includes: at least one adjustable impedance element; and the first adjustment includes:
  • the step of determining whether the process gas is successfully ignited includes:
  • the step of performing the first adjustment further includes:
  • the impedance value of the at least one adjustable impedance element is adjusted according to the adjustment amount.
  • the power transmission network includes: an impedance matching sub-network and a power distribution sub-network, and the impedance matching sub-network and the power distribution sub-network both include: at least one adjustable impedance element;
  • the second adjustment includes:
  • the impedance value of at least one adjustable impedance element of the impedance matching sub-network and the impedance value of at least one adjustable impedance element of the power distribution sub-network are adjusted.
  • the adjustment process of the impedance value of at least one adjustable impedance element of the impedance matching sub-network includes:
  • the adjustment process of the impedance value of the at least one adjustable impedance element of the power matching sub-network includes:
  • each of the excitation elements is a coil
  • the parameter value includes a current value
  • each of the excitation elements is a capacitor plate, and the parameter values include current values and voltage values;
  • the judging whether the distribution ratio between the parameter values of each of the excitation elements reaches a target value further includes:
  • the adjustable impedance element includes an adjustable capacitor.
  • This disclosure reduces the impact of ignition on impedance matching and power distribution, and improves the efficiency of impedance matching by ensuring that the process gas is successfully ignited before impedance matching and coil current distribution, and then performing impedance matching and coil current distribution simultaneously .
  • the adjustable capacitor is adjusted, which reduces the risk of impedance matching and fire damage to the power distribution network components, which is beneficial to increase the life of the device.
  • FIG. 1 is a schematic structural diagram of an inductively coupled plasma semiconductor processing apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a power transmission network used by a power transmission method of an RF power supply according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a power transmission method of an RF power supply according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of the impedance matching sub-step and the power distribution sub-step in the method shown in FIG. 3.
  • FIG. 5 is a schematic structural diagram of another embodiment of a capacitively coupled plasma semiconductor processing device of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a power transmission network of the semiconductor processing equipment shown in FIG. 5.
  • FIG. 7 is a flowchart of a power transmission method of an RF power supply according to another embodiment of the present disclosure.
  • FIG. 8 is a flowchart of the impedance matching sub-step and the power distribution sub-step in the method shown in FIG. 7.
  • An embodiment of the present disclosure provides a power transmission method for an RF power supply, which is suitable for inductively coupled plasma (Inductively Coupled Plasma, hereinafter referred to as ICP) semiconductor processing equipment and capacitively coupled plasma (Capacitively Coupled Plasma, hereinafter referred to as CCP) semiconductor Processing Equipment.
  • ICP inductively Coupled Plasma
  • CCP Capacitively Coupled Plasma
  • the ICP semiconductor processing equipment is taken as an example to describe the power transmission method of the RF power supply in detail.
  • the power transmission method utilizes a power transmission network to transmit the power output by the radio frequency power source to the reaction chamber to excite the process gas in the reaction chamber.
  • the input end of the power transmission network 2 is connected to the radio frequency power supply 1, and the output end transmits power to the reaction chamber through an excitation element.
  • the excitation element is a coil, which can be provided in the reaction chamber The top of the is used to excite the process gas in the reaction chamber to generate plasma.
  • the coil includes a first coil 31 and a second coil 32 located on the inner and outer rings, respectively.
  • a lower electrode 6 is also provided at the bottom of the reaction chamber, and it is connected to the lower RF power supply 7 via the lower matching device 8.
  • the power transmission network 2 includes: an input sensor 21, a controller 22, an actuator, and an impedance matching and power distribution network 23.
  • the output impedance 11 of the RF power supply 1 is 50 ⁇ .
  • the input terminal of the impedance matching and power distribution network 23 is connected to the radio frequency power supply 1 via the input terminal sensor 21, and the first output terminal and the second output terminal of the impedance matching and power distribution network 23 are connected to the first coil 31 and the second coil 32, respectively.
  • the impedance matching and power distribution network 23 includes: an impedance matching sub-network 233 composed of a first adjustable capacitor C1 and a second adjustable capacitor C2, and a power distribution composed of a third adjustable capacitor C3 and a fourth adjustable capacitor C4 Subnet 234.
  • the two sub-networks can be two separate components, or they can be integrated components.
  • one end of the first adjustable capacitor C 1 and one end of the second adjustable capacitor C 2 serve as input ends of the impedance matching and power distribution sub-network 23, and are connected to the radio frequency power supply 1.
  • the other end of the first adjustable capacitor C 1 is grounded, and the other end of the second adjustable capacitor C 2 is connected to the first branch and the second branch connected in parallel.
  • the first branch includes a third adjustable capacitor C 3 connected in series, a first output sensor 231 and a first coil 31.
  • the second branch includes a fourth adjustable capacitor C 4 connected in series, a second output sensor 232 and a second coil 32.
  • the input end sensor 21 is used to measure the voltage value V and the current value I of the input end of the impedance matching and power distribution network 23 in real time.
  • the first output sensor 231 is used to detect the voltage value V 1 and the current value I 1 of the first coil 31 in real time
  • the second output sensor 232 is used to detect the voltage value V 2 and the current value I 2 of the second coil 32 in real time.
  • the input sensor 21 and the first and second output sensors (231, 232) are connected to the controller 22 to connect the voltage value V and the current value I, the voltage value V 1 and the current value I 1 , the voltage value V 2 and the current value I, respectively 2 Transmission to the controller 22.
  • the controller 22 accordingly controls the actions of the four actuators, specifically, the four actuators are the first actuator M1, the second actuator M2, the third actuator M3, and the fourth actuator M4, respectively.
  • the capacitance values of the first adjustable capacitor C 1 , the second adjustable capacitor C 2 , the third adjustable capacitor C 3 and the fourth adjustable capacitor C 4 are adjusted.
  • the power transmission method of the RF power supply provided in this embodiment includes:
  • the power transmission method provided in this embodiment first performs first adjustment on the power transmission network.
  • the purpose of the first adjustment is to ensure that the process gas in the reaction chamber is successfully ignited before impedance matching and coil current distribution.
  • the first adjustment only performs impedance matching, and does not distribute the coil current, that is, before the ignition is successful, the power distribution sub-network 234 is not adjusted.
  • the above first adjustment process specifically includes: after the RF power supply 1 starts to output power, the process gas is ignited by adjusting the capacitance value of the adjustable capacitor in the impedance matching sub-network 233.
  • the controller 22 controls the actions of the first actuator M1 and the second actuator M2 so that the first and second actuators (M1, M2) adjust the first adjustable capacitor C 1 and the second adjustable capacitor, respectively Capacitance value of C 2 .
  • the step of determining whether the process gas is successfully ignited includes:
