WO2020083274A1 - 光谱仪以及微全分析系统 - Google Patents

光谱仪以及微全分析系统 Download PDF

Info

Publication number
WO2020083274A1
WO2020083274A1 PCT/CN2019/112493 CN2019112493W WO2020083274A1 WO 2020083274 A1 WO2020083274 A1 WO 2020083274A1 CN 2019112493 W CN2019112493 W CN 2019112493W WO 2020083274 A1 WO2020083274 A1 WO 2020083274A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide structure
reflection
light source
spectrometer
Prior art date
Application number
PCT/CN2019/112493
Other languages
English (en)
French (fr)
Inventor
王方舟
王维
孟宪芹
陈小川
孟宪东
梁蓬霞
凌秋雨
刘佩琳
田依杉
郭宇娇
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/765,025 priority Critical patent/US11226284B2/en
Publication of WO2020083274A1 publication Critical patent/WO2020083274A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry

Abstract

一种光谱仪以及微全分析系统,该光谱仪包括:波导结构(100)、光源(200)、准直镜(300)、反射光栅(400)和取光结构(500);准直镜(300)被配置为将经过波导结构(100)并入射到准直镜(300)的光源(200)发出的光转化为准直光;反射光栅(400)位于准直光在全反射传播过程中经过的波导结构(100)的反射面,被配置为使入射到反射光栅(400)的准直光中的不同波长范围的光的出射角度不同,从而使不同波长范围的光在全反射传播过程中具有偏移量;取光结构(500)位于不同波长范围的光在全反射过程中经过的波导结构(100)的反射面,以使不同波长范围的光从取光结构(500)出射。该光谱仪既可避免不同波长范围的光发生串扰,又可将波导结构(100)作为载体。

