WO2020083025A1 - 电源的休眠,休眠确定方法及装置,休眠设备 - Google Patents

电源的休眠,休眠确定方法及装置,休眠设备 Download PDF

Info

Publication number
WO2020083025A1
WO2020083025A1 PCT/CN2019/110089 CN2019110089W WO2020083025A1 WO 2020083025 A1 WO2020083025 A1 WO 2020083025A1 CN 2019110089 W CN2019110089 W CN 2019110089W WO 2020083025 A1 WO2020083025 A1 WO 2020083025A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
sleep
power supplies
sleep mode
Prior art date
Application number
PCT/CN2019/110089
Other languages
English (en)
French (fr)
Inventor
谢金城
孟燕妮
孙浩
卢至锋
洪小芹
刘姗珊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2021523002A priority Critical patent/JP7506667B2/ja
Priority to EP19877515.7A priority patent/EP3872602A4/en
Publication of WO2020083025A1 publication Critical patent/WO2020083025A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a method and apparatus for power supply sleep, sleep determination, and sleep equipment.
  • the power supply seeks Improve efficiency through the overall management of the power supply system.
  • the load is an important factor for system management and is also a dynamic factor.
  • Embodiments of the present application provide a method and device for sleep of a power supply, determination of sleep, and sleep equipment, to at least solve the problem in the related art that the overall energy saving effect of the power supply system is not significantly improved only by the power supply load rate.
  • a power supply sleep method which includes: a power supply sleep device selects one or more power supplies to enter a sleep mode according to power supply information of each power supply in a parallel power supply system, wherein the power supply information At least include: the power input type of the power supply and the conversion efficiency of the power supply.
  • the sleep device of the power supply selects the one or more power supplies that enter the sleep mode according to the power information of each power supply in the parallel power supply system, including: when the power input type of each power supply and the conversion of each power supply When the efficiencies are all the same, the one or more power supplies that enter the sleep mode are selected according to the operation information of the power supplies.
  • the work operation information includes at least one of the following: the operation time of each power supply, and the operation temperature of each power supply.
  • the sleep device of the power supply selects the one or more power supplies that enter the sleep mode according to the power information of each power supply in the parallel power supply system, including: when the power input types of the power supplies are different and the power supplies of the power supplies When the conversion efficiency is the same, the sleep device of the power supply selects one or more power supplies that enter the sleep mode according to the power input types of the power supplies.
  • the sleep device of the power supply selects the one or more power supplies that enter the sleep mode according to the power information of each power supply in the parallel power supply system, and further includes: the sleep device of the power supply obtains the power input type of the power supplies , And sort the power input efficiency of each power supply according to the power input type; according to the sorting results of the power input efficiency of the power supplies and the power input status of the power supplies, select one or more power supplies from low to high as the entry The one or more power supplies in the sleep mode.
  • the sleep device of the power supply selects the one or more power supplies that enter the sleep mode according to the power supply information of each power supply in the parallel power supply system, including: when the power input types of the power supplies are the same and the power supplies of the power supplies When the conversion efficiency is different, the sleep device of the power supply sorts the conversion efficiency of each power supply; one or more power supplies are selected from low to high as the one or more power supplies that enter the sleep mode.
  • the sleep device of the power supply sorts the conversion efficiencies of the power supplies, and the sleep device of the power supply sorts the conversion efficiencies of the power supplies according to the efficiency levels of the power supplies.
  • the sleep device of the power supply selects the one or more power supplies that enter the sleep mode according to the power information of each power supply in the parallel power supply system, including: when the power input type of each power supply and the power supply of the power supply itself When the conversion efficiencies are not the same, the sleep device of the power supply comprehensively selects the power supply or power supplies that enter the sleep mode according to the power input type of the power supplies and the conversion efficiency.
  • a sleep determination method for a power supply including: a sleep device of a power supply determines a sleep mode entered by one or more power supplies in the parallel power supply system according to load information of a load system supplied; Wherein, the one or more power supplies are determined according to the power supply information of each power supply in the parallel power supply system.
  • the power supply information includes at least: the power input type of the power supply and the conversion efficiency of the power supply.
  • the sleep device of the power supply determines the sleep mode entered by the one or more power supplies, including: the one or more power supplies determining whether the load traffic of the load system satisfies the sleep threshold; and when the judgment result is yes Next, the one or more power supplies enter the sleep mode corresponding to the sleep threshold.
  • the sleep device of the power supply determining the sleep mode entered by the one or more power supplies includes: when the one or more power supplies determine that the load traffic of the load system satisfies the first sleep threshold, the one or more Multiple power supplies enter the first sleep mode and reduce the output voltage.
  • the sleep device of the power supply determining the sleep mode entered by the one or more power supplies includes: when the one or more power supplies determine that the load traffic of the load system satisfies the second sleep threshold, the one or more A plurality of power supplies enter the second sleep mode and turn off the output voltage; wherein, the second sleep threshold is smaller than the first sleep threshold.
  • the sleep device of the power supply determining the sleep mode entered by the one or more power supplies includes: when the one or more power supplies entering the second sleep mode determines that the load traffic of the load system increases and meets the third In the case of the sleep threshold, the one or more power supplies enter the first sleep mode and reduce the output voltage; wherein the third sleep threshold is the sum of the second sleep threshold and the load traffic increase.
  • the sleep device of the power supply determines the sleep mode entered by the one or more power supplies, and further includes: Or when multiple power supplies judge that the load traffic of the load system increases and meets the fourth sleep threshold, the one or more power supplies exits the sleep mode and resumes output operating voltage; wherein, the fourth sleep threshold is the first The sum of the sleep threshold and the increment of load traffic.
  • the method further includes the one or more power supplies entering the sleep mode detect whether a common sleep signal between the power supplies Set to abnormal; when it is detected that the sleep common signal is set to abnormal, the one or more power supplies entering the sleep mode exit the sleep mode and restore the output operating voltage.
  • the method further includes: recovering the one or more power supplies that output the operating voltage to detect Whether the sleep common signal is set to normal; when it is detected that the sleep common signal is set to normal, the one or more power supplies that restore the output operating voltage re-enter the sleep mode.
  • a sleep device for a power supply including one or more processors, and one or more memories storing a program unit, wherein the program unit is executed by the processor, and the program unit includes :
  • the selection module is configured to select one or more power supplies to enter the sleep mode according to the power supply information of each power supply in the parallel power supply system, wherein the power supply information at least includes: the power input type of the power supply and the conversion efficiency of the power supply.
  • the selection module further includes a first selection unit configured to select the sleep mode to enter the sleep mode according to the operation information of the power supplies when the power input types of the power supplies and the conversion efficiency of the power supplies are the same One or more of the above power supplies.
  • the selection module further includes: a second selection unit configured to select a mode to enter the sleep mode according to the power input type of each power supply when the power input types of the power supplies are different and the conversion efficiency of the power supplies is the same One or more power supplies.
  • the second selection unit is further configured to acquire the power input type of each power supply and sort the power input efficiency of the power supplies according to the power input type; according to the sorting result of the power input efficiency of the power supplies As well as the power input state of the above power supplies, one or more power supplies are selected as the one or more power supplies that enter the sleep mode from low to high.
  • the selection module further includes: a third selection unit configured to sort the conversion efficiency of the power supplies when the power input types of the power supplies are the same and the conversion efficiency of the power supplies is different; from low to high One or more power supplies are selected as the one or more power supplies that enter the sleep mode.
  • a third selection unit configured to sort the conversion efficiency of the power supplies when the power input types of the power supplies are the same and the conversion efficiency of the power supplies is different; from low to high One or more power supplies are selected as the one or more power supplies that enter the sleep mode.
  • the third selection unit is further configured to sort the conversion efficiencies of the power supplies according to the efficiency levels of the power supplies.
  • the above selection module further includes: a fourth selection unit configured to set the power input type of each power supply and the conversion efficiency according to the power input type of each power supply and the conversion efficiency of the power supply when the power input type of each power supply is different
  • the one or more power supplies that enter the sleep mode are selected in combination.
  • a device for determining sleep which is located in a parallel power supply system and includes one or more processors and one or more memories storing program units, where the program units are Execution, the program unit includes: a determination module configured to determine the sleep mode entered by one or more power supplies in the parallel power supply system according to the load information of the load system being powered; wherein the one or more power supplies are based on the above
  • the power supply information of each power supply in the machine power supply system is determined.
  • the power supply information at least includes: the power input type of the power supply and the conversion efficiency of the power supply.
  • the determination module is further configured to determine whether the load traffic of the load system satisfies the sleep threshold; and if the determination result is yes, determine that the one or more power supplies enter the sleep mode corresponding to the sleep threshold.
  • the above determination module is further configured to determine that the one or more power supplies enter the first sleep mode and reduce the output voltage when it is determined that the load traffic of the load system satisfies the first sleep threshold.
  • the determination module is further configured to determine that the one or more power supplies enter the second sleep mode and turn off the output voltage when it is determined that the load traffic of the load system satisfies the second sleep threshold; wherein the second The sleep threshold is less than the above-mentioned first sleep threshold.
  • the determination module is further configured to determine that the one or more power supplies entering the second sleep mode enter the first sleep mode when it is determined that the load traffic of the load system increases and meets the third sleep threshold. And reduce the output voltage; wherein, the third sleep threshold is the sum of the second sleep threshold and the load traffic increase.
  • the determination module is further configured to determine that the one or more power supplies entering the sleep mode exit the sleep mode and resume output when it is determined that the load traffic of the load system increases and meets a fourth sleep threshold Operating voltage; wherein, the fourth sleep threshold is the sum of the first sleep threshold and the load traffic increment.
  • the above determination module further includes: a first detection unit configured to detect whether the sleep common signal between the power supplies is set to be abnormal; a first determination unit configured to detect that the sleep common signal is set to be abnormal, It is determined that the one or more power supplies that enter the sleep mode exit the sleep mode and restore the output operating voltage.
  • the above determination module further includes: a second detection unit configured to detect whether the sleep common signal between the power supplies is set to normal; a second determination unit configured to detect that the sleep common signal is set to normal, The one or more power supplies that determine to restore the output operating voltage re-enter the sleep mode.
  • a power supply sleep device including: a power supply parallel system, an interface unit, a monitoring unit, and a load system, wherein the monitoring unit is configured to acquire the parallel through the interface unit Power information of each power supply in the power supply system, and select one or more power supplies to enter the sleep mode according to the power supply information of the above power supplies; the above power supply parallel system is set to obtain one or more power supplies to enter the sleep mode through the interface unit, And acquiring load information of the load system supplied by the parallel power supply system through the interface unit, and determining a sleep mode in which one or more power supplies in the parallel power supply system enter.
  • an electronic device including a memory and a processor, the memory stores a computer program, the processor is configured to run the computer program to execute any of the above method embodiments Steps.
  • an optimal energy-saving control strategy can be implemented according to the system power input type and conversion efficiency.
  • two levels of sleep can also be used to maximize the energy saving effect.
  • the power supply real-time monitoring load can also realize the self-management of the sleep function without system intervention.
  • the sleeping common signal can ensure the reliable and stable power supply. It solves the problem that the overall energy saving effect of the power supply system is not significantly improved only by the power supply load rate in the related art. Achieve the beneficial effects of overall energy-saving control strategy, low cost and high investment return.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal of a power supply sleep method according to an embodiment of the present application
  • FIG. 2 is a flowchart of a sleep method for a power supply according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining sleep of a power supply according to an embodiment of the present application
  • FIG. 4 is a flowchart of hierarchical sleep control according to an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a sleep device for a power supply according to an embodiment of the present application.
  • FIG. 6 is a structural block diagram of a device for determining sleep of a power supply according to an embodiment of the present application
