WO2020082390A1 - Sensor and display device - Google Patents

Sensor and display device Download PDF

Info

Publication number
WO2020082390A1
WO2020082390A1 PCT/CN2018/112254 CN2018112254W WO2020082390A1 WO 2020082390 A1 WO2020082390 A1 WO 2020082390A1 CN 2018112254 W CN2018112254 W CN 2018112254W WO 2020082390 A1 WO2020082390 A1 WO 2020082390A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
tft
gate
oxide
poly
Prior art date
Application number
PCT/CN2018/112254
Other languages
French (fr)
Inventor
Takatori Kenichi
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN201880098714.7A priority Critical patent/CN112868223B/en
Priority to PCT/CN2018/112254 priority patent/WO2020082390A1/en
Priority to EP18937830.0A priority patent/EP3861715B1/en
Publication of WO2020082390A1 publication Critical patent/WO2020082390A1/en
Priority to US17/241,607 priority patent/US11594161B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/141Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element
    • G09G2360/142Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element the light being detected by light detection means within each pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the present invention relates to a sensor and display device.
  • Patent Document 1 U.S. Patent Publication No. 2015-0055047
  • Patent Document 2 Chinese Utility Model Patent Publication No. 203481233
  • a sensor includes a plurality of electric lines including row lines and column lines, a photodiode in a pixel, a drain of a first transistor connected to the photodiode in the pixel, a drain of a second transistor connected in series with a source of the first transistor in the pixel, a source of the second transistor being connected to a column line among the plurality of electric lines, and both a gate of the first transistor and a gate of the second transistor being connected to a row line among the plurality of electric lines, wherein a channel material of the first transistor is different from a channel material of the second transistor.
  • the sensor can effectively prevent high leakage current of the photodiode after stress.
  • a sensor includes, a plurality of electric lines including row lines, column lines and reset lines, a photodiode in a pixel, a readout transistor portion arranged between the photodiode and a column line among the plurality of electric lines, a gate of the readout transistor portion being connected to a row line among the plurality of electric lines, a drain of a first transistor connected to the photodiode, a drain of a second transistor connected in series with a source of the first transistor in the pixel, and both a gate of the first transistor and a gate of the second transistor are connected to the reset line, wherein a channel material of the first transistor is different from a channel material of the second transistor.
  • the sensor can effectively prevent high leakage current of the photodiode after stress.
  • the channel material of the first transistor may be an oxide and the channel material of the second transistor may be a non-oxide. In this way, because of the uniformity among the Oxide TFT structures, the sensor may have more uniformity among the pixels.
  • the first transistor may be an Oxide Thin Film Transistor (TFT) and the second transistor may be a poly-Si TFT.
  • TFT Oxide Thin Film Transistor
  • the sensor may have more uniformity among the pixels, and the sensor can effectively prevent high leakage current of the photodiode after stress.
  • the Oxide TFT may be arranged between a cathode of the photodiode and the poly-Si TFT. In this way, the sensor can effectively prevent high leakage current of the photodiode after stress.
  • the poly-Si TFT may include a twin-gated structure having a split gate. In this way, the twin-gated TFT can effectively reduce leakage current more than the single-gated TFT.
  • the Oxide TFT may include a tied dual-gated structure having top-and bottom-gates that are connected to the same electric line among the plurality of electric lines.
  • the tied dual-gated structure can effectively reduce gate voltage and power consumption compared to a top gate only structure.
  • the tied dual-gated structure can effectively achieve stability.
  • the Oxide TFT may include a dual-gated structure having a top gate connected to a first line among the plurality of electric lines and a bottom gate connected to a second line among the plurality of electric lines that may be different from the first line.
  • the tied dual-gated structure can effectively reduce gate voltage and power consumption compared to a top gate only structure.
  • the gate of the first transistor and the gate of the second transistor may be connected to the same electric line among the plurality of electric lines. In this way, the sensor can effectively reduce the number of electric lines connecting the Oxide TFT 10 and the poly-Si TFT 20.
  • the first transistor may be a bottom gate transistor and the second transistor may be a top gate transistor.
  • the combination of the bottom-gated first transistor and the top-gated second transistor can effectively simplify manufacturing.
  • the first and second transistors may be top gate transistors, and the second transistor may be disposed in a layer that is lower than a layer in which the first transistor is disposed. In this way, both the first and second transistors have a top-gated structure, parasitic capacitance can be reduced compared to the bottom-gated transistors.
  • the senor may include a light shield layer located under the first transistor, the light shield layer consisting of the same material as a gate material of the second transistor. In this way, the light shield layer may prevent incident light from entering the first transistor. Since the first transistor is sensitive to light stress, the light shield layer may be effective in achieving high reliability and stability.
  • a display device may include the sensor of the first or second aspect of the present invention, and a light emitting portion, the light emitting portion and the sensor may be provided in the same pixel. In this way, the display device can effectively prevent high leakage current of the photodiode after stress.
  • a display device may include a light emitting portion and a photodiode portion.
  • the light emitting portion includes a light emitting diode, a switching transistor, and a first reset transistor.
  • the photodiode portion includes a readout transistor and a second reset transistor.
  • the second reset transistor resets data
  • the first reset transistor resets data.
  • a gate of the switching transistor and a gate of the second reset transistor are connected to a first scan line
  • the gate of the first reset transistor and the readout transistor are connected to a second scan line. In this way, the display device can effectively reduce the number of electric lines connecting the light emitting portion and the photodiode portion.
  • the switching and readout transistors are connected to the same data voltage line, and the first reset transistor and the second reset transistor are connected to the same reference voltage line.
  • the display device can further reduce the number of electric lines connecting the light emitting portion and the photodiode portion.
  • the present invention may also be a sub-combination of the features described above.
  • FIG. 1 shows a functional block diagram of a sensor 300.
  • FIG. 2A shows an exemplary configuration of the pixel circuit of PPS 100.
  • FIG. 2B shows an exemplary configuration of the pixel circuit of APS 200.
  • FIG. 3A shows transfer characteristics at an initial state of a poly-Si TFT and an Oxide TFT.
  • FIG. 3B shows transfer characteristics after stress is applied to the poly-Si TFT and the Oxide TFT.
  • FIG. 4A shows a comparative configuration of PPS 1100 placed in each pixel.
  • FIG. 4B shows a comparative configuration of APS 1200 placed in each pixel.
  • FIG. 5A shows an equivalent circuit of a twin-gated TFT.
  • FIG. 5B shows the plan view of the poly-Si TFT 20 of twin-gated TFT structure.
  • FIG. 6A shows an example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
  • FIG. 6B shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
  • FIG. 6C shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
  • FIG. 7A shows the detailed circuit block of the column readout circuit 320.
  • FIG. 7B shows a detailed example of the S/H &CDS circuit 322.
  • FIG. 7C shows another embodiment of the S/H &CDS circuit 322.
  • FIG. 8A shows an example of more detailed structure of APS 500.
  • FIG. 8B shows another example of more detailed structure of APS 500.
  • FIG. 9 shows an equivalent circuit of a dual-gated TFT.
  • FIG. 10 shows an example of a relationship between gate voltage V G_t and drain current I D .
  • FIG. 11A shows an exemplary configuration of the pixel circuit of a PPS 600.
  • FIG. 11B shows an exemplary configuration of the pixel circuit of APS 700.
  • FIG. 11C shows another exemplary configuration of the pixel circuit of APS 700.
  • FIG. 11D shows another exemplary configuration of the pixel circuit of APS 700.
  • FIG. 12 shows an example of layout of the APS 700 shown in FIG. 11D.
  • FIG. 13 shows noise characteristics of the embodiments and a comparative example.
  • FIG. 14A is an example of display device 1000 having in-cell APS for OLED display.
  • FIG. 14B is another example of display device 1000 having in-cell APS for OLED display.
  • FIG. 1 shows a functional block diagram of a sensor 300.
  • the sensor 300 includes a pixel array 310, a column readout circuit 320, a row control circuit 330, and a control logic circuit 340.
  • the sensor 300 includes a plurality of electric lines including column lines 325 and row lines 335.
  • the sensor 300 may operate as an image sensor, such as those used widely for light sensing, security sensing, scientific and/or industrial applications, etc.
  • the pixel array 310 includes a two-dimensional array of elements having a photodiode and thin-film transistors (TFTs) .
  • the pixel array 310 includes a plurality of pixels 312 aligned in two dimensions.
  • the pixel array 310 may include M ⁇ N pixels 312 numbered from P 11 to P MN , M indicating rows and N indicating columns.
  • P ij represents a pixel 312 located at row i and column j, where i is greater or equal to 1 and less or equal to M, and j is greater or equal to 1 and less or equal to N.
  • Each pixel 312 may have a Passive Pixel Sensor (PPS) architecture or an Active Pixel Sensor (APS) architecture as explained below.
  • PPS Passive Pixel Sensor
  • APS Active Pixel Sensor
  • the APS architecture includes an amplifier to amplify the electrical signals correspond to the optical signals from the photodiode, but the PPS architecture does not include an amplifier.
  • the column readout circuit 320 is connected to each pixel 312 through column lines 325.
  • the column readout circuit 320 may read signals from the pixel array 310 to select a specific column of pixels 312. For example, the column readout circuit 320 may read image data from the pixel array 310 through column lines 325.
  • connection when an element is referred to as being “connected” to another element, it can be directly connected to the other element or intervening elements may be present. In other words, “connected” expresses that the connection can be direct or indirect.
  • the row control circuit 330 is connected to each pixel 312 through row lines 335.
  • the row control circuit 330 may transmit reset signals to the pixel array 310 through row lines 335 to select a specific row of pixels 312.
  • the row control circuit 330 may apply the control signal to the pixel array 310 through row lines 335.
  • the control logic circuit 340 controls the operation of the column readout circuit 320 and the row control circuit 330.
  • the control logic circuit 340 may control timing of the transmission of reset signals or readout signals.
  • FIG. 2A shows an exemplary configuration of the pixel circuit of PPS 100 placed in each pixel 312.
  • the PPS 100 includes a photodiode 110 and a readout transistor portion 120.
  • the photodiode 110 is an optical sensing part of the PPS 100.
  • the photodiode 110 can absorb light and then convert light into electrical signals.
  • the photodiode 110 is capable of detecting optical signals of different wavelengths using semiconductor materials.
  • the photodiode 110 may have a material such as silicon (Si) , gallium arsenide (GsAs) , indium antimonide (InSb) , indium arsenide (InAs) , organic semiconductor materials, etc.
  • the photodiode 110 may have an amorphous silicon p-i-n photodiode (a-Si PIN PD) .
  • the a-Si PIN PD consists of three layers including a p-doped a-Si layer, an intrinsic a-Si layer and an n-doped a-Si layer stacked between a transparent electrode (anode) and a reflective metal electrode (cathode) .
  • the photodiode 110 may be an amorphous-silicon-based PIN photodiode, in which different hydrogenated amorphous silicon (a-Si: H) layers, such as p+ a-Si, intrinsic a-Si (i-a-Si) , and n+a-Si, are stacked.
  • the photodiode 110 may be an organic bulk heterojunction (BHJ) PD, which is based on simple planar geometry with the blend of donor and acceptor materials, such as polymer/fullerene composites. This material is sandwiched between electrodes with different work functions for efficient charge extraction in cooperation with an interlayer.
  • BHJ organic bulk heterojunction
  • the readout transistor portion 120 switches on to readout the signal from the photodiode 110.
  • the readout transistor portion 120 is arranged between the photodiode 110 and a column line j among the plurality of electric lines.
  • a gate of the readout transistor portion 120 is connected to a row line i among the plurality of electric lines.
  • the readout transistor portion 120 is turned on and outputs electrical signals, which correspond to optical signals detected by the photodiode 110, through the column line j.
  • the readout transistor portion 120 of the PPS 100 includes an Oxide TFT 10 and a poly-Si TFT 20.
  • the Oxide TFT 10 is connected to the photodiode 110.
  • a drain of the Oxide TFT 10 may be connected to the photodiode 110.
  • a channel of the Oxide TFT 10 is made of an oxide semiconductor having wide band gap, such as indium-gallium-zinc-oxide (IGZO) or Zinc Oxide (ZnO) TFT.
  • IGZO indium-gallium-zinc-oxide
  • ZnO Zinc Oxide
  • the Oxide TFT 10 shows higher mobility, lower photo sensitivity to visible lights and lower leakage current than silicon-based TFT, such as a-Si TFT, microcrystalline silicon ( ⁇ -c-Si) TFT, and polycrystalline silicon (poly-Si) TFT. This low leakage current property is suitable for high Signal to Noise Ratio (SNR) image sensor applications.
  • the Oxide TFT 10 is an example of a first transistor.
  • the poly-Si TFT 20 is connected in series with the Oxide TFT 10 in the same pixel 312.
  • a drain of the poly-Si TFT 20 may be connected in series with a source of the Oxide TFT 10 in the same pixel 312.
  • a source of the poly-Si TFT 20 may be connected to a column line j among the plurality of electric lines.
  • the poly-Si TFT 20 is an example of a second transistor.
  • a channel material of the poly-Si TFT 20 is different from a channel material of the Oxide TFT 10.
  • the channel material of the Oxide TFT 10 is an oxide and the channel material of the poly-Si TFT 20 is a non-oxide.
  • the poly-Si TFT 20 consists of a Low-Temperature Polycrystalline Silicon (LTPS) thin film transistor.
  • LTPS Low-Temperature Polycrystalline Silicon
  • Both a gate of the Oxide TFT 10 and a gate of the poly-Si TFT 20 are connected to a row line i among the plurality of electric lines.
  • a gate of the Oxide TFT 10 and a gate of the poly-Si TFT 20 are connected to the same electric line.
  • the gates of the Oxide TFT 10 and the poly-Si TFT 20 are connected to row line i and switched at the same time. Therefore, the sensor 300 can reduce the number of electric lines connecting the Oxide TFT 10 and the poly-Si TFT 20.
  • the Oxide TFT 10 is arranged between a cathode of the photodiode 110 and the poly-Si TFT 20.
  • the order of the Oxide TFT 10 and the poly-Si TFT 20 can be changed.
  • one side of the Oxide TFT 10 is directly connected to the cathode of the photodiode 110, and the other side of the Oxide TFT 10 is directly connected to the poly-Si TFT 20.
  • one side of the poly-Si TFT 20 may be directly connected to the cathode of the photodiode 110, and the other side of the poly-Si TFT 20 may be directly connected to the Oxide TFT 10.
  • the Oxide TFT 10 may have a low leakage current and high pixel-to-pixel uniformity. Therefore, the Oxide TFT 10 may be used where low leakage current is desired or where high pixel-to-pixel uniformity is desired.
  • the poly-Si TFT 20 may be used where attributes such as increased switching speed and good drive current are desired.
  • the Oxide TFT 10 and the poly-Si TFT 20 are aligned in series, so the leakage current at a certain gate voltage is determined not only by the Oxide TFT 10 but also the poly-Si TFT 20.
  • a leakage current of the Oxide TFT is increased after stress is applied.
  • the poly-Si TFT 20 can suppress the leakage current. Therefore, the combination of the Oxide TFT 10 and the poly-Si TFT 20 may prevent high leakage current of the photodiode 110 after stress, and SNR is improved.
  • FIG. 2B shows an exemplary configuration of the pixel circuit of APS 200 placed in each pixel 312.
  • the APS 200 includes a photodiode 210, a readout transistor portion 220, a reset transistor portion 230, and an amplifier 240.
  • FIG. 2B shows only structure that is different from FIG. 2A is explained.