Description

光谱仪以及微全分析系统
本申请要求于2018年10月23日递交的中国专利申请第201811237706.4号的优先权,该中国专利申请的全文以引入的方式并入以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种光谱仪以及微全分析系统。
背景技术
微全分析系统中的微流控芯片实验室又称为微流控芯片或芯片实验室,能够将生物和化学领域涉及的样品制备、反应、分离检测等基本操作单元集成到一块几平方厘米甚至更小的芯片上,操作单元的尺寸在微米量级。微流控芯片实验室由微通道形成网络,以可控流体贯穿整个系统,用于取代常规生物或化学实验室的各种功能。微流控芯片实验室具有组合灵活以及便于大规模集成的优点。
发明内容
本公开的至少一实施例提供一种光谱仪,包括:波导结构、光源、准直镜以及反射光栅。所述波导结构包括第一面和第二面,所述光源设置在所述波导结构上且位于所述第一面,所述准直镜设置在所述波导结构上且位于所述第二面,所述准直镜被配置为将经过所述波导结构并入射到所述准直镜的所述光源发出的光转化为准直光,所述准直光在所述波导结构中全反射传播。所述反射光栅设置在所述波导结构上且位于所述准直光在全反射传播过程中经过的所述波导结构的反射面,所述反射光栅被配置为使入射到所述反射光栅的所述准直光中的不同波长范围的光的出射角度不同,从而使所述不同波长范围的光在全反射传播过程中具有偏移量。所述取光结构位于所述反射光栅远离所述光源的一侧,且位于所述不同波长范围的光在全反射过程中经过的所述波导结构的反射面,以使所述不同波长范围的光从所述取光结构出射。
例如,在本公开至少一个实施例提供的光谱仪中,所述第一面与所述第 二面彼此相对,所述波导结构还包括第三面,所述第三面包括沿第一方向延伸的第一边和沿第二方向延伸的第二边,所述第一边为所述第一面与所述第三面公用的边,所述第一面还包括沿第三方向延伸的第三边,且所述第二边的长度大于所述第三边的长度。
例如,在本公开至少一个实施例提供的光谱仪中,所述第一边的长度不大于20毫米。
例如,在本公开至少一个实施例提供的光谱仪中,所述第二面包括与所述第一方向和所述第三方向均具有夹角的倾斜部分,所述准直镜位于所述倾斜部分上,所述倾斜部分与所述第一方向的夹角为17°-29°,所述倾斜部分与所述第三方向的夹角为17°-29°。
例如,在本公开至少一个实施例提供的光谱仪中,所述波导结构为被削掉一个角的长方体,所述倾斜部分为所述波导结构被削掉一个角后的斜面,所述准直镜与所述斜面一体形成。
例如,在本公开至少一个实施例提供的光谱仪中,所述准直镜为对所述斜面加工形成的反射镜。
例如,在本公开至少一个实施例提供的光谱仪中,所述准直镜为抛物面反射镜,所述抛物面反射镜的反射面面向所述光源,且所述光源的中心在所述第一面的正投影与所述抛物面反射镜的中心在所述第一面的正投影基本重合。
例如,在本公开至少一个实施例提供的光谱仪中,所述抛物面反射镜的镜面曲率半径为所述光源的中心与所述抛物面反射镜的中心的距离的两倍,所述光源的中心位于所述抛物面反射镜的焦平面。
例如,在本公开至少一个实施例提供的光谱仪中,所述取光结构包括多个子取光结构,所述不同波长范围的光中的不同单一波长范围的光从不同的所述子取光结构出射。
例如,在本公开至少一个实施例提供的光谱仪中,所述第一面与所述第二面彼此相对,所述波导结构还包括第三面,所述取光结构与所述反射光栅均位于所述波导结构的所述第三面;或者,所述第一面与所述第二面彼此相对,所述波导结构还包括第三面以及与所述第三面相对的第四面,所述取光结构和所述反射光栅分别位于所述第三面和所述第四面。
例如,在本公开至少一个实施例提供的光谱仪中,所述取光结构与所述 反射光栅位于所述波导结构的同一面。
例如,在本公开至少一个实施例提供的光谱仪中,所述取光结构包括光栅或网点膜。
例如,在本公开至少一个实施例提供的光谱仪中,所述反射光栅仅覆盖所述准直光在所述波导结构上的一个反射点。
例如,在本公开至少一个实施例提供的光谱仪中,所述反射光栅包括一维光栅。
例如,在本公开至少一个实施例提供的光谱仪中,所述光源贴附在所述第一面上。
例如,在本公开至少一个实施例提供的光谱仪中,所述光源包括点光源,所述点光源为微发光二极管,且所述点光源出光面的最大尺寸为10-25微米。
例如,在本公开至少一个实施例提供的光谱仪中,所述光源的发散角不大于7°。
本公开的至少一实施例还提供一种微全分析系统,包括:微流控器件,被配置为容纳待检测的液体;上述任一实施例所述的光谱仪,位于所述微流控器件的入光侧,且配置为向所述待检测的液体照射光;探测器,位于所述微流控器件远离所述光谱仪的一侧,且被配置为检测所述待检测液体并输出检测信号。
例如,在本公开至少一个实施例提供的微全分析系统中,所述微流控器件与所述光谱仪以及所述探测器固定连接或可拆卸连接。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A和图1B为本公开至少一个实施例的提供的一种光谱仪的结构示意图;
图2为本公开至少一个实施例的一示例提供的光谱仪的结构示意图;
图3为图2所示的光谱仪中的波导结构的局部结构示意图;
图4为本公开至少一个实施例提供的光谱仪出射光斑分布示意图;
图5为本公开至少一个实施例的另一示例提供的光谱仪的结构示意图; 以及
图6为本公开至少一个实施例提供的微全分析系统的局部结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在研究中,本申请的发明人发现:一般的微流芯片实验室的体积较大,调试复杂,不便携带,并且需要通过光纤来耦合外置光源。此外,一般应用于微流芯片实验室的光谱仪中,在光波导中全反射传播的白光中的不同波长光容易串扰。
