WO2020083035A1 - 基于阻抗相位角的锂离子电池温度检测方法 - Google Patents

基于阻抗相位角的锂离子电池温度检测方法 Download PDF

Info

Publication number
WO2020083035A1
WO2020083035A1 PCT/CN2019/110517 CN2019110517W WO2020083035A1 WO 2020083035 A1 WO2020083035 A1 WO 2020083035A1 CN 2019110517 W CN2019110517 W CN 2019110517W WO 2020083035 A1 WO2020083035 A1 WO 2020083035A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ion battery
phase angle
impedance phase
lithium
Prior art date
Application number
PCT/CN2019/110517
Other languages
English (en)
French (fr)
Inventor
李其乐
周智敏
Original Assignee
宁波普瑞均胜汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波普瑞均胜汽车电子有限公司 filed Critical 宁波普瑞均胜汽车电子有限公司
Publication of WO2020083035A1 publication Critical patent/WO2020083035A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the field of temperature detection of lithium ion batteries, in particular to a temperature detection method of lithium ion batteries based on impedance phase angle.
  • the power battery is one of the important components in the new power assembly, so the safety, reliability and capacity of the power battery are particularly important; the lithium ion battery has high density, high power and no charge and discharge memory effect compared to other power batteries It has been widely used as a power battery in new energy vehicles. Since lithium-ion batteries are active alkaline metal batteries, there is a danger of fire and explosion, and the energy density of lithium-ion batteries is large.
  • the new energy vehicle will be equipped with a battery management system in practical application.
  • the battery management system will diagnose the detected temperature signal. If the battery temperature is too high, it will send a signal to the motor controller to reduce the output power.
  • the internal thermal management system strengthens the lithium ion battery's foreign exchange capability. If the battery temperature measurement is inaccurate, there will be a diagnosis that affects the battery management system. Once the battery temperature reaches the critical point and the temperature continues to rise, the lithium ion battery will run out of control, resulting in Serious security incident.
  • the determination of the state of charge of the battery is mainly obtained by querying the open-circuit voltage-temperature table of the lithium-ion battery through software.
  • the state of charge of the lithium-ion battery is Cannot be accurately detected.
  • the technical problem to be solved by the present invention is to provide a temperature detection method of a lithium ion battery based on an impedance phase angle that can accurately measure the temperature of the lithium ion battery.
  • Step 1 Install a temperature sensor on the lithium-ion battery pack and detect the temperature of each single cell of the lithium-ion battery pack;
  • Step 2 Place the lithium-ion battery pack in a constant temperature environment cabin with an initial temperature of -20 ° C;
  • Step 3 After standing for a period of time, until the temperature of each cell of the lithium-ion battery pack is the same as the initial temperature, the electrochemical impedance spectroscopy technique is used for each cell to detect each cell at the current temperature.
  • Step 4 Change the initial temperature, and repeat Step 3 to obtain the impedance phase angle corresponding to each single cell, and compose the obtained data into an impedance phase angle-temperature table.
  • Step 5 Compare the impedance phase angle-temperature table with the impedance phase angle of the power battery detected by the battery management system in the new energy vehicle to obtain the temperature of the power battery at this time.
  • the initial temperature in step 2 ranges from -20 ° C to 40 ° C.
  • the values of the initial temperature are evenly distributed within -20 ° C to 40 ° C, and the number of values is at least 60.
  • the current I selected for the electrochemical impedance spectroscopy technique in step 3 is 2 amperes, and the frequency f is greater than 5 hertz.
  • the impedance phase angles in steps 3 and 4 are measured by Solartron 1287 / 1255B.
  • the advantage of the present invention is that the lithium ion battery pack is placed in a constant temperature environment cabin, and standing for a period of time can allow the lithium ion battery pack to perform sufficient heat exchange with the external environment, so that the lithium ion battery pack inside The temperature is consistent with the ambient temperature, making the measurement results more accurate and reliable; after standing, the excitation current is applied and the impedance phase angle of the lithium-ion battery pack to be tested is tested by the electrochemical workstation model Solartron1287 / 1255B, through multiple tests It can be seen that when the frequency of the applied excitation current is constant, the impedance phase angle of the lithium-ion battery pack has a one-to-one correspondence with the temperature of the lithium-ion battery pack, and has nothing to do with the state of charge of the lithium-ion battery; therefore, the existing pass can be ignored Detecting the state-of-charge of a lithium-ion battery Indirectly measuring the temperature of a lithium-ion battery, the temperature of the lithium-ion battery
