WO2020082726A1 - 底吹精炼炉及其应用 - Google Patents

底吹精炼炉及其应用 Download PDF

Info

Publication number
WO2020082726A1
WO2020082726A1 PCT/CN2019/087091 CN2019087091W WO2020082726A1 WO 2020082726 A1 WO2020082726 A1 WO 2020082726A1 CN 2019087091 W CN2019087091 W CN 2019087091W WO 2020082726 A1 WO2020082726 A1 WO 2020082726A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
copper
redox
blowing
gun
Prior art date
Application number
PCT/CN2019/087091
Other languages
English (en)
French (fr)
Inventor
李锋
尉克俭
李鸿飞
李兵
曹珂菲
郝小红
冯双杰
陆金忠
李晓霞
李海春
刘恺
李栋
许欣
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811260452.8A external-priority patent/CN109234543A/zh
Priority claimed from CN201821757249.7U external-priority patent/CN209098770U/zh
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2020082726A1 publication Critical patent/WO2020082726A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0041Bath smelting or converting in converters
    • C22B15/0043Bath smelting or converting in converters in rotating converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • F27B7/362Introducing gas into the drum axially or through the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • F27B7/362Introducing gas into the drum axially or through the wall
    • F27B2007/367Introducing gas into the drum axially or through the wall transversally through the wall of the drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/168Introducing a fluid jet or current into the charge through a lance