  • FIG. 7 is a structural block diagram of a sleep device of a power supply according to an embodiment of the present application.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal of a power supply sleep method according to an embodiment of the present application.
  • the mobile terminal 10 may include one or more (only one is shown in FIG. 1) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA, etc. ) And a memory 104 configured to store data.
  • the mobile terminal may further include a transmission device 106 configured as a communication function and an input / output device 108.
  • FIG. 1 is merely an illustration, which does not limit the structure of the mobile terminal described above.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the sleep method of the power supply in the embodiment of the present application, and the processor 102 runs the computer program stored in the memory 104, thereby Implementation of various functional applications and data processing, that is to achieve the above method.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memories remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 through a network. Examples of the above network include but are not limited to the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the above specific example of the network may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, referred to as NIC for short), which can be connected to other network devices through the base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a sleep method for a power supply according to an embodiment of the present application. As shown in FIG. 2, the process includes the following steps :
  • Step S202 the sleep device of the power supply selects one or more power supplies that enter the sleep mode according to the power supply information of each power supply in the parallel power supply system, where the power supply information includes at least: the power input type of the power supply and the conversion efficiency of the power supply.
  • the power information is collected at least in the following ways:
  • the sleep device of the power supply uses the communication link to issue commands to each power supply to query each power input type to complete the collection of each power input type.
  • each power supply may preset a load efficiency curve group with temperature and input voltage as parameters at the time of shipment.
  • the power supply can perform efficiency detection according to the actual operating conditions, and compare and calibrate with preset efficiency curve groups.
  • the calibration data is used as a reference to complete the revision of the standard load efficiency curve group to realize the adaptation of the load curve.
  • Each power supply completes the acquisition of the power supply's own conversion efficiency.
  • the power input type and input voltage level may be different in the parallel power supply system, and the input voltage has a greater impact on the power supply efficiency, when obtaining the power conversion efficiency, you can use the input Voltage value, select the load efficiency curve, and then determine the power conversion efficiency value according to the system load.
  • the sleep device of the power supply presets the input type efficiency priority ranking table according to the system application scenario.
  • the sleep device of the power supply determines the number of power supplies to sleep and selects the power supply to sleep according to the input type and conversion efficiency of each power supply of the system, combined with the load of the system.
  • a sleep mode for the following four cases is also provided:
  • the sleep device of the power supply selects one or more power supplies that enter the sleep mode according to the work operation information of each power supply.
  • the work operation information includes at least one of the following: the operation time of each power supply, and the operation temperature of each power supply.
  • these two power supplies can be selected as candidate sleep power supplies.
  • the two candidate sleep power supplies are put to sleep. If the current working power supply cannot meet the work requirements, the power supply with a relatively long working time among the two power supplies is dormant, and the other power supply with a shorter working time continues to work.
  • the power supply that enters the sleep state can be determined in combination with the power supply operating time and the power supply operating temperature.
  • other work operation information is also within the protection scope of this embodiment.
  • the sleep device of the power supply selects one or more power supplies that enter the sleep mode according to the power input types of the power supplies.
  • the dormant device of the power supply obtains the power input type of each power supply, and sorts the power input efficiency of each power supply according to the power input type; the dormant device of the power supply sorts the power input efficiency of each power supply and the power supply efficiency of each power supply In the power input state, one or more power sources whose power input efficiency is lower than a preset efficiency threshold are selected as one or more power sources that enter the sleep mode.
  • the sleep device of the power supply sorts the power input efficiency of each power supply by the following two methods:
  • the power input efficiency of each power supply is sorted, and one or more power supplies are selected from low to high as one or more power supplies to enter the sleep mode .
  • the parallel system contains 10 power supplies connected in parallel and only needs 4 power supplies to work to meet the needs of the load system, then the energy input efficiency of each power supply is sorted from low to high, and then from the lowest The power supply corresponding to the power input efficiency starts, and the power supply corresponding to the fourth power input efficiency (including the fourth power input efficiency) is not required to work as a power supply that needs to enter the sleep mode.
  • the preset efficiency threshold can be adjusted in real time according to the demand of the load system.
  • each power supply can also determine its own input voltage type, and then determine and sort the power input efficiency of each power supply according to the judgment result provided by each power supply.
  • the efficiency difference is obvious; in a system with power supplies of the same efficiency level, the efficiency difference mainly comes from individual differences.
  • the parallel system contains 8 power supplies connected in parallel and needs 5 power supplies to work to meet the needs of the load system, then after the conversion efficiency of each power supply is sorted from low to high, the lowest conversion efficiency The corresponding power supply starts. Before the fifth conversion efficiency (including the fifth power input efficiency), the corresponding power supply does not need to work as a power supply that needs to enter the sleep mode.
  • the sleep device of the power supply sorts the conversion efficiency of each power supply according to the efficiency level of each power supply.
  • the conversion efficiency of the power supply with a high input voltage is higher than the conversion efficiency of the power supply with a low input voltage when the other factors are the same. Therefore, when ranking the conversion efficiency of the power supply, you can refer to the input power level.
  • the sleep device of the power supply comprehensively selects one or more power supplies that enter the sleep mode according to the power input type and conversion efficiency of each power supply.
  • the sleep device of the power supply can pass the power input efficiency of each power supply according to the power input type
  • the sorting results after sorting and the sorting results after sorting the conversion efficiency of each power supply are comprehensively considered.
  • the selected power sources that enter the sleep mode are notified one by one, so as to meet the energy saving requirements.
  • FIG. 3 is a flowchart of a method for determining sleep of a power supply according to an embodiment of the present application. As shown in FIG. 3, the process includes the following steps:
  • Step S302 the parallel power supply system determines the sleep mode in which one or more power supplies in the parallel power supply system enter according to the load information of the load system supplied; wherein, the one or more power supplies are power supplies according to the power supplies in the parallel power supply system
  • the power source information includes at least: the power input type of the power source and the conversion efficiency of the power source.
  • the power supply in the parallel power supply system monitors the load information of the load system powered by the parallel power supply system to determine the load traffic.
  • the sleep device of the power supply determines the sleep mode that one or more power supplies enter, including: one or more power supplies determine whether the load traffic of the load system meets the sleep threshold; and if the judgment result is yes, one or Multiple power supplies enter the sleep mode corresponding to the sleep threshold.
  • the one or more power supplies when one or more power supplies determine that the load traffic of the load system meets the first sleep threshold, the one or more power supplies enter the first sleep mode and reduce the output voltage.
  • the one or more power supplies determine that the load traffic of the load system meets the second sleep threshold, the one or more power supplies enter the second sleep mode and turn off the output voltage.
  • the second sleep threshold is less than the first sleep threshold.
  • the one or more power supplies entering the second sleep mode determine that the load traffic of the load system increases and meets the third sleep threshold, the one or more power supplies enter the first sleep mode and reduce the output voltage; wherein, the third sleep The threshold is the sum of the second sleep threshold and the increment of load traffic
  • the third sleep threshold is different from the second threshold.
  • the one or more power supplies that enter the sleep mode determine that the load traffic of the load system increases and meets the fourth sleep threshold, the one or more power supplies exit the sleep mode and restore the output operating voltage; wherein, the fourth The sleep threshold is the sum of the first sleep threshold and the load traffic increment.
  • the terminal equipment where the load system is located needs to be cooled, so the power supply demand of the load system is usually much larger than the power demand in other seasons. Therefore, the sharp increase and decrease of the power supply demand of the load system is inevitable.
  • the power supply demand of the load system during the working hours in the morning and afternoon is very large, while the power supply demand is generally not high at noon and evening. Therefore, during working hours, the change in the power supply demand of the load system is also very obvious. Therefore, in actual use, the power supply demand of the load system is not very stable.
  • the power supply in the working state can directly determine whether the first threshold is satisfied without determining whether the second sleep threshold is satisfied.
  • the power supply in the second sleep mode can also skip whether the third sleep threshold is satisfied during the time when the power supply is unstable, and directly determine whether the fourth sleep threshold is satisfied to adapt to the working requirements of the power supply.
  • the second sleep mode power supply determines that the incremental rate of load traffic is greater than the preset incremental rate threshold, it indicates that the power supply demand of the load system is very high, and the power supply will adapt to the actual size of the incremental rate of load traffic sexually lower the third sleep threshold, but not lower than the second sleep threshold, and enter the first sleep mode in advance.
  • the second sleep mode power supply determines that the incremental rate of load traffic is less than the preset incremental rate threshold, it means that the power supply demand of the load system is maintained at a slow increase level, which may reduce the power supply demand at any time.
  • the power supply will adaptively increase the third sleep threshold, but it cannot be higher than the first sleep threshold.
  • the power supply entering the sleep mode determines that the load system's load traffic increment rate is far greater than the preset increment rate threshold, it indicates that the load system is in an emergency state that requires a parallel power supply system to immediately provide full load power. Will immediately exit sleep mode and enter working mode.
  • the sleep common signals between the power supplies are connected, and the sleep common signals reflect that the power supplies are normal when the power is turned on normally. When a fault occurs, the failed power supply will notify the other power supplies through the sleep common signals.
  • Each power supply needs to monitor the sleeping common signal in real time.
  • one or more power supplies that enter the sleep mode detect whether the common sleep signal between each power supply is set to abnormal; when the common sleep signal is detected to be abnormal, one or more power supplies that enter the sleep mode exit the sleep mode and Restore the output operating voltage.
  • one or more power supplies that restore the output operating voltage detect whether the common sleep signal between each power supply is set to normal; when the common sleep signal is detected to be normal, the one or more power supplies that restore the output operating voltage re-enter Sleep mode
  • the working power supply sets the common sleep signal common to each power supply to a low level (usually identified by a logic 0), and notifies the power supply that enters sleep mode through the signal.
  • a low level usually identified by a logic 0
  • the power supply entering the sleep mode detects a high-level sleep common signal, it indicates that there is a problem of insufficient power supply in the current parallel power supply system.
  • the power supply entering the sleep mode exits the sleep mode and restores the output working voltage to supply power to the load system.
  • the working power supply will set the common sleeping signal shared by each power supply to a high level (usually identified by a logic 1), which means that the output working voltage is restored to supply power to the load system It is not necessary to supply power to the load system. Therefore, these restored output operating voltages to supply power to the load system will enter the corresponding sleep mode according to the pre-stored sleep mode related information. Thereby reducing the waste of electrical energy.
  • a server system consists of four power supplies inserted into the server's system backplane to power the server. These four parallel power supplies form each power supply.
  • the server's system backplane forms the interface unit, which has I2C communication interface, sleep common signal and bus detection signal.
  • the monitoring unit is integrated into the server system itself.
  • the server uses the I2C communication interface to send a sleep command to the parallel power supply through the system backplane or query the working status of the power supply.
  • the parallel power supplies are connected to each other through a common sleep signal. When the power supply fails, the common power signal is used to wake up the sleeping power supply. At the same time, the parallel power supplies are also connected to each other through the bus detection signal to monitor the load of the system. All power input types of the system are AC mains input, and the power supply supports hierarchical sleep.
  • FIG. 4 is a flowchart of hierarchical sleep control according to an embodiment of the present application.
  • the sleep power supply when it is detected that only A% of the full-load traffic reaches the first sleep threshold, two of the power supplies are sent to the first sleep mode by sending a command, and the sleep power supply is turned down in this mode The output voltage no longer supplies power to the system.
  • the power supply of the system is provided by other normally working power supplies.
  • the power supply that enters sleep mode detects that the current service volume of the server system decreases to less than B% of the full-load service volume through the bus detection signal, that is, the second sleep threshold (Note: B ⁇ A)
  • the sleep power supply turns off the output and enters standby
  • the state is the deep sleep state.
  • the power supply in deep sleep mode continues to monitor the system load through the bus detection signal.