  • the readout transistor portion 220 is arranged between the photodiode 210 and column line j.
  • the readout transistor portion 220 is connected the photodiode 210 through the amplifier 240.
  • a gate of the readout transistor portion 220 is connected to row line i among the plurality of electric lines.
  • the readout transistor portion 220 is turned on and outputs electrical signals, which correspond to optical signals detected by the photodiode 210, through the column linej.
  • the reset transistor portion 230 is connected to the photodiode 210.
  • a gate of the reset transistor portion 230 is connected to a reset line among the plurality of electric lines.
  • the reset transistor portion 230 applies reset voltage V r to the photodiode 210, when a reset signal RST is received at the gate of the reset transistor portion 230.
  • the amplifier 240 amplifies electrical signals from the photodiode 210, and outputs the amplified signals through the readout transistor portion 220.
  • the amplifier 240 is arranged between the photodiode 210 and the readout transistor portion 220.
  • a gate of the amplifier 240 is connected to the cathode of the photodiode 210.
  • the reset transistor portion 230 includes the Oxide TFT 10 and poly-Si TFT 20.
  • a drain of the Oxide TFT 10 may be connected to the photodiode 110.
  • a drain of the poly-Si TFT 20 may be connected in series with a source of the Oxide TFT 10 in the pixel.
  • Both a gate of the Oxide TFT 10 and a gate of the poly-Si TFT 20 are connected to a row line i among the plurality of electric lines.
  • the combination of the Oxide TFT 10 and the poly-Si TFT 20 may reduce the leakage current through the reset transistor portion 230 even though the threshold voltage of the Oxide TFT 10 is negatively shifted.
  • the APS 200 may keep the leakage current lower even though the threshold voltage of the Oxide TFT 10 shifts negatively, and leakage current of the poly-Si TFT 20 goes up with temperature. As a result, the reduction of leakage current of the reset transistor portion 230 reduces shot noise of APS 200 that naturally occurs from the leakage current.
  • the APS architecture may obtain higher SNR than PPS architecture by reducing noise.
  • the APS 200 may eliminate fixed pattern noise.
  • the fixed pattern noise is caused by random variations, such as variations in geometrical size of a photodiode and variations in dark current at the readout transistor portion 220 and the amplifier 240.
  • the APS 200 may also eliminate the 1/f noise. Therefore, the APS 200 can be used for low light flux or high-sensitivity applications.
  • the readout transistor portion 120 and the reset transistor portion 230 are made using different TFT materials, such as the Oxide TFT and the poly-Si TFT, as shown in FIG. 2A and FIG. 2B.
  • This hybrid TFT technology which uses different TFT materials, may achieve both the stability and reliability of each TFT material.
  • FIG. 3A shows transfer characteristics at an initial state of a poly-Si TFT and an Oxide TFT.
  • stresses such as gate bias stress, light stress and thermal stress have not been applied to the Oxide TFT and the poly-Si TFT.
  • the solid line indicates the transfer characteristics of the Oxide TFT.
  • the dotted line indicates the transfer characteristics of the poly-Si TFT.
  • the vertical axis indicates the drain current I D
  • the horizontal axis indicates the gate voltage V G .
  • the leakage current of the Oxide TFT is lower than that of the poly-Si TFT.
  • FIG. 3B shows transfer characteristics after stress is applied to the poly-Si TFT and the Oxide TFT.
  • the solid line indicates the transfer characteristics of the Oxide TFT after stress is applied to the Oxide TFT.
  • the dotted line indicates the transfer characteristics of the poly-Si TFT after stress is applied to the poly-Si TFT.
  • the threshold voltage of the Oxide TFT shows a negative shift, while the threshold voltage of the poly-Si TFT remains stable.
  • Circles shown in FIG. 3A and FIG. 3B indicate drain current I D at the same negative gate voltage V G .
  • the drain current I D of the Oxide TFT is lower than that of the poly-Si TFT.
  • the drain current I D of the Oxide TFT is higher than that of the poly-Si TFT. This is because the threshold voltage of the Oxide TFT is negatively shifted, while the threshold voltage of the poly-Si TFT remains stable.
  • the threshold voltage may shift more negatively.
  • a negative shift relates to stress duration. Longer stress durations shift the threshold voltage more negatively.
  • shorter wavelength light may show larger negative shifts in threshold voltage.
  • the leakage current of the Oxide TFT may be larger at a certain gate voltage V G , even if the leakage current is lower at an initial state.
  • FIG. 4A shows a comparative configuration of PPS 1100 placed in each pixel.
  • the PPS 1100 includes a photodiode 1110 and a readout transistor 1120.
  • the readout transistor 1120 consists of only an Oxide TFT.
  • the combination of the Oxide TFT 10 and the poly-Si TFT 20 of the readout transistor portion 120 are changed to the Oxide TFT in FIG. 4A. Therefore, the readout transistor 1120 cannot suppress the leakage current of the Oxide TFT, after stress is applied to the readout transistor 1120.
  • FIG. 4B shows a comparative configuration of APS 1200 placed in each pixel.
  • the APS 1200 includes a photodiode 1210, a readout transistor 1220, a reset transistor 1230 and an amplifier 1240.
  • the reset transistor 1230 consists of only an Oxide TFT.
  • the combination of the Oxide TFT 10 and the poly-Si TFT 20 of the reset transistor portion 230 are changed to the Oxide TFT in FIG. 4B. Therefore, the readout transistor 1220 cannot suppress the leakage current of the Oxide TFT, after stress is applied to the readout transistor 1220.
  • the leakage current of a TFT increases a shot noise of the TFT, and also decreases signal level by reducing a light-produced charge or voltage through the leakage effect. Thus, as a result of increased leakage current, SNR is reduced.
  • the leakage current at an OFF state with a certain gate voltage may be kept low even though the threshold voltage of the Oxide TFT shifts negatively.
  • the noise level of the pixel may be kept low, and the signal level may be kept high. The reliability and stability of the image sensor and its SNR may be improved.
  • a normalized leakage current of the Oxide TFT I leak (-7V) _Oxide is 0.01 fA and that of the poly-Si TFT I leak (-7V) _poly is 100 fA.
  • the sensor 300 having a combination of the Oxide TFT 10 and the poly-Si TFT 20 may realize low leakage current at a certain gate voltage, even if the threshold voltage of the Oxide TFT 10 shows a negative shift.
  • FIG. 5A shows an equivalent circuit of a twin-gated TFT.
  • the poly-Si TFT 20 may include a twin-gated structure having a split gate.
  • the poly-Si TFT 20 includes a TFT 21 and a TFT 26 having a gate 22 and a gate 27 connected each other in a split gate configuration.
  • the TFT 21 and the TFT 26 are in series.
  • the poly-Si TFT 20 of a twin-gated structure may be applied to both PPS and APS architectures.
  • the twin-gated TFT tends to reduce leakage current more than the single-gated TFT. If the twin-gated TFT is used for the poly-Si TFT 20, it may further suppress the leakage current of the photodiode. In a simple estimation, the leakage current of the twin-gated TFT may become half of the leakage current of the single-gated TFT. Therefore, the twin-gated TFT may reduce leakage current and improve the bias stability.
  • FIG. 5B shows the plan view of the poly-Si TFT 20 having a twin-gated TFT structure.
  • the TFT 21 and the TFT 26 are in series, with the gates of both TFTs connected, and the source/drain of TFT 21 and drain/source of TFT 26 being connected and shared.
  • the poly-Si TFT 20 includes a U-shaped gate electrode having at least two gates 22 and 27.
  • the gates 22 and 27 are elongated sections which are parallel to each other and separated.
  • One gate 22 acts as the gate of the TFT 21, while the other gate 27 acts as the gate of the TFT 26.
  • the gate of the poly-Si TFT 20 is split into two gates 22 and 27. In other words, one side of the gates of the poly-Si TFT 20 are separated but the other side is connected.
  • the structure shown in this plan view may keep the area of the poly-Si TFT 20 small.
  • the area value of the twin-gated TFT is less than twice the area of a single-gated TFT.
  • the twin-gated TFT structure may be used for the poly-Si TFT 20. If the Oxide TFT 10 and the poly-Si TFT 20 are used in series for leakage current reduction, the LTPS TFT keeps the leakage current lower even after the threshold voltage for the Oxide TFT 10 is shifted. This structure is effective for all TFT blocks, but is especially effective for readout TFT in PPS and reset TFT in APS.
  • FIG. 6A shows an example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
  • the Oxide TFT 10 has a bottom-gated structure and the poly-Si TFT 20 has a top-gated structure.
  • the Oxide TFT 10 and the poly-Si TFT 20 are provided above the same substrate 401.
  • the Oxide TFT 10 includes a gate 410, an oxide semiconductor layer 412 and a gate insulator 403.
  • the oxide semiconductor layer 412 is a channel layer of the Oxide TFT 10 and is connected to vias 414.
  • the gate insulator 403 is formed on the gate insulator 402.
  • the Oxide TFT 10 has a bottom-gated structure, and the gate 410 is located below the oxide semiconductor layer 412 with the gate insulator 403 in between.
  • the poly-Si TFT 20 includes a gate 420, a poly-Si layer 422 and a gate insulator 402.
  • the poly-Si layer 422 is a channel layer of the poly-Si TFT 20 and connected to vias 424.
  • the gate insulator 402 is formed on the substrate 401.
  • the poly-Si TFT 20 has a top-gated structure, and the gate 420 is located above the poly-Si layer 422 with the gate insulator 402 in between.
  • the gate 410 of the Oxide TFT 10 and the gate 420 of the poly-Si TFT 20 may be formed by the same conductive material, such as poly-silicon or metal.
  • the gates 410 and 420 may be formed in the same process. Since a gate material is shared for the Oxide TFT 10 and the poly-Si TFT 20, the gate insulator 402 and the gate insulator 403 are adjacent each other. Because of the shared layer usage, the combination of the bottom-gated Oxide TFT 10 and the top-gated poly-Si TFT 20 may simplify manufacturing.
  • FIG. 6B shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20. Both the Oxide TFT 10 and the poly-Si TFT 20 have a top-gated structure. For simplicity in describing FIG. 6B, only structure that is different from FIG. 6A is explained.
  • the Oxide TFT 10 includes an oxide semiconductor layer 412, a gate 410 and a gate insulator 403.
  • the gate insulator 403 is formed on the interlayer insulator 404.
  • the Oxide TFT 10 has a top-gated structure, and the gate 410 is located above the oxide semiconductor layer 412 with the gate insulator 403 in between.
  • the poly-Si TFT 20 is disposed on a lower layer than the layer in which the Oxide TFT 10 is disposed. Because the poly-Si TFT 20 may be fabricated at a higher temperature than the Oxide TFT 10, the poly-Si TFT 20 is formed first, and then the Oxide TFT 10 is formed.
  • the gates 410 and 420 may be formed in different processes. A gate material is not shared for the Oxide TFT 10 and the poly-Si TFT 20, and the gate insulator 402 and the gate insulator 403 are not adjacent each other. Because both the Oxide TFT 10 and the poly-Si TFT 20 have a top-gated structure, parasitic capacitance may be reduced compared to the bottom-gated Oxide TFT 10 shown in FIG. 6A.
  • FIG. 6C shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
  • a light shield layer 430 is provided under the Oxide TFT 10.
  • the light shield layer 430 consists of the same material as a gate material of the poly-Si TFT 20.
  • the light shield layer 430 may be formed in the same process as the gate 420. Because of the shared layer usage, the light shield layer 430 may be formed without an additional manufacturing process.
  • the light shield layer 430 may prevent incident light from entering the Oxide TFT 10. Since the Oxide TFT 10 is sensitive to light stress, the light shield layer 430 may be effective in achieving high reliability and stability.
  • the light shield layer 430 may work as a bottom gate of a tied dual-gated structure, such as that which is described below.
  • FIG. 7A shows the detailed circuit block of the column readout circuit 320.
  • the column readout circuit 320 includes a column decoder 321, a sample /hold (S/H) and CDS circuit 322, and an output amplifier 323. In FIG. 7A, only one column line is shown for simplicity.
  • the column decoder 321 may be connected to a corresponding column line of the pixel array 310.
  • the column decoder 321 is utilized to select the corresponding column line j.
  • the column decoder 321 transfers the received signals to the S/H &CDS circuit 322 by switching the switch connected to the column line j.
  • the S/H &CDS circuit 322 samples and holds the signals received from the column line j according to the signal from column decoder 321.
  • the S/H &CDS circuit 322 is utilized for double sampling data signals to reduce noise, such as fixed pattern noise (FPN) .
  • Output signals of the S/H &CDS circuit 322 are outputted through the output amplifier 323.
  • FPN fixed pattern noise
  • FIG. 7B shows a detailed example of the S/H &CDS circuit 322.
  • the S/H &CDS circuit 322 includes a sample capacitor C S , a reset capacitor C R , four transistors 351 to 354 and a differential amplifier 355.
  • the transistor 351 and the transistor 352 are sample and reset switches, respectively, connected to column line j.
  • the transistor 351 is connected to the sample capacitor C S
  • the transistor 352 is connected to the reset capacitor C R .
  • the transistor 353 and the transistor 354 are differential switches connected to the differential amplifier 355.
  • the transistor 353 is connected to the sample capacitor C S
  • the transistor 354 is connected to the reset capacitor C R .
  • the differential amplifier 355 is a differential single ended amplifier configured to output a differential signal of the sample capacitor C S and the reset capacitor C R .
  • the transistor 352 In a reset period, the transistor 352 is turned on, and the pixel output in reset condition through column line j is stored in the reset capacitor C R according to the clock of ⁇ R .
  • the transistor 351 In the signal readout period, the transistor 351 is turned on and the pixel signal output through column line j is stored in the signal capacitor C S according to the clock of ⁇ S .
  • the clock ⁇ Y activates, the transistor 353 and the transistor 354 are turned on, and the differential amplifier 355 removes noise and outputs the result.
  • This circuit is merely an example of a CDS circuit, and any other CDS circuit may be used.
  • FIG. 7C shows another embodiment of the S/H &CDS circuit 322.
  • the S/H &CDS circuit 322 consists of a fully differential type CDS circuit.
  • the S/H &CDS circuit 322 includes a sample capacitor C S , a reset capacitor C R , switches 361 to 368 and a differential amplifier 370.
  • the differential amplifier 370 is a fully differential amplifier.
  • the switch 361 and the switch 362 are reset and sample switches, respectively, connected to column line j.
  • the switch 363 and the switch 364 are connected to the differential amplifier 370 and input common voltage V CM_in to the differential amplifier 370 during an inversion timing of ⁇ Y .
  • the switch 365 and the switch 366 are connected to the differential amplifier 370, and output common voltage V CM_out during an inversion timing of ⁇ Y .
  • the switch 367 and the switch 368 are connected to the differential amplifier 370 to make a feedback loop through the sample and reset capacitors C S and C R .
  • the S/H &CDS circuit 322 outputs differential voltage V OUT+ and V OUT- .
  • the S/H &CDS circuit 322 can reduce noise, such as a fixed pattern noises (FPN) .
  • FPN fixed pattern noises
  • the S/H &CDS circuit 322 cannot remove the shot noise generated from a leakage current of the Oxide TFT 10. Therefore, it is preferable to reduce the leakage current by the combination of the Oxide TFT 10 and the poly-Si TFT 20.
  • FIG. 8A shows an example of a more detailed structure of APS 500.
  • the APS 500 includes a photodiode 510, a readout transistor portion 520, a reset transistor portion 530 and an amplifier 540.
  • the reset transistor portion 530 consists of the Oxide TFT 10 and the poly-Si TFT 20 in series.
  • the readout transistor portion 520 consists of an Oxide TFT. In an initial state, a leakage current through the Oxide TFT of the readout transistor portion 520 is low. From a practical point of view, the leakage current of the readout transistor portion 520 may not be so important because the S/H &CDS circuit 322 may reduce noise caused at the readout transistor portion 520.
  • the amplifier 540 consists of LTPS TFT. Because of the large mobility of an LTPS TFT, the APS 500 can realize high amplifier gain.
  • the amplifier 540 may fabricated in the same process as the poly-Si TFT 20. Therefore, the amplifier 540 may be formed without performing additional manufacturing processes.
  • FIG. 8B shows another example of a more detailed structure of APS 500. For simplicity in describing FIG. 8B, only structure that is different from FIG. 8A is explained.
  • the amplifier 540 consists of an Oxide TFT. Since the readout transistor portion 520 and the amplifier 540 have the same Oxide active channel layer, the flexibility of the layout of the circuit is increased, and the circuit may be easier to design than the layout of FIG. 8A. Because of the uniformity among the Oxide TFT structures, the sensor 300 may have more uniformity among the pixels 312.