Definitions

  • the present disclosure belongs to the field of non-ferrous metallurgy, and specifically relates to bottom-blown refining furnaces and their applications.
  • rotary anode furnaces are mostly used for crude copper refining.
  • Existing rotary anode furnaces are usually equipped with smoke outlet, furnace mouth, burner mouth at the end of the furnace body, gas-permeable brick at the bottom, side redox outlet and copper outlet .
  • the redox port and the copper outlet Seen from the radial direction of the furnace body, the redox port and the copper outlet are distributed on both sides of the furnace port. The distance between the redox port and the furnace port is less than the distance between the furnace port and the copper port.
  • the furnace port and The redox port is on one side of the furnace body, and the copper outlet is on the other side, and the copper outlet is always open or plugged with a "slide device".
  • Nitrogen gas is introduced into the air-permeable brick at the bottom of the furnace body to stir the crude copper melt.
  • Most of the burner ports at the end of the furnace body use pure oxygen combustion devices to heat the melt and the furnace body, and the side is oxidized.
  • the reduction device generally blows in compressed air during the oxidation operation. After the oxidation period is over, the refined slag is poured out from the furnace port. After the reduction period, the refined copper is poured out from the copper outlet for casting operation.
  • the current rotary anode furnace has a complicated structure, and the efficiency of using the existing rotary anode furnace for crude copper fire refining still needs to be improved.
  • an object of the present disclosure is to propose a bottom-blown refining furnace and its application.
  • the bottom-blowing refining furnace does not need to be provided with air-permeable bricks, which not only has a simpler structure and lower equipment cost, but also not only has a large intake air volume, short redox time, and high production efficiency when refining blister copper, but also avoids the The loss of energy consumption caused by blowing nitrogen into the blister copper melt.
  • rotary anode furnaces are usually provided with multiple air-permeable bricks (2-8) and multiple redox devices (2-6), the furnace structure is complex, and each redox gun It is a single-tube structure (tube diameter 15 ⁇ 25mm), with a single redox port inlet air volume of about 300 ⁇ 500m 3 / h, small air volume, relatively long redox time, and the number of breathable bricks and redox and refining scale
  • the amount of blister copper in a single furnace is large, the sulphur content of blister copper is high, the size of the furnace body is also large, and there are also many redox ports.
  • the redox port in the redox position, is generally in a shallow position under the melt, the melt is splashed, and the redox utilization rate is low.
  • the bottom of the furnace is generally equipped with a breathable brick, and the breathable brick is vented with nitrogen Stirring the blister copper, but when nitrogen gas is blown into the blister copper melt through the breathable brick, the nitrogen will take away part of the heat of the melt, resulting in energy loss.
  • compressed air is generally passed during the oxidation of crude copper. If oxygen-enriched air is used, the life of the redox gun and the oxygen gun brick are shorter.
  • the refining slag when the refining slag is discharged, the redox gun is still in the state of melt agitation, the slag at both ends of the furnace body is not easy to discharge cleanly, and there is much copper in the slag.
  • the present disclosure proposes a bottom-blown refining furnace.
  • the bottom-blown refining furnace includes:
  • Rotary furnace the rotary furnace includes:
  • a rotary furnace shell, the furnace space is defined in the rotary furnace shell;
  • a furnace mouth, the furnace mouth is provided at the upper part of the middle section of the rotary furnace shell;
  • a copper inlet, the copper inlet is provided on the rotary furnace shell;
  • a copper outlet which is provided on the side wall of the end of the rotary furnace shell;
  • a bottom-blown redox gun is provided at the bottom of the rotary furnace shell and extends into the furnace space, wherein the diameter of the bottom-blown redox gun is 38-75 cm.
  • the ventilation rate of a single bottom-blown redox gun can reach 500 to 4500 m 3 / h, thereby significantly increasing the bottom
  • the total ventilation of the redox gun is blown.
  • the gas is supplied from the bottom of the melt during the refining process of blister copper, and the agitation of the melt can be further improved.
  • the bottom-blowing refining furnace of the above embodiment of the present disclosure can also use the furnace mouth as a smoke outlet, at this time, the furnace mouth does not need to be provided with a hydraulic sealing device, and a smoke hood can be provided outside the furnace mouth.
  • the bottom blowing redox In addition to the oxidation and reduction of blister copper, the gun can also replace the burner at the end of the rotary furnace to supply heat to the furnace body for melt heating, furnace body insulation or furnace opening.
  • the bottom-blowing refining furnace of the above embodiment of the present disclosure does not need to be provided with air-permeable bricks, and does not need to separately provide smoke outlets and burners, thereby not only simplifying the furnace body structure and reducing equipment costs, but also effectively avoiding The energy consumption loss caused by the breathable bricks blowing nitrogen into the blister copper melt; and when the bottom-blown refining furnace is used to refine the blister copper, the gas volume is large and the impurity removal ability is strong, which can not only significantly improve the redox efficiency, but greatly shorten
  • the blister copper refining cycle (the blister copper refining cycle is 50-75% of the blister copper refining cycle of the existing anode rotary furnace at the same size.
  • This refining cycle refers to the copper feeding, oxidation, slag discharge, reduction, and reduction of a cycle of the bottom-blown refining furnace.
  • a complete refining cycle time from the end of casting to the beginning of the next cycle of copper can also significantly improve the refining effect of blister copper, especially for continuous blowing of blister copper with higher S (such as S content of 0.4 ⁇ 1.2wt % Crude copper) refining oxidation effect is more obvious; in addition, due to the larger diameter of the bottom blowing redox gun in the present disclosure, the gas volume is large, the air flow pressure is high, and the flow rate is large when ventilating. The reduction effect of the chemical reduction gun is good, and the atmospheric volume greatly shortens the redox time of the crude copper.
  • the oxygen-enriched air from the bottom-blown redox gun during the oxidation of the crude copper can also significantly reduce the body and oxygen of the bottom-blown redox gun.
  • the destruction of gun bricks can prolong the service life of bottom blowing redox guns and oxygen gun bricks.
  • bottom-blown refining furnace may also have the following additional technical features:
  • the bottom blowing redox gun is a porous bottom blowing redox gun.
  • the bottom-blown redox gun and the copper outlet are provided on both sides of the furnace port and along the circumference of the rotary furnace shell In the direction, the distance between the copper outlet and the furnace mouth is smaller than the distance between the furnace mouth and the bottom blowing redox gun. Therefore, it is possible to effectively avoid the problem that the refined slag at both ends of the furnace body is difficult to be discharged due to the blowing of compressed air into the melt by the bottom blowing redox gun.
  • a bottom-blown refining furnace includes a plurality of bottom-blown redox guns, and the plurality of bottom-blown redox guns are symmetrically disposed at the furnace port along the length of the rotary furnace shell On both sides.
  • the bottom-blown refining furnace includes 2 to 6 of the bottom-blown redox guns.
  • the line connecting the intersection of the bottom-blown redox gun and the rotary furnace shell to the center of the rotary furnace and the vertical center of the rotary furnace The angle of the line is -30 to 60 degrees.
  • the redox gun is always in the deep area of the melt during the redox operation, thereby not only ensuring the stirring effect of the gas on the melt when redoxing the blister copper, but also avoiding the splash of the melt from the smoke outlet or the furnace mouth At the same time, during the redox operation, the smoke outlet should be as far as possible above the furnace body, which is conducive to the emission of refined flue gas and the simplified structural design of the smoke hood.
  • the line connecting the intersection of the bottom-blown redox gun and the rotary furnace shell to the center of the rotary furnace and the vertical center of the rotary furnace The angle of the line is -15 to 30 degrees.
  • the angle between the extending direction of the bottom blowing redox gun and the connecting line is 0-45 degrees. In this way, the bottom-blown redox gun can be located below the melt in the blister copper redox stage, thereby ensuring the stirring effect on the melt and improving the efficiency of oxidizing and reducing the blister copper
  • the copper inlet is provided on the other end of the rotary furnace shell opposite to the copper outlet.
  • the copper inlet is provided on a side wall of the upper part of the furnace body opposite to the copper outlet of the rotary furnace shell. This can facilitate the supply of hot blister copper into the hearth space of the bottom-blown refining furnace.
  • the copper inlet is provided on the end wall of the end of the rotary furnace shell, and the copper inlet is provided in the center of the end wall of the furnace body in the vertical direction and And the above parts. This can further facilitate the supply of hot blister copper into the hearth space of the bottom-blown refining furnace.
  • the copper inlet is provided on the end wall of the end of the rotary furnace shell, and the copper inlet is above the center line of the furnace body in the vertical direction and is The distance of the horizontal centerline of the converter shell does not exceed 400mm. This can further facilitate the supply of hot blister copper into the hearth space of the bottom-blown refining furnace.
  • the rotary furnace shell further includes a burner port provided on the end wall of the rotary furnace shell near the end of the copper outlet, so The burner port is provided with a burner.
  • the rotary furnace shell further includes a smoke outlet, which is provided on the end of the furnace body on the rotary furnace shell near the copper inlet, preferably, The smoke outlet may be provided on a side wall of the upper part of the furnace body close to the copper inlet of the rotary furnace shell, and the smoke outlet is located in the radial direction of the rotary furnace Between the furnace mouth and the bottom blowing redox gun, and close to the furnace mouth. This can further prevent the refined slag from overflowing from the smoke outlet during the slag discharge process.
  • the present disclosure also proposes a method for refining blister copper using the above-mentioned bottom-blown refining furnace.
  • the method includes:
  • refining blister copper by using the above-mentioned bottom blowing refining furnace can not only significantly improve the redox efficiency, but also greatly shorten the blister copper refining cycle (the blister copper refining cycle is the same size Under the existing anode rotary furnace blister copper refining cycle of 50-75%), it can also significantly improve the refining effect on blister copper, especially for continuous blowing of blister copper with higher S (such as S content of 0.4-1.2wt % Crude copper)
  • S such as S content of 0.4-1.2wt % Crude copper
  • the refining and oxidation effect is more obvious; in addition, because the bottom-blown refining furnace used in this method does not need to be provided with breathable bricks, it can also effectively avoid the energy caused by blowing nitrogen into the crude copper melt through the breathable bricks Loss.
  • the oxygen content in the oxygen-enriched air is 21-60% by volume, and the pressure of the oxygen-enriched air at the inlet of the bottom blowing redox gun is 0.3-0.9 MPa,
  • the ventilation volume of the single bottom-blown redox gun is 500-4500 m 3 / h, and the temperature of the hot blister copper is 1200-1350 ° C.
  • the hot blister copper has a Cu content of 97.5-98.5wt%
  • the obtained refined copper melt has a Cu content of 99.0-99.5wt%
  • the sulfur content is not higher than 0.005 wt%.
  • FIG. 1 is a schematic structural diagram of a bottom-blown refining furnace according to an embodiment of the present disclosure (where (a) is a front view, (b) is a left view, and (c) is a top view).
  • FIG. 2 is a schematic structural diagram of a bottom-blown refining furnace according to still another embodiment of the present disclosure (where (a) is a front view, (b) is a left side view, and (c) is a top view).
  • FIG. 3 is a schematic structural diagram of a bottom-blown refining furnace according to yet another embodiment of the present disclosure (where (a) is a front view, (b) is a left view, and (c) is a top view).
  • FIG. 4 is a schematic structural diagram of a bottom-blown refining furnace according to yet another embodiment of the present disclosure (where (a) is a front view, (b) is a left side view, and (c) is a top view).
  • FIG. 5 is a position diagram of different stages in a crude copper refining cycle of a bottom-blown refining furnace according to an embodiment of the present disclosure (where (A), (B), (C), (D), and (E) are sequentially coarse (Feeding position, heating position, redox position, slag discharge position and copper outlet position in the copper refining cycle).
  • FIG. 6 is a position diagram of different stages in a blister copper refining cycle of a bottom-blown refining furnace according to yet another embodiment of the present disclosure (where (A), (B), (C), (D), and (E) are in order: (Feeding position, heating position, redox position, slag discharge position and copper outlet position in the blister copper refining cycle).
  • FIG. 7 is a position diagram of a bottom-blown refining furnace at different stages in the blister copper refining cycle according to yet another embodiment of the present disclosure (where (A), (B), (C), (D), and (E) are in order: (Feeding position, heating position, redox position, slag discharge position and copper outlet position in the blister copper refining cycle).
  • FIG. 8 is a position diagram of different stages in a blister copper refining cycle of a bottom-blown refining furnace according to yet another embodiment of the present disclosure (where (A), (B), (C), (D), and (E) are in order: (Feeding position, heating position, redox position, slag discharge position and copper outlet position in the blister copper refining cycle).
  • FIG. 9 is a position diagram of different stages in a blister copper refining cycle of a bottom-blown refining furnace according to yet another embodiment of the present disclosure (where (A), (B), (C), (D), and (E) are in order: (Feeding position, heating position, redox position, slag discharge position and copper outlet position in the blister copper refining cycle).
  • the present disclosure proposes a bottom-blown refining furnace.
  • the bottom-blown refining furnace includes a rotary furnace 100 and a bottom-blown redox gun 200.
  • the rotary furnace includes a rotary furnace shell 110, a furnace port 120, a copper inlet 130 and a copper outlet 140.
  • the rotary furnace shell 110 defines a furnace space, and the furnace port 120 is provided at the upper part of the middle section of the rotary furnace shell 110.
  • the copper inlet 130 is provided on the rotary furnace shell 110, and the copper outlet 140 is provided on the side wall of the end of the rotary furnace shell 110; the bottom blowing redox gun 200 is provided on the bottom of the rotary furnace shell 110 and extends into the furnace space Inside, the diameter of the bottom blowing redox 200 gun is 38 ⁇ 75cm.
  • the ventilation volume of a single bottom-blowing redox gun 200 can reach 500 to 4500 m 3 / h, thereby significantly improving The total ventilation of the bottom-blowing redox gun, and by setting the redox gun 200 at the bottom of the rotary furnace shell 110 and extending into the furnace space, the gas is supplied from the bottom of the melt during the blister copper refining process, which can further improve the melting
  • the stirring effect of the body further, the bottom-blown refining furnace of the above embodiment of the present disclosure can also use the furnace port 120 as a smoke outlet.
  • the furnace port 120 does not need to be provided with a hydraulic sealing device, and a smoke hood can be provided outside the furnace port.
  • the bottom-blown redox gun 200 can also replace the burner at the end of the rotary furnace to supply heat to the furnace body for melt heating, furnace body insulation or oven opening.