  • the second sleep mode is restored to the first Sleep mode. In this mode, the sleep power supply lowers the output voltage.
  • the traffic continues to increase to (A + D)% of full-load traffic, that is, when it reaches the fourth sleep mode, the power supply in the second sleep mode automatically exits the sleep mode, the output voltage returns to the rated output, and the current is shared with the previous working power supply Power the system.
  • the traffic of the server is reduced to A% of the full-load traffic again, that is, the first sleep threshold is reached, the power supply that previously received the sleep command automatically enters the sleep state again, and continues to operate according to the above process.
  • the sleep common signal level When any power supply in the working power supply fails and cannot provide power, the sleep common signal level will be lowered, and the sleep power supply will immediately exit the sleep mode when it detects that the sleep common signal level is low. When the sleeping common signal level returns to high level, the sleeping power supply enters the sleeping state again.
  • the sleep common signal level When any power supply in the working power supply fails and cannot provide power, the sleep common signal level will be lowered, and the sleep power supply will immediately exit the sleep mode when it detects that the sleep common signal level is low. When the sleep common signal level returns to high level, the sleep power supply enters sleep mode again.
  • a server system is powered by 4 power supplies plugged into the server's system backplane.
  • the 4 parallel power supplies form each power supply.
  • the server's system backplane forms the interface unit. It has an I2C communication interface, a sleep common signal, and a bus detection signal. Connect to each power supply.
  • the monitoring unit is integrated into the server system itself.
  • the server system queries the power input voltage type through the communication command, according to the correspondence between the input type stored in advance and the high efficiency mode, Make sure that the high-efficiency input mode is AC input, followed by high-voltage DC.
  • the system determines that two of the power supplies need to enter the sleep mode, and the DC input power supply is selected to enter the sleep mode according to the power input type, and the AC input power supply continues to work by supplying power to the system.
  • the server system sends two DC input power supplies through a communication command to notify them to enter the sleep mode. After each power supply enters the second sleep mode, the output voltage is lowered, and no longer supplies power to the system load.
  • the dormant power supply monitors the dormant common signal throughout the process. When the dormant power supply detects that the dormant common signal level becomes low, it immediately exits the dormant mode, but the dormant control command needs to be retained. When the sleep power supply detects that the sleep common signal level has become high, it will re-enter sleep mode.
  • a server system is powered by 4 power supplies plugged into the server's system backplane.
  • the 4 parallel power supplies form each power supply.
  • the server's system backplane forms the interface unit. It has an I2C communication interface, a sleep common signal, and a bus detection signal. Connect to each power supply.
  • the monitoring unit is integrated into the server system itself.
  • the conversion efficiency level of the power supply is different.
  • Two are titanium high-efficiency server power supplies, and two are platinum server power supplies.
  • the communication equipment system queries the conversion efficiency data of the power supply through communication commands, and determines the high-efficiency mode power supply as the titanium power supply, followed by the platinum power supply according to the correspondence relationship between the power conversion efficiency stored in advance and the high-efficiency mode.
  • the system determines that two of the power supplies are required to enter the sleep mode.
  • the platinum power supply is selected to enter the sleep mode according to the conversion efficiency of the power supply.
  • the titanium power supply continues to work by providing power to the system.
  • the communication equipment system sends commands to the two platinum-efficiency power supplies through the I2C communication interface to inform them to enter the sleep mode. After each power supply enters the sleep mode, the output voltage is lowered, and no power is provided to the system load.
  • the dormant power supply monitors the dormant common signal throughout the process. When the dormant power supply detects that the dormant common signal level becomes low, it immediately exits the dormant mode, but the dormant control command needs to be retained. When the sleep power supply detects that the sleep common signal level has become high, it will re-enter sleep mode.
  • a server system is powered by 4 power supplies plugged into the server's system backplane.
  • the 4 parallel power supplies form each power supply.
  • the server's system backplane forms the interface unit. It has an I2C communication interface, a sleep common signal, and a bus detection signal. Connect to each power supply.
  • the monitoring unit is integrated into the server system itself.
  • the efficiency level of the power supply is also different. 2 sets are titanium high-efficiency server power supplies, 2 sets are platinum server power supplies, the monitoring unit is sorted according to the preset input type efficiency priority ranking table, combined with the read conversion efficiency of each power supply, and then the conversion efficiency of each power supply is input The efficiency is weighted to obtain the overall efficiency,
  • the system determines that two of the power supplies are required to enter the sleep mode. According to the comprehensive efficiency of the power supply, a power supply with a low comprehensive efficiency is selected to enter the sleep mode, and a power supply with a high comprehensive efficiency provides power for the system to continue to work.
  • the communication equipment system sends commands to two low-efficiency power supplies through the I2C communication interface to notify it to enter the sleep mode. After entering the sleep state, the sleep control strategy is as in scenario 1.
  • the dormant power supply monitors the dormant common signal throughout the process. When the dormant power supply detects that the dormant common signal level becomes low, it immediately exits the dormant mode, but the dormant control command needs to be retained. When the sleep power supply detects that the sleep common signal level has become high, it will re-enter sleep mode.
  • a sleep device for a power supply is also provided.
  • the device is configured to implement the above-mentioned embodiments and optional implementations, and descriptions that have already been described will not be repeated.
  • the term "module” may implement a combination of software and / or hardware that performs predetermined functions.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 5 is a structural block diagram of a power supply sleep device according to an embodiment of the present application. As shown in FIG. 5, the device includes a sleep module 52.
  • the sleep module 52 is configured to select one or more power supplies that enter the sleep mode according to the power supply information of each power supply in the parallel power supply system, where the power supply information includes at least the power input type of the power supply and the conversion efficiency of the power supply.
  • the sleep module 52 includes a first selection unit configured to select one or more power supplies that enter the sleep mode according to the operation information of each power supply when the power input type of each power supply and the conversion efficiency of each power supply are the same.
  • the sleep module 52 further includes: a second selection unit configured to select one or more to enter the sleep mode according to the power input type of each power supply when the power input type of each power supply is different and the conversion efficiency of each power supply is the same power supply
  • the second selection unit is further configured to acquire the power input type of each power source and sort the power input efficiency of each power source according to the power input type; according to the sorting result of the power input efficiency of each power source and the In the power input state, one or more power sources are selected from low to high as one or more power sources to enter the sleep mode.
  • the sleep module 52 further includes a third selection unit configured to select one or more of the conversion efficiency of each power supply from low to high when the power input type of each power supply is the same and the conversion efficiency of each power supply is different Power supplies as one or more power supplies to enter sleep mode
  • the third selection unit is further configured to sort the conversion efficiency of each power source according to the efficiency level of each power source.
  • the sleep module 52 further includes: a fourth selection unit configured to select to enter sleep according to the power input type and conversion efficiency of each power supply when the power input type of each power supply and the conversion efficiency of each power supply are different One or more power supplies in the mode.
  • a fourth selection unit configured to select to enter sleep according to the power input type and conversion efficiency of each power supply when the power input type of each power supply and the conversion efficiency of each power supply are different One or more power supplies in the mode.
  • a device for determining sleep of a power supply is also provided.
  • the device is configured to implement the foregoing embodiments and optional implementation manners, and descriptions that have already been described will not be repeated.
  • the term "module” may implement a combination of software and / or hardware that performs predetermined functions.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 6 is a structural block diagram of a power supply determining and sleeping device according to an embodiment of the present application. As shown in FIG. 6, the device includes: a determining module 62.
  • the determining module 62 is configured to determine the sleep mode entered by one or more power supplies in the parallel power supply system according to the load information of the load system being powered; wherein the one or more power supplies are based on the power supply information of each power supply in the parallel power supply system It is determined that the power source information includes at least: the power input type of the power source and the conversion efficiency of the power source.
  • the determination module 62 is further configured to determine whether the load traffic of the load system meets the sleep threshold; and if the determination result is yes, determine that one or more power supplies enter the sleep mode corresponding to the sleep threshold.
  • the determination module 62 is further configured to determine that one or more power supplies enter the first sleep mode and reduce the output voltage when it is determined that the load traffic of the load system meets the first sleep threshold.
  • the determining module 62 is further configured to determine that one or more power supplies enter the second sleep mode and turn off the output voltage when it is determined that the load traffic of the load system meets the second sleep threshold; wherein, the second sleep threshold Less than the first sleep threshold.
  • the determination module 62 is further configured to determine that one or more power supplies that enter the second sleep mode enter the first sleep mode and decrease the output when it is determined that the load traffic of the load system increases and meets the third sleep threshold. Voltage; where the third sleep threshold is the sum of the second sleep threshold and the load traffic increment.
  • the determining module 62 is further configured to determine that one or more power supplies entering the sleep mode exit the sleep mode and restore the output operating voltage when it is determined that the load traffic of the load system increases and meets the fourth sleep threshold; wherein The fourth sleep threshold is the sum of the first sleep threshold and the increment of load traffic.
  • the determination module 62 further includes: a first detection unit configured to detect whether the common sleep signal between each power supply is set to be abnormal; a first determination unit configured to determine to enter when the common sleep signal is set to be abnormal One or more power supplies in the sleep mode exit the sleep mode and restore the output operating voltage.
  • the determination module 62 further includes: a second detection unit configured to detect whether the common sleep signal between each power supply is set to normal; a second determination unit configured to determine to resume when the common sleep signal is detected to be normal One or more power supplies that output operating voltage re-enter sleep mode.
  • a power-supply hibernation device is also provided.
  • the device is configured to implement the foregoing embodiments and optional implementations, and descriptions that have already been described will not be repeated.
  • FIG. 7 is a structural block diagram of a sleep device for a power supply according to an embodiment of the present application. As shown in FIG. 7, the device includes: a monitoring unit 72, an interface unit 74, a power supply parallel system 76, and a load system 78.
  • the monitoring unit 72 is configured to acquire power information of each power supply in the parallel power supply system 76 through the interface unit 74, and select one or more power supplies to enter the sleep mode according to the power information of each power supply;
  • the power supply parallel system 76 is configured to obtain one or more power supplies entering the sleep mode through the interface unit 74, and obtain the load information of the load system 78 powered by the parallel power system 76 through the interface unit 74 to determine the parallel power system 76 The sleep mode entered by one or more power supplies.
  • An embodiment of the present application further provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute any step in any of the foregoing method embodiments during runtime.
  • the above storage medium may include, but is not limited to: a USB flash drive, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as removable hard disks, magnetic disks, or optical disks.
  • An embodiment of the present application further provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to perform any step in any of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • modules or steps in the embodiments of the present application described above can be implemented by a general-purpose computing device, and they can be concentrated on a single computing device or distributed among multiple computing devices.
  • they can be implemented with program code executable by the computing device, so that they can be stored in the storage device and executed by the computing device, and in some cases, can be different from here
  • the steps shown or described are executed in the order of, or they are made into individual integrated circuit modules separately, or multiple modules or steps among them are made into a single integrated circuit module for implementation. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.
  • an optimal energy-saving control strategy can be implemented according to the system power input type and conversion efficiency.
  • two levels of sleep can also be used to maximize the energy saving effect.
  • the power supply real-time monitoring load can also realize the self-management of the sleep function without system intervention.
  • the sleeping common signal can ensure the reliable and stable power supply. It solves the problem that the overall energy saving effect of the power supply system is not significantly improved only by the power supply load rate in the related art. Achieve the beneficial effects of overall energy-saving control strategy, low cost and high investment return.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源的休眠方法,休眠确定方法及装置,休眠设备。其中,电源的休眠方法包括:电源的休眠设备根据并机电源系统中各个电源的电源信息选择进入休眠模式的一个或者多个电源,其中,电源信息至少包括:电源的电能输入类型以及电源的转换效率(S202)。电源的确定休眠方法包括:电源的休眠设备根据供电的负载系统的负载信息确定并机电源系统中一个或者多个电源进入的休眠模式;其中,一个或者多个电源是根据并机电源系统中各个电源的电源信息确定的,电源信息至少包括:电源的电能输入类型以及电源的转换效率(S302)。达到了整体节能控制策略,成本小,投入回报高的有益效果。