  • FIG. 1 is a measured impedance phase angle-temperature table of a single cell in the present invention when an excitation current with a frequency of 5 Hz and a voltage of 2 amps is applied;
  • Figure 2 is the impedance phase angle of the single battery of the lithium ion battery pack at -20 °C under different charging states
  • Figure 3 is the impedance phase angle of the single cell of the lithium-ion battery pack at 0 ° C under different charging states
  • Figure 4 shows the impedance phase angle measured at different temperatures when the state of charge of the lithium-ion battery pack is 0%;
  • Figure 5 shows the impedance phase angle measured at different temperatures when the state of charge of the lithium-ion battery pack is 50%.
  • the temperature detection method of the lithium ion battery based on the impedance phase angle includes the following steps:
  • Step 1 Install a temperature sensor on the lithium-ion battery pack, and detect and display the temperature of each single cell of the lithium-ion battery pack;
  • Step 2 Place the lithium-ion battery pack in a constant temperature environment cabin with an initial temperature of -20 ° C;
  • Step 3 After 3 hours of standing, when the temperature of each cell of the lithium ion battery is the same as the initial temperature, the electrochemical impedance spectroscopy technique is applied to each cell, that is, the lithium ion battery to be tested is applied An excitation current with a current value of 2 amps and a frequency of 10 Hz, and the impedance phase angle of each single cell at the current temperature is detected and recorded by the Solartron1287 / 1255B instrument of the electrochemical workstation;
  • Step 4 Raise the initial temperature by 1 degree, and repeat Step 3 to obtain the impedance phase angle corresponding to each cell, and compose the impedance phase angle-temperature table with the obtained data.
  • Step 5 Compare the impedance phase angle-temperature table with the impedance phase angle of the power battery composed of the lithium-ion battery pack detected by the battery management system in the new energy vehicle to obtain the temperature of the power battery at this time.
  • the impedance phase angle-temperature table obtained through the above steps is input to the battery management system of the new energy vehicle, and an impedance phase angle detection device is provided on the new energy vehicle. Since the impedance phase angle corresponds to the temperature one by one, as long as At this moment, the impedance phase angle of the lithium-ion battery can be looked up to obtain the corresponding accurate temperature of the lithium-ion battery, and is not affected by the state of charge of the lithium-ion battery.
  • the lithium-ion battery is placed at 0 ° C In a constant temperature environment cabin, and stand for 3 hours, and the temperature sensor shows 0 °C; at this time, EIS technology (electrochemical impedance spectroscopy technology) is applied to the single cell, that is, the current is 2 amps and the frequency is 5 Hertz excitation current, and the impedance phase angle of the lithium ion battery is detected by the Solartron 1287 / 1255B instrument; the state of charge of the lithium ion battery is changed, and the impedance phase angle of the lithium ion battery is re-measured at this time.
  • EIS technology electrochemical impedance spectroscopy technology
  • the lithium-ion battery installs a temperature sensor on the lithium-ion battery and keep the state of charge of the lithium-ion battery constant. Put the lithium-ion battery in a constant temperature environment cabin and let it stand for 3 hours to ensure the temperature of the lithium-ion battery and the constant temperature environment cabin The temperature inside is the same. As shown in Figure 4, the state of charge of the lithium ion battery is maintained at 0%, and an excitation current of 2 amperes is applied, and the impedance of the lithium ion battery corresponding to different frequencies in this state is measured.
  • Phase angle change the temperature in the constant temperature environment cabin, and measure the impedance phase angle of the lithium ion battery at -20 °C, -10 °C, 0 °C, 10 °C, 20 °C, 30 °C and 40 °C; as shown in Figure 5 It shows that the state of charge of the lithium-ion battery is maintained at 50%, and an excitation current of 2 amperes is applied, and the impedance phase angle of the lithium-ion battery corresponding to different frequencies in this state is measured; Temperature, and measure the impedance phase angle of the lithium ion battery at -20 °C, -10 °C, 0 °C, 10 °C, 20 °C, 30 °C and 40 °C.
  • the phase angle of the impedance of the lithium-ion battery corresponding to different temperatures and different current frequencies is different; under the same state of charge of the same lithium-ion battery At different temperatures and the same current frequency, the phase angle of the impedance of the lithium-ion battery is the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了基于阻抗相位角的锂离子电池温度检测方法,包括以下步骤:步骤1、在锂离子电池的单体电池上安装温度传感器,检测单体电池温度;步骤2、将锂离子电池单体置入环境温度T1的恒温环境舱内;步骤3、经过静置时间H1的静置后,此时单体电池温度为T2,当单体电池的温度T2与环境温度T1相同时,对单体电池采用EIS技术(电化学阻抗谱技术);步骤4、通过电化学工作站检测出当前温度下的电池单体的阻抗相位角Alpha1,并记录;步骤5、改变环境温度T1,并重复步骤2至步骤4得出不同单体电池温度T2下对应的阻抗相位角Alpha1,并将得到的数据组成阻抗相位角-温度表;优点是能够精准测量锂离子电池的温度。