本公开的至少一个实施例提供一种光谱仪以及微全分析系统。本公开实施例提供的光谱仪既可以在特定位置实现光谱分光的功能,避免不同波长范围的光发生串扰,又可以将波导结构作为载体以支撑光源、准直镜和反射光栅等元件,从而实现了光谱仪的小型化和便携化,具有良好的稳定性。
本公开的实施例提供一种光谱仪以及微全分析系统。本公开实施例提供的光谱仪包括:波导结构、光源、准直镜以及反射光栅。波导结构包括第一面和第二面。光源设置在波导结构上且位于第一面,准直镜设置在波导结构上且位于第二面,准直镜被配置为将经过波导结构并入射到准直镜的光源发出的光转化为准直光,准直光在波导结构中全反射传播。反射光栅设置在波 导结构上且位于准直光在全反射传播过程中经过的波导结构的反射面,反射光栅被配置为使入射到反射光栅的准直光中的不同波长范围的光的出射角度不同,从而使不同波长范围的光在全反射传播过程中具有偏移量。取光结构位于反射光栅远离光源的一侧,且位于不同波长范围的光在全反射过程中经过的波导结构的反射面,以使不同波长范围的光从取光结构出射。例如,该光源为点光源。例如,在本公开的一些实施例中,该光谱仪可以省略上述光源(例如点光源),而由外部其他设备来提供光源或采用外置光源。
在本公开实施例提供的光谱仪中,光源(例如点光源)发出的光经过波导结构并入射到准直镜后变为准直光,入射到反射光栅的准直光中的不同波长范围的光按不同的出射角度分开,且在波导结构中传播一定距离以实现物理坐标上的分离,从而可以在特定位置实现光谱分光的功能,避免不同波长范围的光发生串扰。本公开实施例提供的光谱仪以波导结构为载体,支撑光源、准直镜和反射光栅等元件,从而实现了光谱仪的小型化和便携化,具有良好的稳定性。
下面结合附图对本公开实施例提供的光谱仪以及微全分析系统进行示例性描述。
图1A和图1B为本公开至少一个实施例的提供的一种光谱仪的结构示意图,图1A例如为该光谱仪的俯视图,图1B例如为该光谱仪的主视图。如图1A和图1B所示,光谱仪包括波导结构100、光源200、准直镜300以及反射光栅400。例如,在本公开的一些实施例中,该光谱仪可以省略光源(例如点光源)200,而由外部其他设备提供光源或采用外置光源。波导结构100包括第一面121和第二面122。点光源200设置在波导结构100上且位于第一面121,准直镜300设置在波导结构100上且位于第二面122,图1A示意性的示出第一面121和第二面122为彼此相对的两个面,但本公开的实施例不限于此,第一面121和第二面122还可以为相邻的两个面,这可以根据实际需求而定,例如根据具体光路而定。
例如,如图1A和图1B所示,波导结构100还包括第三面113,第三面113包括沿第一方向(即图1A所示的X方向)延伸的第一边111和沿第二方向(即图1A所示的Y方向)延伸的第二边112,第一边111为第一面121(或第二面122)与第三面113公用的边,第一面121还包括沿第三方向(即图1B所示的Z方向)延伸的第三边123,且第二边112的长度大于第三边123 的长度。因此,第三面113为波导结构100的主表面,即第三面113为波导结构100的面积最大的面,而第一面121和第二面122为波导结构100的两个侧面。
本实施例以波导结构100的形状为长方体为例进行描述,即第一方向垂直于第二方向,且第一方向垂直于第三方向。此外,图1A示意性的示出点光源200和准直镜300分别位于波导结构100的两个相对的侧面上,本实施例不限于此,点光源200和准直镜300还可以分别位于波导结构100的两个相对的主表面上,只要点光源200发出的光经过波导结构100并入射到准直镜300后变为准直光即可。
图1A示出了光谱仪的俯视图以及光谱仪中光线的传播路径的示意图,本实施例以光谱仪中平行于XY面的平面为光谱仪的第三面。图1B示出了图1A所示的光谱仪的主视图,本实施例以光谱仪中平行于XZ面的平面为光谱仪的第一面或第二面。如图1A和图1B所示,点光源200和准直镜300分别位于彼此相对的第一面121和第二面122上。准直镜300用于将点光源200发出的发散光汇聚成准直光,点光源200发出的光入射到准直镜300后出射的准直光在波导结构100中全反射传播。图1B示意性的示出点光源200所在的第一面121,而位于与第一面121相对的第二面122上的准直镜300以虚线框示出。
如图1A和图1B所示,光谱仪包括的反射光栅400位于准直光在全反射传播过程中经过的波导结构100的反射面。波导结构100还包括与第三面113相对的第四面114,图1A示意性的示出了波导结构100中的彼此相对的第三面113和第四面114,以及示意性的示出了彼此相对的第一面121和第二面122,例如,第三面113、第四面114、第一面121和第二面122均可以作为准直光发生全反射的反射面,由此,反射光栅400可以位于波导结构100的第三面113或第四面114,也可以位于波导结构100的第一面121或第二面122。
如图1A和图1B所示,准直光入射到反射光栅400之前,准直光包括的不同波长范围的光的传播方向是平行的,即,准直光中的光线都是互相平行的,由此准直光中的光线入射到反射光栅400时的入射角均相同。准直光入射到反射光栅400后,准直光中的不同波长范围的光的出射角度不同,从而使不同波长范围的光在全反射传播过程中具有一定偏移量,即,反射光栅400 可以将白光按照一定的分辨率来分成不同波长范围的光。因此,光谱仪中的反射光栅400可以将不同波长的光束偏转不同角度,进而通过在波导结构100中的传输来实现不同波长光的出光位置的偏移,既可以达到在特定位置实现光谱分光的效果,又可以避免不同波长范围的光发生串扰。为了明显的示意,图1A将从反射光栅400出射的不同波长范围的光之间的出射角度差距示意的较大,以使其分散较明显。