  • the first output sensor 231 detects the voltage value V 1 and the current value I 1 of the first coil 31 in real time
  • the second output sensor 232 detects the voltage value V 2 and the current value I 2 of the second coil 32 in real time; one, two sensor output terminal (231, 232) of the voltage value V1 and the current value I1, the voltage value V 2 and a current value I 2 to the controller 22;
  • the controller 22 determines whether the process gas is successfully ignited based on the detected voltage value V 1 and current value I 1 , voltage value V 2 and current value I 2 . Specifically, at the moment when the process gas is ignited, the voltage and current values of the first coil 31 and the second coil 32 will jump. Therefore, when the instantaneous changes in the voltage and current values reach a threshold, the controller 22 Confirm that the process gas has been successfully ignited. On the contrary, if the instantaneous changes in the voltage and current values do not reach the above threshold, the process gas has not been successfully ignited.
  • the first adjustment described above is continued, and the steps of the first adjustment further include:
  • a matching control algorithm such as a ratio, a fuzzy algorithm, etc., is calculated to calculate the first The amount of adjustment of the capacitance values of the adjustable capacitor C 1 and the second adjustable capacitor C 2 ;
  • a control instruction is sent to the first actuator M1 and the second actuator M2 to control the actuator to change the positions of the adjustable parts of the first adjustable capacitor C 1 and the second adjustable capacitor C 2 to change the variable capacitor
  • the size of the capacitance value so that the capacitance value reaches the capacitance matching value.
  • the second adjustment is performed, that is, the impedance matching sub-network 233 and the power distribution sub-network 234 are simultaneously adjusted to perform impedance matching and coil current distribution in parallel so that the output impedance 11 of the RF power source matches the input impedance, and The distribution ratio of the coil current reaches the target value.
  • the adjustment process of impedance matching includes:
  • the input impedance of the impedance matching and power distribution network 23 is detected.
  • the input terminal sensor 21 is used to detect the voltage value V and the current value I of the input terminal of the impedance matching and power distribution network 23 and transmit the voltage value V and the current value I to the controller 22.
  • the controller 22 is used to determine whether the input impedance matches the output impedance 11 of the RF power supply 1.
  • the controller 22 can calculate the modulus
  • the ICP device If it matches, it means that the ICP device is already in the impedance matching state, and can return to the step of detecting the impedance matching and the input impedance of the power distribution network 23 described above.
  • the following impedance matching process is performed.
  • the impedance matching process includes:
  • the controller 22 calculates the adjustment values of the capacitance values of the first adjustable capacitor C1 and the second adjustable capacitor C2 according to the detected voltage value V and current value I;
  • a control instruction is sent to the first actuator M1 and the second actuator M2 according to the adjustment amount.
  • the actuator changes the capacitance values of the first adjustable capacitor C 1 and the second adjustable capacitor C 2 to achieve the capacitance matching value, so that the input impedance of the impedance matching and power distribution network 23 is equal to the RF power supply
  • the output impedance of the two is conjugate matched to achieve real-time dynamic matching of the impedance.
  • the composition and pressure of the process gas in the reaction chamber continuously change, and the load impedance also changes, so that the input impedance and the RF power output impedance 11 change from matching to mismatching
  • the above-mentioned voltage value V and current value I are detected in real time, and once the input impedance does not match the output impedance 11, the above impedance matching process is performed.
  • Coil current distribution includes:
  • the first output sensor 231 detects the current value I 1 of the first coil 31, and the second output sensor 232 detects the current value I 2 of the second coil 32.
  • the current value I 1 of the first coil 31 and second coil 32 and the current value of the allocation ratio I 2 reaches the target value, the target value is reached, the step of detecting the current value is returned for the coil current value monitor. If the target value is not reached, enter the power matching process described below.
  • the power matching process includes:
  • controller 22 calculates the adjustment amount of the third adjustable capacitor C 3 and the fourth variable capacitance C of the capacitance value of 4 ;
  • a control instruction is sent to the third actuator M3 and the fourth actuator M4 according to the adjustment amount.
  • the actuator changes the capacitance values of the third adjustable capacitor C 3 and the fourth adjustable capacitor C 4 to achieve the capacitance matching value, so that the current value I 1 of the first coil 31 and the second coil 31
  • the ratio of the current value I 2 of 32 reaches the target value, realizing the dynamic real-time adjustment of the current distribution ratio.
  • the current distribution ratio of the coil needs to be readjusted to maintain the uniformity of film deposition or etching. Therefore, the current value I 1 of the first coil 31 and the second Once the current value I 2 of the coil 32 does not reach the target value, the power matching process described above is entered.
  • the present disclosure reduces the impact of ignition on impedance matching and power distribution by ensuring that the process gas ignites successfully before performing impedance matching and coil current distribution, and then performing impedance matching and coil current distribution simultaneously. To improve the efficiency of impedance matching. At the same time, after the ignition is successful, the adjustable capacitor is adjusted, which reduces the risk of impedance matching and fire damage to the power distribution network components, which is beneficial to increase the life of the device.
  • the power distribution sub-network 234 includes two branches, respectively connected to two coils through two output ends, and can distribute current to the two coils, but the present disclosure is not limited thereto.
  • the ICP semiconductor processing equipment may include more coils.
  • the power distribution sub-network 234 may include more branches and output terminals, which are respectively connected to the coils, and the output terminals are connected between the adjustable capacitance of each branch and the coils.
  • the sensor is used to detect the voltage and current of the corresponding coil.
  • it also includes more actuators, which are used to adjust the impedance network and the capacitance value of the adjustable capacitance of each branch respectively, so as to realize the current distribution to multiple coils.
  • the actuator may be a motor, and the control command sent by the controller 22 is a motor rotation command.
  • Another embodiment of the present disclosure uses a CCP semiconductor processing device as an example to describe in detail the power transmission method of the radio frequency power supply.
  • CCP semiconductor processing device as an example to describe in detail the power transmission method of the radio frequency power supply.
  • the capacitively coupled plasma semiconductor processing equipment includes a reaction chamber 4, a power transmission network 2 and a radio frequency power supply 1.
  • a bottom electrode 6 is provided at the bottom of the reaction chamber 4, and the bottom electrode 6 is used to support the wafer 5.
  • the input end of the power transmission network 2 is connected to the radio frequency power supply 1, and the output end transmits power to the reaction chamber through an excitation element.
  • the excitation element includes a first capacitive electrode plate 33 disposed on the top of the reaction chamber 4 ⁇ ⁇ ⁇ ⁇ 34 ⁇ And the second capacitor plate 34.
  • the impedance matching sub-network 233 is composed of a first adjustable capacitor C 1 , a second adjustable capacitor C 2 and an inductor L.
  • One end of the second adjustable capacitor C 2 is connected to the RF power supply 1 and the other end is connected to the inductor L,