  • FIG. 9 shows an equivalent circuit of a dual-gated TFT.
  • the dual-gated TFT has both a top gate and a bottom gate.
  • the bottom gate of the dual-gated TFT may be controlled to a predetermined voltage.
  • the bottom gate of the dual-gated TFT may be electrically tied to the top gate of the dual-gated TFT.
  • the dual-gated TFT may achieve better reliability and stability with almost the same performance, while reducing power consumption. Characteristics of the dual-gated TFT will now be explained in comparison to a top-gated TFT that only has a top gate.
  • a drain current in a linear region can be expressed as Equation 1.
  • Equation 1 represents a drain current in a linear region driven by a TFT having only a top gate.
  • I D_t is the drain current for the top-gated structure
  • W is a channel width
  • L is a channel length
  • is mobility
  • C GI_t is gate capacitance per unit area for the top gate
  • V G_t is gate voltage for the top gate
  • V TH_t is threshold voltage for the top gate
  • V D drain voltage.
  • Equation 2 represents drain current in a saturation region driven by a TFT having only a top gate.
  • Equation 1 The differences between Equation 1 and Equation 2 are the 1/2 factor and the voltage component.
  • a drain current in a linear region is explained based on Equation 1, and that of a saturation region is easily extended to Equation 2.
  • Equation 1 is changed into Equation 3.
  • Equation 3 represents drain current in alinear region driven by adual-gated TFT.
  • the subscript “_t” is changed into “_tb” , and this represents a tied dual-gated structure.
  • Equations4 and 5 Detailed equations for C GI_tb and V TH_tb are shown in Equations4 and 5.
  • C GI_tb C GI_t + C GI_b
  • Equation 4 represents gate capacitance per unit area for a tied dual-gated structure.
  • Equation 5 represents threshold voltage for a tied dual-gated structure.
  • C GI_b is gate capacitance per unit area of a bottom gate
  • V TH0_b is threshold voltage for the bottom gate when a top gate is applied with 0 V
  • V TH0_t is threshold voltage for the top gate when a bottom gate is applied with 0 V.
  • the drain current I D_tb is twice of I D_t in Equation 1. This means that the drain current in a tied dual-gated structure is twice the drain current in a top gate only structure in the simplest case. In case the same drain current is required in the same system, the tied dual-gated structure can reduce gate voltage and power consumption compared to a top gate only structure.
  • a gate voltage range in an ON state is from 5 to 15 V, if the threshold voltage is 1.5 V.
  • Equation 2 in a saturation region, if the drain current is amplified to twice, then the following equation is satisfied.
  • V G_t -V TH0_t 2 (V G_tb -V TH0_tb ) 2
  • V G_t -V TH0_t 2 (V G_tb -V TH0_t ) 2
  • V G_tb ⁇ V G_t + ( ⁇ 2 -1) *1.5 ⁇ / ⁇ 2
  • the gate voltage of top-gate V G_t is 5, 10, and 15 V.
  • V G_t 5, 10, 15 V
  • the gate voltage of the tied dual-gated structure V G_tb becomes around 4, 7.5, 11 V, so the reduction of voltage is -1, -2.5, -4 V for each case. This effect increases as thegate voltage range increases.
  • the tied dual-gated structure can reduce the amplitude of negative bias and/or positive bias. It may suppress a negative shift, and achieve lower leakage current of an Oxide TFT after stress is applied.
  • back-gate bias to top-gate threshold voltage is explained as follows.
  • FIG. 10 shows an example of a relationship between gate voltage V G_t and drain current I D .
  • a gate voltage V G_t is applied to atop gate, and drain current I D change depends on agate voltage of the bottom gate V G_b .
  • a bias of a top gate is the same as that of a bottom gate, and it reduces a threshold shift.
  • stress is applied to a bottom gate or both of the top and bottom gates.
  • Stress applied to gates includes, for example, a negative gate bias stress (NBS) , a negative gate illumination stress (NBIS) , and a negative gate thermal stress (NBTS) to cause negative shift of threshold voltage.
  • NBS negative gate bias stress
  • NBIS negative gate illumination stress
  • NBTS negative gate thermal stress
  • Bottom Gate NBIS is a condition where negative gate illumination stress is applied to a bottom gate only.
  • Dual Gate NBIS is a condition where negative gate illumination stress is applied to both top and bottom gates.
  • a tied dual-gated structure may reduce the threshold shift compared to that of a bottom gate only structure, regardless of the sweep condition of the gate voltage. Therefore, an Oxide TFT in the embodiments herein may be changed to a tied dual-gated structure to reduce a leakage current.
  • FIG. 11A shows an exemplary configuration of the pixel circuit of a PPS 600.
  • the PPS 600 includes a photodiode 610 and a readout transistor portion 620.
  • FIG. 11A shows only structure that is different from FIG. 2A.
  • the readout transistor portion 620 includes the Oxide TFT 10 and the poly-Si TFT 20.
  • the Oxide TFT 10 consists of an Oxide TFT including a tied dual-gated structure having top and bottom gates that are connected to the same electric line among the plurality of electric lines. Therefore, the Oxide TFT 10 may achieve stability as described above.
  • a tied dual-gated structure can reduce the characteristics shift induced by stress.
  • the tied dual-gated structure may increase the performance of TFT, such as mobility. Therefore, an applied voltage range is reduced, and the effect of stress is suppressed.
  • FIG. 11B shows an exemplary configuration of the pixel circuit of APS 700.
  • the APS 700 includes a dual-gated structure.
  • the APS 700 includes a photodiode 710, a readout transistor portion 720, a reset transistor portion 730, and an amplifier 740.
  • FIG. 11B shows only structure that is different from FIG. 2B is explained.
  • the readout transistor portion 720 includes an Oxide TFT having a tied dual-gated structure.
  • the Oxide TFT of the readout transistor portion 720 includes top and bottom gates that are connected to the same electric line.
  • the tied dual-gates of the readout transistor portion 720 are connected to a row line.
  • the reset transistor portion 730 includes the Oxide TFT 10 and the poly-Si TFT 20.
  • the Oxide TFT 10 has tied dual-gates that are connected to the same electric line. The dual-gates of the Oxide TFT 10 are connected to the reset line.
  • the amplifier 740 includes an Oxide TFT having a tied dual-gated structure. The top and bottom gates of the amplifier 740 are connected to the cathode of the photodiode 710.
  • all of the Oxide TFTs are changed to include a tied dual-gated structure. This structure reduces the negative shift of threshold voltage of the Oxide TFTs.
  • FIG. 11C shows another exemplary configuration of the pixel circuit of APS 700.
  • the APS 700 includes dual-gated structure, but the bottom gate is not electrically tied to the top gate.
  • FIG. 11C shows only structure that is different from FIG. 11B is explained.
  • the Oxide TFT 10 includes the dual-gated TFT structure with the bottom gate that is not electrically tied to the top gate.
  • the top gate of the Oxide TFT 10 may be connected to a reset line.
  • the bottom gate of the Oxide TFT 10 may be connected to a Bottom Gate reset line (BGr line) .
  • a reset line is an example of a first line.
  • a BGr line is an example of a second line that is different from the first line.
  • the poly-Si TFT 20 includes a twin-gated structure.
  • the twin-gate is connected to a reset line.
  • the twin-gated TFT of the poly-Si TFT 20 is connected to the Oxide TFT 10 in series.
  • the readout transistor portion 720 includes the dual-gated TFT structure with the bottom gate that is not electrically tied to the top gate.
  • the top gate of the readout transistor portion 720 may be connected to a row line i.
  • the bottom gate of the readout transistor portion 720 may be connected to an LSM line.
  • the bottom gate of the readout transistor portion 720 may be connected to a light shield layer, such as the light shield layer 430 disclosed in FIG. 6C.
  • the amplifier 740 includes an Oxide TFT having a dual-gated structure.
  • the bottom gate of the amplifier 740 is not electrically tied to the top gate.
  • the bottom gate of the amplifier 740 is connected to a VDD line.
  • the bottom gate of the Oxide TFT is also controlled, in addition to the top gate of the Oxide TFT.
  • the threshold voltage of Oxide TFT shifts positively. It can change the negative shift of the threshold voltage induced by stress toward the normal operating point.
  • FIG. 11D shows another exemplary configuration of the pixel circuit of APS 700.
  • the APS 700 includes dual-gated structure, but the bottom gate is not electrically tied to the top gate.
  • FIG. 11D only structure that is different from FIG. 11C is explained.
  • the readout transistor portion 720 includes the dual-gated TFT structure with the bottom gate that is not electrically tied to the top gate.
  • the bottom gate of the readout transistor portion 720 may be connected to an LSM line.
  • the amplifier 740 includes an Oxide TFT having a dual-gated structure.
  • the bottom gate of the amplifier 740 is connected to the LSM line. Therefore, the bottom gates of the readout transistor portion 720 and the amplifier 740 are connected together and connected to the LSM line.
  • the order of the Oxide TFT 10 and the poly-Si TFT 20 in FIG. 11D is different from that of FIG. 11C.
  • the placement of the Oxide TFT 10 and the poly-Si TFT 20 is switched.
  • the poly-Si TFT 20 is connected to the cathode of the photodiode 710.
  • voltages applied to the bottom gates of the Oxide TFTs may be flexibly changed to BGr or LSM line.
  • the APS 700 can change the gate voltages of the bottom gates to make the characteristics of the Oxide TFTs more stable and reliable.
  • FIG. 12 shows an example of layout of the APS 700 shown in FIG. 11D.
  • the layout of the APS 700 is merely an example of the mask layout, and it is not limited to this embodiment.
  • the pixel pitch may be 50.8 ⁇ m.
  • the channel size of the Oxide TFT of the amplifier 740 may be 18.5 ⁇ m in width and 4.5 ⁇ m in length.
  • amplifier gain of the amplifier 740 may be over 150 with mobility of 10 cm 2 /V ⁇ s of the Oxide channel.
  • FIG. 13 shows noise characteristics of the embodiments and a comparative example.
  • “Comparative Example (Initial) ” represents noise of the comparative structure before a characteristics shift.
  • “Comparative Example (After Stress) ” represents noise of the comparative structure after a characteristics shift.
  • “Embodiments (After Stress) ” represents noise of the embodiments herein after a characteristics shift. For purposes of this chart, the stress was caused by a temperature increase of 50 degrees centigrade.
  • each part of the circuit “PD, shot” , “TFT, shot” and “reset” , as well as total noise “pre-AMP” are shown.
  • PD, shot is shot noise of a photodiode in a pixel
  • TFT, shot is shot noise of TFTs
  • reset is the noise at resetting.
  • Pre-AMP is the noise occurring in a circuit before an output amplifier. These noises occur before signals are outputted to an external circuit.
  • the total noise of “Comparative Example (Initial) ” is around 234 electrons.
  • the total noise of “Comparative Example (After Stress) ” is over 5500 electrons before an external circuit.
  • the total noise of “Embodiments (After Stress) ” is around 380 electrons, even after the temperature goes up to 50 degrees centigrade. As a result, the noise of the comparative example after stress goes up 2300%higher compared to the initial state. On the other hand, the noise of the embodiments herein only increases around 60%.
  • FIG. 14A is an example of display device 1000 having in-cell APS for OLED display.
  • the display device 1000 includes the APS circuit with other circuits in the same cell, especially circuits for display and optoelectronic material.
  • the display device 1000 includes a light emitting portion 800 and a photodiode portion 900.
  • the display device 1000 is an OLED display, but it may be applicable to LED or other displays.
  • the light emitting portion 800 includes a light emitting diode 810, a switching transistor 820, a reset transistor portion 830, a drive transistor portion 840 and a holding capacitor C1.
  • the light emitting diode 810 is connected to the reset transistor portion 830 and the drive transistor portion 840.
  • the light emitting diode 810 and the drive transistor portion 840 are connected in series between lines of PVDD and PVSS.
  • the switching transistor 820 is connected to a gate of the drive TFT portion 840.
  • the holding capacitor C1 is placed between drain and gate of the drive TFT portion 840.
  • the reset transistor portion 830 is an example of a first reset transistor.
  • the photodiode portion 900 includes a photodiode 910, a readout transistor portion 920, a reset transistor portion 930, an amplifier 940.
  • the photodiode portion 900 may include the Oxide TFT 10 and poly-Si TFT 20 in series that is disclosed in other embodiments.
  • the reset transistor portion 930 is an example of a second reset transistor.
  • the light emitting portion 800 and the photodiode portion 900 operate alternatively. For example, during a light emitting period of the light emitting portion 800, the photodiode portion 900 resets data. On the other hand, during a readout period of the photodiode portion 900, the light emitting portion 800 resets data. More specifically, during a light emitting period of the light emitting diode 810, the reset transistor portion 930 resets data. During a readout period of the readout transistor portion 920, the reset transistor portion 830 resets data.
  • a gate of the switching transistor 820 and a gate of the reset transistor portion 930 are connected to a first scan line.
  • a gate of the reset transistor portion 830 of the light emitting portion 800 and the readout transistor portion 920 are connected to a second scan line.
  • the switching transistor 820 and the readout transistor portion 920 may be connected to the same data voltage line. In this embodiment, the switching transistor 820 and the readout transistor portion 920 are connected to the same V data line.
  • the reset transistor portion 830 and the reset transistor portion 930 may be connected to the same reference voltage line.
  • the switching transistor 820 and the readout transistor portion 920 are connected to the same reference voltage V ref line.
  • the light emitting portion 800 may be configured by a p-channel MOSFET (PMOS) poly-Si TFT.
  • PMOS p-channel MOSFET
  • the switching transistor 820, the reset transistor portion 830, and the drive transistor portion 840 consist of PMOS poly-Si TFTs such as LTPS.
  • the photodiode portion 900 may be configured by mainly Oxide TFTs.
  • the Oxide TFT 10, the readout transistor portion 920, and the amplifier 940 consist of Oxide TFTs.
  • the poly-Si TFT 20 consists of n-channel MOSFET (NMOS) poly-Si TFT such as LTPS.
  • the display device 1000 alternatively operates the light emitting portion 800 and photodiode portion 900 using the common scan line and voltage line. Therefore, the display device 1000 can reduce the number of electric lines connecting the light emitting portion 800 and the photodiode portion 900.
  • the scan signal of Scan1 switch on the switching transistor 820 and write data voltage V data to holding capacitor C1.
  • the Scan1 resets the photodiode portion 900 through the reset transistor portion 930.
  • the scan signal of Scan2 resets the light emitting portion 800 through reset transistor portion 830.
  • the readout transistor portion 920 of the photodiode portion 900 is switched on and the signal at the photodiode 910 is readout through the V data line.
  • FIG. 14B is another example of display device 1000 having in-cell APS for OLED display.
  • all TFTs are made by NMOS TFTs.
  • Most of TFTs are made by Oxide TFTs and one TFT is made by poly-Si TFT.
  • FIG. 14B only structure that is different from FIG. 14A is explained.
  • the switching transistor 820, the reset transistor portion 830, and the drive transistor portion 840 consist of Oxide TFTs.
  • the holding capacitor C1 is placed between a drain and a gate of the drive transistor portion 840.
  • the Oxide TFT 10, the readout transistor portion 920 and the amplifier 940 consist of Oxide TFTs.
  • the poly-Si TFT 20 is made by poly-Si TFT such as LTPS. The basic operation is the same as FIG. 14A.
  • a display device 1000 may include the sensor 300 including the Oxide TFT 10 and the poly-Si TFT 20 in series.
  • the display device 1000 may be used under stress conditions such as high temperature and strong light flux, such as in direct sunlight, which will accelerate the characteristic shift.
  • the characteristic shift is denoted as being caused by negative bias. In other cases, Electrostatic discharge (ESD) damage can cause almost the same shift. Therefore, the Oxide TFT 10 and the poly-Si TFT 20 may be used under ESD conditions.
  • the Oxide TFT shows a negative shift of I D -Vg characteristics, which increases the leakage.
  • the combination of the Oxide TFT and the poly-Si TFT 20 is used to suppress the leakage current increase of the Oxide TFT 10.
  • This technology is applicable not only to optical sensors, but also other sensors’pixel circuitry having similar readout and reset systems.
  • this technology may be used for capacitive sensors, mechanical sensors, magnetic sensors, and chemical sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