由于反射光栅400在进行分光时会受到波长和角度两个变量的影响,本实施例中入射到反射光栅400的光是准直光,即,入射到反射光栅400的光线的入射角度均相同,从而在反射光栅400进行分光时可以消除角度对分光效果的影响,使得反射光栅400主要根据波长进行分光。
例如,反射光栅400可以为直接在波导结构100的表面加工制作的光栅结构,也可以是将制作好的光栅结构贴附在波导结构100表面以作为反射光栅,本公开的实施例对此不做限制。在反射光栅400为直接在波导结构100表面加工制作的结构时,为了方便加工,可以将反射光栅400制作在波导结构100的第三面113上。
在实际工艺中,可以首先用光线追迹软件lighttools或zemax模拟计算得到反射光栅的位置,然后再在计算得到的位置处进行制作或贴附。
例如,反射光栅400可以为一维光栅,其光栅方程为n 1sinθ 1±n 2sinθ 2=mλ/p,m=0,±1,±2 。上述的θ 1和θ 2分别表示入射到反射光栅400的准直光的入射角和从反射光栅400出射的光的出射角,n 1和n 2分别表示反射光栅400的入射端和出射端的介质的折射率,λ表示入射光的波长,p表示光栅周期。本实施例中,n 1和n 2均为波导结构的折射率,所有波长光的入射角度θ 1相同,出射光的角度θ 2由波长决定,因此,可以利用反射光栅400的分光特性实现不同波长(或不同波长范围)光的出光位置的偏移。
例如,反射光栅400还可以为布拉格光栅或闪耀光栅等,只要能将不同波长(或不同波长范围)的光束偏转不同角度即可。
例如,图1A和图1B示意性的示出反射光栅400位于第三面113上。图1A示意性的示出从准直镜300出射的准直光在反射光栅400所在的位置发生全反射,且入射到反射光栅400的准直光全部被反射光栅400反射,即准直光入射到反射光栅400时的特定反射点101完全位于反射光栅400内。图1A示意性的示出从准直镜300出射的光在波导结构100中的第一个反射点为被 反射光栅400完全覆盖的特定反射点101,但本公开的实施例不限于此,还可以使从准直镜300出射的光经过至少一次全反射传播后再入射到反射光栅400中。
例如,如图1A所示,从反射光栅400出射的光在第一面121的反射点102发生全反射,之后分别在第四面114的反射点103以及第二面122的反射点104发生全反射。图1A仅示意性的示出4个反射点,且均以点划线圈出,实际波导结构中会有更多个反射点。由于从反射光栅400出射的不同波长的光在波导结构100的第一面121、第二面122、第三面113以及第四面114都发生反射,可以有效地折叠光路,增加光程,从而使不同波长的光在物理坐标上分离的距离更大。本公开的实施例不限于此,光线还可以仅在第三面113和第四面114上发生全反射传播,只要不同波长的光能够实现物理坐标上的分离即可。图1B为了清楚的示意,仅示意性的示出从反射光栅400出射的光在第三面113和第四面114上反射的光线,没有示出光被第一面121和第二面122反射的情况。
例如,如图1A和图1B所示,准直光在波导结构100上的特定反射点101完全位于反射光栅400内,且准直光或不同波长范围的光在波导结构100上的除特定反射点101外的其他反射点(例如反射点102-104等)与反射光栅400没有交叠,即,反射光栅400仅覆盖准直光在波导结构100上的一个反射点101。例如,反射光栅400的面积大于特定反射点101的面积,因此反射光栅400可以使入射的准直光被全部反射,从而提高光的利用率,减少光损失。
例如,在反射光栅400位于第三面113时,准直光在第三面113上的除特定反射点101外的其他反射点与反射光栅400没有交叠。
例如,反射光栅400可以覆盖特定反射点101以及与该特定反射点101相邻的其他反射点之间的区域,只要反射光栅400与除特定反射点101外的其他反射点没有交叠即可。一般,位于同一个面的相邻反射点之间距离较大,由此,本公开的实施例对于反射光栅400的尺寸要求以及对位精度要求较低,从而可以降低工艺难度,对于光谱仪的稳定性也有显著的改善。
例如,如图1A和图1B所示,光谱仪还包括:取光结构500。取光结构500位于反射光栅400远离点光源200的一侧,且位于不同波长范围的光在全反射过程中经过的波导结构100的反射面,以使不同波长范围的光从取光结构500出射,即取光结构500可以将波导结构100中传输并分开一定距离的 各个波长(或各个波长范围)的光从波导结构100中取出。
例如,取光结构500可以为光栅,从而将光线偏转出来,也可以为设置在波导结构100的表面的网点膜,通过缺陷破坏全反射条件而将光线取出。
例如,图1A和图1B所示,取光结构500与反射光栅400均位于波导结构100的第三面113。例如,取光结构500与反射光栅400可以均位于第三面113,也可以分别位于第三面113和第四面114。为了方便反射光栅400和取光结构500的制作,可以将取光结构500与反射光栅400设置在波导结构100的同一个面上。图1A示意性的示出反射光栅400和取光结构500均位于第三面113上,而图1A中所示的主表面为第四面114,由此,反射光栅400和取光结构500以虚线框示意。
例如,如图1A和图1B所示,从反射光栅400出射的不同波长的光通常需要经过几次反射后,才会有足够的光程差来进行分光,因此,取光结构500可以位于距反射光栅400距离较远的位置,即,取光结构500位于距反射光栅400较远的反射点所在位置以保证用于分光的足够的光程差。
例如,本实施例提供的波导结构100的第三面113的第一边111的长度不大于20毫米。例如,在一些实施例中,第一边111的长度不小于10毫米。本实施例可以通过调节从准直镜300出射的准直光的传播方向以及反射光栅400的位置以使在波导结构100的第一边111(也即最长边)的长度不大于20毫米(例如,进一步地,不小于10毫米)的情况下,从反射光栅400出射的不同波长的光可以具有足够的光程差来进行分光。由此,本实施例提供的波导结构100的体积较小,便于集成和携带,极大提高了光谱检测领域的可操作性。