  • the inductor L connects the first branch and the second branch connected in parallel.
  • the difference is that: in the power distribution sub-network 234, the fourth adjustable capacitor C 4 of the second branch is replaced with a fixed capacitor C 5 .
  • the fourth actuator M4 corresponding to the fourth adjustable capacitor C 4 is eliminated.
  • the power transmission method of the RF power supply of this embodiment specifically includes:
  • the power transmission method provided in this embodiment first performs first adjustment on the power transmission network.
  • the process gas in the reaction chamber 4 is successfully ignited.
  • the power distribution of the capacitor plates is not performed, that is, the power distribution sub-network 234 is not adjusted before the ignition is successful.
  • the above first adjustment process specifically includes: after the RF power supply 1 starts to output power, the process gas is ignited by adjusting the capacitance value of the adjustable capacitor in the impedance matching sub-network 233.
  • the controller 22 controls the actions of the first actuator M1 and the second actuator M2 so that the first and second actuators (M1, M2) adjust the first adjustable capacitor C 1 and the second adjustable capacitor, respectively Capacitance value of C 2 .
  • the step of determining whether the process gas is successfully ignited includes:
  • the first output sensor 231 detects the voltage value V 1 and the current value I 1 of the first capacitive plate 33 in real time
  • the second output sensor 232 detects the voltage value V 2 and the current value I 2 of the second capacitive plate 34 in real time
  • the first and second output sensors (231, 232) transmit the above voltage value V 1 and current value I 1 , voltage value V 2 and current value I 2 to the controller 22;
  • the controller 22 determines whether the process gas is successfully ignited based on the detected voltage value V 1 and current value I 1 , voltage value V 2 and current value I 2 . Specifically, when the process gas is ignited, the voltage and current of the first capacitor plate 33 and the second capacitor plate 34 will jump. Therefore, when the instantaneous change of the voltage value and the current value reaches a threshold, control The device 22 considers that the process gas has been successfully ignited. On the contrary, if the instantaneous changes of the voltage value and the current value have not reached the threshold value, the process gas has not been successfully ignited.
  • the first adjustment described above is continued, and the steps of the first adjustment further include:
  • a matching control algorithm such as a ratio, a fuzzy algorithm, etc., is calculated to calculate the first The amount of adjustment of the capacitance values of the adjustable capacitor C 1 and the second adjustable capacitor C 2 ;
  • a control instruction is sent to the first actuator M1 and the second actuator M2 to control the actuator to change the positions of the adjustable parts of the first adjustable capacitor C 1 and the second adjustable capacitor C 2 to change the variable capacitor
  • the size of the capacitance value so that the capacitance value reaches the capacitance matching value.
  • the impedance matching sub-network 233 and the power distribution sub-network 234 are adjusted to perform impedance matching and capacitor plate power distribution in parallel, so that the output impedance of the RF power supply 11 matches the input impedance and the distribution ratio of the capacitor plate power reaches the target value.
  • the adjustment process of impedance matching includes:
  • the input impedance of the impedance matching and power distribution network 23 is detected.
  • the input terminal sensor 21 is used to detect the voltage value V and the current value I of the input terminal of the impedance matching and power distribution network 23 and transmit the voltage value V and the current value I to the controller 22.
  • the controller 22 is used to determine whether the input impedance matches the output impedance 11 of the RF power supply 1.
  • the controller 22 can calculate the modulus
  • the CCP device If the input impedance has been matched with the output impedance 11, it means that the CCP device is already in the impedance matching state, and returns to the above step of detecting the impedance matching and the input impedance of the power distribution network 23 to continuously monitor the input impedance value.
  • the following impedance matching process is performed.
  • the impedance matching process includes:
  • the controller 22 calculates the adjustment values of the capacitance values of the first adjustable capacitor C1 and the second adjustable capacitor C2 according to the detected voltage value V and current value I;
  • a control instruction is sent to the first actuator M1 and the second actuator M2 according to the adjustment amount.
  • the actuator changes the capacitance values of the first adjustable capacitor C 1 and the second adjustable capacitor C 2 to achieve the capacitance matching value, so that the input impedance of the impedance matching and power distribution network 23 is equal to the RF power supply
  • the output impedance is 11, and the two achieve conjugate matching to achieve automatic impedance matching.
  • the composition and pressure of the process gas in the reaction chamber continuously change, and the load impedance also changes, so that the input impedance and the output impedance of the RF power supply 11 change from matching to mismatching.
  • the above-mentioned voltage value V and current value I are detected in real time, and once the input impedance does not match the output impedance 11, the above impedance matching process is performed.
  • Power allocation includes:
  • the first output sensor 231 detects the voltage value V 1 and the current value I 1 of the first capacitive plate 33
  • the second output sensor 232 detects the voltage value V 2 and the current value I of the second capacitive plate 34 2 .
  • the current value of the voltage value V 1 and I 1, V 2 and the voltage value and the current value I 2 calculates a first capacitor plate 33 of the power P power P 1 and the second capacitive plates 34 2.
  • the power matching process includes:
  • a control instruction is sent to the third actuator M3.
  • the actuator changes the capacitance value of the third adjustable capacitor C 3 so that it reaches the capacitance matching value, so that the ratio of the first capacitor plate power P 1 and the second capacitor plate power P 2 reaches the target Value to adjust the power distribution ratio of the capacitor plates.
  • the power distribution ratio of the capacitor plates needs to be readjusted to maintain the uniformity of film deposition or etching. Therefore, the voltage value V of the first capacitor plates 33 needs to be detected in real time 1 and the current value I 1 , the voltage value V 2 and the current value I 2 of the second capacitor plate 34, once the target value is not reached, the above power matching process is entered.
  • this embodiment can ensure the successful ignition of the process gas and improve the efficiency of impedance matching. At the same time, the risk of the impedance matching of capacitors and inductors and the damage of the power distribution network components is reduced, which is beneficial to increase the life of the device.
  • the CCP semiconductor processing equipment may include more capacitor plates, and accordingly, the power distribution sub-network 234 may include more branches and output terminals, which are respectively connected to the capacitor plates, and the capacitance of each branch An output-end sensor is connected to the capacitor plate for detecting the voltage and current of the corresponding capacitor plate.
  • the capacitance of each branch may be an adjustable capacitor, or the capacitance of one branch is a fixed capacitor C5, and the capacitance of the other branches are adjustable capacitors.
  • it also includes a plurality of actuators corresponding to the number of adjustable capacitors, which are used to adjust the capacitance value of the impedance network and the adjustable capacitors of each branch respectively, so as to realize the power distribution to the plurality of capacitor plates.
  • the parameter value of the output end of each excitation element is a current value
  • the excitation element is a capacitive electrode plate, correspondingly, the output end of each excitation element
  • the parameter value includes current value and voltage value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