A leakage current characteristic of a sensor that includes an Oxide TFT can be improved by a sensor including a plurality of electric lines including row lines and column lines, a photodiode in a pixel, a drain of a first transistor connected to the photodiode in the pixel, a drain of a second transistor connected in series with a source of the first transistor in the pixel, a source of the second transistor being connected to a column line among the plurality of electric lines, and both a gate of the first transistor and a gate of the second transistor being connected to a row line among the plurality of electric lines, wherein a channel material of the first transistor is different from a channel material of the second transistor.

Description

SENSOR AND DISPLAY DEVICE BACKGROUND
1. TECHNICAL FIELD
The present invention relates to a sensor and display device.
2. RELATED ART
A conventional sensor that comprises a pixel array that includes an Oxide TFT is shown in Patent Documents 1 and 2, for example. Patent Document 1: U.S. Patent Publication No. 2015-0055047 Patent Document 2: Chinese Utility Model Patent Publication No. 203481233
However, after stress is applied to the Oxide TFT, a threshold voltage shifts negatively and leakage current is increased, but the conventional sensor cannot suppress the voltage shift and the leakage current increase.
SUMMARY
According to a first aspect of the present invention, a sensor includes a plurality of electric lines including row lines and column lines, a photodiode in a pixel, a drain of a first transistor connected to the photodiode in the pixel, a drain of a second transistor connected in series with a source of the first transistor in the pixel, a source of the second transistor being connected to a column line among the plurality of electric lines, and both a gate of the first transistor and a gate of the second transistor being connected to a row line among the plurality of electric lines, wherein a channel material of the first transistor is different from a channel material of the second transistor. In this way, the sensor can effectively prevent high leakage current of the photodiode after stress.
According to a second aspect of the present invention, a sensor includes, a plurality of electric lines including row lines, column lines and reset lines, a photodiode in a pixel, a readout transistor portion arranged between the photodiode and a column line among the plurality of electric lines, a gate of the readout transistor portion being connected to a row line among the plurality of electric lines, a drain of a first transistor connected to the photodiode, a drain of a second transistor connected in series with a source of the first transistor in the pixel, and both a gate of the first transistor and a gate of the second transistor are  connected to the reset line, wherein a channel material of the first transistor is different from a channel material of the second transistor. In this way, the sensor can effectively prevent high leakage current of the photodiode after stress.
According to the first or second aspect, in the first implement, the channel material of the first transistor may be an oxide and the channel material of the second transistor may be a non-oxide. In this way, because of the uniformity among the Oxide TFT structures, the sensor may have more uniformity among the pixels.
According to the first implement of the first aspect or the first implement of the second aspect, in the second implement, the first transistor may be an Oxide Thin Film Transistor (TFT) and the second transistor may be a poly-Si TFT. In this way, because of the uniformity among the Oxide TFT structures, the sensor may have more uniformity among the pixels, and the sensor can effectively prevent high leakage current of the photodiode after stress.
According to the second implement of the first aspect or the second implement of the second aspect, in the third implement, the Oxide TFT may be arranged between a cathode of the photodiode and the poly-Si TFT. In this way, the sensor can effectively prevent high leakage current of the photodiode after stress.
According to the second or third implement of the first aspect or the second or third implement of the second aspect, in the fourth implement, the poly-Si TFT may include a twin-gated structure having a split gate. In this way, the twin-gated TFT can effectively reduce leakage current more than the single-gated TFT.
According to any one of the second to the fourth implements of the first aspect or any one of the second to the fourth implements of the second aspect, in the fifth implement, the Oxide TFT may include a tied dual-gated structure having top-and bottom-gates that are connected to the same electric line among the plurality of electric lines. In this way, the tied dual-gated structure can effectively reduce gate voltage and power consumption compared to a top gate only structure. In addition, the tied dual-gated structure can effectively achieve stability.
According to any one of the second to the fourth implements of the first aspect or any one of the second to the fourth implements of the second aspect, in  the sixth implement, the Oxide TFT may include a dual-gated structure having a top gate connected to a first line among the plurality of electric lines and a bottom gate connected to a second line among the plurality of electric lines that may be different from the first line. In this way, the tied dual-gated structure can effectively reduce gate voltage and power consumption compared to a top gate only structure.
According to the first aspect, the second aspect, any implement of the first aspect, or any implement of the second aspect, in the seventh implement, the gate of the first transistor and the gate of the second transistor may be connected to the same electric line among the plurality of electric lines. In this way, the sensor can effectively reduce the number of electric lines connecting the Oxide TFT 10 and the poly-Si TFT 20.
According to the first aspect, the second aspect, any implement of the first aspect, or any implement of the second aspect, in the eighth implement, the first transistor may be a bottom gate transistor and the second transistor may be a top gate transistor. In this way, the combination of the bottom-gated first transistor and the top-gated second transistor can effectively simplify manufacturing.
According to the first aspect, the second aspect, any implement of the first aspect, or any implement of the second aspect, in the ninth implement, , the first and second transistors may be top gate transistors, and the second transistor may be disposed in a layer that is lower than a layer in which the first transistor is disposed. In this way, both the first and second transistors have a top-gated structure, parasitic capacitance can be reduced compared to the bottom-gated transistors.
According to the first aspect, the second aspect, any implement of the first aspect, or any implement of the second aspect, in the tenth implement, , the sensor may include a light shield layer located under the first transistor, the light shield layer consisting of the same material as a gate material of the second transistor. In this way, the light shield layer may prevent incident light from entering the first transistor. Since the first transistor is sensitive to light stress, the light shield layer may be effective in achieving high reliability and stability.
According to a third aspect of the present invention, a display device may include the sensor of the first or second aspect of the present invention, and a light emitting portion, the light emitting portion and the sensor may be provided  in the same pixel. In this way, the display device can effectively prevent high leakage current of the photodiode after stress.
According to a fourth aspect of the present invention, a display device may include a light emitting portion and a photodiode portion. The light emitting portion includes a light emitting diode, a switching transistor, and a first reset transistor. The photodiode portion includes a readout transistor and a second reset transistor. During a light emitting period of the light emitting diode, the second reset transistor resets data, and during a readout period of the readout transistor, the first reset transistor resets data. A gate of the switching transistor and a gate of the second reset transistor are connected to a first scan line, and the gate of the first reset transistor and the readout transistor are connected to a second scan line. In this way, the display device can effectively reduce the number of electric lines connecting the light emitting portion and the photodiode portion.
According to a fourth aspect of the present invention, in the first implement of the fourth aspect, the switching and readout transistors are connected to the same data voltage line, and the first reset transistor and the second reset transistor are connected to the same reference voltage line. In this way, the display device can further reduce the number of electric lines connecting the light emitting portion and the photodiode portion.
The present invention may also be a sub-combination of the features described above.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a functional block diagram of a sensor 300.
FIG. 2A shows an exemplary configuration of the pixel circuit of PPS 100.
FIG. 2B shows an exemplary configuration of the pixel circuit of APS 200.
FIG. 3A shows transfer characteristics at an initial state of a poly-Si TFT and an Oxide TFT.
FIG. 3B shows transfer characteristics after stress is applied to the poly-Si TFT and the Oxide TFT.
FIG. 4A shows a comparative configuration of PPS 1100 placed in each  pixel.
FIG. 4B shows a comparative configuration of APS 1200 placed in each pixel.
FIG. 5A shows an equivalent circuit of a twin-gated TFT.
FIG. 5B shows the plan view of the poly-Si TFT 20 of twin-gated TFT structure.
FIG. 6A shows an example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
FIG. 6B shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
FIG. 6C shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20.
FIG. 7A shows the detailed circuit block of the column readout circuit 320.
FIG. 7B shows a detailed example of the S/H &CDS circuit 322.
FIG. 7C shows another embodiment of the S/H &CDS circuit 322.
FIG. 8A shows an example of more detailed structure of APS 500.
FIG. 8B shows another example of more detailed structure of APS 500. FIG. 9 shows an equivalent circuit of a dual-gated TFT.
FIG. 10 shows an example of a relationship between gate voltage V G_t and drain current I D.
FIG. 11A shows an exemplary configuration of the pixel circuit of a PPS 600.
FIG. 11B shows an exemplary configuration of the pixel circuit of APS 700.
FIG. 11C shows another exemplary configuration of the pixel circuit of APS 700.
FIG. 11D shows another exemplary configuration of the pixel circuit of APS 700.
FIG. 12 shows an example of layout of the APS 700 shown in FIG. 11D.
FIG. 13 shows noise characteristics of the embodiments and a comparative example.
FIG. 14A is an example of display device 1000 having in-cell APS for OLED display.
FIG. 14B is another example of display device 1000 having in-cell APS  for OLED display.
DESCRIPTION OF EXEMPLARY EMBODIMENTS
Hereinafter, example embodiments of the present invention will be described. The example embodiments shall not limit the invention according to the claims, and the combinations of the features described in the embodiments are not necessarily essential to the invention.
FIG. 1 shows a functional block diagram of a sensor 300. The sensor 300 includes a pixel array 310, a column readout circuit 320, a row control circuit 330, and a control logic circuit 340. The sensor 300 includes a plurality of electric lines including column lines 325 and row lines 335. The sensor 300 may operate as an image sensor, such as those used widely for light sensing, security sensing, scientific and/or industrial applications, etc.
The pixel array 310 includes a two-dimensional array of elements having a photodiode and thin-film transistors (TFTs) . The pixel array 310 includes a plurality of pixels 312 aligned in two dimensions. The pixel array 310 may include M×N pixels 312 numbered from P 11 to P MN, M indicating rows and N indicating columns. P ij represents a pixel 312 located at row i and column j, where i is greater or equal to 1 and less or equal to M, and j is greater or equal to 1 and less or equal to N.
Each pixel 312 may have a Passive Pixel Sensor (PPS) architecture or an Active Pixel Sensor (APS) architecture as explained below. The APS architecture includes an amplifier to amplify the electrical signals correspond to the optical signals from the photodiode, but the PPS architecture does not include an amplifier.
The column readout circuit 320 is connected to each pixel 312 through column lines 325. The column readout circuit 320 may read signals from the pixel array 310 to select a specific column of pixels 312. For example, the column readout circuit 320 may read image data from the pixel array 310 through column lines 325.
It will be understood that when an element is referred to as being “connected” to another element, it can be directly connected to the other element or intervening elements may be present. In other words, “connected” expresses that the connection can be direct or indirect.
The row control circuit 330 is connected to each pixel 312 through row lines 335. The row control circuit 330 may transmit reset signals to the pixel array 310 through row lines 335 to select a specific row of pixels 312. For example, the row control circuit 330 may apply the control signal to the pixel array 310 through row lines 335.
The control logic circuit 340 controls the operation of the column readout circuit 320 and the row control circuit 330. The control logic circuit 340 may control timing of the transmission of reset signals or readout signals.
FIG. 2A shows an exemplary configuration of the pixel circuit of PPS 100 placed in each pixel 312. The PPS 100 includes a photodiode 110 and a readout transistor portion 120.
The photodiode 110 is an optical sensing part of the PPS 100. The photodiode 110 can absorb light and then convert light into electrical signals. The photodiode 110 is capable of detecting optical signals of different wavelengths using semiconductor materials. As an example, the photodiode 110 may have a material such as silicon (Si) , gallium arsenide (GsAs) , indium antimonide (InSb) , indium arsenide (InAs) , organic semiconductor materials, etc. As an example, the photodiode 110 may have an amorphous silicon p-i-n photodiode (a-Si PIN PD) . The a-Si PIN PD consists of three layers including a p-doped a-Si layer, an intrinsic a-Si layer and an n-doped a-Si layer stacked between a transparent electrode (anode) and a reflective metal electrode (cathode) .