Description

电源的休眠,休眠确定方法及装置,休眠设备
本申请要求于2018年10月26日提交中国专利局、申请号为201811260026.4、发明名称“电源的休眠,休眠确定方法及装置,休眠设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,具体而言,涉及一种电源的休眠,休眠确定方法及装置,休眠设备。
背景技术
目前通讯业务量不断增加,系统对电源供电能力的要求逐步提高,供电电源容量越来越大,独立电源完成供电越来越困难,因此电源并联方式提供供电逐渐成为趋势,其配置灵活性和运行可靠性使得这种方式应用日益广泛。
作为通讯设置的供电电源,在考虑电源可靠性的同时,电源的节能要求也成为电源管理的努力方向,提升电源效率是最直观的节能手段,但是对技术要求也是非常之高,因此供电电源寻求通过供电系统整体管理的方式提升效率。尤其针对并联供电的系统,相关技术中有冷备份管理方法,这类控制方法是根据系统负载情况,通知部分电源处于冷备份状态,这些电源被调低输出电压以实现不提供电源输出的结果,从而增加其他正常工作电源的负载率进而达到提升供电系统整体效率的效果此外负载作为系统管理的重要因素,也是动态因素,在上述管理策略中没有应用,如果控制方法中考虑可靠性,按照额定负载保留工作电源数量,则影响节能效果,如果最大化节能效果,只让少数电源工作,则会带来可靠供电的风险。另外两种控制方法中都涉及到的冷备份概念,都只是调低输出电压不能给系统供电,但是其整个电路依然处于工作状态,消耗能量,基本等同于空载 损耗。因此,相关技术中存在仅通过电源负载率对电源系统的整体节能效果改善不明显的问题。
发明内容
本申请实施例提供了一种电源的休眠,休眠确定方法及装置,休眠设备,以至少解决相关技术中仅通过电源负载率对电源系统的整体节能效果改善不明显的问题。
根据本申请的一个实施例,提供了一种电源的休眠方法,包括:电源的休眠设备根据并机电源系统中各个电源的电源信息选择进入休眠模式的一个或者多个电源,其中,上述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
可选地,上述电源的休眠设备根据上述并机电源系统中各个电源的电源信息选择进入上述休眠模式的上述一个或者多个电源,包括:当上述各个电源的电能输入类型以及上述各个电源的转换效率均相同时,根据上述各个电源的工作运行信息选择进入上述休眠模式的上述一个或者多个电源。
可选地,上述工作运行信息至少包括以下其中之一:上述各个电源的运行时间,上述各个电源的运行温度。
可选地,上述电源的休眠设备根据上述并机电源系统中各个电源的电源信息选择进入上述休眠模式的上述一个或者多个电源,包括:当上述各个电源的电能输入类型不同且上述各个电源的转换效率相同时,上述电源的休眠设备根据上述各个电源的电能输入类型选择进入上述休眠模式的一个或者多个电源。
可选地,上述电源的休眠设备根据上述并机电源系统中各个电源的电源信息选择进入上述休眠模式的上述一个或者多个电源,还包括:上述电源的休眠设备获取上述各个电源的电能输入类型,并根据该电能输入类型 对上述各个电源的电能输入效率进行排序;根据上述各个电源的电能输入效率的排序结果以及上述各个电源的电能输入状态,由低到高选择一个或者多个电源作为进入上述休眠模式的上述一个或者多个电源。
可选地,上述电源的休眠设备根据上述并机电源系统中各个电源的电源信息选择进入上述休眠模式的上述一个或者多个电源,包括:当上述各个电源的电能输入类型相同且上述各个电源的转换效率不同时,上述电源的休眠设备对上述各个电源的转换效率进行排序;由低到高选择一个或者多个电源作为进入上述休眠模式的上述一个或者多个电源。
可选地,上述电源的休眠设备对上述各个电源的转换效率进行排序,还包括:上述电源的休眠设备根据上述各个电源的效率等级对上述各个电源的转换效率进行排序。
可选地,上述电源的休眠设备根据上述并机电源系统中各个电源的电源信息选择进入上述休眠模式的上述一个或者多个电源,包括:当上述各个电源的电能输入类型以及上述各个电源自身的转换效率均不相同时,上述电源的休眠设备根据上述各个电源的电能输入类型和上述转换效率综合选择进入上述休眠模式的上述一个或者多个电源。
根据本申请的一个实施例,提供了一种电源的休眠确定方法,包括:电源的休眠设备根据所供电的负载系统的负载信息确定上述并机电源系统中一个或者多个电源进入的休眠模式;其中,上述一个或者多个电源是根据并机电源系统中各个电源的电源信息确定的,上述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
可选地,上述电源的休眠设备确定上述一个或者多个电源进入的休眠模式,包括:上述一个或者多个电源判断上述负载系统的负载业务量是否满足休眠阈值;并在判断结果为是的情况下,上述一个或者多个电源进入上述休眠阈值对应的休眠模式。
可选地,上述电源的休眠设备确定上述一个或者多个电源进入的休眠模式,包括:当上述一个或者多个电源判断上述负载系统的负载业务量满 足第一休眠阈值的情况下,上述一个或者多个电源进入第一休眠模式并减低输出电压。
可选地,上述电源的休眠设备确定上述一个或者多个电源进入的休眠模式,包括:当上述一个或者多个电源判断上述负载系统的负载业务量满足第二休眠阈值的情况下,上述一个或者多个电源进入第二休眠模式并关闭输出电压;其中,上述第二休眠阈值小于上述第一休眠阈值。
可选地,上述电源的休眠设备确定上述一个或者多个电源进入的休眠模式,包括:当进入上述第二休眠模式的上述一个或者多个电源判断上述负载系统的负载业务量增加并满足第三休眠阈值的情况下,上述一个或者多个电源进入第一休眠模式并降低输出电压;其中,上述第三休眠阈值为上述第二休眠阈值与负载业务量增量之和。
可选地,在上述一个或者多个电源进入上述休眠阈值对应的上述休眠模式之后,上述电源的休眠设备确定上述一个或者多个电源进入的休眠模式,还包括:当进入上述休眠模式的上述一个或者多个电源判断上述负载系统的负载业务量增加并满足第四休眠阈值的情况下,上述一个或者多个电源退出上述休眠模式并恢复输出工作电压;其中,上述第四休眠阈值为上述第一休眠阈值与负载业务量增量之和。
可选地,在上述电源的休眠设备确定上述一个或者多个电源进入的上述休眠模式后,上述方法还包括,进入上述休眠模式的上述一个或多个电源检测上述各个电源间的休眠共有信号是否置为异常;在检测到上述休眠共有信号置为异常时,进入上述休眠模式的上述一个或多个电源退出上述休眠模式并恢复输出工作电压。
可选地,,在进入上述休眠模式的上述一个或多个电源退出上述休眠模式并恢复输出工作电压之后,上述方法还包括:恢复输出工作电压的上述一个或多个电源检测上述各个电源间的休眠共有信号是否置为正常;在检测到上述休眠共有信号置为正常时,恢复输出工作电压的上述一个或多个电源重新进入上述休眠模式。
根据本申请的另一个实施例,提供了一种电源的休眠装置,包括一个或多个处理器,以及一个或多个存储程序单元的存储器,其中,程序单元由处理器执行,该程序单元包括:选择模块,设置为根据并机电源系统中各个电源的电源信息选择进入休眠模式的一个或者多个电源,其中,上述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
可选地,上述选择模块还包括:第一选择单元,设置为在上述各个电源的电能输入类型以及上述各个电源的转换效率均相同时,根据上述各个电源的工作运行信息选择进入上述休眠模式的上述一个或者多个电源。
可选地,上述选择模块还包括:第二选择单元,设置为在上述各个电源的电能输入类型不同且上述各个电源的转换效率相同时,根据上述各个电源的电能输入类型选择进入上述休眠模式的一个或者多个电源。
可选地,上述第二选择单元还设置为,获取上述各个电源的电能输入类型,并根据该电能输入类型对上述各个电源的电能输入效率进行排序;根据上述各个电源的电能输入效率的排序结果以及上述各个电源的电能输入状态,由低到高选择一个或者多个电源作为进入上述休眠模式的上述一个或者多个电源。
可选地,上述选择模块还包括:第三选择单元,设置为在上述各个电源的电能输入类型相同且上述各个电源的转换效率不同时,对上述各个电源的转换效率进行排序;由低到高选择一个或者多个电源作为进入上述休眠模式的上述一个或者多个电源。
可选地,上述第三选择单元还设置为,根据上述各个电源的效率等级对上述各个电源的转换效率进行排序。
可选地,上述选择模块还包括:第四选择单元,设置为在上述各个电源的电能输入类型以及上述各个电源自身的转换效率均不相同时,根据上述各个电源的电能输入类型和上述转换效率综合选择进入上述休眠模式的上述一个或者多个电源。
根据本申请的另一个实施例,提供了一种确定休眠装置,位于并机电 源系统中,包括一个或多个处理器,以及一个或多个存储程序单元的存储器,其中,程序单元由处理器执行,该程序单元包括:确定模块,设置为根据所供电的负载系统的负载信息确定上述并机电源系统中一个或者多个电源进入的休眠模式;其中,上述一个或者多个电源是根据上述并机电源系统中各个电源的电源信息确定的,上述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
可选地,上述确定模块还设置为,判断上述负载系统的负载业务量是否满足休眠阈值;并在判断结果为是的情况下,确定上述一个或者多个电源进入上述休眠阈值对应的休眠模式。
可选地,上述确定模块还设置为,在判断上述负载系统的负载业务量满足第一休眠阈值的情况下,确定上述一个或者多个电源进入第一休眠模式并减低输出电压。
可选地,上述确定模块还设置为,在判断上述负载系统的负载业务量满足第二休眠阈值的情况下,确定上述一个或者多个电源进入第二休眠模式并关闭输出电压;其中上述第二休眠阈值小于上述第一休眠阈值。
可选地,上述确定模块还设置为,在判断上述负载系统的负载业务量增加并满足第三休眠阈值的情况下,确定进入上述第二休眠模式的上述一个或者多个电源进入第一休眠模式并降低输出电压;其中,上述第三休眠阈值为上述第二休眠阈值与负载业务量增量之和。
可选地,上述确定模块还设置为,在判断上述负载系统的负载业务量增加并满足第四休眠阈值的情况下,确定进入上述休眠模式的上述一个或者多个电源退出上述休眠模式并恢复输出工作电压;其中,上述第四休眠阈值为上述第一休眠阈值与负载业务量增量之和。
可选地,上述确定模块还包括:第一检测单元,设置为检测上述各个电源间的休眠共有信号是否置为异常;第一确定单元,设置为在检测到上述休眠共有信号置为异常时,确定进入上述休眠模式的上述一个或多个电源退出上述休眠模式并恢复输出工作电压。
可选地,上述确定模块还包括:第二检测单元,设置为检测上述各个电源间的休眠共有信号是否置为正常;第二确定单元,设置为在检测到上述休眠共有信号置为正常时,确定恢复输出工作电压的上述一个或多个电源重新进入上述休眠模式。
根据本申请的另一个实施例,提供了一种电源的休眠设备,包括:电源并机系统,接口单元,监控单元以及负载系统,其中,上述监控单元,设置为通过上述接口单元获取上述并机电源系统中各个电源的电源信息,并根据上述各个电源的电源信息选择进入休眠模式的一个或者多个电源;上述电源并机系统,设置为通过接口单元获取进入休眠模式的一个或者多个电源,以及通过接口单元获取上述并机电源系统所供电的上述负载系统的负载信息,确定上述并机电源系统中一个或者多个电源进入的休眠模式。
根据本申请的又一个实施例,还提供了一种存储介质,上述存储介质中存储有计算机程序,其中,上述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,上述存储器中存储有计算机程序,上述处理器被设置为运行上述计算机程序以执行上述任一项方法实施例中的步骤。