本公开提供了一种射频电源的功率传输方法,利用功率传输网络将射频电源输出的功率传输至反应腔室,以激励反应腔室内的工艺气体,该功率传输方法包括以下步骤:对功率传输网络进行第一调节,以使工艺气体点火;判断工艺气体是否点火成功;如果未点火成功,则继续进行第一调节;如果点火成功,对功率传输网络进行第二调节,以对射频电源同时进行阻抗匹配和功率分配。

Description

一种射频电源的功率传输方法 技术领域
本公开涉及半导体制造技术领域,尤其是一种射频电源的功率传输方法。
背景技术
电感耦合等离子体加工设备的射频电源,其输出功率是经功率传输网络分配至线圈,并由线圈产生的磁场激发工艺气体产生等离子体。功率传输网络用于匹配射频电源的输出阻抗,使射频电源发出的功率能够以最大效率传输给反应腔室。功率传输网络还用于对分布在不同区域的多个线圈的电流分配比例进行调节,以达到目标分配比例。
现有技术是利用功率传输网络直接并行执行阻抗匹配和电流分配。这在实际应用中存在如下几个问题,即:
首先,在执行阻抗匹配和电流分配时,不一定能保证工艺气体成功点火。其次,即使其能使工艺气体成功点火,由于点火后反应腔室内的气体成分和压力会发生较大变化,因此需要重新进行阻抗匹配和电流分配,从而影响了阻抗匹配和电流分配的效率。最后,如果是在阻抗匹配和电流分配的过程中工艺气体成功点火,功率传输网络中用于电流分配的可调电容很容易打火损坏,对器件的使用寿命有不利影响。
发明内容
本公开旨在至少部分地解决现有技术中存在的技术问题,提出了一种射频电源的功率传输方法。
根据本公开的一个方面,提供了一种射频电源的功率传输方法,利用功 率传输网络将所述射频电源输出的功率传输至反应腔室,以激励所述反应腔室内的工艺气体,所述功率传输方法包括以下步骤:
对所述功率传输网络进行第一调节,以使所述工艺气体点火;
判断所述工艺气体是否点火成功;
如果未点火成功,则继续进行所述第一调节;
如果点火成功,对所述功率传输网络进行第二调节,以对所述射频电源同时进行阻抗匹配和功率分配。
本公开的一些实施例中,所述功率传输网络包括:阻抗匹配子网络,所述阻抗匹配子网络包括:至少一个可调阻抗元件;所述第一调节包括:
调节所述至少一个可调阻抗元件的阻抗值。
本公开的一些实施例中,所述判断所述工艺气体是否点火成功的步骤包括:
实时检测所述功率传输网络的各激励元件的输出端的参数值,所述参数值包括电压值和电流值;
判断所述参数值的瞬间变化量是否达到一阈值;
如果达到所述阈值,则所述工艺气体点火成功;
如果未达到所述阈值,则所述工艺气体未点火成功。
本公开的一些实施例中,所述如果未点火成功,则继续进行所述第一调节的步骤,进一步包括:
根据所述参数值进行匹配控制算法,以获得所述至少一个可调阻抗元件的阻抗值的调整量;
根据所述调整量调节所述至少一个可调阻抗元件的阻抗值。
本公开的一些实施例中,所述功率传输网络包括:阻抗匹配子网络和功率分配子网络,所述阻抗匹配子网络和所述功率分配子网络均包括:至少一个可调阻抗元件;
所述第二调节包括:
同时调节所述阻抗匹配子网络的至少一个可调阻抗元件的阻抗值以及所述功率分配子网络的至少一个可调阻抗元件的阻抗值。
本公开的一些实施例中,所述阻抗匹配子网络的至少一个可调阻抗元件的阻抗值的调节过程包括:
检测所述功率传输网络的输入阻抗;
判断所述输入阻抗与所述射频电源的输出阻抗是否匹配;
如果匹配,则返回所述检测所述功率传输网络的输入阻抗的步骤;
如果不匹配,则进行下述阻抗匹配过程:
检测所述阻抗匹配子网络的至少一个可调阻抗元件的阻抗值;
根据检测到的所述阻抗值进行阻抗控制算法,以获得所述至少一个可调阻抗元件的阻抗值的调整量;
根据所述调整量调节所述至少一个可调阻抗元件的阻抗值,并返回所述检测所述功率传输网络的输入阻抗的步骤。
本公开的一些实施例中,所述功率匹配子网络的至少一个可调阻抗元件的阻抗值的调节过程包括:
检测所述功率传输网络的各激励元件的输出端的参数值;
判断各所述激励元件的参数值之间的分配比例是否达到目标值;
如果达到所述目标值,则返回所述检测所述功率传输网络的各激励元件的输出端的参数值的步骤;
如果未达到所述目标值,则进行下述功率匹配过程:
根据检测到的所述参数值计算所述功率传输网络的至少一个可调阻抗元件的阻抗值的调整量;
根据所述调整量调节所述功率传输网络的至少一个可调阻抗元件的阻抗值,并返回所述检测所述功率传输网络的各激励元件的输出端的参数值的 步骤。
本公开的一些实施例中,各所述激励元件均为线圈,所述参数值包括电流值。
本公开的一些实施例中,各所述激励元件均为电容极板,所述参数值包括电流值和电压值;
所述判断各所述激励元件的参数值之间的分配比例是否达到目标值,进一步包括:
根据各所述激励元件的所述电流值和电压值计算各所述激励元件的功率值;
判断各所述激励元件的功率值之间的分配比例是否达到目标值。
本公开的一些实施例中,所述可调阻抗元件包括可调电容。
本发明的技术效果:
本公开通过在进行阻抗匹配和线圈电流分配前,先确保工艺气体点火成功,然后再同时进行阻抗匹配和线圈电流分配,减小了点火对阻抗匹配和功率分配的影响,提高了阻抗匹配的效率。同时,在点火成功后再对可调电容进行调节,降低了阻抗匹配及功率分配网络元件打火损坏的风险,有利于增加器件的寿命。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1为本公开实施例电感耦合等离子半导体加工设备的结构示意图。
图2为本公开实施例射频电源的功率传输方法使用的功率传输网络的结构示意图。
图3为本公开实施例的射频电源的功率传输方法流程图。
图4为图3所示方法中阻抗匹配子步骤和功率分配子步骤的流程图。
图5为本公开另一实施例电容耦合等离子半导体加工设备的结构示意图。
图6为图5所示半导体加工设备的功率传输网络的结构示意图。
图7为本公开另一实施例的射频电源的功率传输方法流程图。
图8为图7所示方法中阻抗匹配子步骤和功率分配子步骤的流程图。
符号说明
1-射频电源;11-输出阻抗;
2-功率传输网络;
21-输入端传感器;22-控制器;23-阻抗匹配及功率分配网络;231-第一输出端传感器;232-第二输出端传感器;233-阻抗匹配子网络;234-功率分配子网络;
31-第一线圈;32-第二线圈;33-第一电容极板;34-第二电容极板;
4-反应腔室;5-晶片;6-下电极;7-偏置射频电源;8-偏置匹配器;
C 1-第一可调电容;C 2-第二可调电容;C 3-第三可调电容;C 4-第四可调电容;C 5-固定电容;L-电感;M1-第一执行器;M2-第二执行器;M3-第三执行器;M4-第四执行器;V、V 1、V 2-电压值;I、I 1、I 2-电流值。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
本公开一实施例提供了一种射频电源的功率传输方法,其适用于电感耦合等离子体(Inductively Coupled Plasma,以下简称ICP)半导体加工设备以 及电容耦合等离子体(Capacitively Coupled Plasma,以下简称CCP)半导体加工设备。
本实施例以ICP半导体加工设备为例对射频电源的功率传输方法进行详细说明。具体地,该功率传输方法利用功率传输网络实现将射频电源输出的功率传输至反应腔室,以激励反应腔室内的工艺气体。如图1所示,该功率传输网络2的输入端连接射频电源1,输出端通过激励元件向反应腔室传输功率,对于ICP半导体加工设备,激励元件为线圈,该线圈可设置于反应腔室的顶部,用于激发反应腔室内的工艺气体产生等离子体。在本实施例中,线圈包括分别位于内圈和外圈的第一线圈31和第二线圈32。此外,在反应腔室内的底部还设置有下电极6,其经下匹配器8连接至下射频电源7。
如图2所示,功率传输网络2包括:输入端传感器21、控制器22、执行器以及阻抗匹配及功率分配网络23。其中,射频电源1的输出阻抗11为50Ω。阻抗匹配及功率分配网络23的输入端经输入端传感器21连接射频电源1,并且阻抗匹配及功率分配网络23的第一输出端和第二输出端分别连接第一线圈31和第二线圈32。