例如,图2为本公开至少一个实施例的一示例提供的光谱仪的结构示意图。如图2所示,点光源200位于第一面121上,点光源200的出光面面向第二面122,且点光源200出射的光沿Y方向传播。为了实现从准直镜300出射的准直光,既可以在波导结构100中发生全反射传播,又可以在经过反射光栅400后继续全反射传播的过程中具有足够的光程差以实现分光,准直镜300需要将点光源200发出的沿Y方向传播的光向X方向和Z方向偏转一定角度。
本实施例示意性的示出准直镜300将沿Y方向传播的光向X方向和Z方向偏转一定角度,但本公开的实施例不限于此,还可以是从点光源200出射 的光的传播方向包括沿Y方向和X方向的分量,准直镜300将其向Z方向偏转一定角度;或者从点光源200出射的光的传播方向包括沿Y方向和Z方向的分量,准直镜300将其向X方向偏转一定角度;或者从点光源200出射的光的传播方向包括沿X方向、Y方向和Z方向的分量,准直镜300不需要使该光束的传播方向发生偏转。
例如,图3为图2所示的光谱仪中的波导结构的局部结构示意图。如图2和图3所示,准直镜300所在的第二面122包括与第一方向(X方向)和第三方向(Z方向)均具有一定夹角的倾斜部分1220,准直镜300位于倾斜部分1220上,且倾斜部分1220与第一方向的夹角为17°-29°,倾斜部分1220与第三方向的夹角为17°-29°。
又例如,倾斜部分1220与第一方向的夹角为17°-20°,倾斜部分1220与第三方向的夹角为17°-20°。再例如,倾斜部分1220与第一方向的夹角为25°-29°,倾斜部分1220与第三方向的夹角为25°-29°。
例如,倾斜部分1220与第一方向的夹角为第一夹角,倾斜部分1220与第三方向的夹角为第二夹角,第一夹角与第二夹角可以相同,也可以不同,本公开的实施例对此不作限制。
例如,如图3所示,波导结构100为被削掉一个角的长方体,倾斜部分1220为波导结构100被削掉一个角后的斜面,即,倾斜部分1220可以为对波导结构100的一个棱角进行特殊处理(例如切割处理)得到的面,将准直镜300的反光面设置在该倾斜部分1220上,可以对准直镜300反射的光引入沿X方向和Z方向的旋转分量。本公开的实施例不限于此,也可以将准直镜300设置在没有经过特殊处理的面上,而将点光源200设置在上述倾斜部分上,只要从准直镜300出射的准直光可以在波导结构100中进行全反射传播即可。
例如,如图2所示,准直镜300可以为抛物面反射镜,抛物面反射镜可以为在倾斜部分1220上通过机械加工工艺制作上的反射镜,也可以是制作好的抛物面反射镜贴附在倾斜部分1220上。
例如,如图2所示,抛物面反射镜的反射面面向点光源200,且点光源200的中心201在第一面121的正投影与抛物面反射镜(即准直镜300)的中心301(例如镜面中心)在第一面121的正投影基本重合,即,点光源200的中心201位于抛物面反射镜的焦平面上,以使从点光源200出射的发散光被汇聚为平行准直光。例如,该准直镜300的镜面的曲率半径为准直镜300 的焦距的两倍,即准直镜300的镜面的曲率半径为镜面中心301与准直镜300的焦平面之间的距离的两倍。
例如,本实施例提供的波导结构100为平面波导,该波导结构100既作为光传输的介质,又作为承载其他结构的载体。例如,如图2所示,波导结构100用于承载点光源200、准直镜300、反射光栅400以及取光结构500等结构,例如可以将点光源200、准直镜300、反射光栅400、取光结构500以及波导结构100固定连接或可拆卸连接,从而集成为一体化结构,实现了光谱仪的小型化和便携化。
例如,波导结构100可以为玻璃平板,对玻璃平板的一个棱角进行切割处理并加工可以得到上述的具有准直镜300的波导结构100。本公开的实施例提供的准直镜300、反射光栅400以及取光结构500都可以直接制作在波导结构100的表面,从而简化光谱仪的结构。
例如,如图2所示,点光源200的出光面202贴附在波导结构100的表面上,从而使点光源200与波导结构100成为一体结构,实现了光源的集成,能够极大的提升光谱仪的轻便性。
例如,本公开的实施例提供的光谱仪的尺寸较小,所以其包括的点光源200应选用尺寸较小的点光源。例如,点光源200可以为微发光二极管(u-LED)光源,该点光源200的出光面202的最大尺寸为10-25微米。例如,当该点光源200的出光面202为圆形时,该圆形的直径为10-25微米。本公开的实施例对于点光源200的光谱没有特别的需求,这可以根据实际需求而定,例如使其具有较宽的光谱范围即可。
例如,点光源200的发散角不大于7°,从而可以保证光谱仪的分光精度较高,例如可以达到的分光精度为5nm。例如,点光源200的发散角大于或等于0°。
例如,图4为本公开至少一个实施例提供的光谱仪出射光斑分布示意图。如图4所示,本公开的实施例提供的光谱仪能够达到5nm的分光精度,同时各个波长范围的光斑均较大。由此,将该光谱仪用于微流芯片实验室时,有利于检测器的感应和微液滴的控制,且对不同波长均有较大的操作空间。另外,该光谱仪适用的光谱范围并不局限于图中给出的部分(380-400nm),而是对非常大的光谱范围均适用,可以实现宽光谱范围内精确的分光。如需要更精确的分光效果,也可以采用分段分光的设计,即针对一定波长范围内的 光单独设计结构,最后进行组装。
例如,图5为本公开至少一个实施例的另一示例提供的光谱仪的结构示意图。如图5所示,本示例中的取光结构500包括多个子取光结构510,不同波长范围的光中待取出的不同单一波长范围的光可以分别从不同的子取光结构510出射。由于光谱仪中的反射光栅400可以将不同波长范围的光束偏转不同角度,进而通过在波导结构100中的传输来实现出光位置的偏移,以达到在特定位置实现光谱分光的效果,因而,可以在特定位置设置子取光结构510以将待取出的单一波长范围的光取出。