通过本申请,可以根据系统电源输入类型和转换效率进行最优的节能控制策略。同时在动态休眠模式中还可通过两级休眠,最大化节能效果,电源实时监测负载还可以实现休眠功能的自我管理,无需系统介入。休眠共有信号更能保证电源可靠稳定供电。解决了相关技术中仅通过电源负载率对电源系统的整体节能效果改善不明显的问题。实现整体节能控制策略,成本小,投入回报高的有益效果。
附图说明
此处所说明的附图用来提供对本申请的可选地理解,构成本申请的一部分,本申请的示意性实施例及其说明解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一种电源的休眠方法的移动终端的硬件结构框图;
图2是根据本申请实施例的一种电源的休眠方法的流程图;
图3是根据本申请实施例的一种电源的确定休眠方法的流程图;
图4是根据本申请实施例的一种分级休眠控制的流程图;
图5是根据本申请实施例的一种电源的休眠装置的结构框图;
图6是根据本申请实施例的一种电源的确定休眠装置的结构框图;
图7是根据本申请实施例的电源的休眠设备的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本申请实施例的一种电源的休眠方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,可选地,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以 及模块,如本申请实施例中的电源的休眠方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的电源的休眠方法,图2是根据本申请实施例的一种电源的休眠方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,电源的休眠设备根据并机电源系统中各个电源的电源信息选择进入休眠模式的一个或者多个电源,其中,电源信息至少包括:电源的电能输入类型以及电源的转换效率。
可选地,电源信息至少通过如下方式收集:
可选地,对于电源的电能输入类型,在各个电源完成各自输入类型判断后,电源的休眠设备利用通讯链路向各个电源下发命令查询各个电源输入类型,完成各个电源输入类型的收集。
可选地,对于电源的转换效率,各个电源在出厂时可预置分别以温度、输入电压为参数的负载效率曲线群。现场运行时,电源可根据实际运行情况进行效率检测,与预置效率曲线群进行比对和校准,同时以此校准数据 作为基准完成标准负载效率曲线群修订,实现负载曲线的自适应。各个电源完成电源自身转换效率获取,由于并机电源系统中电源输入类型以及输入电压等级都可能会存在差异,而输入电压又对电源效率影响较大,因此在电源转换效率获取时,可根据输入电压值,选择负载效率曲线,再根据系统负载,确定电源转换效率值。利用通讯链路向各个电源下发命令查询各个电源转换效率,完成各个电源转换效率的收集。
可选地,电源的休眠设备根据系统应用场景预置输入类型效率优先级排序表。电源的休眠设备根据系统各个电源的输入类型和转换效率,结合系统负载情况,确定待休眠电源数量以及选择待休眠电源。
可选地,由于各个电源的电能输入类型以及各个电源的转换效率可以相同也可以不同,因此,在本实施例中,还提供了针对以下四种情况的休眠方式:
(1)当各个电源的电能输入类型以及各个电源的转换效率均相同时,电源的休眠设备根据各个电源的工作运行信息选择进入休眠模式的一个或者多个电源。
可选地,工作运行信息至少包括以下其中之一:各个电源的运行时间,各个电源的运行温度。
例如,如果电源并机系统中存在2个电源工作时间大于其他在电源并机系统中的电源的话,为了缓解电源中器件的老化,可以选择将这2个电源作为候选的休眠电源。在其他在电源并机系统中的电源工作能够满足需求的情况下,将这2个候选的休眠电源进行休眠。而如果当前的工作的电源不能够满足工作需求,则将2个电源中工作时间相对较长的电源进行休眠,而另一个工作时间较短的电源则继续指进行工作。
又例如,如果电源并机系统中存在4个电源工作时的温度高于其他在电源并机系统中的电源的话,为了对整个电源并机系统降温,可以选择将这4个电源作为候选的休眠电源,在其他在电源并机系统中的电源工作能够满足需求的情况下,将这4个候选的休眠电源进行休眠。而如果当前的 工作的电源不能够满足工作需求,需要额外的1个电源继续工作的话,则指示4个候选的休眠电源中温度相对最低的1个继续工作,而其他3个温度相对较高的则进入休眠状态。
需要说明的是,根据实际的需要,可以结合电源工作时间和电源工作温度共同确定进入休眠状态的电源。同时,其他工作运行信息也在本实施例的保护范围之内。
(2)当各个电源的电能输入类型不同且各个电源的转换效率相同时,电源的休眠设备根据各个电源的电能输入类型选择进入休眠模式的一个或者多个电源。
可选地,电源的休眠设备获取各个电源的电能输入类型,并根据该电能输入类型对各个电源的电能输入效率进行排序;电源的休眠设备根据各个电源的电能输入效率的排序结果以及各个电源的电能输入状态,选择一个或者多个电能输入效率低于预设效率阈值的电源作为进入休眠模式的一个或者多个电源。
可选地,电源的休眠设备对各个电源的电能输入效率进行排序可以通过如下两种方法确定:
1)基于电源能量损耗。电源输入电压类型不同时,对各个电源的电源能量损耗有很大影响。例如,交流电源当采用交流输入供电时,电源输出直流时需要经过两级变换,而采用高压直流输入供电时,电源输出直流时仅需要进行一级变换,因此直流的电源能量损耗要更小。
2)基于自身输入效率评估。例如交流输入直接来自于电网,而高压直流输入来自于AC/DC变换,因此交流的电能输入效率高于高压直流。
可选地,在电源的休眠设备获取到每个电源的电能输入效率后,对各个电源的电能输入效率进行排序,由低到高选择一个或者多个电源作为进入休眠模式的一个或者多个电源。
例如,如果并机系统中包含10个输出并联的电源,而只需要4个电源工作就能够满足负载系统的需求的话,那么对各个电源的电能输入效率 由低到高进行排序后,从最低的电能输入效率对应的电源开始,选择第4个电能输入效率之前(含第4个电能输入效率)对应的电源不需要进行工作,作为需要进入休眠模式的电源。
需要说明的是,预设效率阈值可以根据负载系统的需求被实时的调整。
另外为增加可靠性,也可由各个电源自身自行判断自己的输入电压类型,再根据各个电源提供的判断结果对各个电源的电能输入效率进行确定和排序。
(3)当各个电源的电能输入类型相同且各个电源的转换效率不同时,对各个电源的转换效率进行排序;由低到高选择一个或者多个电源作为进入休眠模式的一个或者多个电源。
可选地,对于在不同效率等级电源混插的系统中,效率差别明显;在同一效率等级电源的系统中,效率差异主要来自于个体差异。
例如,如果并机系统中包含8个输出并联的电源,而需要5个电源工作就能够满足负载系统的需求的话,那么对各个电源的转换效率由低到高进行排序后,从最低的转换效率对应的电源开始,选择第5个转换效率之前(含第5个电能输入效率)对应的电源不需要进行工作,作为需要进入休眠模式的电源.
可选地,电源的休眠设备根据各个电源的效率等级对各个电源的转换效率进行排序。
需要说明的是,在其他因素相同的情况下,高输入电压的电源的转换效率电源的转换效率高于低输入电压的电源的转换效率电源的转换效率。因此在对电源的转换效率排序时,可以参考输入电源的等级。
(4)当各个电源的电能输入类型以及各个电源自身的转换效率均不相同时,电源的休眠设备根据各个电源的电能输入类型和转换效率综合选择进入休眠模式的一个或者多个电源。
可选地,与(2)(3)中描述的方法类似,各个电源的电能输入类型相同且各个电源的转换效率不同时,电源的休眠设备可以通过根据电能输 入类型对各个电源的电能输入效率进行排序后的排序结果,以及对各个电源的转换效率进行排序后的排序结果进行综合考虑。
可选地,待休眠电源选定完毕后,逐个通知选定的进入休眠模式的电源,以便使满足节能要求。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例的方法。
实施例2
在本实施例中提供了一种运行于实施例1中类似的移动终端的电源的确定休眠方法。已经进行过说明的不再赘述。图3是根据本申请实施例的一种电源的确定休眠方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,并机电源系统根据所供电的负载系统的负载信息确定并机电源系统中一个或者多个电源进入的休眠模式;其中,一个或者多个电源是根据并机电源系统中各个电源的电源信息确定的,电源信息至少包括:电源的电能输入类型以及电源的转换效率。
可选地,并机电源系统中的电源在收到该电源进入休眠模式的指令后,监控该并机电源系统供电的负载系统的负载信息,确定负载业务量。
可选地,电源的休眠设备确定一个或者多个电源进入的休眠模式,包括:一个或者多个电源判断负载系统的负载业务量是否满足休眠阈值;并在判断结果为是的情况下,一个或者多个电源进入休眠阈值对应的休眠模式。
可选地,当一个或者多个电源判断负载系统的负载业务量满足第一休 眠阈值的情况下,一个或者多个电源进入第一休眠模式并减低输出电压。
可选地,当一个或者多个电源判断负载系统的负载业务量满足第二休眠阈值的情况下,一个或者多个电源进入第二休眠模式并关闭输出电压。
可选地,第二休眠阈值小于第一休眠阈值。
当进入第二休眠模式的一个或者多个电源判断负载系统的负载业务量增加并满足第三休眠阈值的情况下,一个或者多个电源进入第一休眠模式并降低输出电压;其中,第三休眠阈值为第二休眠阈值与负载业务量增量之和
需要说明的是,为了防止第二阈值发生震荡,第三休眠阈值与第二阈值不同。
可选地,当进入休眠模式的一个或者多个电源判断负载系统的负载业务量增加并满足第四休眠阈值的情况下,一个或者多个电源退出休眠模式并恢复输出工作电压;其中,第四休眠阈值为第一休眠阈值与负载业务量增量之和。
可选地,在日常用电当中,在夏日当中,保证负载正常工作,需要对负载系统所在的终端设备进行冷却,故而负载系统的供电需求通常会比其他季节的用电需求大的很多。因此,负载系统的供电需求的急剧增加和减少必不可免。此外,在日常当中,负载系统的在上午和下午的工作时间内供电需求很大,而在中午和晚上一般供电需求不高。因此,在工作时间内,负载系统的供电需求的变化也是非常明显的。故而在实际使用当中,负载系统的供电需求并不是很稳定的,如果按照一般的供电需求变化进行设备的休眠,一方面会使其他工作的电源存在超负荷工作的情况,致使并机电源系统中的电源故障率高,另一方面,也会造成电能的浪费。因此,为了解决上述存在的问题,处于工作状态的电源可以在无需判断是否满足第二休眠阈值的情况下,直接判断是否满足第一阈值。此外,处于第二休眠模式的电源在供电不稳定的时间内,同样也可以跳过是否满足第三休眠阈值,直接判断是否满足第四休眠阈值,以适应电源的工作需求。
当进入第二休眠模式电源判断负载业务量增量速率大于预设的增量速率阈值的情况下,说明负载系统的供电需求很高,电源会根据该负载业务量增量速率的实际大小,适应性调低第三休眠阈值,但不低于第二休眠阈值,提前进入第一休眠模式。另一方面,当进入第二休眠模式电源判断负载业务量增量速率小于预设的增量速率阈值的情况下,说明负载系统的供电需求维持在一个缓慢的增高水平,随时可以会降低供电需求,电源会适应性增大第三休眠阈值,但不可以高于第一休眠阈值。
此外,进入休眠模式的电源如果判断负载系统的负载业务量增量速率远大于预设的增量速率阈值的情况下,说明负载系统处于需要并机电源系统马上全负荷供电的应急状态,电源此时会立即退出休眠模式,并进入工作模式。
可选地,各个电源之间的休眠共有信号相连,正常开机时休眠共有信号反应电源均正常,当发生故障的时候故障电源将通过休眠共有信号通知其他电源。各个电源需要实时监测休眠共有信号。可选地,进入休眠模式的一个或多个电源检测各个电源间的休眠共有信号是否置为异常;在检测到休眠共有信号置为异常时,进入休眠模式的一个或多个电源退出休眠模式并恢复输出工作电压。