Description

基于阻抗相位角的锂离子电池温度检测方法 技术领域
本发明涉及锂离子电池温度检测领域,尤其涉及基于阻抗相位角的锂离子电池温度检测方法。
背景技术
随着新能源汽车的发展和推广,新能源汽车市场上出现了混合动力和纯电动汽车,在全球推广使用新能源汽车的大环境下,新能源汽车在未来也必将取代传统的燃油汽车;因此,由发动机、燃料箱组成的传统的动力总成也将转变成由电动机、动力电池组成的新的动力总成。新的动力总成中动力电池是重要组成部分之一,因此动力电池的安全性、可靠性和容量尤为重要;锂离子电池的相对于其他动力电池具有高密度、高功率和无充放电记忆效应等优点,在新能源汽车上被广泛作为动力电池使用。由于锂离子电池属于活跃的碱性金属电池,存在起火爆炸的危险,且锂离子电池的能量密度较大,一旦失控爆炸其造成的伤害相对于其他电池也较大。锂离子电池除暴力碰撞发生爆炸危险外,最主要发生爆炸的原因为温度过高导致锂离子电池失控,因此在新能源汽车发展过程中,锂离子电池的温度的精准检测是必不可少的关键技术之一。
新能源汽车在实际应用时会配备电池管理系统,电池管理系统会对检测到的温度信号进行诊断,若电池温度过高,则会向电机控制器发送降低输出功率的信号,同时通过新能源汽车内的热管理系统加强锂离子电池对外交换能力,若电池温度测量不准确,会出现影响电池管理系统的诊断,一旦出现电池温度达到临界点还继续升温的情形则会引起锂离子电池失控,导致严重的安全事故。
在电池管理系统中,电池的荷电状态的确定主要通过软件查询锂离子电池开路电压-温度表得到,而当锂离子电池温度无法精准确定时,锂离子电池的荷电状态通过现有技术是无法精准检测出的。
发明内容
本发明所要解决的技术问题是:提供一种可精准测量锂离子电池温度的基于阻抗相位角的锂离子电池温度检测方法。
本发明解决上述技术问题所采用的技术方案为:
基于阻抗相位角的锂离子电池温度检测方法,其特征在于包括以下步骤:
步骤1、在锂离子电池组上安装温度传感器,并检测锂离子电池组的每个单体电池的温度;
步骤2、将锂离子电池组置入初始温度为-20℃的恒温环境舱内;
步骤3、经过一段时间的静置,直至锂离子电池组的每个单体电池的温度与初始温度相同时,对每个单体电池采用电化学阻抗谱技术,以检测出当前温度下的每个单体电池的阻抗相位角,并记录;
步骤4、改变初始温度,并重复步骤3,得出每个单体电池相对应的阻抗相位角,并将得到的数据组成阻抗相位角-温度表。
步骤5、将阻抗相位角-温度表与新能源汽车内电池管理系统检测到的动力电池的阻抗相位角进行对比,得出此时动力电池的温度。
优选地,所述的步骤2中的初始温度取值范围为-20℃~40℃。
优选地,所述的初始温度的取值均匀分布在-20℃~40℃内,且取值个数至少为60个。
优选地,所述的步骤3中电化学阻抗谱技术所选用的电流I为2安培,频率f大于5赫兹。
优选地,所述的步骤3和步骤4中的阻抗相位角通过Solartron1287/1255B进行测量。
与现有技术相比,本发明的优点是将锂离子电池组置入恒温环境舱内,并静置一段时间可使得锂离子电池组与外部环境进行充分的热交换,使得锂离子电池组内部温度与环境温度一致,使测量的结果更加准确可靠;在静置之后施加激励电流并通过型号为Solartron1287/1255B的电化学工作站对待测试的锂离子电池组进行阻抗相位角的检测,通过多次试验可知在施加的激励电流的频率一定时,锂离子电池组的阻抗相位角与锂离子电池组的温度为一一对应关系,且和锂离子电池的荷电状态无关;因此可以忽略现有的通过检测锂离子电池荷电状态间接测量锂离子电池温度中电池荷电状态检测误差所导致的锂离子电池温度的不准确,以达到精准检测锂离子电池的温度。
附图说明
图1为本发明中单体电池在施加频率为5赫兹、电压为2安培的激励电流时,测出的阻抗相位角-温度表;