For example, the photodiode 110 may be an amorphous-silicon-based PIN photodiode, in which different hydrogenated amorphous silicon (a-Si: H) layers, such as p+ a-Si, intrinsic a-Si (i-a-Si) , and n+a-Si, are stacked. In another example, the photodiode 110 may be an organic bulk heterojunction (BHJ) PD, which is based on simple planar geometry with the blend of donor and acceptor materials, such as polymer/fullerene composites. This material is sandwiched between electrodes with different work functions for efficient charge extraction in cooperation with an interlayer.
The readout transistor portion 120 switches on to readout the signal from the photodiode 110. The readout transistor portion 120 is arranged between the photodiode 110 and a column line j among the plurality of electric lines. A gate of the readout transistor portion 120 is connected to a row line i among the plurality of electric lines. During a readout period, the readout transistor portion 120 is turned on and outputs electrical signals, which correspond to optical  signals detected by the photodiode 110, through the column line j. The readout transistor portion 120 of the PPS 100 includes an Oxide TFT 10 and a poly-Si TFT 20.
The Oxide TFT 10 is connected to the photodiode 110. A drain of the Oxide TFT 10 may be connected to the photodiode 110. As an example, a channel of the Oxide TFT 10 is made of an oxide semiconductor having wide band gap, such as indium-gallium-zinc-oxide (IGZO) or Zinc Oxide (ZnO) TFT. The Oxide TFT 10 shows higher mobility, lower photo sensitivity to visible lights and lower leakage current than silicon-based TFT, such as a-Si TFT, microcrystalline silicon (μ-c-Si) TFT, and polycrystalline silicon (poly-Si) TFT. This low leakage current property is suitable for high Signal to Noise Ratio (SNR) image sensor applications. The Oxide TFT 10 is an example of a first transistor.
The poly-Si TFT 20 is connected in series with the Oxide TFT 10 in the same pixel 312. A drain of the poly-Si TFT 20 may be connected in series with a source of the Oxide TFT 10 in the same pixel 312. A source of the poly-Si TFT 20 may be connected to a column line j among the plurality of electric lines. The poly-Si TFT 20 is an example of a second transistor. A channel material of the poly-Si TFT 20 is different from a channel material of the Oxide TFT 10. For example, the channel material of the Oxide TFT 10 is an oxide and the channel material of the poly-Si TFT 20 is a non-oxide. For example, the poly-Si TFT 20 consists of a Low-Temperature Polycrystalline Silicon (LTPS) thin film transistor.
Both a gate of the Oxide TFT 10 and a gate of the poly-Si TFT 20 are connected to a row line i among the plurality of electric lines. A gate of the Oxide TFT 10 and a gate of the poly-Si TFT 20 are connected to the same electric line. The gates of the Oxide TFT 10 and the poly-Si TFT 20 are connected to row line i and switched at the same time. Therefore, the sensor 300 can reduce the number of electric lines connecting the Oxide TFT 10 and the poly-Si TFT 20.
The Oxide TFT 10 is arranged between a cathode of the photodiode 110 and the poly-Si TFT 20. The order of the Oxide TFT 10 and the poly-Si TFT 20 can be changed. In FIG. 2A, one side of the Oxide TFT 10 is directly connected to the cathode of the photodiode 110, and the other side of the Oxide TFT 10 is directly connected to the poly-Si TFT 20. Conversely, one side of the poly-Si TFT 20 may be directly connected to the cathode of the photodiode 110, and the other side of the poly-Si TFT 20 may be directly connected to the Oxide TFT 10.
The Oxide TFT 10 may have a low leakage current and high pixel-to-pixel uniformity. Therefore, the Oxide TFT 10 may be used where low leakage current is desired or where high pixel-to-pixel uniformity is desired. The poly-Si TFT 20 may be used where attributes such as increased switching speed and good drive current are desired.
Referring to FIG. 2A, the Oxide TFT 10 and the poly-Si TFT 20 are aligned in series, so the leakage current at a certain gate voltage is determined not only by the Oxide TFT 10 but also the poly-Si TFT 20. As described below, a leakage current of the Oxide TFT is increased after stress is applied. Even if the leakage current is increased at the Oxide TFT 10, the poly-Si TFT 20 can suppress the leakage current. Therefore, the combination of the Oxide TFT 10 and the poly-Si TFT 20 may prevent high leakage current of the photodiode 110 after stress, and SNR is improved.
FIG. 2B shows an exemplary configuration of the pixel circuit of APS 200 placed in each pixel 312. The APS 200 includes a photodiode 210, a readout transistor portion 220, a reset transistor portion 230, and an amplifier 240. For simplicity in describing FIG. 2B, only structure that is different from FIG. 2A is explained.
The readout transistor portion 220 is arranged between the photodiode 210 and column line j. The readout transistor portion 220 is connected the photodiode 210 through the amplifier 240. A gate of the readout transistor portion 220 is connected to row line i among the plurality of electric lines. During a readout period, the readout transistor portion 220 is turned on and outputs electrical signals, which correspond to optical signals detected by the photodiode 210, through the column linej.
The reset transistor portion 230 is connected to the photodiode 210. A gate of the reset transistor portion 230 is connected to a reset line among the plurality of electric lines. The reset transistor portion 230 applies reset voltage V r to the photodiode 210, when a reset signal RST is received at the gate of the reset transistor portion 230.
The amplifier 240 amplifies electrical signals from the photodiode 210, and outputs the amplified signals through the readout transistor portion 220. The amplifier 240 is arranged between the photodiode 210 and the readout transistor portion 220. A gate of the amplifier 240 is connected to the cathode of the photodiode 210.
The reset transistor portion 230 includes the Oxide TFT 10 and poly-Si TFT 20. A drain of the Oxide TFT 10 may be connected to the photodiode 110. A drain of the poly-Si TFT 20 may be connected in series with a source of the Oxide TFT 10 in the pixel. Both a gate of the Oxide TFT 10 and a gate of the poly-Si TFT 20 are connected to a row line i among the plurality of electric lines. The combination of the Oxide TFT 10 and the poly-Si TFT 20 may reduce the leakage current through the reset transistor portion 230 even though the threshold voltage of the Oxide TFT 10 is negatively shifted.
The APS 200 may keep the leakage current lower even though the threshold voltage of the Oxide TFT 10 shifts negatively, and leakage current of the poly-Si TFT 20 goes up with temperature. As a result, the reduction of leakage current of the reset transistor portion 230 reduces shot noise of APS 200 that naturally occurs from the leakage current.
The APS architecture may obtain higher SNR than PPS architecture by reducing noise. For example, in combination with an external correlated double sampling (CDS) circuit, the APS 200 may eliminate fixed pattern noise. The fixed pattern noise is caused by random variations, such as variations in geometrical size of a photodiode and variations in dark current at the readout transistor portion 220 and the amplifier 240. The APS 200 may also eliminate the 1/f noise. Therefore, the APS 200 can be used for low light flux or high-sensitivity applications.
In these embodiments, the readout transistor portion 120 and the reset transistor portion 230 are made using different TFT materials, such as the Oxide TFT and the poly-Si TFT, as shown in FIG. 2A and FIG. 2B. This hybrid TFT technology, which uses different TFT materials, may achieve both the stability and reliability of each TFT material. Next, general characteristics of the Oxide TFT and the poly-Si TFT before and after stress are explained.
FIG. 3A shows transfer characteristics at an initial state of a poly-Si TFT and an Oxide TFT. At an initial state, stresses such as gate bias stress, light stress and thermal stress have not been applied to the Oxide TFT and the poly-Si TFT. The solid line indicates the transfer characteristics of the Oxide TFT. The dotted line indicates the transfer characteristics of the poly-Si TFT. The vertical axis indicates the drain current I D, and the horizontal axis indicates the gate voltage V G. At an initial state, the leakage current of the Oxide TFT is lower than that of the poly-Si TFT.
FIG. 3B shows transfer characteristics after stress is applied to the poly-Si TFT and the Oxide TFT. The solid line indicates the transfer characteristics of the Oxide TFT after stress is applied to the Oxide TFT. The dotted line indicates the transfer characteristics of the poly-Si TFT after stress is applied to the poly-Si TFT. The threshold voltage of the Oxide TFT shows a negative shift, while the threshold voltage of the poly-Si TFT remains stable.
Circles shown in FIG. 3A and FIG. 3B indicate drain current I D at the same negative gate voltage V G. In FIG. 3A, if a negative gate voltage V G marked by the circle is applied, the drain current I D of the Oxide TFT is lower than that of the poly-Si TFT. On the other hand, in FIG. 3B, if the negative gate voltage V G marked by the circle is applied, the drain current I D of the Oxide TFT is higher than that of the poly-Si TFT. This is because the threshold voltage of the Oxide TFT is negatively shifted, while the threshold voltage of the poly-Si TFT remains stable.
As the applied stress increases, the threshold voltage may shift more negatively. For example, a negative shift relates to stress duration. Longer stress durations shift the threshold voltage more negatively. In addition, shorter wavelength light may show larger negative shifts in threshold voltage. As a result of this negative shift caused by the stress, the leakage current of the Oxide TFT may be larger at a certain gate voltage V G, even if the leakage current is lower at an initial state.
FIG. 4A shows a comparative configuration of PPS 1100 placed in each pixel. The PPS 1100 includes a photodiode 1110 and a readout transistor 1120. In the comparative configuration of FIG. 4A, the readout transistor 1120 consists of only an Oxide TFT. Compared to FIG. 2A, the combination of the Oxide TFT 10 and the poly-Si TFT 20 of the readout transistor portion 120 are changed to the Oxide TFT in FIG. 4A. Therefore, the readout transistor 1120 cannot suppress the leakage current of the Oxide TFT, after stress is applied to the readout transistor 1120.
FIG. 4B shows a comparative configuration of APS 1200 placed in each pixel. The APS 1200 includes a photodiode 1210, a readout transistor 1220, a reset transistor 1230 and an amplifier 1240. In the comparative configuration of FIG. 4B, the reset transistor 1230 consists of only an Oxide TFT. Compared to FIG. 2B, the combination of the Oxide TFT 10 and the poly-Si TFT 20 of the reset transistor portion 230 are changed to the Oxide TFT in FIG. 4B. Therefore, the  readout transistor 1220 cannot suppress the leakage current of the Oxide TFT, after stress is applied to the readout transistor 1220.
The leakage current of a TFT increases a shot noise of the TFT, and also decreases signal level by reducing a light-produced charge or voltage through the leakage effect. Thus, as a result of increased leakage current, SNR is reduced.
On the other hand, in the embodiments disclosed in FIG. 2A and FIG. 2B, the leakage current at an OFF state with a certain gate voltage may be kept low even though the threshold voltage of the Oxide TFT shifts negatively. By maintaining a low leakage current, the noise level of the pixel may be kept low, and the signal level may be kept high. The reliability and stability of the image sensor and its SNR may be improved.
For example, for gate-to-source voltage V GS=-7 V and drain-to-source voltage V DS=0.1 V, a normalized leakage current of the Oxide TFT I leak (-7V) _Oxide is 0.01 fA and that of the poly-Si TFT I leak (-7V) _poly is 100 fA. The normalized leakage current means a leakage current for the ratio of channel width and length is one; W/L = 1.
At an initial state, the current at V GS=-7 V and V DS=0.1 V for the readout transistor 1120 is the same as the leakage current I leak (-7V) _Oxide of the readout transistor portion made of the Oxide TFT, which is 0.01 fA. If the threshold voltage of the Oxide TFT negatively shifts after stress is applied, the leakage current of the Oxide TFT at V GS=-7 V and V DS=0.1V I leak (-7V) _oxide goes up to 100 pA (=100,000 fA) , the current at V G=-7 V and V DS=0.1 V for the readout transistor 1120 is the same as 100,000 fA. In this case, the leakage current at V G=-7 V and V DS=0.1 V increases 10,000,000 times from the initial state to the state after stress is applied.
On the other hand, referring to FIG. 2A, the current at V GS=-7 V and V DS=0.1V through the combination of the Oxide TFT 10 and the poly-Si TFT 20 is mainly determined by the poly-Si TFT 20, and its value is around 100 fA. This means the current after stress is applied is only 10,000 times that of the initial state, which is smaller than that of FIG. 4A by about 1,000 times. The leakage current of the poly-Si TFT 20 has a larger temperature dependence than the Oxide TFT 10, but the range is around a 3-times increase for a temperature change from room temperature (25) to 50 degrees centigrade. Even taking into consideration the temperature effects, the current at V GS=-7 V and V DS=0.1 V in  FIG. 2A is smaller than that of FIG. 4A by about 300 times. Therefore, the sensor 300 having a combination of the Oxide TFT 10 and the poly-Si TFT 20 may realize low leakage current at a certain gate voltage, even if the threshold voltage of the Oxide TFT 10 shows a negative shift.
FIG. 5A shows an equivalent circuit of a twin-gated TFT. The poly-Si TFT 20 may include a twin-gated structure having a split gate. The poly-Si TFT 20 includes a TFT 21 and a TFT 26 having a gate 22 and a gate 27 connected each other in a split gate configuration. The TFT 21 and the TFT 26 are in series. The poly-Si TFT 20 of a twin-gated structure may be applied to both PPS and APS architectures.
The twin-gated TFT tends to reduce leakage current more than the single-gated TFT. If the twin-gated TFT is used for the poly-Si TFT 20, it may further suppress the leakage current of the photodiode. In a simple estimation, the leakage current of the twin-gated TFT may become half of the leakage current of the single-gated TFT. Therefore, the twin-gated TFT may reduce leakage current and improve the bias stability.
FIG. 5B shows the plan view of the poly-Si TFT 20 having a twin-gated TFT structure. The TFT 21 and the TFT 26 are in series, with the gates of both TFTs connected, and the source/drain of TFT 21 and drain/source of TFT 26 being connected and shared. The poly-Si TFT 20 includes a U-shaped gate electrode having at least two  gates  22 and 27.