可选地,恢复输出工作电压的一个或多个电源检测各个电源间的休眠共有信号是否置为正常;在检测到休眠共有信号置为正常时,恢复输出工作电压的一个或多个电源重新进入休眠模式
可选地,如果有工作电源发生故障,那么该工作电源会将各个电源共有的休眠共有信号置为低电平(通常用逻辑0来标识),并通过该信号通知进入休眠模式的电源。当进入休眠模式的电源检测到高电平的休眠共有信号时,说明当前并机电源系统当中存在供电不足的问题。此时进入休眠模式的电源在保存休眠模式相关信息后,退出休眠模式并恢复输出工作电压为负载系统供电。
可选地,如果有工作电源恢复正常工作后,那么该工作电源会将各个 电源共有的休眠共有信号置为高电平(通常用逻辑1来标识),意味着恢复输出工作电压为负载系统供电的电源没有必要再为负载系统供电。因此,这些恢复输出工作电压为负载系统供电电源会根据预先保存在的休眠模式相关信息进入相应的休眠模式。从而减低了电能的浪费。
为了更好的理解上述的实施例,提供了如下的场景:
场景1
某服务器系统由4台电源插入到服务器的系统背板给服务器供电,这4台并机电源组成各个电源,服务器的系统背板组成接口单元,具备I2C通讯接口、休眠共有信号以及母线检测信号。监控单元则集成于服务器系统本身。服务器使用I2C通讯接口通过系统背板给并机电源发休眠命令或查询电源的工作状态。并机电源之间通过休休眠共有信号相互连接,当电源发生故障时通过休眠共有信号唤醒休眠电源。同时并机电源之间还通过母线检测信号相互连接,用来监控系统的负载。该系统所有电源电能输入类型都是交流市电输入,电源支持分级休眠,图4是根据本申请实施例的一种分级休眠控制的流程图。
如图4所示,当检测到业务量只有满负载业务量的A%即达到第一休眠阈值的时候,通过发送命令让其中2台电源进入第一休眠模式,在该模式下休眠电源调低输出电压,不再给系统供电,系统的供电由其它正常工作的电源来提供。当进入休眠模式的电源通过母线检测信号检测到当前服务器系统的业务量减小到小于满负载业务量的B%即第二休眠阈值时(备注:B<A),休眠电源关闭输出,进入待机状态即深度休眠状态。同时,处于深度休眠模式的电源通过母线检测信号继续监控系统负载,当业务量增加到满负载业务量的(B+C)%即深第三休眠阈值时,从第二休眠模式恢复到第一休眠模式。该模式下休眠电源调低输出电压。当业务量继续增加到满负载业务量的(A+D)%即达到第四休眠模式时,处于第二休眠模式的电源自动退出休眠模式,输出电压恢复额定输出,与之前工作电源一起均流为系统供电。当服务器的业务量再次减少至满负载业务量的A%即达到第 一休眠阈值时,之前接受到休眠命令的电源再次自动进入休眠状态,按照上述过程继续运行。当工作电源中有任何一台电源发生故障,无法提供供电时,会将休眠共有信号电平拉低,休眠电源检测到休眠共有信号电平为低时会即刻退出休眠模式。当休眠共有信号电平恢复高电平时,休眠电源再次进入休眠状态。
当工作电源中有任何一台电源发生故障,无法提供供电时,会将休眠共有信号电平拉低,休眠电源检测到休眠共有信号电平为低时会即刻退出休眠模式。当休眠共有信号电平恢复高电平时,休眠电源再次进入休眠模式。
如果要退休眠状态,可通过I2C通讯命令通知休眠电源退出休眠模式。
场景3:
某服务器系统由4台电源插入到服务器的系统背板给服务器供电,这4台并机电源组成各个电源,服务器的系统背板组成接口单元,具备I2C通讯接口、休眠共有信号以及母线检测信号,均接至各个电源。监控单元则集成于服务器系统本身。
1)当并机电源中有2台电源是交流市电输入,2台电源是高压直流输入时,服务器系统通过通讯命令查询电源输入电压类型,按照事先存储的输入类型与高效模式的对应关系,确定高效输入模式为交流输入、次之是高压直流。
2)系统确定需要其中2台电源进入休眠模式,根据电源输入类型选择直流输入的电源进入休眠模式,交流输入的电源为系统提供电能继续工作。服务器系统通过通讯命令发送给两台直流输入电源通知其进入休眠模式,各个电源进入第二休眠模式后,调低输出电压,不再给系统负载提供供电。
3)休眠电源全程监测休眠共有信号,休眠电源检测到休眠共有信号电平变低时会即刻退出休眠模式,但是需要保留休眠控制指令。当休眠电 源检测到休眠共有信号电平变高时,又会重新进入休眠模式。
场景3:
某服务器系统由4台电源插入到服务器的系统背板给服务器供电,这4台并机电源组成各个电源,服务器的系统背板组成接口单元,具备I2C通讯接口、休眠共有信号以及母线检测信号,均接至各个电源。监控单元则集成于服务器系统本身。
当并机电源的所有电源电能输入类型都是交流市电输入,电源的转换效率等级是不一样的。2台是钛金高效率服务器电源,2台是白金服务器电源。通讯设备系统通过通讯命令查询电源的转换效率数据,按照事先存储的电源转换效率与高效模式的对应关系,确定高效模式电源为钛金电源、次之是白金电源。
系统确定需要其中2台电源进入休眠模式,根据电源的转换效率选择白金电源进入休眠模式,钛金电源为系统提供电能继续工作。通讯设备系统通过I2C通讯接口发送命令给两台白金效率的电源通知其进入休眠模式,各个电源进入休眠模式后,调低输出电压,不再给系统负载提供供电。
休眠电源全程监测休眠共有信号,休眠电源检测到休眠共有信号电平变低时会即刻退出休眠模式,但是需要保留休眠控制指令。当休眠电源检测到休眠共有信号电平变高时,又会重新进入休眠模式。
场景4:
某服务器系统由4台电源插入到服务器的系统背板给服务器供电,这4台并机电源组成各个电源,服务器的系统背板组成接口单元,具备I2C通讯接口、休眠共有信号以及母线检测信号,均接至各个电源。监控单元则集成于服务器系统本身。
1)当并机电源中有2台电源是交流市电输入,2台电源是高压直流 输入时,电源的效率等级也是不一样的。2台是钛金高效率服务器电源,2台是白金服务器电源,监控单元根据预置输入类型效率优先级排序表,结合读取到的各电源转换效率排序,然后将各电源的转换效率与输入效率进行加权计算,获得综合效率,
2)系统确定需要其中2台电源进入休眠模式,根据电源的综合效率选择综合效率低的电源进入休眠模式,综合效率高的电源为系统提供电能继续工作。通讯设备系统通过I2C通讯接口发送命令给两台综合效率低的电源通知其进入休眠模式。进入休眠状态后,休眠控制策略如场景1。
3)休眠电源全程监测休眠共有信号,休眠电源检测到休眠共有信号电平变低时会即刻退出休眠模式,但是需要保留休眠控制指令。当休眠电源检测到休眠共有信号电平变高时,又会重新进入休眠模式。
实施例3
在本实施例中还提供了一种电源的休眠装置,该装置设置为实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本申请实施例的一种电源的休眠装置的结构框图,如图5所示,该装置包括:休眠模块52。
休眠模块52,设置为根据并机电源系统中各个电源的电源信息选择进入休眠模式的一个或者多个电源,其中,电源信息至少包括:电源的电能输入类型以及电源的转换效率。
休眠模块52包括:第一选择单元,设置为在各个电源的电能输入类型以及各个电源的转换效率均相同时,根据各个电源的工作运行信息选择进入休眠模式的一个或者多个电源。
可选地,休眠模块52还包括:第二选择单元,设置为在各个电源的电能输入类型不同且各个电源的转换效率相同时,根据各个电源的电能输 入类型选择进入休眠模式的一个或者多个电源
可选地,第二选择单元还设置为,获取各个电源的电能输入类型,并根据该电能输入类型对各个电源的电能输入效率进行排序;根据各个电源的电能输入效率的排序结果以及各个电源的电能输入状态,由低到高选择一个或者多个电源作为进入休眠模式的一个或者多个电源。
可选地,休眠模块52还包括:第三选择单元,设置为在各个电源的电能输入类型相同且各个电源的转换效率不同时,对各个电源的转换效率进行排序由低到高选择一个或者多个电源作为进入休眠模式的一个或者多个电源
可选地,第三选择单元还设置为,根据各个电源的效率等级对各个电源的转换效率进行排序。
可选地,休眠模块52还包括:第四选择单元,设置为在各个电源的电能输入类型以及各个电源自身的转换效率均不相同时,根据各个电源的电能输入类型和转换效率综合选择进入休眠模式的一个或者多个电源。
实施例4
在本实施例中还提供了一种电源的确定休眠装置,该装置设置为实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本申请实施例的一种电源的确定休眠装置的结构框图,如图6所示,该装置包括:确定模块62。
确定模块62,设置为根据所供电的负载系统的负载信息确定并机电源系统中一个或者多个电源进入的休眠模式;其中,一个或者多个电源是根据并机电源系统中各个电源的电源信息确定的,电源信息至少包括:电源的电能输入类型以及电源的转换效率。
可选地,确定模块62还设置为,判断负载系统的负载业务量是否满 足休眠阈值;并在判断结果为是的情况下,确定一个或者多个电源进入休眠阈值对应的休眠模式。
可选地,确定模块62还设置为,在判断负载系统的负载业务量满足第一休眠阈值的情况下,确定一个或者多个电源进入第一休眠模式并减低输出电压。
可选地,确定模块62还设置为,在判断负载系统的负载业务量满足第二休眠阈值的情况下,确定一个或者多个电源进入第二休眠模式并关闭输出电压;其中,第二休眠阈值小于第一休眠阈值。
可选地,确定模块62还设置为,在判断负载系统的负载业务量增加并满足第三休眠阈值的情况下,确定进入第二休眠模式的一个或者多个电源进入第一休眠模式并降低输出电压;其中,第三休眠阈值为第二休眠阈值与负载业务量增量之和。
可选地,确定模块62还设置为,在判断负载系统的负载业务量增加并满足第四休眠阈值的情况下,确定进入休眠模式的一个或者多个电源退出休眠模式并恢复输出工作电压;其中,第四休眠阈值为第一休眠阈值与负载业务量增量之和。
可选地,确定模块62还包括:第一检测单元,设置为检测各个电源间的休眠共有信号是否置为异常;第一确定单元,设置为在检测到休眠共有信号置为异常时,确定进入休眠模式的一个或多个电源退出休眠模式并恢复输出工作电压。
可选地,确定模块62还包括:第二检测单元,设置为检测各个电源间的休眠共有信号是否置为正常;第二确定单元,设置为在检测到休眠共有信号置为正常时,确定恢复输出工作电压的一个或多个电源重新进入休眠模式。
实施例5
在本实施例中还提供了一种电源的休眠设备,该装置设置为实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。
图7是根据本申请实施例的电源的休眠设备的结构框图,如图7所示,该装置包括:监控单元72,接口单元74,电源并机系统76以及负载系统78。
监控单元72,设置为通过接口单元74获取并机电源系统76中各个电源的电源信息,并根据各个电源的电源信息选择进入休眠模式的一个或者多个电源;
电源并机系统76,设置为通过接口单元74获取进入休眠模式的一个或者多个电源,以及通过接口单元74获取并机电源系统76所供电的负载系统78的负载信息,确定并机电源系统76中一个或者多个电源进入的休眠模式。
实施例5
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
实施例6
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请实施例不限制于任何特定的硬件和软件结合。
以上仅为本申请的可选地实施例而已,并不设置为限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
通过本申请实施例,可以根据系统电源输入类型和转换效率进行最优的节能控制策略。同时在动态休眠模式中还可通过两级休眠,最大化节能效果,电源实时监测负载还可以实现休眠功能的自我管理,无需系统介入。休眠共有信号更能保证电源可靠稳定供电。解决了相关技术中仅通过电源负载率对电源系统的整体节能效果改善不明显的问题。实现整体节能控制策略,成本小,投入回报高的有益效果。