阻抗匹配及功率分配网络23包括:由第一可调电容C1和第二可调电容C2组成的阻抗匹配子网络233,以及由第三可调电容C3和第四可调电容C4组成的功率分配子网络234。这两个子网络可以是两个分离的部件,也可以是集成的一体化部件。
其中,在阻抗匹配子网络233中,第一可调电容C 1的一端和第二可调电容C 2的一端作为阻抗匹配及功率分配子网络23的输入端,连接至射频电源1。第一可调电容C 1的另一端接地,第二可调电容C 2的另一端连接并联的第一支路和第二支路。第一支路包括串联的第三可调电容C 3、第一输出端传感器231和第一线圈31。第二支路包括串联的第四可调电容C 4、第二输出端传感器232和第二线圈32。
输入端传感器21用于实时测量阻抗匹配及功率分配网络23的输入端的电压值V和电流值I。第一输出端传感器231用于实时检测第一线圈31的电压值V 1和电流值I 1,第二输出端传感器232用于实时检测第二线圈32的电压值V 2和电流值I 2。输入端传感器21以及第一、二输出端传感器(231,232)均连接控制器22,以分别将电压值V和电流值I、电压值V 1和电流值I 1、电压值V 2和电流值I 2传输给控制器22。控制器22据此分别控制四个执行器的动作,具体地,四个执行器分别为第一执行器M1、第二执行器M2、第三执行器M3和第四执行器M4,分别用于调节第一可调电容C 1、第二可调电容C 2、第三可调电容C 3和第四可调电容C 4的电容值。
如图3所示,本实施例提供的射频电源的功率传输方法包括:
对功率传输网络进行第一调节,以使工艺气体点火;
判断工艺气体是否点火成功;
如果未点火成功,则继续进行上述第一调节;
如果点火成功,则对功率传输网络进行第二调节,以对射频电源同时进行阻抗匹配和线圈电流分配。
本实施例提供的功率传输方法首先对功率传输网络进行第一调节。
第一调节的目的是在进行阻抗匹配和线圈电流分配前,先确保反应腔室内的工艺气体成功点火。
需要注意的是,第一调节仅进行阻抗匹配,而不进行线圈电流的分配,也就是说,在点火成功前,不对功率分配子网络234进行调节。
可选的,上述第一调节的过程具体为:当射频电源1开始输出功率后,通过调节阻抗匹配子网络233中的可调电容的电容值,来使工艺气体点火。具体来说,控制器22控制第一执行器M1和第二执行器M2的动作,使第一、第二执行器(M1,M2)分别调节第一可调电容C 1和第二可调电容C 2的电容值。
在本实施例中,判断工艺气体是否点火成功的步骤包括:
利用第一输出端传感器231实时检测第一线圈31的电压值V 1和电流值I 1,及利用第二输出端传感器232实时检测第二线圈32的电压值V 2和电流值I 2;第一、二输出端传感器(231,232)将上述电压值V1和电流值I1、电压值V 2和电流值I 2传输给控制器22;
利用控制器22根据检测到的电压值V 1和电流值I 1、电压值V 2和电流值I 2判断工艺气体是否点火成功。具体地,在工艺气体点火的时刻,第一线圈31和第二线圈32的电压值和电流值将发生跳变,因此,当电压值和电流值的瞬间变化量达到一阈值时,控制器22确认工艺气体已经点火成功,相反,若电压值和电流值的瞬间变化量未达到上述阈值,则认为工艺气体尚未点火成功。
若未点火成功,则继续进行上述第一调节,且该第一调节的步骤进一步包括:
根据第一、二输出端传感器(231,232)检测到的电压值V 1和电流值I 1、电压值V 2和电流值I 2进行匹配控制算法,如比例、模糊算法等,以计算出第一可调电容C 1和第二可调电容C 2的电容值的调整量;
根据调整量向第一执行器M1和第二执行器M2发送控制指令,控制执行器改变第一可调电容C 1和第二可调电容C 2的可调件的位置,以改变可变电容的电容值的大小,以使该电容值达到电容匹配值。
由上可知,如果工艺气体未点火成功,则继续进行第一调节,不断调节阻抗匹配子网络233,直到工艺气体点火为止。
如果工艺气体已经点火成功,则进行第二调节,即同时调节阻抗匹配子网络233和功率分配子网络234,并行进行阻抗匹配和线圈电流分配,使得射频电源的输出阻抗11与输入阻抗匹配,及线圈电流的分配比例达到目标值。
如图4所示,阻抗匹配的调节过程包括:
首先,检测阻抗匹配及功率分配网络23的输入阻抗。
具体地,利用输入端传感器21检测阻抗匹配及功率分配网络23的输入端的电压值V和电流值I,并将电压值V和电流值I传输给控制器22。
然后,利用控制器22判断输入阻抗与射频电源1的输出阻抗11是否匹配。
具体地,控制器22根据检测到的电压值V和电流值I可利用鉴幅鉴相方法,计算出阻抗匹配及功率分配网络23的输入阻抗的模值|Z|和相位θ。然后,判断阻抗匹配及功率分配网络23的输入阻抗是否与射频电源的输出阻抗11匹配。
如果匹配,则说明ICP设备已经处于阻抗匹配状态,可返回上述检测阻抗匹配及功率分配网络23的输入阻抗的步骤。
如果输入阻抗与输出阻抗11不匹配,则进行下述阻抗匹配过程。
该阻抗匹配过程包括:
利用控制器22根据检测到的电压值V和电流值I计算第一可调电容C1和第二可调电容C2的电容值的调整量;
根据调整量向第一执行器M1和第二执行器M2发送控制指令。接到控制指令后执行器改变第一可调电容C 1和第二可调电容C 2的电容值,以使其达到电容匹配值,从而使得阻抗匹配及功率分配网络23的输入阻抗等于射频电源的输出阻抗11,二者达到共轭匹配,实现阻抗的实时动态匹配。
在实际应用中,随着工艺过程的进行,反应腔室中工艺气体的成分和压力不断变化,负载阻抗也发生变化,使得输入阻抗与射频电源输出阻抗11由匹配变为不匹配,因此,需要实时检测上述电压值V和电流值I,一旦输入阻抗与输出阻抗11不匹配,则进行上述阻抗匹配过程。
线圈电流分配包括:
首先,利用第一输出端传感器231检测第一线圈31的电流值I 1,利用第二输出端传感器232检测第二线圈32的电流值I 2
然后,判断第一线圈31的电流值I 1与第二线圈32的电流值I 2的分配比例是否达到目标值,如果达到目标值,则返回上述检测电流值的步骤,继续对线圈电流值进行监测。如果未达到目标值,则进入下述功率匹配过程。
该功率匹配过程包括:
利用控制器22根据检测到的第一线圈31的电流值I 1与第二线圈32的电流值I 2,计算第三可调电容C 3和第四可调电容C 4的电容值的调整量;
根据调整量向第三执行器M3和第四执行器M4发送控制指令。接到控制指令后执行器改变第三可调电容C 3和第四可调电容C 4的电容值,以使其达到电容匹配值,从而使得第一线圈31的电流值I 1与第二线圈32的电流值I 2的比例达到目标值,实现电流分配比例的动态实时调节。
在实际应用中,随着工艺过程的进行,需要对线圈电流分配比例进行重新调整,以保持薄膜沉积或刻蚀的均匀性,因此,需要实时检测第一线圈31的电流值I 1与第二线圈32的电流值I 2,一旦未达到目标值,则进入上述功率匹配过程。
综上所述,本公开通过在进行阻抗匹配和线圈电流分配前,先确保工艺气体点火成功,然后再同时进行阻抗匹配和线圈电流分配,减小了点火对阻抗匹配和功率分配的影响,提高了阻抗匹配的效率。同时,在点火成功后再对可调电容进行调节,降低了阻抗匹配及功率分配网络元件打火损坏的风险,有利于增加器件的寿命。
在上述实施例中,功率分配子网络234包括两条支路,分别通过两个输出端连接两个线圈,可为两个线圈分配电流,但本公开并不限于此。ICP半导体加工设备可以包括更多个线圈,相应地,功率分配子网络234可以包括更多个支路以及输出端,分别连接各个线圈,各个支路的可调电容与线圈之 间连接有输出端传感器,用于检测对应线圈的电压和电流。相应地,还包括更多个执行器,分别用于调节阻抗网络和各支路可调电容的电容值,实现对多个线圈的电流分配。执行器可以是电机,控制器22发送的控制指令为电机转动指令。
本公开另一实施例以CCP半导体加工设备为例,对射频电源的功率传输方法进行详细描述。与上一实施例相同或相似的特征不再赘述,以下仅介绍其不同于上一实施例的特征。