本公开实施例提供的光谱仪可以克服传统光谱仪系统体积大、稳定性和便携性不足等缺点。且由于集成的完备性,无需外置光源,可以极大提升光谱检测的适用范围,丰富应用场景。此外,本公开实施例提供的光谱仪的加工工艺要求较低,整体器件结构简单,对于反射光栅的尺寸要求以及对位要求都比较低,便于实现。
本公开另一实施例提供一种微全分析系统。图6为本公开至少一个实施例提供的微全分析系统的局部结构示意图,如图6所示,该微全分析系统包括微流控器件2000、上述实施例提供的光谱仪1000以及探测器3000。
如图6所示,微流控器件2000即为微流控芯片,微流控器件2000被配置为容纳待检测的液体2001,例如,该液体2001可以是液滴、流体等。
例如,如图6所示,微流控器件2000包括平行于光谱仪1000的第三面113的且相对设置的第一衬底基板2002和第二衬底基板2003。待检测的液体2001位于第一衬底基板2002与第二衬底基板2003之间。例如,第一衬底基板2002和第二衬底基板2003的材料包括玻璃,也可以为其他透明材料,本公开的实施例对此不作限制。
例如,在本实施例的一个示例中,微流控器件2000可以为电润湿微流控器件,且包括设置在第一衬底基板2002上的第一电极和设置在第二衬底基板2003上的第二电极,第二电极与第一电极之间可形成电场,形成的电场可对待检测的液体2001进行操作,例如使待检测的液体2001按照需要的路线和方向进行移动。
如图6所示,光谱仪1000位于微流控器件2000的入光侧,且配置为向待检测的液体2001照射光。例如,上述实施例中提供的光谱仪1000中的反射光栅400可以将不同波长范围的光束偏转不同角度,进而通过在波导结构 100中的传输来实现出光位置的偏移,以达到在特定位置实现光谱分光的效果。因此,从取光结构500取出的不同波长范围的光可以照射到微流控器件2000中的待检测的液体2001上。例如,可以通过使第一电极和第二电极之间产生电场,控制待检测的液体2001移动到不同的出光位置,从而使照射到待检测液体2001上的光具有不同的波长范围。
例如,从取光结构500取出的不同波长范围的光作用于待检测的液体2001时,可以使待检测的液体2001发生不同的反应,或者经由待检测的液体2001透射后的光具有不同的特性(例如光强和/或亮度不同)。由此,只使用一个点光源就可以获得不同波长范围的光,从而降低了功耗。
如图6所示,探测器3000位于微流控器件2000远离光谱仪1000的一侧,且被配置为检测待检测液体2001并输出检测信号。
例如,从光谱仪1000出射的光通过微流控器件2000照射到探测器3000上,可通过探测器3000检测到的例如光强、亮度等信息获知待检测的液体2001的检测信息(例如成分、含量等)。例如,穿过有液滴的部分和没液滴的部分的光的强度和/或亮度是不同的,穿过成分不同的液滴的光的强度和/或亮度也是不同的,从而可以得知检测信息。
例如,探测器3000可以包括传感器组,但本公开的实施例不限于此。例如,传感器组包括光学传感器、电容式传感器、温度传感器、超声波传感器中的至少一种。本公开的实施例中,通过微流控器件2000将液滴运动到指定波长的出光位置,由液滴与光发生相互作用,再由检测器3000分析光能量的变化,就能实现光谱分析功能。
例如,从光谱仪1000出射的第一光经过待检测的液体2001后,待检测的液体2001被激发产生第二光,第二光为待检测的液体2001中的目标细胞与标记细胞反应而携带的标记物在第一光的激发下所发出的光。例如,第二光可为荧光,但本公开的实施例不限于此。然后,可通过探测器3000检测到的第二光获知待检测的液体2001的检测信息。
例如,从待检测的液体2001出射的第二光还可为从光谱仪1000出射的第一光通过微流控器件2000照射到探测器3000的例如有部分光损失的光,光损失例如可包括强度有衰减等,可通过检测光损失情况而输出检测信号。例如,利用该种类型的有部分光损失的光可获得待检测的液滴的位置、形状等信息。
例如,以基因检测为例,本公开的实施例的一示例提供的微全分析系统的工作原理如下。将微流控器件2000中待测的液体2001分离成若干子液滴,并通过施加电场使各个子液滴移动到不同位置,液滴中的目标细胞与相应位置的标记细胞反应,携带上标记物,如荧光素酶等。标记物在不同波长光的激发下发射不同的荧光光子。探测器3000(例如,可为光敏二极管)接受荧光照射,产生相应大小的电压/电流信号,从而可在不同位置进行不同检测(例如检测不同的基因片段),可实现不同检测对象的并行检测。
例如,本公开的实施例中的微流控器件2000与光谱仪1000以及探测器3000固定连接或可拆卸连接,从而集成为一体化结构,即,光谱仪1000包括的波导结构100既作为光传输的介质,又作为微流控器件2000集成的框架,而探测器3000可以集成在微流控器件2000的衬底基板(例如第二衬底基板2003)上,从而实现三位一体的微全分析系统。这种设计能够极大提升光谱检测系统的轻便性,丰富光谱检测的应用场景,并且能有效降低使用成本。
本公开的实施例提供的微全分析系统将光源和微流控器件集成为一体,其使用更加方便,耗费资源更少。由于集成的完备性,无需外置光源,可以极大提升光谱检测的适用范围,丰富应用场景。在此基础上,所集成的光源能够提供准直性、单色性良好的多种波长范围的光束,同时能够覆盖较宽的光谱范围,这样就可以实现宽光谱检测,能够用来检测物质的种类、含量等特性。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (19)