Claims (34)

  1. 一种电源的休眠方法,包括:
    根据并机电源系统中各个电源的电源信息选择进入休眠模式的一个或者多个电源,其中,所述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
  2. 根据权利要求1所述的方法,根据所述并机电源系统中各个电源的电源信息选择进入所述休眠模式的所述一个或者多个电源,包括:
    当所述各个电源的电能输入类型以及所述各个电源的转换效率均相同时,根据所述各个电源的工作运行信息选择进入所述休眠模式的所述一个或者多个电源。
  3. 根据权利要求2所述的方法,所述工作运行信息至少包括以下其中之一:所述各个电源的运行时间,所述各个电源的运行温度。
  4. 根据权利要求1所述的方法,根据所述并机电源系统中各个电源的电源信息选择进入所述休眠模式的所述一个或者多个电源,包括:
    当所述各个电源的电能输入类型不同且所述各个电源的转换效率相同时,根据所述各个电源的电能输入类型选择进入所述休眠模式的一个或者多个电源。
  5. 根据权利要求4所述的方法,根据所述并机电源系统中各个电源的电源信息选择进入所述休眠模式的所述一个或者多个电源,还包括:
    获取所述各个电源的电能输入类型,并根据该电能输入类型对所述各个电源的电能输入效率进行排序;
    根据所述各个电源的电能输入效率的排序结果以及所述各个电源的电能输入状态,由低到高选择一个或者多个电源作为进入所述休眠模式的所述一个或者多个电源。
  6. 根据权利要求1所述的方法,根据所述并机电源系统中各个电源的电源信息选择进入所述休眠模式的所述一个或者多个电源,包括:
    当所述各个电源的电能输入类型相同且所述各个电源的转换效率不同时,对所述各个电源的转换效率进行排序;由低到高选择一个或者多个电源作为进入所述休眠模式的所述一个或者多个电源。
  7. 根据权利要求6所述的方法,对所述各个电源的转换效率进行排序,还包括:根据所述各个电源的效率等级对所述各个电源的转换效率进行排序。
  8. 根据权利要求1所述的方法,根据所述并机电源系统中各个电源的电源信息选择进入所述休眠模式的所述一个或者多个电源,包括:
    当所述各个电源的电能输入类型以及所述各个电源自身的转换效率均不相同时,根据所述各个电源的电能输入类型和所述转换效率综合选择进入所述休眠模式的所述一个或者多个电源。
  9. 一种电源的休眠确定方法,包括:
    根据所供电的负载系统的负载信息确定所述并机电源系统中一个或者多个电源进入的休眠模式;其中,所述一个或者多个电源是根据并机电源系统中各个电源的电源信息确定的,所述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
  10. 根据权利要求9所述的方法,确定所述一个或者多个电源进入的休眠模式,包括:
    所述一个或者多个电源判断所述负载系统的负载业务量是否满足休眠阈值;并在判断结果为是的情况下,所述一个或者多个电源进入所述休眠阈值对应的休眠模式。
  11. 根据权利要求10所述的方法,确定所述一个或者多个电源进入的休眠模式,包括:
    当所述一个或者多个电源判断所述负载系统的负载业务量满足第一休眠阈值的情况下,所述一个或者多个电源进入第一休眠模式并减低输出电压。
  12. 根据权利要求11所述的方法,确定所述一个或者多个电源进入的休眠模式,包括:
    当所述一个或者多个电源判断所述负载系统的负载业务量满足第二休眠阈值的情况下,所述一个或者多个电源进入第二休眠模式并关闭输出电压;其中,所述第二休眠阈值小于所述第一休眠阈值。
  13. 根据权利要求12所述的方法,确定所述一个或者多个电源进入的休眠模式,包括:
    当进入所述第二休眠模式的所述一个或者多个电源判断所述负载系统的负载业务量增加并满足第三休眠阈值的情况下,所述一个或者多个电源进入第一休眠模式并降低输出电压;其中,所述第三休眠阈值为所述第二休眠阈值与负载业务量增量之和。
  14. 根据权利要求9-13任一项所述的方法,在所述一个或者多个电源进入所述休眠阈值对应的所述休眠模式之后,确定所述一个或者多个电源进入的休眠模式,还包括:
    当进入所述休眠模式的所述一个或者多个电源判断所述负载系统的负载业务量增加并满足第四休眠阈值的情况下,所述一个或者多 个电源退出所述休眠模式并恢复输出工作电压;其中,所述第四休眠阈值为所述第一休眠阈值与负载业务量增量之和。
  15. 根据权利要求9-13任一项所述的方法,在确定所述一个或者多个电源进入的所述休眠模式后,所述方法还包括,
    进入所述休眠模式的所述一个或多个电源检测所述各个电源间的休眠共有信号是否置为异常;
    在检测到所述休眠共有信号置为异常时,进入所述休眠模式的所述一个或多个电源退出所述休眠模式并恢复输出工作电压。
  16. 根据权利要求15所述的方法,在进入所述休眠模式的所述一个或多个电源退出所述休眠模式并恢复输出工作电压之后,所述方法还包括:
    恢复输出工作电压的所述一个或多个电源检测所述各个电源间的休眠共有信号是否置为正常;
    在检测到所述休眠共有信号置为正常时,恢复输出工作电压的所述一个或多个电源重新进入所述休眠模式。
  17. 一种电源的休眠装置,包括一个或多个处理器,以及一个或多个存储程序单元的存储器,其中,所述程序单元由所述处理器执行,所述程序单元包括:
    选择模块,设置为根据并机电源系统中各个电源的电源信息选择进入休眠模式的一个或者多个电源,其中,所述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
  18. 根据权利要求17所述的装置,所述选择模块包括:
    第一选择单元,设置为在所述各个电源的电能输入类型以及所述 各个电源的转换效率均相同时,根据所述各个电源的工作运行信息选择进入所述休眠模式的所述一个或者多个电源。
  19. 根据权利要求17所述的装置,所述选择模块还包括:
    第二选择单元,设置为在所述各个电源的电能输入类型不同且所述各个电源的转换效率相同时,根据所述各个电源的电能输入类型选择进入所述休眠模式的一个或者多个电源。
  20. 根据权利要求19所述的装置,所述第二选择单元还设置为,获取所述各个电源的电能输入类型,并根据该电能输入类型对所述各个电源的电能输入效率进行排序;根据所述各个电源的电能输入效率的排序结果以及所述各个电源的电能输入状态,由低到高选择一个或者多个电源作为进入所述休眠模式的所述一个或者多个电源。
  21. 根据权利要求17所述的装置,所述选择模块还包括:
    第三选择单元,设置为在所述各个电源的电能输入类型相同且所述各个电源的转换效率不同时,对所述各个电源的转换效率进行排序;由低到高选择一个或者多个电源作为进入所述休眠模式的所述一个或者多个电源。
  22. 根据权利要求21所述的装置,所述第三选择单元还设置为,根据所述各个电源的效率等级对所述各个电源的转换效率进行排序。
  23. 根据权利要求17所述的装置,所述选择模块还包括:
    第四选择单元,设置为在所述各个电源的电能输入类型以及所述各个电源自身的转换效率均不相同时,根据所述各个电源的电能输入类型和所述转换效率综合选择进入所述休眠模式的所述一个或者多个电源。
  24. 一种电源的确定休眠装置,位于并机电源系统中,,包括:
    确定模块,设置为根据所供电的负载系统的负载信息确定所述并机电源系统中一个或者多个电源进入的休眠模式;其中,所述一个或者多个电源是根据所述并机电源系统中各个电源的电源信息确定的,所述电源信息至少包括:电源的电能输入类型以及电源的转换效率。
  25. 根据权利要求24所述的装置,所述确定模块还设置为,判断所述负载系统的负载业务量是否满足休眠阈值;并在判断结果为是的情况下,确定所述一个或者多个电源进入所述休眠阈值对应的休眠模式。
  26. 根据权利要求24所述的装置,所述确定模块还设置为,在判断所述负载系统的负载业务量满足第一休眠阈值的情况下,确定所述一个或者多个电源进入第一休眠模式并减低输出电压。
  27. 根据权利要求26所述的装置,所述确定模块还设置为,在判断所述负载系统的负载业务量满足第二休眠阈值的情况下,确定所述一个或者多个电源进入第二休眠模式并关闭输出电压;其中,所述第二休眠阈值小于所述第一休眠阈值。
  28. 根据权利要求27所述的装置,所述确定模块还设置为,在进入所述第二休眠模式的所述一个或者多个电源判断所述负载系统的负载业务量增加并满足第三休眠阈值的情况下,所述一个或者多个电源进入第一休眠模式并降低输出电压;其中,所述第三休眠阈值为所述第二休眠阈值与负载业务量增量之和。
  29. 根据权利要求24-28任一项所述的装置,所述确定模块还设置为,在判断所述负载系统的负载业务量增加并满足第四休眠阈值的情况下,确定进入所述休眠模式的所述一个或者多个电源退出所述休眠模式并恢复输出工作电压;其中,所述第四休眠阈值为所述第一休 眠阈值与负载业务量增量之和。
  30. 根据权利要求24-28任一项所述的装置,所述确定模块还包括:
    第一检测单元,设置为检测所述各个电源间的休眠共有信号是否置为异常;
    第一确定单元,设置为在检测到所述休眠共有信号置为异常时,确定进入所述休眠模式的所述一个或多个电源退出所述休眠模式并恢复输出工作电压。
  31. 根据权利要求30所述的装置,所述确定模块还包括:
    第二检测单元,设置为检测所述各个电源间的休眠共有信号是否置为正常;
    第二确定单元,设置为在检测到所述休眠共有信号置为正常时,确定恢复输出工作电压的所述一个或多个电源重新进入所述休眠模式。
  32. 一种电源的休眠设备,包括一个或多个处理器,以及一个或多个存储程序单元的存储器,其中,程序单元由处理器执行,该程序单元包括:电源并机系统,接口单元,监控单元以及负载系统,其中,
    所述监控单元,设置为通过所述接口单元获取所述并机电源系统中各个电源的电源信息,并根据所述各个电源的电源信息选择进入休眠模式的一个或者多个电源;
    所述电源并机系统,设置为通过接口单元获取进入休眠模式的一个或者多个电源,以及通过接口单元获取所述并机电源系统所供电的所述负载系统的负载信息,确定所述并机电源系统中一个或者多个电 源进入的休眠模式。
  33. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1-8,9-16任一项中所述的方法。
  34. 一种电子装置,包括存储器和处理器,,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1-8,9-16任一项中所述的方法。
PCT/CN2019/110089 2018-10-26 2019-10-09 电源的休眠,休眠确定方法及装置,休眠设备 WO2020083025A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021523002A JP7506667B2 (ja) 2018-10-26 2019-10-09 電源のスリープ方法、スリープ決定方法、及び電子機器
EP19877515.7A EP3872602A4 (en) 2018-10-26 2019-10-09 SLEEP STATE OF A POWER SUPPLY, METHOD AND APPARATUS FOR DETERMINING SLEEP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811260026.4 2018-10-26
CN201811260026.4A CN111103962A (zh) 2018-10-26 2018-10-26 电源的休眠,休眠确定方法及装置,休眠设备