  • the bottom-blowing refining furnace of the above embodiment of the present disclosure does not need to be provided with air-permeable bricks, and does not need to separately provide smoke outlets and burners, thereby not only simplifying the furnace body structure and reducing equipment costs, but also effectively avoiding The energy consumption loss caused by the breathable bricks blowing nitrogen into the blister copper melt; and when the bottom-blown refining furnace is used to refine the blister copper, the gas volume is large and the impurity removal ability is strong, which can not only significantly improve the redox efficiency, but greatly shorten
  • the blister copper refining cycle (the blister copper refining cycle is 50-75% of the blister copper refining cycle of the existing anode rotary furnace at the same size.
  • This refining cycle refers to the copper feeding, oxidation, slag discharge, reduction, and reduction of a cycle of the bottom-blown refining furnace.
  • a complete refining cycle time from the end of casting to the beginning of the next cycle of copper can also significantly improve the refining effect of blister copper, especially for continuous blowing of blister copper with higher S (such as S content of 0.4 ⁇ 1.2wt % Crude copper)
  • S such as S content of 0.4 ⁇ 1.2wt % Crude copper
  • the refining oxidation effect is more obvious, which can make the sulfur content in the finally obtained refining copper not higher than 0.005wt%;
  • the diameter of the mid-bottom redox gun 200 of the present disclosure is larger, When ventilating, the air volume is large, the air flow pressure is high, and the flow rate is large.
  • One gas has a good cooling effect on the bottom-blown redox gun, and the second is the atmospheric volume, which greatly reduces the redox time of the crude copper. Blowing in oxygen-enriched air can not only further improve the oxidation efficiency and shorten the oxidation time, but also significantly reduce the damage to the bottom blowing redox gun body and the oxygen gun brick, thereby extending the service life of the bottom blowing redox gun 200 and the oxygen gun brick. .
  • the “upper part” in the upper part of the middle section of the rotary furnace shell 110 in the present disclosure is based on the position of the bottom-blowing redox gun 200, and the side wall of the end of the “rotary furnace shell 110 ",
  • The" end of the rotary housing “includes the cylindrical side surfaces at both ends of the rotary furnace housing 110 along the length of the rotary furnace 100 and the two end surfaces perpendicular to the length of the rotary furnace 100, the" end
  • the “side wall” refers to the cylindrical side surfaces of the rotary furnace shell 110 at both ends
  • the "end wall” refers to the end surface of the furnace body of the rotary furnace shell 110 perpendicular to its length direction.
  • the rotary furnace shell 110 may be composed of a steel structure and a refractory material, wherein a cooling water jacket may be provided at the furnace port 120.
  • the copper outlet 140 can be selectively sealed. Specifically, when the bottom-blown refining furnace pours the slag, the copper outlet is blocked, and yellow mud or " The "skateboard device" blocks the copper outlet and opens the copper outlet only when pouring the refined copper, thereby effectively preventing the outflow of crude copper when turning the furnace body to pour the refined slag.
  • the bottom blowing redox gun 200 may be a porous bottom blowing redox gun.
  • the total through-hole area can be increased, the amount of air supply can be increased, and the airflow pressure and flow rate when the bottom-blowing redox gun 200 is ventilated can be further increased.
  • the reduction not only can the stirring effect on the melt be further improved, and the efficiency of oxidation-reduction of blister copper is further improved, and the refining cycle is shortened; and because the oxidation time of blister copper is further shortened, oxygen-enriched air can be further reduced The negative effects caused by the body and the oxygen gun brick.
  • the inventors found that increasing the ventilation of a single bottom-blowing redox gun 200 can improve the agitating effect on the melt, which in turn can improve the efficiency of redox on blister copper, but on the melt When the stirring effect is too significant, it is easy to cause melt splashing.
  • the airflow of the single bottom blowing redox gun 200 can reach 500-4500 m 3 / h Therefore, not only can the total ventilation of the bottom-blowing redox gun and the stirring effect on the melt be significantly improved, but also the problem of melt splashing can be significantly improved.
  • the diameter of the bottom-blowing redox gun 200 may be 48-65 mm, and further the ventilation volume of the single bottom-blowing redox gun 200 may be further controlled so that the ventilation volume of the single bottom-blowing redox gun 200 is 1000-3000 m 3 / h In this way, it is possible to further improve the efficiency of refining blister copper and improve the problem of melt spattering by setting a reasonable number of bottom-blowing redox guns, while controlling a reasonable redox time and optimizing the use of oxygen-enriched air and natural gas effectiveness.
  • the bottom blowing redox gun 200 and the copper outlet 140 may be provided on both sides of the furnace mouth 120.
  • the inventor found that when the existing anode rotary furnace pours slag from the furnace mouth after the end of the blister copper oxidation stage, the oxidation gun is still in the blister copper melt, and the slag is played by the stirring of the melt, but usually the furnace body The slag at both ends is difficult to be cleaned due to the action of compressed air into the oxidation drum.
  • the inventor found during the exploration process that in the radial direction of the rotary furnace 100, the bottom blowing redox gun 200 and The copper outlets 140 are provided on both sides of the furnace mouth 120, and along the circumferential direction of the rotary furnace shell 110, the distance between the copper outlet 140 and the furnace mouth 120 is smaller than the distance between the furnace mouth 120 and the bottom blowing redox gun 200.
  • the bottom-blowing redox gun 200 can be turned over the melt to keep the melt in a static state, thereby effectively avoiding the melting due to the bottom-blowing redox gun. Compressed air is blown into the body, which makes it difficult to discharge the refined slag at both ends of the furnace body.
  • the bottom-blown refining furnace may include a plurality of bottom-blown redox guns 200 that are symmetrically or asymmetrically disposed in the furnace along the length of the rotary furnace shell 100 Mouth 120 on both sides.
  • a plurality of bottom-blown redox guns 200 can be symmetrically arranged on both sides of the furnace mouth along the length of the rotary furnace shell 100.
  • the bottom-blown refining furnace may include 2 to 6 bottom-blown redox guns 200, such as 2, 4, or 6, so that different bottom-blown refining furnace sizes or blister copper sulfur content choose the appropriate number of bottom-blown redox guns based on the height; further, the number of bottom-blown redox guns 200 can be two, which can further simplify the furnace body structure.
  • the connection between the intersection of the bottom-blown redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100 can be any angle between -30 and 60 degrees, such as -30 degrees, -15 degrees, 0 degrees, 15 degrees, 30 degrees, 45 degrees and 60 degrees, etc. It is explained that the angle ⁇ is based on the longitudinal section along the direction of the copper inlet 130 from the copper inlet 130 to the copper outlet 140 of the rotary furnace 100, as shown in FIGS. 5-9 ((A), (B in FIGS.
  • (C), (D), (E) are the feeding position, heating position, redox position, slag discharge position and copper outlet position in the blister copper refining cycle in sequence, where the angle ⁇ is shown in Figure 5 and Figure 6 , Figure 7, Figure 8 and Figure 9 are -30 degrees, -15 degrees, 0 degrees, 30 degrees and 60 degrees in sequence.
  • the angle ⁇ between the connection point between the intersection of the bottom-blown redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100 and the vertical center line of the rotary furnace 100 is controlled by controlling the bottom-blown refining furnace at the redox position to be -30 to 60 Degree, which can ensure the stirring effect of the melt when redoxing the blister copper, the utilization efficiency of the redox agent, and avoid the melt splashing from the smoke outlet or the furnace mouth 120 and facilitate the emission of refined flue gas, and can also be simplified The structural form and strength design of the hood.
  • the angle ⁇ between the intersection of the bottom-blowing redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100 and the vertical center line of the rotary furnace 100 is -15 to 30 degrees.
  • the effect of stirring the melt when oxidizing and reducing the blister copper can be further improved, and the splash of the melt from the smoke outlet or the furnace port 120 can be avoided, thereby further improving the efficiency of oxidizing and reducing the blister copper and shortening the refining cycle , More conducive to the emission of refined flue gas.
  • the angle between the intersection of the bottom-blown redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100 and the vertical centerline of the rotary furnace 100 is -30 to 60 degrees or
  • the angle between the extending direction of the bottom-blown redox gun 200 and the line "the intersection of the bottom-blown redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100" may be 0 to 45 degrees. For example, 0 degrees, 15 degrees, 25 degrees, 30 degrees, 35 degrees, or 40 degrees.
  • the bottom-blowing redox gun 200 can be located below the melt during the blister copper redox stage, thereby ensuring the stirring effect on the melt and improving the blister copper
  • the efficiency of redox preferably, the bottom blowing redox gun 200 is aligned with the center position of the rotary furnace 100 (that is, the deviation angle is 0 degrees) or deviated toward the bottom of the rotary furnace 100, thereby not only ensuring the correct
  • the stirring effect of the melt can further improve the phenomenon of melt splashing.
  • the rotary furnace shell 110 may further include a burner port 160, and the burner port 160 may be provided on the end of the rotary furnace shell 110 near the copper outlet 140
  • the burner port 160 is correspondingly provided with a burner (not shown in the figure), and thus, by providing the burner, the heating efficiency of the rotary furnace can be further improved.
  • the rotary furnace shell 110 may further include a smoke outlet 150, and the smoke outlet 150 may be provided on the end of the rotary furnace shell 110 near the copper inlet 130 In the present disclosure, by making the smoke outlet 150 upward, the smoke can be further expelled.
  • the smoke outlet 150 may be provided on the cylindrical side wall of the upper part of the furnace body of the rotary furnace shell 110 near the copper inlet 130, and the smoke outlet 150 is located at the furnace mouth 120 in the radial direction of the rotary furnace Between the bottom blowing redox gun 200 and the furnace port 120, and when the furnace body row of refined slag is rotated after the oxidation period, it can ensure that the slag is only discharged from the furnace port 120, and will not overflow from the smoke outlet 150 .
  • the copper inlet 130 may be provided on the opposite end of the copper outlet 140 of the rotary furnace shell 110.
  • the furnace port 120 and the copper inlet 130 may share one or be separately provided.
  • the copper inlet 130 may be provided on the side wall of the upper part of the furnace body opposite to the copper outlet 140 of the rotary furnace shell 110; as shown in FIG. 1 or 4, if the furnace port 120 is also formed as a smoke port or a furnace port 120 and The smoke outlets 150 are separately provided.
  • the copper inlet 130 may be provided on the end wall of the other end of the rotary furnace shell 110 opposite to the copper outlet 140, and the copper inlet 130 is provided in the furnace in the vertical direction
  • the central position of the body end wall and above which not only facilitates the supply of hot blister copper into the hearth space of the bottom-blown refining furnace, but also improves the supply of hot blister copper into the hearth space of the bottom-blown refining furnace Splashing phenomenon, in addition, when the furnace mouth 120 is also made as a smoke mouth, the furnace mouth 120 does not need to be provided with a furnace mouth cover, only a smoke hood can be provided outside the furnace mouth 120 (the smoke hood is not shown in FIGS. 1 and 2) show).
  • the copper inlet 130 is provided on the end wall of the end of the rotary furnace shell 110, it is preferable that the copper inlet is provided above the center line of the furnace body in the vertical direction and is horizontal to the center line of the rotary furnace shell 110 The distance does not exceed 400mm, which can further facilitate the supply of hot blister copper into the hearth space of the bottom-blowing refining furnace, and significantly improve the splashing when supplying hot blister copper into the hearth space of the bottom-blowing refining furnace. Phenomenon, more importantly, when the crude copper from the blowing furnace flows through the flow tank to the blowing refining furnace, it will greatly reduce the height of the blowing furnace body and the building of the blowing furnace, saving construction investment.
  • the furnace body may be understood as a rotary furnace shell
  • the furnace body end wall may be understood as an end wall of the rotary furnace shell end.
  • the copper content in the blister copper may be 97.5-98.5 wt%, and the final copper in the refined copper The content can reach 99.0-99.5wt%, and the sulfur content is not higher than 0.005wt%.
  • the present disclosure also proposes a method for refining blister copper using the above-mentioned bottom-blown refining furnace.
  • the method includes oxidative impurity removal, slag discharge, reduction, and copper extraction. details as follows:
  • hot blister copper is supplied to the furnace space through the copper inlet 130, the rotary furnace is rotated to make the rotary furnace enter the oxidation level, and the bottom blowing redox gun 200 is used to pass compressed air or rich air into the melt Oxygen air for oxidation and impurity removal.
  • the blister copper liquid level when hot blister copper is supplied to the furnace space through the copper inlet 130, the blister copper liquid level can be added to a position about 200 mm below the center line of the furnace body, thereby not only improving the single furnace Refining the volume of blister copper in a single pass, thereby improving production efficiency, can also prevent the melt from splashing out of the furnace or smoke outlet during the subsequent refining process.
  • the copper content in blister copper may be 97.5-98.5 wt%, and the S content may be 0.4-1.2 wt%. Therefore, continuous blasting for desulfurization and impurity removal can be carried out for crude copper with high sulfur content, and a better refining effect can be achieved.
  • the oxygen content in the oxygen-enriched air during oxidation may be 21 to 60% by volume
  • the pressure of the oxygen-enriched air may be 0.3 to 0.9 MPa
  • the ventilation volume of a single bottom blowing redox gun may be 500 ⁇ 4500m 3 / h, preferably 1000 ⁇ 3000m 3 / h
  • the temperature of the hot blister copper may be 1200 ⁇ 1350 °C, which can further improve the efficiency of refining blister copper and improve the problem of melt splashing.
  • the angle between the intersection of the bottom blowing redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100 and the vertical center line of the rotary furnace 100 during oxidation is -30 to 60 degrees, preferably -15 to 30 degrees, which can further improve the effect of agitating the melt when oxidizing the blister copper, and avoid the splash of the melt from the smoke outlet or furnace port 120, thereby further improving the efficiency of oxidizing the blister copper To shorten the refining cycle.
  • the deviation angle of the line between the bottom blowing redox gun 200 and the "intersection point of the bottom blowing redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100" may be 0 to 45 degrees, preferably the bottom blowing redox gun 200 Align the center position of the rotary furnace 100 (that is, the deviation angle is 0 degrees) or deviate toward the bottom of the rotary furnace, thereby not only ensuring the stirring effect of the melt, but also further improving the phenomenon of melt splashing .
  • the rotary furnace 100 is rotated so that the bottom-blown redox gun 200 is located above the liquid level of the melt, and the slag is discharged through the furnace port.
  • the bottom blowing redox gun is always located above the liquid level of the melt during the entire slag discharge process, and the copper outlet can be closed by yellow mud or a "slide device", at which time the melt is in a static state, This can further facilitate the full discharge of refining slag, and effectively avoid the problem that the refining slag at both ends of the furnace body is difficult to be cleaned due to the blowing of compressed air into the melt body by the bottom blowing redox gun.
  • the rotary furnace 100 is rotated to enter a reduction position, and a reducing agent, nitrogen, and / or oxygen-enriched air is introduced into the melt using a bottom-blown redox gun 200 to perform the reduction operation.