  1. 一种光谱仪,包括:
    波导结构,包括第一面和第二面;
    光源和准直镜,其中,所述光源设置在所述波导结构上且位于所述第一面,所述准直镜设置在所述波导结构上且位于所述第二面,所述准直镜被配置为将经过所述波导结构并入射到所述准直镜的所述光源发出的光转化为准直光,所述准直光在所述波导结构中全反射传播;
    反射光栅,设置在所述波导结构上且位于所述准直光在全反射传播过程中经过的所述波导结构的反射面,其中,所述反射光栅被配置为使入射到所述反射光栅的所述准直光中的不同波长范围的光的出射角度不同,从而使所述不同波长范围的光在全反射传播过程中具有偏移量;
    取光结构,位于所述反射光栅远离所述光源的一侧,且位于所述不同波长范围的光在全反射过程中经过的所述波导结构的反射面,以使所述不同波长范围的光从所述取光结构出射。
  2. 根据权利要求1所述的光谱仪,其中,所述第一面与所述第二面彼此相对,所述波导结构还包括第三面,所述第三面包括沿第一方向延伸的第一边和沿第二方向延伸的第二边,所述第一边为所述第一面与所述第三面公用的边,所述第一面还包括沿第三方向延伸的第三边,且所述第二边的长度大于所述第三边的长度。
  3. 根据权利要求2所述的光谱仪,其中,所述第一边的长度不大于20毫米。
  4. 根据权利要求2或3所述的光谱仪,其中,所述第二面包括与所述第一方向和所述第三方向均具有夹角的倾斜部分,所述准直镜位于所述倾斜部分上,所述倾斜部分与所述第一方向的夹角为17°-29°,所述倾斜部分与所述第三方向的夹角为17°-29°。
  5. 根据权利要求4所述的光谱仪,其中,所述波导结构为被削掉一个角的长方体,所述倾斜部分为所述波导结构被削掉一个角后的斜面,所述准直镜与所述斜面一体形成。
  6. 根据权利要求5所述的光谱仪,其中,所述准直镜为对所述斜面加工形成的反射镜。
  7. 根据权利要求6所述的光谱仪,其中,所述准直镜为抛物面反射镜,所述抛物面反射镜的反射面面向所述光源,且所述光源的中心在所述第一面的正投影与所述抛物面反射镜的中心在所述第一面的正投影基本重合。
  8. 根据权利要求7所述的光谱仪,其中,所述抛物面反射镜的镜面曲率半径为所述光源的中心与所述抛物面反射镜的中心的距离的两倍,所述光源的中心位于所述抛物面反射镜的焦平面。
  9. 根据权利要求1所述的光谱仪,其中,所述取光结构包括多个子取光结构,所述不同波长范围的光中的不同单一波长范围的光从不同的所述子取光结构出射。
  10. 根据权利要求1-9任一项所述的光谱仪,其中,所述第一面与所述第二面彼此相对,所述波导结构还包括第三面,所述取光结构与所述反射光栅均位于所述波导结构的所述第三面;或者
    所述第一面与所述第二面彼此相对,所述波导结构还包括第三面以及与所述第三面相对的第四面,所述取光结构和所述反射光栅分别位于所述第三面和所述第四面。
  11. 根据权利要求1-10任一项所述的光谱仪,其中,所述取光结构与所述反射光栅位于所述波导结构的同一面。
  12. 根据权利要求1-11任一项所述的光谱仪,其中,所述取光结构包括光栅或网点膜。
  13. 根据权利要求1-12任一项所述的光谱仪,其中,所述反射光栅仅覆盖所述准直光在所述波导结构上的一个反射点。
  14. 根据权利要求1-13任一项所述的光谱仪,其中,所述反射光栅包括一维光栅。
  15. 根据权利要求1-14任一项所述的光谱仪,其中,所述光源贴附在所述第一面上。
  16. 根据权利要求1-15任一项所述的光谱仪,其中,所述光源包括点光源,所述点光源为微发光二极管,且所述点光源出光面的最大尺寸为10-25微米。
  17. 根据权利要求1-16任一项所述的光谱仪,其中,所述光源的发散角不大于7°。
  18. 一种微全分析系统,包括:
    微流控器件,被配置为容纳待检测的液体;
    如权利要求1-17任一项所述的光谱仪,位于所述微流控器件的入光侧,且配置为向所述待检测的液体照射光;
    探测器,位于所述微流控器件远离所述光谱仪的一侧,且被配置为检测所述待检测液体并输出检测信号。
  19. 根据权利要求18所述的微全分析系统,其中,所述微流控器件与所述光谱仪以及所述探测器固定连接或可拆卸连接。
PCT/CN2019/112493 2018-10-23 2019-10-22 光谱仪以及微全分析系统 WO2020083274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/765,025 US11226284B2 (en) 2018-10-23 2019-10-22 Spectrometer and micro-total analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811237706.4A CN109540807B (zh) 2018-10-23 2018-10-23 光谱仪以及微全分析系统
CN201811237706.4 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020083274A1 true WO2020083274A1 (zh) 2020-04-30