Publications (1)

Publication Number Publication Date
WO2020083025A1 true WO2020083025A1 (zh) 2020-04-30

Family

ID=70331886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110089 WO2020083025A1 (zh) 2018-10-26 2019-10-09 电源的休眠,休眠确定方法及装置,休眠设备

Country Status (3)

Country Link
EP (1) EP3872602A4 (zh)
CN (1) CN111103962A (zh)
WO (1) WO2020083025A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864724B (zh) * 2020-07-27 2022-04-22 厦门海索科技有限公司 一种应急电源以及其整流模块的轮询休眠方法
WO2024017476A1 (en) * 2022-07-21 2024-01-25 Abb Schweiz Ag An industrial controller with wake-on-lan functionality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676822A (zh) * 2008-10-31 2010-03-24 旭丽电子(广州)有限公司 电源配置装置
CN104133540A (zh) * 2013-05-02 2014-11-05 鸿富锦精密工业(深圳)有限公司 电源管理系统和方法
CN104731294A (zh) * 2015-03-17 2015-06-24 深圳中盛恒华电气有限公司 一种不间断电源智能化并机供电控制系统及方法
US20160217823A1 (en) * 2015-01-27 2016-07-28 Quantum Corporation Power Savings In Cold Storage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337333B2 (en) * 2001-09-19 2008-02-26 Dell Products L.P. System and method for strategic power supply sequencing in a computer system with multiple processing resources and multiple power supplies
US7325050B2 (en) * 2001-09-19 2008-01-29 Dell Products L.P. System and method for strategic power reduction in a computer system
US7529949B1 (en) * 2005-10-26 2009-05-05 Hewlett-Packard Development Company, L.P. Heterogeneous power supply management system
JP4600489B2 (ja) * 2008-02-21 2010-12-15 日本電気株式会社 電源制御装置
US20100077238A1 (en) * 2008-09-25 2010-03-25 Wisconsin Alumni Research Foundation Energy efficienct power supply system
JP6824630B2 (ja) * 2015-04-30 2021-02-03 アーベーベー・シュバイツ・アーゲーABB Schweiz AG 無停電電源システムを制御する方法、ソフトウェアパッケージおよび無停電電源システム
CN105093993B (zh) * 2015-09-25 2017-11-28 联想(北京)有限公司 电子设备及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676822A (zh) * 2008-10-31 2010-03-24 旭丽电子(广州)有限公司 电源配置装置
CN104133540A (zh) * 2013-05-02 2014-11-05 鸿富锦精密工业(深圳)有限公司 电源管理系统和方法
US20160217823A1 (en) * 2015-01-27 2016-07-28 Quantum Corporation Power Savings In Cold Storage
CN104731294A (zh) * 2015-03-17 2015-06-24 深圳中盛恒华电气有限公司 一种不间断电源智能化并机供电控制系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872602A4 *

Also Published As

Publication number Publication date
JP2022505916A (ja) 2022-01-14
EP3872602A1 (en) 2021-09-01
EP3872602A4 (en) 2022-04-06
CN111103962A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
US7679217B2 (en) Apparatus, system, and method for a high efficiency redundant power system
US8473768B2 (en) Power control apparatus and method for cluster system
US20110302432A1 (en) Super capacitor supplemented server power
CN112421701A (zh) 一种备电控制方法、装置及系统
US8450980B2 (en) Providing resilient power to a system
CN102104277B (zh) 冗余电源控制方法、装置及系统
CN101562349A (zh) 一种模块化ups的节能控制方法及系统
CN103135731A (zh) 一种便携式电脑的智能电源控制方法及装置
CN104216499A (zh) 机柜与其电源控制方法
JP2022523238A (ja) 最適化器、太陽光発電システム、及び太陽電池モジュールのためのiv曲線スキャニング方法
US11334135B1 (en) Power supply optimization using backup battery power supplementation
CN111625080B (zh) 一种服务器节能方法、装置及电子设备和存储介质
WO2020083025A1 (zh) 电源的休眠,休眠确定方法及装置,休眠设备
WO2017101453A1 (zh) 供电控制方法及装置
US20230352959A1 (en) Energy conversion management system and method
CN105549723A (zh) 一种服务器节电控制方法、装置及电子设备节电控制装置
US9389659B2 (en) Power supply system
US20230187966A1 (en) Non-current equalization ups apparatus, current distribution method, and parallel ups system
JP7506667B2 (ja) 電源のスリープ方法、スリープ決定方法、及び電子機器
RU2813336C2 (ru) Способ и устройство гибернации для источника питания, способ и устройство гибернации источника питания и аппарат гибернации
JPWO2021057075A5 (zh)
US8595534B2 (en) Method for system energy use management of current shared power supplies
CN204480169U (zh) 一种网络状态智能复位电路
US10965148B1 (en) Datacenter backup power management
CN111065155A (zh) 一种基于dlt634.5-101标准的低功耗无线通讯系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877515

Country of ref document: EP

Effective date: 20210526