  • a reducing agent, nitrogen, and / or oxygen-enriched air is introduced into the melt using a bottom-blown redox gun 200 to perform the reduction operation.
  • the pipeline of the bottom blowing redox gun is purged with nitrogen, and then the reducing agent, nitrogen and / or oxygen-enriched air are passed.
  • the type of reducing agent in the present disclosure is not particularly limited, and those skilled in the art can choose according to actual needs, for example, the reducing agent can be selected from natural gas, liquefied petroleum gas, heavy oil and solid reduction At least one of the agents can significantly improve the reduction efficiency of the melt, and the reducing agent can not only perform the reduction operation, but also be used as a fuel.
  • the reducing agent may be natural gas, and natural gas is a clean energy source.
  • the reduced flue gas contains low SO 2 and can be sent to the chimney for direct discharge after cooling and purification.
  • the angle between the line from the intersection of the bottom blowing redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100 and the vertical center line of the rotary furnace 100 during reduction is -30 to 60 degrees, preferably -15 to 30 degrees, which can further improve the effect of stirring the melt when reducing the blister copper, and prevent the melt from splashing out of the smoke outlet or the furnace port 120, thereby further improving the efficiency of reducing the blister copper To shorten the refining cycle.
  • the deviation angle of the line between the bottom blowing redox gun 200 and the "intersection point of the bottom blowing redox gun 200 and the rotary furnace shell 110 to the center of the rotary furnace 100" may be 0 to 45 degrees, preferably the bottom blowing redox gun 200 Align the center position of the rotary furnace 100 (that is, the deviation angle is 0 degrees) or deviate toward the bottom of the rotary furnace, thereby not only ensuring the stirring effect of the melt, but also further improving the phenomenon of melt splashing .
  • the copper content in the refined copper obtained after reduction can reach 99.0-99.9 wt%, and the sulfur content is not higher than 0.005 wt%.
  • the rotary furnace 100 is rotated so that the refined copper melt is discharged through the copper outlet 140 for casting operations.
  • the copper outlet 140 is opened to allow the refined copper melt to be discharged through the copper outlet 140.
  • the bottom blowing redox gun 200 is always located above the refined copper melt, which can further It is conducive to the smooth discharge of refined copper melt.
  • the furnace body can continuously rotate slowly to control the pressure of the refined copper liquid level at the copper outlet, or after the furnace body rotates to a certain position, the opening of the slide device is used to refine the copper. Certain streams are evenly discharged, which facilitates the casting of anode plates.
  • the copper outlet 140 can be sealed with yellow mud or a "slide board device", and the bottom-blown refining furnace is insulated to prepare for the next cycle of crude copper refining operations .
  • the cold copper materials such as copper scrap produced in the casting machine can be added into the hearth space of the bottom-blown refining furnace during the blister copper feeding process for refining and reuse.
  • the technical features and effects described for the bottom-blowing refining furnace in the above embodiments of the present disclosure are also applicable to the above method for refining blister copper; in addition, the furnace body is transferred into the oxidation site, the reduction site and the oxidation site out 1.
  • the furnace body is transferred into the oxidation site, the reduction site and the oxidation site out 1.
  • the bottom-blown refining furnace to refine blister copper, not only can the redox efficiency be significantly improved, but the blister copper refining cycle is greatly shortened 50-75% of the blister copper refining cycle of the existing anode rotary furnace under the size), can also significantly improve the refining effect on blister copper, especially for continuous blowing of blister copper with a high S content (such as S content of 0.4-1.2 wt% crude copper)
  • S content such as S content of 0.4-1.2 wt% crude copper
  • the refining oxidation effect is more obvious; in addition, because the bottom-blown refining furnace used in this method does not need to be provided with air-permeable bricks, it can also effectively avoid the cause of blowing nitrogen into the crude copper melt through the air-permeable bricks. Loss of energy consumption.
  • the traditional rotary anode furnace only changes the single-hole redox gun to a porous bottom-blown redox gun without changing the position of the redox gun and the positions of the various ports.
  • Oxygen lance diameter and increased gas flow can also improve redox efficiency and shorten the blister copper refining cycle, but other shortcomings have not been improved.
  • the furnace body size of bottom-blowing refining furnace is ⁇ 5.0m ⁇ 15.5m, including rotary furnace and bottom-blowing redox gun.
  • the rotary furnace (including corresponding idler roller, rolling ring and transmission mechanism) includes rotary furnace shell, furnace mouth, inlet
  • the copper port, the copper discharge port and the burner port, the rotary furnace shell is made of steel structure, lined with refractory material, the copper inlet is also used as a smoke outlet, and a smoke hood is provided around it.
  • the copper outlet is provided on the side wall of the end of the rotary furnace shell, the copper inlet is provided on the upper side of the cylindrical side of the rotary furnace shell at the other end opposite the copper outlet, and the furnace port is located on the middle section of the rotary furnace shell In the upper part, there is a cooling water jacket at the furnace port, and the flue gas is discharged from the copper inlet.
  • the burner port is located on the end wall of the rotary furnace shell near the copper outlet.
  • the burner port is equipped with a pure oxygen burner for furnace heating And the heat preservation operation, viewed from the radial direction of the rotary furnace, the bottom blowing redox gun and the copper outlet are provided on both sides of the furnace mouth, and along the circumferential direction of the rotary furnace shell, the distance between the copper outlet and the furnace mouth is less than
  • the distance between the furnace mouth and the bottom blowing redox gun is provided with 4 bottom blowing redox guns, two on each side of the furnace mouth along the length of the furnace body, and the furnace mouth is provided with a hydraulic sealing device, and the furnace mouth serves as a slag discharge port and waste addition Cold copper material port such as anode plate.
  • the diameter of the bottom blowing redox gun is 75mm.
  • the process of refining blister copper is as follows: the hot blister copper discharged from the continuous blowing furnace is added into the furnace through the copper inlet of the bottom-blowing refining furnace through the launder, adding about 500t of blister copper per furnace to stop adding the blister copper.
  • the Cu content is 98wt% and the S content is 1.2wt%.
  • the oxygen lance is fed into the oxygen-enriched air, and the oxygen content in the oxygen-enriched air is 40% by volume.
  • the average ventilation of a single bottom blowing redox gun is about 4000m 3 / h , Rotate the furnace body for oxidation and impurity removal operation. The oxidation is completed for about 60 minutes. Continue to rotate the furnace body for slag discharge operation.
  • the refined slag is discharged from the furnace mouth.
  • the bottom blowing redox gun is above the melt surface during the entire slag discharge process.
  • the bottom-blowing redox gun is purged with nitrogen gas and then the natural gas, oxygen and nitrogen are passed, and the furnace body is rotated to the reduction position to perform the reduction operation.
  • the ventilation of natural gas, oxygen and nitrogen in a single bottom-blowing redox gun The amounts are 1500m 3 / h, 1550m 3 / h and 950m 3 / h respectively.
  • the natural gas and oxygen passed into the pure oxygen combustion device are 300m 3 / h and 800m 3 / h respectively.
  • the reduction period is about 30 minutes.
  • Cu content in refined copper is 99.3wt%, S content is less than 0.0 05wt%, open the copper outlet, turn the furnace body to the copper outlet for anode plate casting, continuously adjust the opening of the slide during the casting process, and ensure the size of the crude copper melt stream, until the casting is completed after 5.5 hours, and return to the furnace body
  • the "slide device" is used to block the copper outlet and enter the furnace body for heat preservation. It is ready to enter the next cycle of copper feed operation, thus completing the entire cycle of anode furnace refining operation.
  • the pressure of oxygen-enriched air, nitrogen and natural gas oxygen lance is 0.6MPa
  • the melt temperature is 1200 ⁇ 1350 °C
  • the flue gas is discharged out of the furnace from the smoke outlet during the blister copper refining process, and is sent to the flue gas cooling purification system through the fume hood
  • the anode waste plate produced by the disc casting machine can be added from the furnace mouth during the feeding of blister copper.
  • the furnace body size of bottom-blown refining furnace is ⁇ 4.0m ⁇ 12.5m, including rotary furnace and bottom-blown redox gun.
  • Rotary furnace includes rotary furnace shell, furnace mouth, smoke outlet, copper inlet, copper outlet and burner mouth.
  • the copper discharge port is provided on the side wall of the end of the rotary furnace shell, and the copper inlet is provided on the end wall of the other end opposite the copper outlet of the rotary furnace shell, and is located at 300mm on the center line of the furnace body.
  • the mouth is located in the upper part of the middle section of the rotary furnace shell, and the flue gas is discharged from the smoke outlet.
  • the smoke outlet is located on the side wall of the upper part of the furnace body near the copper inlet of the rotary furnace shell, and along the radial direction of the rotary furnace On the upper side, the smoke outlet is located between the furnace mouth and the bottom blowing redox gun, and is close to the furnace mouth.
  • the burner mouth is located on the end wall of the rotary furnace shell near the copper outlet, and the burner mouth is provided with pure oxygen The burner performs heating and heat preservation of the furnace body. From the radial direction of the rotary furnace, the bottom blowing redox gun and the copper outlet are provided on both sides of the furnace mouth, and along the circumferential direction of the rotary furnace shell, the copper outlet The distance from the furnace port is less than the distance between the furnace port and the bottom blowing redox gun.
  • bottom blowing redox guns There are 6 bottom blowing redox guns, three on each side of the furnace port along the length of the furnace body.
  • the furnace port is equipped with a hydraulic sealing device.
  • Cold copper material port such as slag discharge port and waste anode plate.
  • the diameter of the bottom blowing redox gun is 38mm.
  • the process of refining blister copper is as follows: the hot blister copper discharged from the continuous blowing furnace is added into the furnace through the copper inlet of the bottom-blowing refining furnace through the launder, adding about 250 tons of blister copper per furnace to stop adding the blister copper.
  • the Cu content is 98.1wt% and the S content is 0.6wt%.
  • the bottom blowing redox gun enters compressed air, and the oxygen content in the compressed air is 21% by volume.
  • the average ventilation of a single bottom blowing redox gun is about 750m 3 / h.
  • the natural gas and oxygen flowing into the pure oxygen combustion device are 275m 3 / h and 700m 3 / h, respectively. Rotate the furnace body for oxidation and impurity removal operation.
  • the slag is discharged from the furnace mouth.
  • the bottom-blowing redox gun is above the melt liquid level.
  • the bottom-blowing redox gun is passed through the nitrogen to purge the pipeline, then through natural gas and nitrogen, and then the furnace body is turned.
  • the reduction operation is carried out at the reduction position.
  • the gas flow rates of natural gas and nitrogen in a single bottom-blowing redox gun are 250m 3 / h and 500m 3 / h, respectively, and the oxygen in the pure oxygen combustion device is 1500m 3 / h.
  • the reduction period is about 60 End of minute, Cu content in refined copper obtained after reduction 99.4wt%, S content is less than 0.005wt%, open the copper outlet, turn the furnace body to the copper outlet for anode plate casting, during the casting process, continue to rotate the furnace body until the copper limit, the end of the casting 3.0 hours, turn Return the furnace body to the normal copper feed position, block the copper outlet with yellow mud, enter the furnace body for heat preservation, and prepare to enter the next cycle of copper feed operation, thus completing the entire cycle of anode furnace refining operation.
  • Oxygen-enriched air, nitrogen and natural gas oxygen lance pressure is 0.5MPa, melt temperature is 1200 ⁇ 1350 °C, during the blister copper refining process, the flue gas is discharged from the furnace through the copper outlet, and then sent to the flue gas cooling purification system through the fume hood.
  • the anode waste plate produced by the disc casting machine can be added from the furnace mouth during the feeding of blister copper.
  • the furnace body size of bottom-blown refining furnace is 3.6m ⁇ 11.5m, including rotary furnace and bottom-blown redox gun.
  • the rotary furnace includes rotary furnace shell, furnace port, copper inlet and copper discharge port.
  • the rotary furnace shell is steel Structure, lined with refractory material.
  • the copper discharge port is provided on the side wall of the end of the rotary furnace shell, and the copper inlet is provided on the end wall of the other end opposite the copper outlet of the rotary furnace shell, and is located at 200mm on the center line of the furnace body.
  • the mouth is located in the upper part of the middle section of the rotary furnace shell, and a smoke hood is provided outside the furnace mouth. The flue gas is discharged from the furnace mouth.
  • the bottom blowing redox gun and the copper outlet are located on both sides of the furnace mouth , And in the circumferential direction of the rotary furnace shell, the distance between the copper outlet and the furnace port is less than the distance between the furnace port and the bottom-blowing redox gun, two bottom-blowing redox guns are provided, and each side of the furnace port along the length of the furnace body One, the furnace port is used as a slag discharge port and a waste anode plate and other cold copper material ports at the same time.
  • the diameter of the bottom blowing redox gun is 60mm.
  • the process of refining blister copper is as follows: the hot blister copper discharged from the continuous blowing furnace is added into the furnace through the chute from the bottom blowing refining inlet copper port, adding about 180t of blister copper per furnace to stop adding the blister copper.
  • volume ventilation content 98.3wt%, S content of 0.4 wt%
  • the bottom blow case into the gun redox-enriched air oxygen-enriched air as the oxygen content of 30% by volume
  • a single bottom-blowing lance redox average about 2300m 3 / h
  • the refined slag is discharged from the furnace mouth.
  • the bottom blowing redox gun is at the melt level
  • the bottom blowing redox gun passes nitrogen to purge the pipeline, then the natural gas and oxygen are passed, and the furnace body is rotated to the reduction position to perform the reduction operation, and the natural gas and oxygen ventilation rates in a single bottom blowing redox gun are respectively 1100m 3 / h, 1200m 3 / h, the reduction period is about 30 minutes
  • the copper content in the refined copper obtained after reduction is 99.5wt%
  • S content is less than 0.005wt%
  • open the copper outlet turn the furnace body to copper
  • Anode plate casting is carried out continuously during the casting process Rotate the furnace body until the copper outlet limit is reached.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise specifically limited.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a removable connection , Or integrated; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction between two elements, unless otherwise specified Limit.
  • installation can be a fixed connection or a removable connection , Or integrated; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction between two elements, unless otherwise specified Limit.
  • the first feature “above” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are indirectly intermediary contact.
  • the first feature is “above”, “above” and “above” the second feature may be that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种底吹精炼炉及其应用。其中,底吹精炼炉包括回转炉(100)和底吹氧化还原枪(200),回转炉包(100)括回转炉壳体(110)、炉口(120)、进铜口(130)和出铜口(140),回转炉壳体内限定出炉膛空间,炉口(120)设在回转炉壳体(110)中段的上部,进铜口(130)设在回转炉壳体(110)上,出铜口(140)设在回转炉壳体(110)端部的侧壁上;底吹氧化还原枪(200)设在回转炉壳体(110)底部且伸入所述炉膛空间内,底吹氧化还原枪(200)的直径为38~75cm。