图2为锂离子电池组的单体电池在-20℃时,不同荷电状态下的阻抗相位角;
图3为锂离子电池组的单体电池在0℃时,不同荷电状态下的阻抗相位角;
图4为锂离子电池组荷电状态为0%时,不同温度下测量的阻抗相位角;
图5为锂离子电池组荷电状态为50%时,不同温度下测量的阻抗相位角。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图1所示,基于阻抗相位角的锂离子电池温度检测方法,包括以下步骤:
步骤1、在锂离子电池组上安装温度传感器,并检测显示锂离子电池组的每个单体电池的温 度;
步骤2、将锂离子电池组置入初始温度为-20℃的恒温环境舱内;
步骤3、经过3小时的静置,当锂离子电池组的每个单体电池的温度与初始温度相同时,对每个单体电池采用电化学阻抗谱技术,即对待测锂离子电池组施加电流值为2安培、频率为10赫兹的激励电流,并通过电化学工作站的Solartron1287/1255B仪器检测出当前温度下的每个单体电池的阻抗相位角,并记录;
步骤4、将初始温度提升1度,并重复步骤3,得出每个单体电池相对应的阻抗相位角,并将得到的数据组成阻抗相位角-温度表。
步骤5、将阻抗相位角-温度表与新能源汽车内电池管理系统检测到的以锂离子电池组构成的动力电池的阻抗相位角进行对比,得出此时动力电池的温度。
进一步的,将经过上述步骤得到的阻抗相位角-温度表格输入到新能源汽车的电池管理系统,并在新能源汽车上设置阻抗相位角检测装置,由于阻抗相位角和温度一一对应,只要检测到该时刻锂离子电池的阻抗相位角,即可查表得到相对应的精准的锂离子电池温度,且不受锂离子电池的荷电状态影响。
进一步的,在锂离子电池上安装温度传感器,并将锂离子电池置入不同的恒温环境舱内,如图2所示,将锂离子电池置入-20℃的恒温环境舱内,并静置3小时,并且温度传感器显示为-20℃;此时对单体电池采用EIS技术(电化学阻抗谱技术),即对单体电池施加电流为2安培、频率为5赫兹的激励电流,并通过Solartron1287/1255B仪器检测锂离子电池的阻抗相位角;改变锂离子电池的荷电状态,并重新测量此时锂离子电池的阻抗相位角;如图3所示,将锂离子电池置入0℃的恒温环境舱内,并静置3小时,并且温度传感器显示为0℃;此时对单体电池采用EIS技术(电化学阻抗谱技术),即对单体电池施加电流为2安培、频率为5赫兹的激励电流,并通过Solartron1287/1255B仪器检测锂离子电池的阻抗相位角;改变锂离子电池的荷电状态,并重新测量此时锂离子电池的阻抗相位角。经过多次试验及附图可知在温度一定、频率相同的时候,改变锂离子电池的荷电状态不会改变该时刻的阻抗相位角,且不同荷电状态的阻抗相位角-频率曲线相互重合。
进一步的,在锂离子电池上安装温度传感器,并保持锂离子电池的荷电状态恒定,将锂离子电池置入恒温环境舱内,并静置3小时,保证锂离子电池的温度与恒温环境舱内的温度相同,如图4所示,将锂离子电池的荷电状态保持为0%,并施加电流为2安培的激励电流,并测得该状态下的不同频率对应的锂离子电池的阻抗相位角;改变恒温环境舱内的温度,并分别测量-20℃、-10℃、0℃、10℃、20℃、30℃和40℃时的锂离子电池的阻抗相位角;如图5所示,将锂离子电池的荷电状态保持为50%,并施加电流为2安培的激励电流, 并测得该状态下的不同频率对应的锂离子电池的阻抗相位角;改变恒温环境舱内的温度,并分别测量-20℃、-10℃、0℃、10℃、20℃、30℃和40℃时的锂离子电池的阻抗相位角。有附图和多次测量的数据可知,在相同同锂离子电池荷电状态下,不同温度、不同电流频率所对应的锂离子电池的阻抗相位角不同;在相同同锂离子电池荷电状态下,不同温度、同一电流频率所对应的锂离子电池的阻抗相位角相同。