参见图5,电容耦合等离子体半导体加工设备包括一反应腔室4、功率传输网络2和射频电源1。其中,反应腔室4内的底部设置有下电极6,下电极6用于支撑晶片5。功率传输网络2的输入端连接射频电源1,输出端通过通过激励元件向反应腔室传输功率,在本实施例中,激励元件包括设置在反应腔室4内的顶部的第一电容极板33和第二电容极板34。
参见图6,阻抗匹配子网络233由第一可调电容C 1、第二可调电容C 2和电感L组成,第二可调电容C 2的一端连接射频电源1,另一端连接电感L,电感L连接并联的第一支路和第二支路。与上述第一实施例中的第一支路和第二支路相比,其区别在于:功率分配子网络234中,第二支路的第四可调电容C 4替换为固定电容C 5。取消了对应第四可调电容C 4的第四执行器M4。
本实施例的射频电源的功率传输方法,参见图7,具体包括:
对功率传输网络进行第一调节,以使工艺气体点火;
判断工艺气体是否点火成功;
如果未点火成功,则继续进行上述第一调节;
如果点火成功,则对功率传输网络进行第二调节,以对射频电源同时进行阻抗匹配和电容极板功率分配。
本实施例提供的功率传输方法首先对功率传输网络进行第一调节。
在进行阻抗匹配和电容极板功率分配前,先确保反应腔室4内的工艺气 体成功点火。同样,在点火步骤中,不进行电容极板功率的分配,即在点火成功前,不对功率分配子网络234进行调节。
可选的,上述第一调节的过程具体为:当射频电源1开始输出功率后,通过调节阻抗匹配子网络233中的可调电容的电容值,来使工艺气体点火。具体来说,控制器22控制第一执行器M1和第二执行器M2的动作,使第一、第二执行器(M1,M2)分别调节第一可调电容C 1和第二可调电容C 2的电容值。
在本实施例中,判断工艺气体是否点火成功的步骤包括:
利用第一输出端传感器231实时检测第一电容极板33的电压值V 1和电流值I 1,第二输出端传感器232实时检测第二电容极板34的电压值V 2和电流值I 2,第一、二输出端传感器(231,232)将上述电压值V 1和电流值I 1、电压值V 2和电流值I 2传输给控制器22;
利用控制器22根据检测到的电压值V 1和电流值I 1、电压值V 2和电流值I 2判断工艺气体是否点火成功。具体地,当工艺气体点火的时刻,第一电容极板33和第二电容极板34的电压和电流将发生跳变,因此,当电压值和电流值的瞬间变化量达到一阈值时,控制器22认为工艺气体已经点火成功,相反,若电压值和电流值的瞬间变化量未达到阈值,则认为工艺气体尚未点火成功。
若未点火成功,则继续进行上述第一调节,且该第一调节的步骤进一步包括:
根据第一、二输出端传感器(231,232)检测到的电压值V 1和电流值I 1、电压值V 2和电流值I 2进行匹配控制算法,如比例、模糊算法等,以计算出第一可调电容C 1和第二可调电容C 2的电容值的调整量;
根据调整量向第一执行器M1和第二执行器M2发送控制指令,控制执行器改变第一可调电容C 1和第二可调电容C 2的可调件的位置,以改变可变 电容的电容值的大小,以使该电容值达到电容匹配值。
由上可知,如果工艺气体尚未点火成功,则继续进行第一调节,不断调节阻抗匹配子网络233,直到工艺气体点火为止。
如果工艺气体已经点火成功,则对功率传输网络进行第二调节,以对射频电源同时进行阻抗匹配和电容极板功率分配。同时调节阻抗匹配子网络233和功率分配子网络234,并行进行阻抗匹配和电容极板功率分配,使得射频电源输出阻抗11与输入阻抗匹配、电容极板功率的分配比例达到目标值。
参见图8,阻抗匹配的调节过程包括:
首先,检测阻抗匹配及功率分配网络23的输入阻抗。
具体地,利用输入端传感器21检测阻抗匹配及功率分配网络23的输入端的电压值V和电流值I,并将电压值V和电流值I传输给控制器22。
然后,利用控制器22判断输入阻抗与射频电源1的输出阻抗11是否匹配。
具体地,控制器22根据检测到的电压值V和电流值I可利用鉴幅鉴相方法,计算出阻抗匹配及功率分配网络23的输入阻抗的模值|Z|和相位θ。
然后,判断阻抗匹配及功率分配网络23的输入阻抗是否与射频电源的输出阻抗11匹配。
如果输入阻抗已经与输出阻抗11匹配,则说明CCP设备已经处于阻抗匹配状态,返回上述检测阻抗匹配及功率分配网络23的输入阻抗的步骤,以持续对输入阻抗值进行监测。
如果输入阻抗与输出阻抗11不匹配,则进行下述阻抗匹配过程。
该阻抗匹配过程包括:
利用控制器22根据检测到的电压值V和电流值I计算第一可调电容C1和第二可调电容C2的电容值的调整量;
根据调整量向第一执行器M1和第二执行器M2发送控制指令。接到控 制指令后执行器改变第一可调电容C 1和第二可调电容C 2的电容值,以使其达到电容匹配值,从而使得阻抗匹配及功率分配网络23的输入阻抗等于射频电源的输出阻抗11,二者达到共轭匹配,实现阻抗的自动匹配。
在实际应用中,随着工艺过程的进行,反应腔室中工艺气体的成分和压力不断变化,负载阻抗也发生变化,使得输入阻抗与射频电源输出阻抗11由匹配变为不匹配,因此,需要实时检测上述电压值V和电流值I,一旦输入阻抗与输出阻抗11不匹配,则进行上述阻抗匹配过程。
功率分配包括:
首先,利用第一输出端传感器231检测第一电容极板33的电压值V 1和电流值I 1,利用第二输出端传感器232检测第二电容极板34的电压值V 2和电流值I 2
然后,由上述电压值V 1和电流值I 1、以及电压值V 2和电流值I 2分别计算第一电容极板33的功率P 1和第二电容极板34的功率P 2
之后,判断第一电容极板33的功率P 1和第二电容极板34的功率P 2的分配比例是否达到目标值,如果达到目标值,则返回上述检测电压值和电流值的步骤;如果未达到目标值,则进入下述功率匹配过程。
该功率匹配过程包括:
利用控制器22根据检测到的第一电容极板33的电压值V 1和电流值I 1,第二电容极板34的电压值V 2和电流值I 2计算第三可调电容C 3的电容值的调整量;
根据调整量向第三执行器M3发送控制指令。接到控制指令后执行器改变第三可调电容C 3的电容值,以使其达到电容匹配值,从而使得第一电容极板功率P 1和第二电容极板功率P 2的比例达到目标值,实现电容极板功率分配比例的调节。
在实际应用中,随着工艺过程的进行,需要对电容极板功率分配比例进 行重新调整,以保持薄膜沉积或刻蚀的均匀性,因此,需要实时检测第一电容极板33的电压值V 1和电流值I 1,第二电容极板34的电压值V 2和电流值I 2,一旦未达到目标值,则进入上述功率匹配过程。
同样,本实施例可以保证工艺气体成功点火,提高了阻抗匹配的效率。同时,降低了电容和电感这些阻抗匹配及功率分配网络元件打火损坏的风险,有利于增加器件的寿命。
在上述实施例中,CCP半导体加工设备可以包括更多个电容极板,相应地,功率分配子网络234可以包括更多个支路以及输出端,分别连接各个电容极板,各个支路的电容与电容极板之间连接有输出端传感器,用于检测对应电容极板的电压和电流。其中各个支路的电容可以均为可调电容,或者,其中一个支路的电容是固定电容C5,其他支路的电容均为可调电容。相应地,还包括与可调电容数量对应的多个执行器,分别用于调节阻抗网络和各支路可调电容的电容值,实现对多个电容极板的功率分配。
需要说明的是,在上述各个实施例中,如果激励元件为线圈,对应的,各激励元件的输出端的参数值为电流值;如果激励元件为电容极板,对应的,各激励元件的输出端的参数值包括电流值和电压值。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近 似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到「约」的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。
再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意含及代表该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。