Description

底吹精炼炉及其应用
优先权信息
本公开请求于2018年10月26日向中国国家知识产权局提交的、专利申请号为201811260452.8、申请名称为“底吹精炼炉及其应用”以及专利申请号为201821757249.7、申请名称为“底吹精炼炉”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开属于有色冶金领域,具体而言,涉及底吹精炼炉及其应用。
背景技术
目前粗铜火法精炼大多采用回转式阳极炉,现有回转式阳极炉通常设有出烟口、炉口、炉体端部燃烧器口、底部透气砖、侧部氧化还原口和出铜口。从炉体径向看,氧化还原口和出铜口分布在炉口两侧,氧化还原口与炉口之间的距离小于炉口与出铜口之间的距离,正常状态下,炉口与氧化还原口在炉体的一侧,出铜口在另一侧,并且出铜口始终处于敞开状态或采用“滑板装置”进行开堵。炉体底部的透气砖进氮气,起到搅拌粗铜熔体的作用,炉体端部的燃烧器口目前大部分采用纯氧燃烧装置,起到加热熔体和炉体保温作用,侧部氧化还原装置在氧化作业时一般鼓入压缩空气,氧化期结束后从炉口倒出精炼渣,还原期结束后从出铜口倒出精炼铜进行浇铸作业。然而,目前的回转式阳极炉结构复杂,并且采用现有的回转式阳极炉进行粗铜火法精炼的效率也仍有待提高。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出底吹精炼炉及其应用。该底吹精炼炉无需设置透气砖,不仅结构更为简单且设备成本更低,而且在精炼粗铜时不仅进通气量大、氧化还原时间短、生产效率高,还可以避免由于通过透气砖向粗铜熔体内鼓入氮气而导致的能耗损失。
本公开是发明人基于以下问题提出的:回转式阳极炉通常设多个透气砖(2~8个)和多个氧化还原装置(2~6个),炉体结构复杂,每个氧化还原枪是一个单管结构(管直径 15~25mm),单个氧化还原口进通气量约300~500m 3/h,通气量小,氧化还原时间相对较长,且透气砖和氧化还原个数与精炼规模及阳极炉大小尺寸相对应,通常单炉粗铜量多,粗铜含硫高,炉体尺寸也大,氧化还原口也多。另外,在氧化还原位时,氧化还原口一般在熔体下较浅位置,熔体喷溅,氧化还原利用率低,为了熔体搅动均匀,一般炉体底部配置透气砖,透气砖内通氮气对粗铜进行搅拌,但通过透气砖往粗铜熔体内鼓入氮气时氮气会带走一部分的熔体热量,导致能量损失。此外,由于传统氧化枪结构的特点,粗铜氧化时一般通压缩空气,若用富氧空气,氧化还原枪和氧枪砖寿命均较短。另外排精炼渣时,氧化还原枪仍处于熔体搅拌状态,炉体两端部的渣不易排干净,且渣带铜多。
为此,根据本公开的一个方面,本公开提出了一种底吹精炼炉。根据本公开的实施例,该底吹精炼炉包括:
回转炉,所述回转炉包括:
回转炉壳体,所述回转炉壳体内限定出炉膛空间;
炉口,所述炉口设在所述回转炉壳体中段的上部;
进铜口,所述进铜口设在所述回转炉壳体上;
出铜口,所述出铜口设在所述回转炉壳体端部的侧壁上;
底吹氧化还原枪,所述底吹氧化还原枪设在所述回转炉壳体底部且伸入所述炉膛空间内,其中,所述底吹氧化还原枪的直径为38~75cm。
根据本公开上述实施例所述的底吹精炼炉,通过采用直径为38~75cm底吹氧化还原枪,可以使单个底吹氧化还原枪的通气量达到500~4500m 3/h,进而显著提高底吹氧化还原枪的总通气量,同时通过将氧化还原枪设在回转炉壳体底部且伸入炉膛空间内,在粗铜精炼过程中从熔体底部送气,还可以进一步提高对熔体的搅动效果;进一步地,本公开上述实施例底吹精炼炉还可以将炉口作为出烟口使用,此时炉口不用设液压密封装置,在炉口外设烟罩即可,此外,底吹氧化还原枪除了对粗铜进行氧化还原外,还可以取代回转炉端部的燃烧器为炉体供热,以进行熔体加热、炉体保温或烘炉开炉。综上,本公开上述实施例的底吹精炼炉无需设置透气砖,也可以不单独设置出烟口和燃烧器,由此,不仅简化炉体结构、降低了设备成本,还可以有效避免由于通过透气砖向粗铜熔体内鼓入氮气而导致的能耗损失;并且采用该底吹精炼炉对粗铜进行精炼时,气量大,脱杂能力强,不仅可以显著提高氧化还原效率,大大缩短粗铜精炼周期(粗铜精炼周期为相同尺寸下现有阳极回转炉 粗铜精炼周期的50~75%,此精炼周期指底吹精炼炉从一个周期的进铜、氧化、排渣、还原、浇铸结束到下一个周期开始进铜的一个完整精炼周期时间),还可以显著提高对粗铜的精炼效果,特别对连续吹炼含S较高的粗铜(如含S量为0.4~1.2wt%的粗铜)精炼氧化效果更为明显;另外,由于本公开中底吹氧化还原枪的直径较大,通气时气量大、气流压力高、流速大,一则气体对底吹氧化还原枪冷却效果好,二则大气量使得粗铜氧化还原时间大大缩短,因此在粗铜氧化时由底吹氧化还原枪鼓入富氧空气还可以显著降低对底吹氧化还原枪体和氧枪砖的破坏,从而可以延长底吹氧化还原枪和氧枪砖的使用寿命。
另外,根据本公开上述实施例的底吹精炼炉还可以具有如下附加的技术特征:
在本公开的一些实施例中,所述底吹氧化还原枪为多孔底吹氧化还原枪。由此,可以进一步提高对粗铜进行氧化还原的效率,缩短精炼周期。
在本公开的一些实施例中,沿所述回转炉的径向方向上,所述底吹氧化还原枪和所述出铜口设在所述炉口的两侧,且沿回转炉壳体圆周方向上,出铜口与炉口的距离小于炉口与底吹氧化还原枪的距离。由此可以有效避免由于由底吹氧化还原枪向熔体内鼓入压缩空气而导致炉体两端的精炼渣难以排干净的问题。
在本公开的一些实施例中,底吹精炼炉包括多个所述底吹氧化还原枪,所述多个底吹氧化还原枪沿所述回转炉壳体的长度方向对称设置在所述炉口两侧。由此,可以显著提高底吹氧化还原枪向熔体内通气的均匀度,并进一步提高对粗铜进行氧化、还原时对熔体的搅动效果和对回转炉内供热的效果,进而进一步提高对粗铜的精炼效率。
在本公开的一些实施例中,底吹精炼炉包括2~6个所述底吹氧化还原枪。在本公开的一些实施例中,在底吹精炼炉的氧化还原位置,所述底吹氧化还原枪与所述回转炉壳体交点到所述回转炉中心的连线与所述回转炉垂直中心线的角度为-30~60度。使氧化还原枪在氧化还原作业时始终处于熔体的深部区域,由此,不仅可以保证对粗铜进行氧化还原时气体对熔体的搅动效果,并避免熔体从出烟口或炉口溅出,同时在氧化还原作业时,出烟口尽量朝向炉体上方,利于精炼烟气的排放和简化烟罩的结构设计。
在本公开的一些实施例中,在底吹精炼炉的氧化还原位置,所述底吹氧化还原枪与所述回转炉壳体交点到所述回转炉中心的连线与所述回转炉垂直中心线的角度为-15~30度。由此,可以进一步提高对粗铜进行氧化还原时对熔体的搅动效果,并避免熔体从出烟口或炉口溅出以及精炼烟气的顺利排放。
在本公开的一些实施例中,所述底吹氧化还原枪的延伸方向与所述连线的角度为0~45度。由此可以使底吹氧化还原枪在粗铜氧化还原阶段中位于熔体下方,进而保证对熔体的搅动效果,提高对粗铜进行氧化还原的效率
在本公开的一些实施例中,所述进铜口设在所述回转炉壳体上所述出铜口相对的另一端部上。
在本公开的一些实施例中,所述进铜口设在所述回转炉壳体上所述出铜口相对的另一端部炉体上部的侧壁上。由此可以有利于将热态粗铜供给至底吹精炼炉的炉膛空间内。
在本公开的一些实施例中,所述进铜口设在所述回转炉壳体端部的端壁上,且在竖直方向上所述进铜口设在炉体端壁的中心位置及且以上部位。由此可以进一步有利于将热态粗铜供给至底吹精炼炉的炉膛空间内。
在本公开的一些实施例中,所述进铜口设在所述回转炉壳体端部的端壁上,在竖直方向上所述进铜口在炉体中心线以上且与所述回转炉壳体水平中心线的距离不超过400mm。由此可以进一步有利于将热态粗铜供给至底吹精炼炉的炉膛空间内。
在本公开的一些实施例中,所述回转炉壳体进一步包括燃烧器口,所述燃烧器口设在所述回转炉壳体上靠近所述出铜口的端部的端壁上,所述燃烧器口设置有燃烧器。
在本公开的一些实施例中,所述回转炉壳体进一步包括出烟口,所述出烟口设在所述回转炉壳体上靠近所述进铜口的炉体端部,优选地,所述出烟口可以设在所述回转炉壳体靠近所述进铜口位置的炉体上部的侧壁上,且沿所述回转炉的径向方向上,所述出烟口位于所述炉口与所述底吹氧化还原枪之间,并靠近所述炉口处。由此可以进一步避免排渣过程中精炼渣从出烟口溢出。
根据本公开的第二个方面,本公开还提出了一种采用上述底吹精炼炉精炼粗铜的方法。根据本公开的实施例,该方法包括:
(1)将热态粗铜经所述进铜口供给至所述炉膛空间,转动所述回转炉,使所述回转炉进入氧化位,利用所述底吹氧化还原枪向所述粗铜熔体内通入压缩空气或富氧空气,进行氧化除杂作业;
(2)转动所述回转炉,使得所述底吹氧化还原枪位于熔体液面上方,将炉渣通过所述炉口排出;
(3)转动所述回转炉进入还原位,利用所述底吹氧化还原枪向所述熔体内通入还原剂、 氮气和/或富氧空气进行还原作业;
(4)转动所述回转炉使得精炼铜熔体经所述出铜口排出。
根据本公开上述实施例所述的精炼粗铜的方法,通过采用上述底吹精炼炉对粗铜进行精炼,不仅可以显著提高氧化还原效率,大大缩短粗铜精炼周期(粗铜精炼周期为相同尺寸下现有阳极回转炉粗铜精炼周期的50~75%),还可以显著提高对粗铜的精炼效果,特别对连续吹炼含S较高的粗铜(如含S量为0.4~1.2wt%的粗铜)精炼氧化效果更为明显;另外,由于该方法中采用的底吹精炼炉无需设置透气砖,还可以有效避免由于通过透气砖向粗铜熔体内鼓入氮气而导致的能耗损失。
在本公开的一些实施例中,步骤(1)中,所述富氧空气中含氧量为21~60体积%,所述底吹氧化还原枪进口处富氧空气的压力0.3~0.9MPa,单个所述底吹氧化还原枪的通气量为500~4500m 3/h,所述热态粗铜的温度为1200~1350℃。由此,可以进一步提高对粗铜进行氧化除杂的效率。
在本公开的一些实施例中,所述热态粗铜的含Cu量为97.5~98.5wt%,所获得的精炼铜熔体的含Cu量为99.0~99.5wt%,硫含量不高于0.005wt%。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的底吹精炼炉的结构示意图(其中,(a)为主视图、(b)为左视图、(c)为俯视图)。
图2是根据本公开再一个实施例的底吹精炼炉的结构示意图(其中,(a)为主视图、(b)为左视图、(c)为俯视图)。
图3是根据本公开又一个实施例的底吹精炼炉的结构示意图(其中,(a)为主视图、(b)为左视图、(c)为俯视图)。
图4是根据本公开又一个实施例的底吹精炼炉的结构示意图(其中,(a)为主视图、(b)为左视图、(c)为俯视图)。
图5是根据本公开一个实施例的底吹精炼炉在粗铜精炼周期中不同阶段的位置图(其中,(A)、(B)、(C)、(D)、(E)依次为粗铜精炼周期中的加料位置、升温位置、氧化还原位置、排渣位置和出铜位置)。
图6是根据本公开再一个实施例的底吹精炼炉在粗铜精炼周期中不同阶段的位置图(其中,(A)、(B)、(C)、(D)、(E)依次为粗铜精炼周期中的加料位置、升温位置、氧化还原位置、排渣位置和出铜位置)。
图7是根据本公开又一个实施例的底吹精炼炉在粗铜精炼周期中不同阶段的位置图(其中,(A)、(B)、(C)、(D)、(E)依次为粗铜精炼周期中的加料位置、升温位置、氧化还原位置、排渣位置和出铜位置)。
图8是根据本公开又一个实施例的底吹精炼炉在粗铜精炼周期中不同阶段的位置图(其中,(A)、(B)、(C)、(D)、(E)依次为粗铜精炼周期中的加料位置、升温位置、氧化还原位置、排渣位置和出铜位置)。
图9是根据本公开又一个实施例的底吹精炼炉在粗铜精炼周期中不同阶段的位置图(其中,(A)、(B)、(C)、(D)、(E)依次为粗铜精炼周期中的加料位置、升温位置、氧化还原位置、排渣位置和出铜位置)。
公开详细描述
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
根据本公开的一个方面,本公开提出了一种底吹精炼炉。根据本公开的实施例,如图1所示,该底吹精炼炉包括:回转炉100和底吹氧化还原枪200。其中,回转炉包括回转炉壳体110、炉口120、进铜口130和出铜口140,回转炉壳体110内限定出炉膛空间,炉口120设在回转炉壳体110中段的上部,进铜口130设在回转炉壳体110上,出铜口140设在回转炉壳体110端部的侧壁上;底吹氧化还原枪200设在回转炉壳体110底部且伸入炉膛空间内,其中,底吹氧化还原200枪的直径为38~75cm。
根据本公开上述实施例的底吹精炼炉,通过采用直径为38~75cm底吹氧化还原枪200,可以使单个底吹氧化还原枪200的通气量达到500~4500m 3/h,进而使显著提高底吹氧化还 原枪的总通气量,同时通过将氧化还原枪200设在回转炉壳体110底部且伸入炉膛空间内,在粗铜精炼过程中从熔体底部送气,还可以进一步提高对熔体的搅动效果;进一步地,本公开上述实施例底吹精炼炉还可以将炉口120作为出烟口使用,此时炉口120不用设液压密封装置,在炉口外设烟罩即可,此外,底吹氧化还原枪200除了对粗铜进行氧化还原外,还可以取代回转炉端部的燃烧器为炉体供热,以进行熔体加热、炉体保温或烘炉开炉。综上,本公开上述实施例的底吹精炼炉无需设置透气砖,也可以不单独设置出烟口和燃烧器,由此,不仅简化炉体结构、降低了设备成本,还可以有效避免由于通过透气砖向粗铜熔体内鼓入氮气而导致的能耗损失;并且采用该底吹精炼炉对粗铜进行精炼时,气量大,脱杂能力强,不仅可以显著提高氧化还原效率,大大缩短粗铜精炼周期(粗铜精炼周期为相同尺寸下现有阳极回转炉粗铜精炼周期的50~75%,此精炼周期指底吹精炼炉从一个周期的进铜、氧化、排渣、还原、浇铸结束到下一个周期开始进铜的一个完整精炼周期时间),还可以显著提高对粗铜的精炼效果,特别对连续吹炼含S较高的粗铜(如含S量为0.4~1.2wt%的粗铜)精炼氧化效果更为明显,可以使最终获得的精炼铜中的硫含量不高于0.005wt%;另外,由于本公开中底吹氧化还原枪200的直径较大,通气时气量大、气流压力高、流速大,一则气体对底吹氧化还原枪冷却效果好,二则大气量使得粗铜氧化还原时间大大缩短,因此在粗铜氧化时由底吹氧化还原枪鼓入富氧空气不仅可以进一步提高氧化效率,缩短氧化时间,还可以显著降低对底吹氧化还原枪体和氧枪砖的破坏,从而可以延长底吹氧化还原枪200和氧枪砖的使用寿命。