Claims (5)

  1. 基于阻抗相位角的锂离子电池温度检测方法,其特征在于包括以下步骤:
    步骤1、在锂离子电池组上安装温度传感器,并检测锂离子电池组的每个单体电池的温度;
    步骤2、将锂离子电池组置入初始温度为-20℃的恒温环境舱内;
    步骤3、经过一段时间的静置,直至锂离子电池组的每个单体电池的温度与初始温度相同时,对每个单体电池采用电化学阻抗谱技术,以检测出当前温度下的每个单体电池的阻抗相位角,并记录;
    步骤4、改变初始温度,并重复步骤3,得出每个单体电池相对应的阻抗相位角,并将得到的数据组成阻抗相位角-温度表;
    步骤5、将阻抗相位角-温度表与新能源汽车内电池管理系统检测到的动力电池的阻抗相位角进行对比,得出此时动力电池的温度。
  2. 如权利要求1所述的基于阻抗相位角的锂离子电池温度检测方法,其特征在于所述的步骤2中的初始温度取值范围为-20℃~40℃。
  3. 如权利要求2所述的基于阻抗相位角的锂离子电池温度检测方法,其特征在于所述的初始温度的取值均匀分布在-20℃~40℃内,且取值个数至少为60个。
  4. 如权利要求1所述的基于阻抗相位角的锂离子电池温度检测方法,其特征在于所述的步骤3中电化学阻抗谱技术所选用的电流I为2安培,频率f大于5赫兹。
  5. 如权利要求1所述的基于阻抗相位角的锂离子电池温度检测方法,其特征在于所述的步骤3和步骤4中的阻抗相位角通过Solartron1287/1255B进行测量。
PCT/CN2019/110517 2018-10-24 2019-10-11 基于阻抗相位角的锂离子电池温度检测方法 WO2020083035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811242151.2 2018-10-24
CN201811242151.2A CN109411840A (zh) 2018-10-24 2018-10-24 基于阻抗相位角的锂离子电池温度检测方法

Publications (1)

Publication Number Publication Date
WO2020083035A1 true WO2020083035A1 (zh) 2020-04-30

Family

ID=65469029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110517 WO2020083035A1 (zh) 2018-10-24 2019-10-11 基于阻抗相位角的锂离子电池温度检测方法

Country Status (2)