The  gates  22 and 27 are elongated sections which are parallel to each other and separated. One gate 22 acts as the gate of the TFT 21, while the other gate 27 acts as the gate of the TFT 26. As shown in FIG. 5B, the gate of the poly-Si TFT 20 is split into two  gates  22 and 27. In other words, one side of the gates of the poly-Si TFT 20 are separated but the other side is connected.
There is no contact area for the shared region of the source/drain of TFT 21 and drain/source of TFT 26. The structure shown in this plan view may keep the area of the poly-Si TFT 20 small. The area value of the twin-gated TFT is less than twice the area of a single-gated TFT.
As described above, the twin-gated TFT structure may be used for the poly-Si TFT 20. If the Oxide TFT 10 and the poly-Si TFT 20 are used in series for leakage current reduction, the LTPS TFT keeps the leakage current lower even after the threshold voltage for the Oxide TFT 10 is shifted. This structure is effective for all TFT blocks, but is especially effective for readout TFT in PPS and  reset TFT in APS.
FIG. 6A shows an example cross section of the Oxide TFT 10 and the poly-Si TFT 20. The Oxide TFT 10 has a bottom-gated structure and the poly-Si TFT 20 has a top-gated structure. The Oxide TFT 10 and the poly-Si TFT 20 are provided above the same substrate 401.
The Oxide TFT 10 includes a gate 410, an oxide semiconductor layer 412 and a gate insulator 403. The oxide semiconductor layer 412 is a channel layer of the Oxide TFT 10 and is connected to vias 414. The gate insulator 403 is formed on the gate insulator 402. The Oxide TFT 10 has a bottom-gated structure, and the gate 410 is located below the oxide semiconductor layer 412 with the gate insulator 403 in between.
The poly-Si TFT 20 includes a gate 420, a poly-Si layer 422 and a gate insulator 402. The poly-Si layer 422 is a channel layer of the poly-Si TFT 20 and connected to vias 424. The gate insulator 402 is formed on the substrate 401. The poly-Si TFT 20 has a top-gated structure, and the gate 420 is located above the poly-Si layer 422 with the gate insulator 402 in between.
The gate 410 of the Oxide TFT 10 and the gate 420 of the poly-Si TFT 20 may be formed by the same conductive material, such as poly-silicon or metal. The  gates  410 and 420 may be formed in the same process. Since a gate material is shared for the Oxide TFT 10 and the poly-Si TFT 20, the gate insulator 402 and the gate insulator 403 are adjacent each other. Because of the shared layer usage, the combination of the bottom-gated Oxide TFT 10 and the top-gated poly-Si TFT 20 may simplify manufacturing.
FIG. 6B shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20. Both the Oxide TFT 10 and the poly-Si TFT 20 have a top-gated structure. For simplicity in describing FIG. 6B, only structure that is different from FIG. 6A is explained.
The Oxide TFT 10 includes an oxide semiconductor layer 412, a gate 410 and a gate insulator 403. The gate insulator 403 is formed on the interlayer insulator 404. The Oxide TFT 10 has a top-gated structure, and the gate 410 is located above the oxide semiconductor layer 412 with the gate insulator 403 in between.
The poly-Si TFT 20 is disposed on a lower layer than the layer in which the Oxide TFT 10 is disposed. Because the poly-Si TFT 20 may be fabricated at a higher temperature than the Oxide TFT 10, the poly-Si TFT 20 is formed first,  and then the Oxide TFT 10 is formed. The  gates  410 and 420 may be formed in different processes. A gate material is not shared for the Oxide TFT 10 and the poly-Si TFT 20, and the gate insulator 402 and the gate insulator 403 are not adjacent each other. Because both the Oxide TFT 10 and the poly-Si TFT 20 have a top-gated structure, parasitic capacitance may be reduced compared to the bottom-gated Oxide TFT 10 shown in FIG. 6A.
FIG. 6C shows another example cross section of the Oxide TFT 10 and the poly-Si TFT 20. A light shield layer 430 is provided under the Oxide TFT 10. For simplicity in describing FIG. 6C, only structure that is different from FIGS. 6A and 6B is explained.
The light shield layer 430 consists of the same material as a gate material of the poly-Si TFT 20. The light shield layer 430 may be formed in the same process as the gate 420. Because of the shared layer usage, the light shield layer 430 may be formed without an additional manufacturing process. The light shield layer 430 may prevent incident light from entering the Oxide TFT 10. Since the Oxide TFT 10 is sensitive to light stress, the light shield layer 430 may be effective in achieving high reliability and stability. In another example, the light shield layer 430 may work as a bottom gate of a tied dual-gated structure, such as that which is described below.
FIG. 7A shows the detailed circuit block of the column readout circuit 320. The column readout circuit 320 includes a column decoder 321, a sample /hold (S/H) and CDS circuit 322, and an output amplifier 323. In FIG. 7A, only one column line is shown for simplicity.
The column decoder 321 may be connected to a corresponding column line of the pixel array 310. The column decoder 321 is utilized to select the corresponding column line j. The column decoder 321 transfers the received signals to the S/H &CDS circuit 322 by switching the switch connected to the column line j.
The S/H &CDS circuit 322 samples and holds the signals received from the column line j according to the signal from column decoder 321. The S/H &CDS circuit 322 is utilized for double sampling data signals to reduce noise, such as fixed pattern noise (FPN) . Output signals of the S/H &CDS circuit 322 are outputted through the output amplifier 323.
FIG. 7B shows a detailed example of the S/H &CDS circuit 322. The S/H &CDS circuit 322 includes a sample capacitor C S, a reset capacitor C R, four  transistors 351 to 354 and a differential amplifier 355.
The transistor 351 and the transistor 352 are sample and reset switches, respectively, connected to column line j. The transistor 351 is connected to the sample capacitor C S, and the transistor 352 is connected to the reset capacitor C R. The transistor 353 and the transistor 354 are differential switches connected to the differential amplifier 355. The transistor 353 is connected to the sample capacitor C S, and the transistor 354 is connected to the reset capacitor C R. The differential amplifier 355 is a differential single ended amplifier configured to output a differential signal of the sample capacitor C Sand the reset capacitor C R.
In a reset period, the transistor 352 is turned on, and the pixel output in reset condition through column line j is stored in the reset capacitor C R according to the clock of Φ R. In the signal readout period, the transistor 351 is turned on and the pixel signal output through column line j is stored in the signal capacitor C S according to the clock of Φ S. When the clock Φ Y activates, the transistor 353 and the transistor 354 are turned on, and the differential amplifier 355 removes noise and outputs the result. This circuit is merely an example of a CDS circuit, and any other CDS circuit may be used.
FIG. 7C shows another embodiment of the S/H &CDS circuit 322. The S/H &CDS circuit 322 consists of a fully differential type CDS circuit. The S/H &CDS circuit 322 includes a sample capacitor C S, a reset capacitor C R, switches 361 to 368 and a differential amplifier 370. The differential amplifier 370 is a fully differential amplifier.
The switch 361 and the switch 362 are reset and sample switches, respectively, connected to column line j. The switch 363 and the switch 364 are connected to the differential amplifier 370 and input common voltage V CM_into the differential amplifier 370 during an inversion timing of Φ Y. The switch 365 and the switch 366 are connected to the differential amplifier 370, and output common voltage V CM_out during an inversion timing of Φ Y. The switch 367 and the switch 368 are connected to the differential amplifier 370 to make a feedback loop through the sample and reset capacitors C S and C R. During theΦ Yphase, the S/H &CDS circuit 322 outputs differential voltage V OUT+and V OUT-.
The S/H &CDS circuit 322 can reduce noise, such as a fixed pattern noises (FPN) . However, the S/H &CDS circuit 322 cannot remove the shot noise generated from a leakage current of the Oxide TFT 10. Therefore, it is preferable  to reduce the leakage current by the combination of the Oxide TFT 10 and the poly-Si TFT 20.
FIG. 8A shows an example of a more detailed structure of APS 500. The APS 500 includes a photodiode 510, a readout transistor portion 520, a reset transistor portion 530 and an amplifier 540. The reset transistor portion 530 consists of the Oxide TFT 10 and the poly-Si TFT 20 in series.
The readout transistor portion 520 consists of an Oxide TFT. In an initial state, a leakage current through the Oxide TFT of the readout transistor portion 520 is low. From a practical point of view, the leakage current of the readout transistor portion 520 may not be so important because the S/H &CDS circuit 322 may reduce noise caused at the readout transistor portion 520.
The amplifier 540 consists of LTPS TFT. Because of the large mobility of an LTPS TFT, the APS 500 can realize high amplifier gain. The amplifier 540 may fabricated in the same process as the poly-Si TFT 20. Therefore, the amplifier 540 may be formed without performing additional manufacturing processes.
FIG. 8B shows another example of a more detailed structure of APS 500. For simplicity in describing FIG. 8B, only structure that is different from FIG. 8A is explained.
The amplifier 540 consists of an Oxide TFT. Since the readout transistor portion 520 and the amplifier 540 have the same Oxide active channel layer, the flexibility of the layout of the circuit is increased, and the circuit may be easier to design than the layout of FIG. 8A. Because of the uniformity among the Oxide TFT structures, the sensor 300 may have more uniformity among the pixels 312.
FIG. 9 shows an equivalent circuit of a dual-gated TFT. The dual-gated TFT has both a top gate and a bottom gate. The bottom gate of the dual-gated TFT may be controlled to a predetermined voltage. As an example, the bottom gate of the dual-gated TFT may be electrically tied to the top gate of the dual-gated TFT.
The dual-gated TFT may achieve better reliability and stability with almost the same performance, while reducing power consumption. Characteristics of the dual-gated TFT will now be explained in comparison to a top-gated TFT that only has a top gate.
As for a top-gated TFT, a drain current in a linear region can be  expressed as Equation 1.
[Equation 1]
Figure PCTCN2018112254-appb-000001
Equation 1 represents a drain current in a linear region driven by a TFT having only a top gate. In Equation 1, I D_t is the drain current for the top-gated structure, W is a channel width, L is a channel length, μ is mobility, C GI_t is gate capacitance per unit area for the top gate, V G_t is gate voltage for the top gate, V TH_t is threshold voltage for the top gate, and V D is drain voltage.
In a saturation region, the drain current in Equation 1 will be changed into Equation 2.
[Equation 2]
Figure PCTCN2018112254-appb-000002
Equation 2 represents drain current in a saturation region driven by a TFT having only a top gate.
The differences between Equation 1 and Equation 2 are the 1/2 factor and the voltage component. As for a dual-gated TFT, a drain current in a linear region is explained based on Equation 1, and that of a saturation region is easily extended to Equation 2.
If there are top and bottom gates, and those are tied together, Equation 1 is changed into Equation 3.
[Equation 3]
Figure PCTCN2018112254-appb-000003
Equation 3 represents drain current in alinear region driven by adual-gated TFT. In Equation 3, the subscript “_t” is changed into “_tb” , and this represents a tied dual-gated structure.
Detailed equations for C GI_tband V TH_tbare shown in Equations4 and 5.
[Equation 4]
C GI_tb = C GI_t + C GI_b
Equation 4 represents gate capacitance per unit area for a tied dual-gated structure.
[Equation 5]
Figure PCTCN2018112254-appb-000004
Equation 5 represents threshold voltage for a tied dual-gated structure.
In Equations 4 and 5, C GI_b is gate capacitance per unit area of a bottom gate, V TH0_b is threshold voltage for the bottom gate when a top gate is applied with 0 V, V TH0_t is threshold voltage for the top gate when a bottom gate is applied with 0 V.
In Equations 3 to 5, if the capacitances of top and bottom gates are the same (C GI_b =C GI_t) , and the threshold voltages of the top and bottom gates are the same (V TH0_b=V TH0_t) , the drain current I D_tb is twice of I D_t in Equation 1. This means that the drain current in a tied dual-gated structure is twice the drain current in a top gate only structure in the simplest case. In case the same drain current is required in the same system, the tied dual-gated structure can reduce gate voltage and power consumption compared to a top gate only structure.
For example, a gate voltage range in an ON state is from 5 to 15 V, if the threshold voltage is 1.5 V. Considering Equation 2 in a saturation region, if the drain current is amplified to twice, then the following equation is satisfied.
(V G_t-V TH0_t2=2 (V G_tb-V TH0_tb2
For simplicity, it is assumed that threshold voltage for atop gate only structure is the same as that of atied-dual gated structure, V TH0_t=V TH0_tb. If the current is amplified to twice, the following equation is satisfied.
(V G_t-V TH0_t2=2 (V G_tb-V TH0_t2
After solving the equation, the following equation is satisfied.
V G_tb= {V G_t+ (√2 -1) *1.5} /√2
For example, the gate voltage of top-gate V G_t is 5, 10, and 15 V. For V G_t= 5, 10, 15 V, the gate voltage of the tied dual-gated structure V G_tb becomes around 4, 7.5, 11 V, so the reduction of voltage is -1, -2.5, -4 V for each case. This effect increases as thegate voltage range increases.
Therefore, the tied dual-gated structure can reduce the amplitude of negative bias and/or positive bias. It may suppress a negative shift, and achieve lower leakage current of an Oxide TFT after stress is applied. The effect of back-gate bias to top-gate threshold voltage is explained as follows.
FIG. 10 shows an example of a relationship between gate voltage V G_t and drain current I D. A gate voltage V G_t is applied to atop gate, and drain current I D change depends on agate voltage of the bottom gate V G_b.
If the gate voltage of the bottom gate V G_bis a positive value, then the characteristics of I Dvs. V G_tshift negatively. On the other hand, if the gate voltage of the bottom gate V G_b is a negative value, then the characteristics of I D vs. V G_t  shift positively. Therefore, applying more negative bias to the gate of the Oxide TFT during the OFF period can reduce the leakage current of an Oxide TFT.