需要说明的是,本公开中回转炉壳体110中段的上部中所述的“上部”是基于底吹氧化还原枪200的位置而言的,所述“回转炉壳体110端部的侧壁”中,所述“回转式壳体的端部”包括沿回转炉100长度方向上回转炉壳体110两端的圆柱形侧面和垂直于回转炉100长度方向的两个端面,所述“端部的侧壁”指的是回转炉壳体110两端的圆柱形侧面,“端部的端壁”指的是回转炉壳体110垂直于其长度方向的炉体端面。
下面参考图1-图9对本公开上述实施例的底吹精炼炉进行详细描述。
根据本公开的一个具体实施例,回转炉壳体110可以由钢结构和耐火材料组成,其中炉口120处可以设置有冷却水套。采用底吹精炼炉对粗铜进行精炼时,可以选择性的对出铜口140进行密封,具体地,在底吹精炼炉倒渣时,出铜口处于封堵状态,可以采用黄泥或“滑板装置”堵住出铜口,仅在倒出精炼铜时将出铜口打开,由此在转动炉体倒精炼渣 时可以有效避免粗铜流出。
根据本公开的再一个具体实施例,底吹氧化还原枪200可以为多孔底吹氧化还原枪。本公开中通过采用多孔底吹氧化还原枪,可以增加总通孔面积,提高送气量,并进一步提高底吹氧化还原枪200通气时的气流压力和流速,由此,在对粗铜进行氧化、还原时不仅可以进一步提高对熔体的搅动效果,进而进一步提高对粗铜进行氧化还原的效率,缩短精炼周期;而且由于粗铜氧化时间进一步缩短,还可以进一步降低富氧空气而对氧化还原枪体和氧枪砖造成的负面影响。
根据本公开的又一个具体实施例,发明人发现,增加单个底吹氧化还原枪200的通气量可以提高对熔体的搅动效果,进而可以提高对粗铜进行氧化还原的效率,但对熔体搅动效果过于显著时又容易造成熔体喷溅,本公开中通过控制底吹氧化还原枪200的直径为38~75cm,可以使单个底吹氧化还原枪200的通气量达到500~4500m 3/h,由此,不仅可以显著提高底吹氧化还原枪的总通气量和对熔体的搅动效果,还可以显著改善熔体喷溅的问题。优选地,底吹氧化还原枪200的直径可以为48~65mm,进而可以进一步控制单个底吹氧化还原枪200的通气量,使单个底吹氧化还原枪200的通气量为1000~3000m 3/h,由此,可以通过设置合理的底吹氧化还原枪个数进一步提高对粗铜进行精炼的效率并改善熔体喷溅的问题,同时控制合理的氧化还原时间,优化富氧空气和天然气的利用效率。
根据本公开的又一个具体实施例,如图1(b)所示,沿回转炉100的径向方向上,底吹氧化还原枪200和出铜口140可以设在炉口120的两侧。发明人发现,现有的阳极回转炉在粗铜氧化阶段结束后从炉口倒渣时,氧化枪仍在粗铜熔体内,通过熔体的搅动起到赶渣的作用,但通常炉体两端的渣因氧化鼓入压缩空气的作用而很难排干净,为了解决上述技术问题,发明人在探索过程中发现,沿回转炉100的径向方向上,通过将底吹氧化还原枪200和出铜口140设在炉口120的两侧,且沿回转炉壳体110圆周方向上,出铜口140与炉口120的距离小于炉口120与底吹氧化还原枪200的距离,在粗铜氧化阶段结束后从炉口120倒出精炼渣时,底吹氧化还原枪200可以转至熔体上方,使熔体处于静置状态,由此可以有效避免由于由底吹氧化还原枪向熔体内鼓入压缩空气而导致炉体两端的精炼渣难以排干净的问题。
根据本公开的又一个具体实施例,底吹精炼炉可以包括多个底吹氧化还原枪200,多个底吹氧化还原枪200沿回转炉壳体100的长度方向对称或不对称地设置在炉口120两侧。 优选地,多个底吹氧化还原枪200可以沿回转炉壳体100的长度方向对称地设置在炉口两侧,本公开中通过采用上述设置,可以显著提高底吹氧化还原枪200向熔体内通气的均匀度,并进一步提高对粗铜进行氧化、还原时对熔体的搅动效果和对回转炉内供热的效果,进而进一步提高对粗铜的精炼效率。优选地,底吹精炼炉可以包括2~6个底吹氧化还原枪200,例如2个、4个或6个,由此,可以针对不同的底吹精炼炉大小或针对粗铜含硫量的高低来选择合适的底吹氧化还原枪个数;进一步地,底吹氧化还原枪200的个数可以为2个,由此可以进一步简化炉体结构。
根据本公开的又一个具体实施例,如图5-图9所示,在底吹精炼炉的氧化还原位置,底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心的连线与回转炉100垂直中心线的角度β可以为-30~60度之间的任何一个角度,例如-30度、-15度、0度、15度、30度、45度和60度等,需要说明的是,该角度β以沿回转炉100从进铜口130向出铜口140方向的纵截面为基准,如图5-图9所示(图5-9中,(A)、(B)、(C)、(D)、(E)依次为粗铜精炼周期内的加料位置、升温位置、氧化还原位置、排渣位置和出铜位置),其中,角度β在图5、图6、图7、图8和图9中依次为-30度、-15度、0度、30度和60度。发明人发现,底吹精炼炉的氧化还原位置时,若底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心的连线与回转炉100垂直中心线的角度β超出-30~60度的范围,一则氧化还原枪在熔体内深度位置变浅,影响熔体的搅拌效果,降低富氧空气和还原剂的利用效率,二则出烟口角度偏离炉体上部方向过大,容易造成熔体从出烟口或炉口120溢出或溅出,同时不利于烟气的排放,还会改变或增加对烟罩结构形式和强度的要求。本公开中通过控制底吹精炼炉位于氧化还原位置时底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心的连线与回转炉100垂直中心线的角度β为-30~60度,可以保证对粗铜进行氧化还原时对熔体的搅动效果、氧化还原剂的利用效率,并避免熔体从出烟口或炉口120溅出和利于精炼烟气的排放,还可以简化烟罩的结构形式和强度设计。优选地,底吹精炼炉位于氧化还原位置时底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心的连线与回转炉100垂直中心线的角度β为-15~30度,由此,可以进一步提高对粗铜进行氧化还原时对熔体的搅动效果,并避免熔体从出烟口或炉口120溅出,进而进一步提高对粗铜进行氧化还原的效率,缩短精炼周期,更利于精炼烟气的排放。
进一步地,在底吹精炼炉的氧化还原位置,底吹氧化还原枪200与回转炉壳体110交 点到回转炉100中心的连线与回转炉100垂直中心线的角度为-30~60度或优选-15~30度时,底吹氧化还原枪200的延伸方向与“底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心”的连线的角度可以为0~45度,例如0度、15度、25度、30度、35度或40度。由此,通过进一步控制底吹氧化还原枪200与该连线角度可以使底吹氧化还原枪200在粗铜氧化还原阶段中位于熔体下方,进而保证对熔体的搅动效果,提高对粗铜进行氧化还原的效率;优选地,底吹氧化还原枪200对准回转炉100的中心位置(即所述偏离角度为0度)或向回转炉100炉底侧偏离,由此,不仅可以保证对熔体的搅动效果,还可以进一步改善熔体喷溅的现象。
根据本公开的又一个具体实施例,如图2所示,回转炉壳体110可以进一步包括燃烧器口160,燃烧器口160可以设在回转炉壳体110上靠近出铜口140的端部上,燃烧器口160对应设置有燃烧器(图中未示出),由此,通过设置燃烧器可以进一步提高对回转炉的供热效率。
根据本公开的又一个具体实施例,如图4所示,回转炉壳体110可以进一步包括出烟口150,出烟口150可以设在回转炉壳体110上靠近进铜口130的端部上,本公开中通过使出烟口150朝上可以进一步有利于烟气排出。进一步地,出烟口150可以设在回转炉壳体110靠近进铜口130位置的炉体上部的圆柱形侧壁上,且沿回转炉的径向方向上,出烟口150位于炉口120与底吹氧化还原枪200之间,并靠近炉口120处,进而在氧化期结束后转动炉体排精炼渣时,能够保障渣只从炉口120排出,而不会从出烟口150溢出。
根据本公开的又一个具体实施例,进铜口130可以设在回转炉壳体110上出铜口140相对的另一端部上。本公开的底吹精炼炉结构中,炉口120与进铜口130可以共用一个或分开设置,分开设置时,如图3所示,若进铜口130同时兼做出烟口,进铜口130可以设在回转炉壳体110上出铜口140相对的另一端部炉体上部的侧壁上;如图1或4所示,若炉口120同时兼做出烟口或炉口120与出烟口150分别单独设置,此时,进铜口130可以设在回转炉壳体110上出铜口140相对的另一端部的端壁上,且在竖直方向上进铜口130设在炉体端壁的中心位置及以上部位,由此不仅有利于将热态粗铜供给至底吹精炼炉的炉膛空间内,还能改善将热态粗铜供给至底吹精炼炉炉膛空间内时的喷溅现象,此外,当炉口120同时兼做出烟口时,炉口120不用设置炉口盖,仅在炉口120外设置烟罩即可(附图1和附图2中烟罩未示出)。进一步地,进铜口130设在回转炉壳体110端部的端壁上时, 优选在在竖直方向上使进铜口设在炉体中心线以上且与回转炉壳体110水平中心线的距离不超过400mm,由此,可以进一步有利于将热态粗铜供给至底吹精炼炉的炉膛空间内,并显著改善将热态粗铜供给至底吹精炼炉炉膛空间内时的喷溅现象,更主要的是来自吹炼炉的粗铜通过流槽自流到底吹精炼炉时,会大大降低吹炼炉本体及吹炼炉的厂房高度,节省建设投资。其中,需要说明的是,本公开中所述炉体可理解为回转炉壳体,所述炉体端壁可理解为回转炉壳体端部的端壁。
根据本公开的又一个具体实施例,采用本申请上述实施例所述的底吹精炼炉对粗铜进行精炼时粗铜中的铜含量可以为97.5~98.5wt%,最终得到的精炼铜中铜含量可以达到99.0~99.5wt%,硫含量不高于0.005wt%。
根据本公开的第二个方面,本公开还提出了一种采用上述底吹精炼炉精炼粗铜的方法。根据本公开的实施例,该方法包括氧化除杂、排渣、还原和出铜。具体如下:
(1)氧化除杂
根据本公开的实施例,将热态粗铜经进铜口130供给至炉膛空间,转动回转炉,使回转炉进入氧化位,利用底吹氧化还原枪200向熔体内通入压缩空气或富氧空气,进行氧化除杂作业。
根据本公开的一个具体实施例,将热态粗铜经进铜口130供给至炉膛空间时,粗铜液面可以加到炉体中心线下200mm左右的位置,由此,不仅可以提高单炉单次精炼粗铜的体积,进而提高生产效率,还可以避免在后续精炼过程中熔体由炉口或出烟口溅出。
根据本公开的一个具体实施例,粗铜中的铜含量可以为97.5~98.5wt%,S含量可以为0.4~1.2wt%。由此可以针对硫含量较高的粗铜进行连续送风脱硫除杂,并达到较好的精炼效果。
根据本公开的再一个具体实施例,氧化时富氧空气中含氧量可以为21~60体积%,富氧空气的压力可以0.3~0.9MPa,单个底吹氧化还原枪的通气量可以为500~4500m 3/h,优选1000~3000m 3/h,所述热态粗铜的温度可以为1200~1350℃,由此可以进一步提高对粗铜进行精炼的效率并改善熔体喷溅的问题。
根据本公开的又一个具体实施例,氧化时底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心的连线与回转炉100垂直中心线的角度为-30~60度,优选-15~30度,由此,可以进一步提高对粗铜进行氧化时对熔体的搅动效果,并避免熔体从出烟口或炉口120 溅出,进而进一步提高对粗铜进行氧化的效率,缩短精炼周期。进一步地,底吹氧化还原枪200与“底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心”的连线的偏离角度可以为0~45度,优选底吹氧化还原枪200对准回转炉100的中心位置(即所述偏离角度为0度)或向回转炉炉底侧偏离,由此,不仅可以保证对熔体的搅动效果,还可以进一步改善熔体喷溅的现象。
(2)排渣
根据本公开的实施例,转动回转炉100,使得底吹氧化还原枪200位于熔体液面上方,将炉渣通过炉口排出。
根据本公开的一个具体实施例,整个排渣过程中底吹氧化还原枪始终位于熔体液面上方,出铜口可以由黄泥或“滑板装置”封闭,此时熔体处于静置状态,由此可以进一步有利于精炼渣充分排出,有效避免由于由底吹氧化还原枪向熔体内鼓入压缩空气而导致炉体两端的精炼渣难以排干净的问题。
(3)还原
根据本公开的实施例,转动回转炉100进入还原位,利用底吹氧化还原枪200向熔体内通入还原剂、氮气和/或富氧空气进行还原作业。其中,排渣结束后,先利用氮气吹扫底吹氧化还原枪管道后,再通还原剂、氮气和/或富氧空气。
根据本公开的一个具体实施例,本公开中还原剂的类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如还原剂可以为选自天然气、液化石油气、重油和固体还原剂中的至少一种,由此,可以显著提高对熔体的还原效率,此外还原剂不仅可以起到还原作业,还可以作为燃料使用。优选地,还原剂可以为天然气,天然气为清洁能源,其还原烟气含SO 2低可以经降温净化后送烟囱直接排放。
根据本公开的再一个具体实施例,还原时底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心的连线与回转炉100垂直中心线的角度为-30~60度,优选-15~30度,由此,可以进一步提高对粗铜进行还原时对熔体的搅动效果,并避免熔体从出烟口或炉口120溅出,进而进一步提高对粗铜进行还原的效率,缩短精炼周期。进一步地,底吹氧化还原枪200与“底吹氧化还原枪200与回转炉壳体110交点到回转炉100中心”的连线的偏离角度可以为0~45度,优选底吹氧化还原枪200对准回转炉100的中心位置(即所述偏离角度为0度)或向回转炉炉底侧偏离,由此,不仅可以保证对熔体的搅动效果,还可以进一 步改善熔体喷溅的现象。
根据本公开的又一个具体实施例,还原后得到的精炼铜中的铜含量能达到99.0~99.5wt%,硫含量不高于0.005wt%。
(4)出铜
根据本公开的实施例,转动回转炉100使得精炼铜熔体经出铜口140排出,以便进行浇铸作业。具体地,在出铜过程中,打开出铜口140,使精炼铜熔体经出铜口140排出,出铜过程中底吹氧化还原枪200始终位于精炼铜熔体的上方,由此可以进一步有利于精炼铜熔体平稳排出,排铜过程中炉体可以不断缓慢转动,控制出铜口的精炼铜液面压力,或炉体转动到一定位置后通过滑板装置的开度,使精炼铜以一定的流股均匀排出,利于阳极板的浇铸。