Country Link
CN (1) CN109411840A (zh)
WO (1) WO2020083035A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411840A (zh) * 2018-10-24 2019-03-01 宁波普瑞均胜汽车电子有限公司 基于阻抗相位角的锂离子电池温度检测方法
CN109884532A (zh) * 2019-03-06 2019-06-14 郑州大学 一种电网储能电池检测装置和检测方法
CN110221212A (zh) * 2019-04-03 2019-09-10 宁波普瑞均胜汽车电子有限公司 一种锂离子电池内部温度的动态在线测量方法
CN110515009B (zh) * 2019-07-19 2022-02-15 江苏大学 电池全寿命周期内电化学阻抗谱特征量对温度敏感频带标定方法
CN111624503B (zh) * 2020-04-26 2023-04-28 宁波普瑞均胜汽车电子有限公司 一种锂离子电池温度在线估算方法
CN112034347A (zh) * 2020-09-04 2020-12-04 国网陕西省电力公司汉中供电公司 一种锂离子电池热失控快速监测方法及系统
CN111883867A (zh) * 2020-09-15 2020-11-03 国网陕西省电力公司汉中供电公司 一种安全高效的电池快充方法
CN112345945B (zh) * 2020-10-27 2021-12-31 同济大学 一种充电时电池温度估计方法
CN114200312A (zh) * 2021-12-10 2022-03-18 中国民航大学 基于交流阻抗的圆柱形锂离子电池热失控早期预警方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135075A (ja) * 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
CN106842050A (zh) * 2017-01-24 2017-06-13 中国电力科学研究院 一种电池温度预测方法及装置
CN107192952A (zh) * 2017-03-31 2017-09-22 中国电力科学研究院 一种电池内部温度检测方法和装置
CN109411840A (zh) * 2018-10-24 2019-03-01 宁波普瑞均胜汽车电子有限公司 基于阻抗相位角的锂离子电池温度检测方法
CN110221212A (zh) * 2019-04-03 2019-09-10 宁波普瑞均胜汽车电子有限公司 一种锂离子电池内部温度的动态在线测量方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137953A (ja) * 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd 溶融塩電池システム、および溶融塩電池システムの運転方法
US9880061B2 (en) * 2013-06-14 2018-01-30 Hrl Laboratories, Llc Methods and apparatus for sensing the internal temperature of an electrochemical device
CN106289566B (zh) * 2016-07-19 2018-12-11 清华大学 一种基于电化学阻抗对二次电池内部温度估算的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135075A (ja) * 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
CN106842050A (zh) * 2017-01-24 2017-06-13 中国电力科学研究院 一种电池温度预测方法及装置
CN107192952A (zh) * 2017-03-31 2017-09-22 中国电力科学研究院 一种电池内部温度检测方法和装置
CN109411840A (zh) * 2018-10-24 2019-03-01 宁波普瑞均胜汽车电子有限公司 基于阻抗相位角的锂离子电池温度检测方法
CN110221212A (zh) * 2019-04-03 2019-09-10 宁波普瑞均胜汽车电子有限公司 一种锂离子电池内部温度的动态在线测量方法

Also Published As

Publication number Publication date
CN109411840A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020083035A1 (zh) 基于阻抗相位角的锂离子电池温度检测方法
Lyu et al. Real-time overcharge warning and early thermal runaway prediction of Li-ion battery by online impedance measurement
Zheng et al. Fault identification and quantitative diagnosis method for series-connected lithium-ion battery packs based on capacity estimation
US10663525B2 (en) Method and device for monitoring state of charge and state of health of lithium-ion battery
Fathoni et al. Comparison of State-of-Charge (SOC) estimation performance based on three popular methods: Coulomb counting, open circuit voltage, and Kalman filter
Seo et al. Online detection of soft internal short circuit in lithium-ion batteries at various standard charging ranges
US20220334195A1 (en) Method for Quantitative Diagnosis of Electricity Leakage or Micro-short-circuit in Single Cells Based on Capacity Estimation
US8984943B2 (en) Inspection apparatus and inspection method for lithium ion secondary battery, and secondary battery module
CN104422917A (zh) 在范围内的电流传感器的故障检测
Wenjie et al. On-line estimation method for internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy
CN103675685A (zh) 锂离子电池的测试方法及安全性的判断方法
CN106855610A (zh) 钛酸锂电池健康状态估算系统及方法
Lv et al. Anomaly detection of LiFePO4 pouch batteries expansion force under preload force
Li et al. A smart Li-ion battery with self-sensing capabilities for enhanced life and safety
Zheng et al. Quantitative short circuit identification for single lithium-ion cell applications based on charge and discharge capacity estimation
CN112924872A (zh) 一种磷酸铁锂电池荷电状态的监测方法
Yu et al. Multi-Fault Diagnosis of Lithium-Ion battery systems based on correlation Coefficient and similarity Approaches
WO2022166730A1 (zh) 基于不确定噪声滤波的动力电池管理系统故障诊断方法
CN103872727B (zh) 一种锂离子动力电池最大使用电流的确定方法
Song et al. Individual cell fault detection for parallel-connected battery cells based on the statistical model and analysis
Wang et al. Experimental study on the internal resistance and heat generation characteristics of lithium ion power battery with NCM/C material system
CN111983466A (zh) 一种基于电压和温度特性的锂电池安全度估算方法及装置
CN113465773B (zh) 一种测算锂离子电池内部温度的方法
CN105242213A (zh) 锂离子电池可逆及不可逆产热同时测试的方法
Jia et al. The early warning for thermal runaway of lithium-ion batteries based on internal and external temperature model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876603

Country of ref document: EP

Kind code of ref document: A1