Claims (10)

  1. 一种射频电源的功率传输方法,利用功率传输网络将所述射频电源输出的功率传输至反应腔室,以激励所述反应腔室内的工艺气体,其特征在于,所述功率传输方法包括以下步骤:
    对所述功率传输网络进行第一调节,以使所述工艺气体点火;
    判断所述工艺气体是否点火成功;
    如果未点火成功,则继续进行所述第一调节;
    如果点火成功,对所述功率传输网络进行第二调节,以对所述射频电源同时进行阻抗匹配和功率分配。
  2. 如权利要求1所述的功率传输方法,其特征在于,所述功率传输网络包括:阻抗匹配子网络,所述阻抗匹配子网络包括:至少一个可调阻抗元件;所述第一调节包括:
    调节所述至少一个可调阻抗元件的阻抗值。
  3. 如权利要求2所述的功率传输方法,其特征在于,所述判断所述工艺气体是否点火成功的步骤包括:
    实时检测所述功率传输网络的各激励元件的输出端的参数值,所述参数值包括电压值和电流值;
    判断所述参数值的瞬间变化量是否达到一阈值;
    如果达到所述阈值,则所述工艺气体点火成功;
    如果未达到所述阈值,则所述工艺气体未点火成功。
  4. 如权利要求3所述的功率传输方法,其特征在于,所述如果未点火成功,则继续进行所述第一调节的步骤,进一步包括:
    根据所述参数值进行匹配控制算法,以获得所述至少一个可调阻抗元件 的阻抗值的调整量;
    根据所述调整量调节所述至少一个可调阻抗元件的阻抗值。
  5. 如权利要求1所述的功率传输方法,其特征在于,所述功率传输网络包括:阻抗匹配子网络和功率分配子网络,所述阻抗匹配子网络和所述功率分配子网络均包括:至少一个可调阻抗元件;
    所述第二调节包括:
    同时调节所述阻抗匹配子网络的至少一个可调阻抗元件的阻抗值以及所述功率分配子网络的至少一个可调阻抗元件的阻抗值。
  6. 如权利要求5所述的功率传输方法,其特征在于,所述阻抗匹配子网络的至少一个可调阻抗元件的阻抗值的调节过程包括:
    检测所述功率传输网络的输入阻抗;
    判断所述输入阻抗与所述射频电源的输出阻抗是否匹配;
    如果匹配,则返回所述检测所述功率传输网络的输入阻抗的步骤;
    如果不匹配,则进行下述阻抗匹配过程:
    检测所述阻抗匹配子网络的至少一个可调阻抗元件的阻抗值;
    根据检测到的所述阻抗值进行阻抗控制算法,以获得所述至少一个可调阻抗元件的阻抗值的调整量;
    根据所述调整量调节所述至少一个可调阻抗元件的阻抗值,并返回所述检测所述功率传输网络的输入阻抗的步骤。
  7. 如权利要求5所述的功率传输方法,其特征在于,所述功率匹配子网络的至少一个可调阻抗元件的阻抗值的调节过程包括:
    检测所述功率传输网络的各激励元件的输出端的参数值;
    判断各所述激励元件的参数值之间的分配比例是否达到目标值;
    如果达到所述目标值,则返回所述检测所述功率传输网络的各激励元件 的输出端的参数值的步骤;
    如果未达到所述目标值,则进行下述功率匹配过程:
    根据检测到的所述参数值计算所述功率传输网络的至少一个可调阻抗元件的阻抗值的调整量;
    根据所述调整量调节所述功率传输网络的至少一个可调阻抗元件的阻抗值,并返回所述检测所述功率传输网络的各激励元件的输出端的参数值的步骤。
  8. 如权利要求7所述的功率传输方法,其特征在于,各所述激励元件均为线圈,所述参数值包括电流值。
  9. 如权利要求7所述的功率传输方法,其特征在于,各所述激励元件均为电容极板,所述参数值包括电流值和电压值;
    所述判断各所述激励元件的参数值之间的分配比例是否达到目标值,进一步包括:
    根据各所述激励元件的所述电流值和电压值计算各所述激励元件的功率值;
    判断各所述激励元件的功率值之间的分配比例是否达到目标值。
  10. 如权利要求2-7任意一项所述的功率传输方法,其特征在于,所述可调阻抗元件包括可调电容。
PCT/CN2019/113036 2018-10-25 2019-10-24 一种射频电源的功率传输方法 WO2020083340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811253867.2 2018-10-25
CN201811253867.2A CN109412574B (zh) 2018-10-25 2018-10-25 一种射频电源的功率传输方法