根据本公开的一个具体实施例,排铜结束后可以利用黄泥或“滑板装置”对出铜口140进行密封,并对底吹精炼炉进行保温,以准备进入下一个周期的粗铜精炼作业。其中,在浇铸机产生的铜板废料等冷铜料可以在粗铜进料过程中由炉口120加入至底吹精炼炉炉膛空间内,以进行再次精炼回用。
需要说明的是,本公开上述实施例中针对底吹精炼炉所描述的技术特征和效果同样适用于上述精炼粗铜的方法;另外,在炉体转入氧化位、还原位及转出氧化位、还原位过程中,底吹氧化还原枪处在熔体中时,枪内始终有相应的一定流量压力的气体,以防止熔体倒灌到枪内。
综上,根据本公开上述实施例的精炼粗铜的方法,通过采用上述底吹精炼炉对粗铜进行精炼,不仅可以显著提高氧化还原效率,大大缩短粗铜精炼周期(粗铜精炼周期为相同尺寸下现有阳极回转炉粗铜精炼周期的50~75%),还可以显著提高对粗铜的精炼效果,特别对连续吹炼含S较高的粗铜(如含S量为0.4~1.2wt%的粗铜)精炼氧化效果更为明显;另外,由于该方法中采用的底吹精炼炉无需设置透气砖,还可以有效避免由于通过透气砖向粗铜熔体内鼓入氮气而导致的能耗损失。
需要特别说明的是,传统回转式阳极炉在氧化还原枪位置及各个口位置等各种其他特征不改变的情况下,仅把单孔的氧化还原枪改为多孔的底吹氧化还原枪,增加氧枪直径,增大气体流量,同样可以提高氧化还原效率,缩短粗铜精炼周期,只是其他的一些缺点未得到改善。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
实施例1
底吹精炼炉的炉体规格Ф5.0m×15.5m,包括回转炉和底吹氧化还原枪,回转炉(含相应的托辊、滚圈及传动机构)包括回转炉壳体、炉口、进铜口、放铜口和燃烧器口,回转炉壳体为钢结构,内衬耐火材料,进铜口同时作为出烟口,且周围设有烟罩。出铜口设在回转炉壳体端部的侧壁上,进铜口设在与出铜口相对的另一端部的回转炉壳体的圆柱侧面上部,炉口设在回转炉壳体中段的上部,炉口有冷却水套,烟气从进铜口排出,燃烧器口设在回转炉壳体靠近出铜口的端部的端壁上,燃烧器口设置纯氧燃烧器进行炉体加热及保温作业,从回转炉的径向方向上看,底吹氧化还原枪和出铜口设在炉口的两侧,且沿回转炉壳体圆周方向上,出铜口与炉口的距离小于炉口与底吹氧化还原枪的距离,设4个底吹氧化还原枪,沿炉体长度方向炉口两侧各2个,炉口设液压密封装置,炉口同时作为排渣口和加废阳极板等冷铜料口。底吹氧化还原枪的直径为75mm。氧化还原作业时底吹氧化还原枪与回转炉壳体交点到回转炉中心的连线与回转炉垂直中心线的角度为-15度。
对粗铜进行精炼过程如下:从连续吹炼炉放出的热态粗铜通过流槽从底吹精炼炉进铜口加入到炉内,每炉粗铜加约500t停止加粗铜,粗铜中Cu含量为98wt%、S含量为1.2wt%,此时氧枪进富氧空气,富氧空气中含氧量为40体积%,单个底吹氧化还原枪的通气量平均约为4000m 3/h,转动炉体进行氧化除杂作业,氧化约60分钟结束,继续转动炉体,进行排渣作业,精炼渣从炉口排出,整个排渣过程中底吹氧化还原枪在熔体液面上方,排渣结束后,底吹氧化还原枪通氮气吹扫管道后,再通天然气、氧气和氮气,转动炉体再到还原位进行还原作业,单个底吹氧化还原枪中天然气、氧气和氮气的通气量分别为1500m 3/h、1550m 3/h和950m 3/h,纯氧燃烧装置通入的天然气和氧气分别为300m 3/h和800m 3/h,还原期约30分钟结束,还原后得到的精炼铜中Cu含量为99.3wt%,S含量小于0.005wt%,打开出铜口,转动炉体到出铜位进行阳极板浇铸,浇铸过程中不断调整滑板的开度,保障粗铜熔体流股的大小,直至浇铸5.5小时后结束,转回炉体到正常进粗铜位,用“滑板装置”堵住出铜口,进入炉体保温,准备进入下一周期进粗铜作业,至此完成了阳极炉精炼整个周期的操作过程。其中富氧空气、氮气和天然气氧枪处压力为0.6MPa,熔体温度为1200~1350℃,粗铜精炼过程中烟气从出烟口排出炉体外,经烟罩后送烟气冷却净化系统,圆盘浇铸机产生的阳极废板可在粗铜进料过程中从炉口加入。
实施例2
底吹精炼炉的炉体规格Ф4.0m×12.5m,包括回转炉和底吹氧化还原枪,回转炉包括回转炉壳体、炉口、出烟口、进铜口、放铜口和燃烧器口。放铜口设在回转炉壳体端部的侧壁上,进铜口设在回转炉壳体上出铜口相对的另一端部的端壁上,且位于炉体中心线上300mm处,炉口设在回转炉壳体中段的上部,烟气从出烟口排出,出烟口设在回转炉壳体靠近进铜口位置的炉体上部的侧壁上,且沿回转炉的径向方向上,出烟口位于炉口与底吹氧化还原枪之间,并靠近炉口处,燃烧器口设在回转炉壳体靠近出铜口的端部的端壁上,燃烧器口设置纯氧燃烧器进行炉体加热及保温作业,从回转炉的径向方向上看,底吹氧化还原枪和出铜口设在炉口的两侧,且沿回转炉壳体圆周方向上,出铜口与炉口的距离小于炉口与底吹氧化还原枪的距离,设6个底吹氧化还原枪,沿炉体长度方向炉口两侧各3个,炉口设液压密封装置,炉口同时作为排渣口和加废阳极板等冷铜料口。底吹氧化还原枪的直径为38mm。氧化还原作业时底吹氧化还原枪与回转炉壳体交点到回转炉中心的连线与回转炉垂直中心线的角度为0度。
对粗铜进行精炼过程如下:从连续吹炼炉放出的热态粗铜通过流槽从底吹精炼炉进铜口加入到炉内,每炉粗铜加约250t停止加粗铜,粗铜中Cu含量为98.1wt%、S含量为0.6wt%,此时底吹氧化还原枪进压缩空气,压缩空气中含氧量为21体积%,单个底吹氧化还原枪的通气量平均约750m 3/h,纯氧燃烧装置通入的天然气和氧气分别为275m 3/h和700m 3/h,转动炉体进行氧化除杂作业,氧化约120分钟结束,继续转动炉体,进行排渣作业,精炼渣从炉口排出,整个排渣过程中底吹氧化还原枪在熔体液面上方,排渣结束后,底吹氧化还原枪通氮气吹扫管道后,再通天然气和氮气,转动炉体再到还原位进行还原作业,单个底吹氧化还原枪中天然气和氮气的通气量分别为250m 3/h和500m 3/h,纯氧燃烧装置通入的氧气为1500m 3/h,还原期约60分钟结束,还原后得到的精炼铜中Cu含量为99.4wt%,S含量小于0.005wt%,打开出铜口,转动炉体到出铜位进行阳极板浇铸,浇铸过程中不断转动炉体,直至出铜极限位,浇铸3.0小时后结束,转回炉体到正常进粗铜位,用黄泥堵住出铜口,进入炉体保温,准备进入下一周期进粗铜作业,至此完成了阳极炉精炼整个周期的操作过程。富氧空气、氮气和天然气氧枪处压力为0.5MPa,熔体温度为1200~1350℃,粗铜精炼过程中烟气从出铜口排出炉体外,经烟罩后送烟气冷却净化系统,圆盘浇铸机产生的阳极废板可在粗铜进料过程中从炉口加入。
实施例3
底吹精炼炉的炉体规格Ф3.6m×11.5m,包括回转炉和底吹氧化还原枪,回转炉包括回转炉壳体、炉口、进铜口、放铜口,回转炉壳体为钢结构,内衬耐火材料。放铜口设在回转炉壳体端部的侧壁上,进铜口设在回转炉壳体上出铜口相对的另一端部的端壁上,且位 于炉体中心线上200mm处,炉口设在回转炉壳体中段的上部,炉口外设烟罩,烟气从炉口排出,从回转炉的径向方向上看,底吹氧化还原枪和出铜口设在炉口的两侧,且沿回转炉壳体圆周方向上,出铜口与炉口的距离小于炉口与底吹氧化还原枪的距离,设2个底吹氧化还原枪,沿炉体长度方向炉口两侧各1个,炉口同时作为排渣口和加废阳极板等冷铜料口。底吹氧化还原枪的直径为60mm。氧化还原作业时底吹氧化还原枪与回转炉壳体交点到回转炉中心的连线与回转炉垂直中心线的角度为30度。
对粗铜进行精炼过程如下:从连续吹炼炉放出的热态粗铜通过流槽从底吹精炼进铜口加入到炉内,每炉粗铜加约180t停止加粗铜,粗铜中Cu含量为98.3wt%、S含量为0.4wt%,此时底吹氧化还原枪进富氧空气,富氧空气中含氧量为30体积%,单个底吹氧化还原枪的通气量平均约2300m 3/h,转动炉体进行氧化除杂作业,氧化约60分钟结束,继续转动炉体,进行排渣作业,精炼渣从炉口排出,整个排渣过程中底吹氧化还原枪在熔体液面上方,排渣结束后,底吹氧化还原枪通氮气吹扫管道后,再通天然气和氧气,转动炉体再到还原位进行还原作业,单个底吹氧化还原枪中天然气和氧气的通气量分别为1100m 3/h、1200m 3/h,还原期约30分钟结束,还原后得到的精炼铜中Cu含量为99.5wt%,S含量小于0.005wt%,打开出铜口,转动炉体到出铜位进行阳极板浇铸,浇铸过程中不断转动炉体,直至出铜极限位,浇铸3小时后结束,转回炉体到正常进粗铜位,用黄泥堵住出铜口,进入炉体保温,准备进入下一周期进粗铜作业,至此完成了阳极炉精炼整个周期的操作过程。富氧空气、氮气和天然气氧枪处压力为0.4MPa,熔体温度为1200~1350℃,粗铜精炼过程中烟气从炉口排出炉体外,经烟罩后送烟气冷却净化系统,圆盘浇铸机产生的阳极废板可在粗铜进料过程中从炉口加入。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三 个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种底吹精炼炉,其中,包括:
    回转炉,所述回转炉包括:
    回转炉壳体,所述回转炉壳体内限定出炉膛空间;
    炉口,所述炉口设在所述回转炉壳体中段的上部;
    进铜口,所述进铜口设在所述回转炉壳体上;
    出铜口,所述出铜口设在所述回转炉壳体端部的侧壁上;
    底吹氧化还原枪,所述底吹氧化还原枪设在所述回转炉壳体底部且伸入所述炉膛空间内,其中,所述底吹氧化还原枪的直径为38~75cm。
  2. 根据权利要求1所述的底吹精炼炉,其中,所述底吹氧化还原枪为多孔底吹氧化还原枪。
  3. 根据权利要求1或2所述的底吹精炼炉,其中,沿所述回转炉的径向方向上,所述底吹氧化还原枪和所述出铜口设在所述炉口的两侧,且沿所述回转炉壳体圆周方向上,所述出铜口与所述炉口的距离小于所述炉口与所述底吹氧化还原枪的距离。
  4. 根据权利要求1-3中任一项所述的底吹精炼炉,其中,包括多个所述底吹氧化还原枪,所述多个底吹氧化还原枪沿所述回转炉壳体的长度方向对称设置在所述炉口两侧。
  5. 根据权利要求1-4中任一项所述的底吹精炼炉,其中,包括2~6个所述底吹氧化还原枪。
  6. 根据权利要求1-5中任一项所述的底吹精炼炉,其中,在底吹精炼炉的氧化还原位置,所述底吹氧化还原枪与所述回转炉壳体交点到所述回转炉中心的连线与所述回转炉垂直中心线的角度为-30~60度。
  7. 根据权利要求6所述的底吹精炼炉,其中,所述底吹氧化还原枪与所述回转炉壳体交点到所述回转炉中心的连线与所述回转炉垂直中心线的角度为-15~30度。
  8. 根据权利要求6或7所述的底吹精炼炉,其中,所述底吹氧化还原枪的延伸方向与所述连线的角度为0~45度。
  9. 根据权利要求1-8中任一项所述的底吹精炼炉,其中,所述进铜口设在所述回转炉壳体上所述出铜口相对的另一端部上。
  10. 根据权利要求1-9中任一项所述的底吹精炼炉,其中,所述进铜口设在所述回转炉壳体上所述出铜口相对的另一端部炉体上部的侧壁上。
  11. 根据权利要求1-9中任一项所述的底吹精炼炉,其中,所述进铜口设在所述回转炉壳体端部的端壁上,且在竖直方向上所述进铜口设在所述炉体端壁的中心位置及以上部位。
  12. 根据权利要求11所述的底吹精炼炉,其中,所述进铜口设在所述回转炉壳体端部的端壁上,在竖直方向上所述进铜口在炉体中心线以上且与所述回转炉壳体水平中心线的距离不超过400mm。
  13. 根据权利要求1-12中任一项所述的底吹精炼炉,其中,所述回转炉壳体进一步包括燃烧器口,所述燃烧器口设在所述回转炉壳体上靠近所述出铜口的端部的端壁上,所述燃烧器口设置有燃烧器。
  14. 根据权利要求1-13中任一项所述的底吹精炼炉,其中,所述回转炉壳体进一步包括出烟口,所述出烟口设在所述回转炉壳体上靠近所述进铜口的炉体端部。
  15. 根据权利要求14所述的底吹精炼炉,其中,所述出烟口设在所述回转炉壳体靠近所述进铜口位置的炉体上部的侧壁上,且沿所述回转炉的径向方向上,所述出烟口位于所述炉口与所述底吹氧化还原枪之间,并靠近所述炉口处。
  16. 一种采用权利要求1-15中任一项所述的底吹精炼炉精炼粗铜的方法,其中,包括:
    (1)将热态粗铜经所述进铜口供给至所述炉膛空间,转动所述回转炉,使所述回转炉进入氧化位,利用所述底吹氧化还原枪向所述粗铜熔体内通入压缩空气或富氧空气,进行氧化除杂作业;
    (2)转动所述回转炉,使得所述底吹氧化还原枪位于熔体液面上方,将炉渣通过所述炉口排出;
    (3)转动所述回转炉进入还原位,利用所述底吹氧化还原枪向所述熔体内通入还原剂、氮气和/或富氧空气进行还原作业;
    (4)转动所述回转炉使得精炼铜熔体经所述出铜口排出。
  17. 根据权利要求16所述的方法,其中,步骤(1)中,所述富氧空气中含氧量为21~60体积%,所述底吹氧化还原枪进口处富氧空气的压力0.3~0.9MPa,单个所述底吹氧化还原枪的通气量为500~4500m 3/h,所述热态粗铜的温度为1200~1350℃。
  18. 根据权利要求16或17所述的方法,其中,所述热态粗铜的含Cu量为97.5~98.5wt%,所获得的精炼铜熔体的含Cu量为99.0~99.5wt%,硫含量不高于0.005wt%。
PCT/CN2019/087091 2018-10-26 2019-05-15 底吹精炼炉及其应用 WO2020082726A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811260452.8A CN109234543A (zh) 2018-10-26 2018-10-26 底吹精炼炉及其应用
CN201821757249.7 2018-10-26
CN201821757249.7U CN209098770U (zh) 2018-10-26 2018-10-26 底吹精炼炉
CN201811260452.8 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020082726A1 true WO2020082726A1 (zh) 2020-04-30