Considering stress applied to the tied dual-gated structure, a bias of a top gate is the same as that of a bottom gate, and it reduces a threshold shift. For example, stress is applied to a bottom gate or both of the top and bottom gates. Stress applied to gates includes, for example, a negative gate bias stress (NBS) , a negative gate illumination stress (NBIS) , and a negative gate thermal stress (NBTS) to cause negative shift of threshold voltage.
Regardless of Bottom Gate NBIS or Dual Gate NBIS conditions, if the biases applied to the top and bottom gates are the same, then the threshold shift is smaller than in the condition in which the biases are applied only to the bottom gate. Bottom Gate NBIS is a condition where negative gate illumination stress is applied to a bottom gate only. Dual Gate NBIS is a condition where negative gate illumination stress is applied to both top and bottom gates.
As described above, a tied dual-gated structure may reduce the threshold shift compared to that of a bottom gate only structure, regardless of the sweep condition of the gate voltage. Therefore, an Oxide TFT in the embodiments herein may be changed to a tied dual-gated structure to reduce a leakage current.
FIG. 11A shows an exemplary configuration of the pixel circuit of a PPS 600. The PPS 600 includes a photodiode 610 and a readout transistor portion 620. For simplicity in describing FIG. 11A, only structure that is different from FIG. 2A is explained.
The readout transistor portion 620 includes the Oxide TFT 10 and the poly-Si TFT 20. The Oxide TFT 10 consists of an Oxide TFT including a tied dual-gated structure having top and bottom gates that are connected to the same electric line among the plurality of electric lines. Therefore, the Oxide TFT 10 may achieve stability as described above. A tied dual-gated structure can reduce the characteristics shift induced by stress. The tied dual-gated structure may increase the performance of TFT, such as mobility. Therefore, an applied voltage range is reduced, and the effect of stress is suppressed.
FIG. 11B shows an exemplary configuration of the pixel circuit of APS 700. The APS 700 includes a dual-gated structure. The APS 700 includes a photodiode 710, a readout transistor portion 720, a reset transistor portion 730, and an amplifier 740. For simplicity in describing FIG. 11B, only structure that is  different from FIG. 2B is explained.
The readout transistor portion 720 includes an Oxide TFT having a tied dual-gated structure. The Oxide TFT of the readout transistor portion 720 includes top and bottom gates that are connected to the same electric line. The tied dual-gates of the readout transistor portion 720 are connected to a row line.
The reset transistor portion 730 includes the Oxide TFT 10 and the poly-Si TFT 20. The Oxide TFT 10 has tied dual-gates that are connected to the same electric line. The dual-gates of the Oxide TFT 10 are connected to the reset line.
The amplifier 740 includes an Oxide TFT having a tied dual-gated structure. The top and bottom gates of the amplifier 740 are connected to the cathode of the photodiode 710.
In the APS 700, all of the Oxide TFTs are changed to include a tied dual-gated structure. This structure reduces the negative shift of threshold voltage of the Oxide TFTs.
FIG. 11C shows another exemplary configuration of the pixel circuit of APS 700. The APS 700 includes dual-gated structure, but the bottom gate is not electrically tied to the top gate. For simplicity in describing FIG. 11C, only structure that is different from FIG. 11B is explained.
The Oxide TFT 10 includes the dual-gated TFT structure with the bottom gate that is not electrically tied to the top gate. The top gate of the Oxide TFT 10 may be connected to a reset line. The bottom gate of the Oxide TFT 10 may be connected to a Bottom Gate reset line (BGr line) . A reset line is an example of a first line. A BGr line is an example of a second line that is different from the first line.
The poly-Si TFT 20 includes a twin-gated structure. The twin-gate is connected to a reset line. The twin-gated TFT of the poly-Si TFT 20 is connected to the Oxide TFT 10 in series.
The readout transistor portion 720 includes the dual-gated TFT structure with the bottom gate that is not electrically tied to the top gate. The top gate of the readout transistor portion 720 may be connected to a row line i. The bottom gate of the readout transistor portion 720 may be connected to an LSM line. For example, the bottom gate of the readout transistor portion 720 may be connected to a light shield layer, such as the light shield layer 430 disclosed in FIG. 6C.
The amplifier 740 includes an Oxide TFT having a dual-gated structure. The bottom gate of the amplifier 740 is not electrically tied to the top gate. The bottom gate of the amplifier 740 is connected to a VDD line.
The bottom gate of the Oxide TFT is also controlled, in addition to the top gate of the Oxide TFT. By controlling the bottom gate of the Oxide TFT, the threshold voltage of Oxide TFT shifts positively. It can change the negative shift of the threshold voltage induced by stress toward the normal operating point.
FIG. 11D shows another exemplary configuration of the pixel circuit of APS 700. The APS 700 includes dual-gated structure, but the bottom gate is not electrically tied to the top gate. For simplicity in describing FIG. 11D, only structure that is different from FIG. 11C is explained.
The readout transistor portion 720 includes the dual-gated TFT structure with the bottom gate that is not electrically tied to the top gate. The bottom gate of the readout transistor portion 720 may be connected to an LSM line.
The amplifier 740 includes an Oxide TFT having a dual-gated structure. The bottom gate of the amplifier 740 is connected to the LSM line. Therefore, the bottom gates of the readout transistor portion 720 and the amplifier 740 are connected together and connected to the LSM line.
The order of the Oxide TFT 10 and the poly-Si TFT 20 in FIG. 11D is different from that of FIG. 11C. The placement of the Oxide TFT 10 and the poly-Si TFT 20 is switched. In FIG. 11D, The poly-Si TFT 20 is connected to the cathode of the photodiode 710.
As recited in FIG. 11C and FIG. 11D, voltages applied to the bottom gates of the Oxide TFTs may be flexibly changed to BGr or LSM line. As a result of this flexibility, the APS 700 can change the gate voltages of the bottom gates to make the characteristics of the Oxide TFTs more stable and reliable.
FIG. 12 shows an example of layout of the APS 700 shown in FIG. 11D. The layout of the APS 700 is merely an example of the mask layout, and it is not limited to this embodiment. As an example, the pixel pitch may be 50.8 μm. The channel size of the Oxide TFT of the amplifier 740 may be 18.5 μm in width and 4.5 μm in length. For example, amplifier gain of the amplifier 740 may be over 150 with mobility of 10 cm 2/V·s of the Oxide channel.
FIG. 13 shows noise characteristics of the embodiments and a comparative example. “Comparative Example (Initial) ” represents noise of the  comparative structure before a characteristics shift. “Comparative Example (After Stress) ” represents noise of the comparative structure after a characteristics shift. “Embodiments (After Stress) ” represents noise of the embodiments herein after a characteristics shift. For purposes of this chart, the stress was caused by a temperature increase of 50 degrees centigrade.
In this graph, each part of the circuit “PD, shot” , “TFT, shot” and “reset” , as well as total noise “pre-AMP” are shown. “PD, shot” is shot noise of a photodiode in a pixel, “TFT, shot” is shot noise of TFTs, and “reset” is the noise at resetting. “Pre-AMP” is the noise occurring in a circuit before an output amplifier. These noises occur before signals are outputted to an external circuit.
The total noise of “Comparative Example (Initial) ” is around 234 electrons. The total noise of “Comparative Example (After Stress) ” is over 5500 electrons before an external circuit. The total noise of “Embodiments (After Stress) ” is around 380 electrons, even after the temperature goes up to 50 degrees centigrade. As a result, the noise of the comparative example after stress goes up 2300%higher compared to the initial state. On the other hand, the noise of the embodiments herein only increases around 60%.
FIG. 14A is an example of display device 1000 having in-cell APS for OLED display. The display device 1000 includes the APS circuit with other circuits in the same cell, especially circuits for display and optoelectronic material. The display device 1000 includes a light emitting portion 800 and a photodiode portion 900. In this embodiment, the display device 1000 is an OLED display, but it may be applicable to LED or other displays.
The light emitting portion 800 includes a light emitting diode 810, a switching transistor 820, a reset transistor portion 830, a drive transistor portion 840 and a holding capacitor C1. The light emitting diode 810 is connected to the reset transistor portion 830 and the drive transistor portion 840. For example, the light emitting diode 810 and the drive transistor portion 840 are connected in series between lines of PVDD and PVSS. The switching transistor 820 is connected to a gate of the drive TFT portion 840. The holding capacitor C1 is placed between drain and gate of the drive TFT portion 840. The reset transistor portion 830 is an example of a first reset transistor.
The photodiode portion 900 includes a photodiode 910, a readout transistor portion 920, a reset transistor portion 930, an amplifier 940. The photodiode portion 900 may include the Oxide TFT 10 and poly-Si TFT 20 in  series that is disclosed in other embodiments. The reset transistor portion 930 is an example of a second reset transistor.
The light emitting portion 800 and the photodiode portion 900 operate alternatively. For example, during a light emitting period of the light emitting portion 800, the photodiode portion 900 resets data. On the other hand, during a readout period of the photodiode portion 900, the light emitting portion 800 resets data. More specifically, during a light emitting period of the light emitting diode 810, the reset transistor portion 930 resets data. During a readout period of the readout transistor portion 920, the reset transistor portion 830 resets data.
Referring to FIG. 14A, a gate of the switching transistor 820 and a gate of the reset transistor portion 930 are connected to a first scan line. A gate of the reset transistor portion 830 of the light emitting portion 800 and the readout transistor portion 920 are connected to a second scan line.
The switching transistor 820 and the readout transistor portion 920 may be connected to the same data voltage line. In this embodiment, the switching transistor 820 and the readout transistor portion 920 are connected to the same V data line.
The reset transistor portion 830 and the reset transistor portion 930 may be connected to the same reference voltage line. In this embodiment, the switching transistor 820 and the readout transistor portion 920 are connected to the same reference voltage V ref line.
The light emitting portion 800 may be configured by a p-channel MOSFET (PMOS) poly-Si TFT. In this embodiment, the switching transistor 820, the reset transistor portion 830, and the drive transistor portion 840 consist of PMOS poly-Si TFTs such as LTPS.
The photodiode portion 900 may be configured by mainly Oxide TFTs. In this embodiment, the Oxide TFT 10, the readout transistor portion 920, and the amplifier 940 consist of Oxide TFTs. The poly-Si TFT 20 consists of n-channel MOSFET (NMOS) poly-Si TFT such as LTPS.
Thus, the display device 1000 alternatively operates the light emitting portion 800 and photodiode portion 900 using the common scan line and voltage line. Therefore, the display device 1000 can reduce the number of electric lines connecting the light emitting portion 800 and the photodiode portion 900.
In this example, the scan signal of Scan1 switch on the switching transistor 820 and write data voltage V data to holding capacitor C1. In parallel, the  Scan1 resets the photodiode portion 900 through the reset transistor portion 930.
The scan signal of Scan2 resets the light emitting portion 800 through reset transistor portion 830. In parallel, the readout transistor portion 920 of the photodiode portion 900 is switched on and the signal at the photodiode 910 is readout through the V data line.
FIG. 14B is another example of display device 1000 having in-cell APS for OLED display. In this example, all TFTs are made by NMOS TFTs. Most of TFTs are made by Oxide TFTs and one TFT is made by poly-Si TFT. For simplicity in describing FIG. 14B, only structure that is different from FIG. 14A is explained.
The switching transistor 820, the reset transistor portion 830, and the drive transistor portion 840 consist of Oxide TFTs. The holding capacitor C1 is placed between a drain and a gate of the drive transistor portion 840. The Oxide TFT 10, the readout transistor portion 920 and the amplifier 940 consist of Oxide TFTs. The poly-Si TFT 20 is made by poly-Si TFT such as LTPS. The basic operation is the same as FIG. 14A.
display device 1000 may include the sensor 300 including the Oxide TFT 10 and the poly-Si TFT 20 in series. The display device 1000 may be used under stress conditions such as high temperature and strong light flux, such as in direct sunlight, which will accelerate the characteristic shift.
In the description, the characteristic shift is denoted as being caused by negative bias. In other cases, Electrostatic discharge (ESD) damage can cause almost the same shift. Therefore, the Oxide TFT 10 and the poly-Si TFT 20 may be used under ESD conditions.
The Oxide TFT shows a negative shift of I D-Vg characteristics, which increases the leakage. The combination of the Oxide TFT and the poly-Si TFT 20 is used to suppress the leakage current increase of the Oxide TFT 10.
This technology is applicable not only to optical sensors, but also other sensors’pixel circuitry having similar readout and reset systems. For example, this technology may be used for capacitive sensors, mechanical sensors, magnetic sensors, and chemical sensors.
While the embodiments of the present invention have been described, the technical scope of the invention is not limited to the above described embodiments. It is apparent to persons skilled in the art that various alterations and improvements can be added to the above-described embodiments. It is also  apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the invention.
The operations, procedures, steps, and stages of each process performed by an apparatus, system, program, and method shown in the claims, embodiments, or diagrams can be performed in any order as long as the order is not indicated by “prior to, ” “before, ” or the like and as long as the output from a previous process is not used in a later process. Even if the process flow is described using phrases such as “first” or “next” in the claims, embodiments, or diagrams, it does not necessarily mean that the process must be performed in this order.