Family

ID=65845002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112493 WO2020083274A1 (zh) 2018-10-23 2019-10-22 光谱仪以及微全分析系统

Country Status (3)

Country Link
US (1) US11226284B2 (zh)
CN (1) CN109540807B (zh)
WO (1) WO2020083274A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540807B (zh) 2018-10-23 2020-06-30 京东方科技集团股份有限公司 光谱仪以及微全分析系统
CN109239940B (zh) * 2018-11-02 2021-05-07 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪
CN113835152B (zh) * 2021-09-30 2024-03-12 上海交通大学烟台信息技术研究院 一种波导光栅以及一种量程可调的光栅光谱仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040580A1 (en) * 2005-06-17 2009-02-12 Sony Corporation Optical device, and virtual image display
CN103995354A (zh) * 2014-05-16 2014-08-20 北京理工大学 基于全息衍射光学元件的消色差的波导显示系统
CN105510243A (zh) * 2015-12-31 2016-04-20 聚光科技(杭州)股份有限公司 一种光谱分析装置
CN107607475A (zh) * 2017-09-06 2018-01-19 京东方科技集团股份有限公司 微全分析系统及方法
CN107621673A (zh) * 2017-09-27 2018-01-23 京东方科技集团股份有限公司 光源模组和显示装置
CN109540807A (zh) * 2018-10-23 2019-03-29 京东方科技集团股份有限公司 光谱仪以及微全分析系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446534A (en) * 1993-03-05 1995-08-29 Optical Solutions, Inc. Broad band waveguide spectrometer
US5630004A (en) 1994-09-09 1997-05-13 Deacon Research Controllable beam director using poled structure
US6303934B1 (en) * 1997-04-10 2001-10-16 James T. Daly Monolithic infrared spectrometer apparatus and methods
TW588156B (en) * 2002-12-24 2004-05-21 Ind Tech Res Inst Real time infrared chemical imaging spectrometry
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
US20080218860A1 (en) * 2005-08-30 2008-09-11 Robertson William M Optical sensor based on surface electromagnetic wave resonance in photonic band gap materials
US7817274B2 (en) * 2007-10-05 2010-10-19 Jingyun Zhang Compact spectrometer
US8094305B2 (en) * 2009-02-02 2012-01-10 Sru Biosystems, Inc. Efficient optical arrangement for illumination and detection of label-free biosensors and method to reduce interference fringes in label-free imaging
WO2013102661A1 (en) * 2012-01-04 2013-07-11 Carsten Thirstrup Spectroscopic sensor for bio-sensing
CN103245996B (zh) * 2013-05-16 2015-11-25 中国科学院长春光学精密机械与物理研究所 一种阵列式多光谱滤光片及其制作方法
US20150168213A1 (en) * 2013-11-15 2015-06-18 Luminit Llc High-resolution Spectrometers Based on Substrate-guided Wave Holograms
CN104792418B (zh) * 2015-02-06 2017-08-08 中国科学院电子学研究所 端面斜反射光波导傅立叶光谱仪
US20160265974A1 (en) * 2015-03-09 2016-09-15 Corning Incorporated Glass waveguide spectrophotometer
CN108027313B (zh) * 2015-08-26 2021-01-29 光子系统有限责任公司 谐振周期性结构以及使用它们作为滤光器和传感器的方法
EP3270127A1 (en) * 2016-07-15 2018-01-17 Micos Engineering GmbH Miniaturized waveguide imaging spectrometer
US11092486B2 (en) * 2017-12-08 2021-08-17 California Institute Of Technology Compact folded metasurface spectrometer
CN108169211A (zh) * 2018-02-12 2018-06-15 上海出入境检验检疫局动植物与食品检验检疫技术中心 一种拉曼光谱增强测量系统
DE102018208684B4 (de) * 2018-06-01 2022-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monolithisch ausgestalteter spektralapparat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040580A1 (en) * 2005-06-17 2009-02-12 Sony Corporation Optical device, and virtual image display
CN103995354A (zh) * 2014-05-16 2014-08-20 北京理工大学 基于全息衍射光学元件的消色差的波导显示系统
CN105510243A (zh) * 2015-12-31 2016-04-20 聚光科技(杭州)股份有限公司 一种光谱分析装置
CN107607475A (zh) * 2017-09-06 2018-01-19 京东方科技集团股份有限公司 微全分析系统及方法
CN107621673A (zh) * 2017-09-27 2018-01-23 京东方科技集团股份有限公司 光源模组和显示装置
CN109540807A (zh) * 2018-10-23 2019-03-29 京东方科技集团股份有限公司 光谱仪以及微全分析系统

Also Published As

Publication number Publication date
CN109540807A (zh) 2019-03-29
US20200363321A1 (en) 2020-11-19
US11226284B2 (en) 2022-01-18
CN109540807B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
US7248361B2 (en) Fluorescence reader based on anti-resonant waveguide excitation
WO2020083274A1 (zh) 光谱仪以及微全分析系统
EP2988158B1 (en) Light-emitting device and related light source system
US7456953B2 (en) Method and apparatus for improved light distribution in an anti-resonant waveguide sensor
US6710870B1 (en) Method and device for measuring luminescence
KR100590548B1 (ko) 광검출 장치
US7016087B2 (en) Photon efficient scanner
US9006687B2 (en) Optical unit, fluorescence detection device, and fluorescence detection method
US9964749B2 (en) Total internal reflection fluorescence microscope (TIRFM)
WO2020088345A1 (zh) 光取出装置、检测装置及其使用方法
US7728980B2 (en) Optical unit
CN106990059B (zh) 一种液体样品测量装置和测量方法
JP2004361256A (ja) 表面プラズモン共鳴センサー及び表面プラズモン共鳴測定装置
US20070190642A1 (en) Concentrators for Luminescent Emission
WO2014064993A1 (ja) レンズ素子
WO2003036279A1 (fr) Systeme micro-chimique et procede spectroscopique de conversion photothermique
US11213822B2 (en) Light source assembly and micro total analysis system
US10775307B2 (en) Optical fiber fluorescence detection device
WO2010007811A1 (ja) 光学ユニット
CN215004887U (zh) 一种用于流式细胞仪的反射式荧光收集装置
JP2004101470A (ja) マイクロ化学システム及びマイクロ化学システム用光源ユニット、並びに光熱変換分光分析法
WO2021090708A1 (ja) 光学測定装置及び情報処理システム
JP2008216139A (ja) 光学装置
CN110501296A (zh) 导光结构及微流体光谱检测装置
JPH09257697A (ja) 表面プラズモン共鳴センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877195

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19877195

Country of ref document: EP

Kind code of ref document: A1