Family

ID=70331237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087091 WO2020082726A1 (zh) 2018-10-26 2019-05-15 底吹精炼炉及其应用

Country Status (1)

Country Link
WO (1) WO2020082726A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169532A (ja) * 1984-02-13 1985-09-03 Nippon Steel Corp 粗銅を精錬するスラグの銅含有量を低減する方法
JP2001247922A (ja) * 2000-03-03 2001-09-14 Nippon Mining & Metals Co Ltd 銅製錬炉の操業方法
CN103382528A (zh) * 2013-07-12 2013-11-06 东营方圆有色金属有限公司 一种两步炼铜法工艺及装置
CN103952571A (zh) * 2014-04-18 2014-07-30 东营鲁方金属材料有限公司 一步炼铜工艺及其装置
CN107828968A (zh) * 2017-09-30 2018-03-23 东营方圆有色金属有限公司 一种低品位废杂铜清洁冶炼新工艺及其装置
CN108103319A (zh) * 2017-12-29 2018-06-01 中南大学 一种含铜多金属物料高温强化精炼方法
CN109234543A (zh) * 2018-10-26 2019-01-18 中国恩菲工程技术有限公司 底吹精炼炉及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169532A (ja) * 1984-02-13 1985-09-03 Nippon Steel Corp 粗銅を精錬するスラグの銅含有量を低減する方法
JP2001247922A (ja) * 2000-03-03 2001-09-14 Nippon Mining & Metals Co Ltd 銅製錬炉の操業方法
CN103382528A (zh) * 2013-07-12 2013-11-06 东营方圆有色金属有限公司 一种两步炼铜法工艺及装置
CN103952571A (zh) * 2014-04-18 2014-07-30 东营鲁方金属材料有限公司 一步炼铜工艺及其装置
CN107828968A (zh) * 2017-09-30 2018-03-23 东营方圆有色金属有限公司 一种低品位废杂铜清洁冶炼新工艺及其装置
CN108103319A (zh) * 2017-12-29 2018-06-01 中南大学 一种含铜多金属物料高温强化精炼方法
CN109234543A (zh) * 2018-10-26 2019-01-18 中国恩菲工程技术有限公司 底吹精炼炉及其应用

Similar Documents

Publication Publication Date Title
CN101638724B (zh) 一种采用氮气搅拌和富氧气体精炼废杂铜的工艺及其设备
US4061487A (en) Process for producing glass in a rotary furnace
WO2015196887A1 (zh) 连续侧吹炼锡工艺
CN104988332B (zh) 一步炼铜工艺及装置
CN109234543A (zh) 底吹精炼炉及其应用
WO2012065327A1 (zh) 连续炼铅装置及连续炼铅工艺
CN101880774B (zh) 采用底吹熔池熔炼处理除铜渣产出粗铅与铅冰铜的工艺及其装置
WO2014101688A1 (zh) 铜锍底吹吹炼工艺和铜锍底吹吹炼炉
CN200988859Y (zh) 氧气底吹熔炼炉
CN203112905U (zh) 铜锍底吹吹炼装置
US3715203A (en) Melting of metals
BRPI0706624A2 (pt) processo para fabricar um produto contendo ferro a partir de minério de ferro
CN209098770U (zh) 底吹精炼炉
CN204039474U (zh) 底吹炼锡装置
CN104073653A (zh) 连续侧吹炼锡装置
CN103063030B (zh) 一种熔渣调质复合炉窑及其操作工艺
CN104060104B (zh) 底吹炼锡工艺
JPS5839214B2 (ja) 非鉄金属の製錬法
WO2020082726A1 (zh) 底吹精炼炉及其应用
CN203960305U (zh) 连续侧吹炼锡装置
CN202420180U (zh) 一种熔渣调质复合炉窑
CN205332796U (zh) 一种竖式双侧吹熔炼炉
WO2015196889A1 (zh) 侧吹炼锡装置
CN104018005A (zh) 镍锍底吹吹炼工艺和镍锍底吹吹炼炉
CN103146936B (zh) 一种富氧氧化还原炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875388

Country of ref document: EP

Kind code of ref document: A1