Publications (1)

Publication Number Publication Date
WO2020083340A1 true WO2020083340A1 (zh) 2020-04-30

Family

ID=65469809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113036 WO2020083340A1 (zh) 2018-10-25 2019-10-24 一种射频电源的功率传输方法

Country Status (3)

Country Link
CN (1) CN109412574B (zh)
TW (1) TWI755642B (zh)
WO (1) WO2020083340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517169A (zh) * 2021-04-22 2021-10-19 北京北方华创微电子装备有限公司 匹配器输出功率调试方法及调试系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412574B (zh) * 2018-10-25 2020-07-17 北京北方华创微电子装备有限公司 一种射频电源的功率传输方法
CN111725091A (zh) * 2019-03-22 2020-09-29 北京北方华创微电子装备有限公司 优化工艺流程的方法及装置、存储介质和半导体处理设备
CN114501764B (zh) * 2022-01-26 2024-02-09 江苏神州半导体科技有限公司 基于多线圈耦合的气体解离电路控制装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647845A (zh) * 2011-02-22 2012-08-22 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体点火的装置、方法和半导体设备
CN104597785A (zh) * 2014-12-09 2015-05-06 中国地质大学(武汉) 一种icp离子源自动点火控制方法
CN107180737A (zh) * 2016-03-11 2017-09-19 北京北方微电子基地设备工艺研究中心有限责任公司 用于实现阻抗匹配和功率分配的装置及半导体加工设备
CN109412574A (zh) * 2018-10-25 2019-03-01 北京北方华创微电子装备有限公司 一种射频电源的功率传输方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120048418A (ko) * 2010-11-05 2012-05-15 세메스 주식회사 플라즈마 임피던스 매칭 장치 및 그 방법
TWI542258B (zh) * 2012-02-23 2016-07-11 Shinkawa Kk Plasma ignition device
CN107256821B (zh) * 2016-03-23 2019-02-19 北京北方华创微电子装备有限公司 阻抗匹配系统、阻抗匹配方法及半导体加工设备
CN107256820B (zh) * 2016-03-23 2019-02-19 北京北方华创微电子装备有限公司 匹配装置、匹配方法及半导体加工设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647845A (zh) * 2011-02-22 2012-08-22 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体点火的装置、方法和半导体设备
CN104597785A (zh) * 2014-12-09 2015-05-06 中国地质大学(武汉) 一种icp离子源自动点火控制方法
CN107180737A (zh) * 2016-03-11 2017-09-19 北京北方微电子基地设备工艺研究中心有限责任公司 用于实现阻抗匹配和功率分配的装置及半导体加工设备
CN109412574A (zh) * 2018-10-25 2019-03-01 北京北方华创微电子装备有限公司 一种射频电源的功率传输方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517169A (zh) * 2021-04-22 2021-10-19 北京北方华创微电子装备有限公司 匹配器输出功率调试方法及调试系统
CN113517169B (zh) * 2021-04-22 2024-03-26 北京北方华创微电子装备有限公司 匹配器输出功率调试方法及调试系统

Also Published As

Publication number Publication date
CN109412574A (zh) 2019-03-01
TW202017437A (zh) 2020-05-01
TWI755642B (zh) 2022-02-21
CN109412574B (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2020083340A1 (zh) 一种射频电源的功率传输方法
KR102188339B1 (ko) 복수의 스테이션들에서 웨이퍼 보우 제어
US8421377B2 (en) Protecting high-frequency amplifers
TWI665711B (zh) 電漿處理裝置
TWI614807B (zh) 電漿處理裝置
JP5400294B2 (ja) Dcバイアス電圧に応答した制御を含む真空プラズマプロセッサ
KR101902427B1 (ko) 펄스 라디오 주파수 전원에 대한 임피던스 정합 방법 및 장치
CN105247967B (zh) 用于等离子体腔室中的快速且可重复的等离子体点燃和调谐的方法
JP6424024B2 (ja) プラズマ処理装置及びプラズマ処理方法
KR100490033B1 (ko) 전원에 부하를 정합시키는 방법 및 장치
US20130320853A1 (en) Passive power distribution for multiple electrode inductive plasma source
JP2010045664A (ja) マッチング装置、マッチング方法、プラズマ処理装置、及び記憶媒体
JP2015517180A (ja) プラズマ処理システムにおいてrf電流路を選択的に修正するための方法及び装置
KR20230127362A (ko) 부하의 임피던스를 전력 발생기의 출력 임피던스에조정시키는 방법 및 임피던스 조정 어셈블리
TWI603370B (zh) Device for realizing impedance matching and power distribution and semiconductor processing device
JP2001274651A (ja) インピーダンス整合装置、インピーダンス整合用コンダクタンス検出回路、およびインピーダンス整合方法
JP5100853B2 (ja) プラズマ処理方法
CN104105329A (zh) 电力供给装置和方法及利用该装置和方法的基板处理装置
KR102122782B1 (ko) 플라즈마 처리 장치 및 상기 플라즈마 처리 장치의 임피던스 매칭 방법
JP2022185603A (ja) プラズマ処理装置
CN113066712A (zh) 阻抗匹配方法、半导体工艺设备
JP4875331B2 (ja) 高周波電源装置および高周波電源の制御方法
WO2021040707A1 (en) Methods of tuning to improve plasma stability
KR102240306B1 (ko) 자동 점화위치 조정 기능을 가지는 임피던스 정합 장치 및 정합 방법
JP2012119088A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877119

Country of ref document: EP

Kind code of ref document: A1