Claims (15)

  1. A sensor comprising:
    a plurality of electric lines including row lines and column lines;
    a photodiode in a pixel;
    a drain of a first transistor connected to the photodiode in the pixel;
    a drain of a second transistor connected in series with a source of the first transistor in the pixel;
    a source of the second transistor being connected to a column line among the plurality of electric lines; and
    both a gate of the first transistor and a gate of the second transistor being connected to a row line among the plurality of electric lines;
    wherein a channel material of the first transistor is different from a channel material of the second transistor.
  2. A sensor comprising:
    a plurality of electric lines including row lines, column lines and reset lines;
    a photodiode in a pixel;
    a readout transistor portion arranged between the photodiode and a column line among the plurality of electric lines, a gate of the readout transistor portion being connected to a row line among the plurality of electric lines;
    a drain of a first transistor connected to the photodiode;
    a drain of a second transistor connected in series with a source of the first transistor in the pixel; and
    both a gate of the first transistor and a gate of the second transistor are connected to the reset line;
    wherein a channel material of the first transistor is different from a channel material of the second transistor.
  3. The sensor according to Claim 1 or 2, wherein
    the channel material of the first transistor is an oxide and the channel material of the second transistor is a non-oxide.
  4. The sensor according to Claim 3, wherein
    the first transistor is an Oxide Thin Film Transistor (TFT) and the second transistor is a poly-Si TFT.
  5. The sensor according to Claim 4, wherein
    the Oxide TFT is arranged between a cathode of the photodiode and the poly-Si TFT.
  6. The sensor according to Claim 4 or 5, wherein
    the poly-Si TFT includes a twin-gated structure having a split gate.
  7. The sensor according to any one of Claims 4 to 6, wherein
    the Oxide TFT includes a tied dual-gated structure having top-and bottom-gates that are connected to the same electric line among the plurality of electric lines.
  8. The sensor according to any one of Claims 4 to 6, wherein
    the Oxide TFT includes a dual-gated structure having a top gate connected to a first line among the plurality of electric lines and a bottom gate connected to a second line among the plurality of electric lines that is different from the first line.
  9. The sensor according to any one of Claims 1 to 8, wherein
    the gate of the first transistor and the gate of the second transistor are connected to the same electric line among the plurality of electric lines.
  10. The sensor according to any one of Claims 1 to 9, wherein
    the first transistor is a bottom gate transistor and the second transistor is a top gate transistor.
  11. The sensor according to any one of Claims 1 to 9, wherein
    the first and second transistors are top gate transistors, and
    the second transistor is disposed in a layer that is lower than a layer in which the first transistor is disposed.
  12. The sensor according to Claim 11 further comprising;
    a light shield layer located under the first transistor, the light shield layer consisting of the same material as a gate material of the second transistor.
  13. A display device comprising the sensor according to any one of claims 1 to 12 and a light emitting portion, the light emitting portion and the sensor are provided in the same pixel.
  14. A display device, comprising:
    a light emitting portion including a light emitting diode, a switching transistor, and a first reset transistor; and
    a photodiode portion including a readout transistor and a second reset transistor, during a light emitting period of the light emitting diode, the second reset transistor resets data, and during a readout period of the readout transistor, the first reset transistor resets data; wherein
    a gate of the switching transistor and a gate of the second reset transistor are connected to a first scan line, and
    the gate of the first reset transistor and the readout transistor are connected to a second scan line.
  15. The display device according to Claim 14, wherein
    the switching and readout transistors are connected to the same data voltage line, and
    the first reset transistor and the second reset transistor are connected to the same reference voltage line.
PCT/CN2018/112254 2018-10-27 2018-10-27 Sensor and display device WO2020082390A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880098714.7A CN112868223B (en) 2018-10-27 2018-10-27 Sensor and display device
PCT/CN2018/112254 WO2020082390A1 (en) 2018-10-27 2018-10-27 Sensor and display device
EP18937830.0A EP3861715B1 (en) 2018-10-27 2018-10-27 Sensor and display device
US17/241,607 US11594161B2 (en) 2018-10-27 2021-04-27 Sensor and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112254 WO2020082390A1 (en) 2018-10-27 2018-10-27 Sensor and display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/241,607 Continuation US11594161B2 (en) 2018-10-27 2021-04-27 Sensor and display device

Publications (1)

Publication Number Publication Date
WO2020082390A1 true WO2020082390A1 (en) 2020-04-30

Family

ID=70332135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112254 WO2020082390A1 (en) 2018-10-27 2018-10-27 Sensor and display device

Country Status (4)

Country Link
US (1) US11594161B2 (en)
EP (1) EP3861715B1 (en)
CN (1) CN112868223B (en)
WO (1) WO2020082390A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114363542B (en) * 2021-12-24 2023-11-24 合肥维信诺科技有限公司 Photosensitive circuit structure and optical device
CN114397975B (en) * 2022-01-24 2024-04-09 武汉天马微电子有限公司 Display panel, driving method thereof and display device
KR20230143650A (en) * 2022-04-05 2023-10-13 삼성디스플레이 주식회사 Pixel circuit and display apparatus having the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016108A (en) * 1987-07-02 1991-05-14 Hitachi, Ltd. Solid-state imaging device having series-connected pairs of switching MOS transistors for transferring signal electric charges therethrough
US20080203930A1 (en) * 2005-05-19 2008-08-28 Koninklijke Philips Electronics, N.V. Electroluminescent Display Devices
US20110215323A1 (en) * 2010-03-08 2011-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102224730A (en) * 2008-12-08 2011-10-19 索尼公司 Pixel circuit, solid-state image pickup device, and camera system
US20130313621A1 (en) 2012-05-28 2013-11-28 Sony Corporation Image pickup unit and image pickup display system
CN203481233U (en) 2013-09-24 2014-03-12 徐廷贵 Alpha-IGZO thin film sensing array image sensor
US20150055047A1 (en) 2013-08-26 2015-02-26 Apple Inc. Liquid Crystal Displays with Oxide-Based Thin-Film Transistors
CN108291961A (en) * 2015-12-08 2018-07-17 松下知识产权经营株式会社 Solid-state imaging apparatus, Distnace determination device and method for measuring distance

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0318613D0 (en) * 2003-08-08 2003-09-10 Koninkl Philips Electronics Nv Electroluminescent display devices
CN101707028B (en) * 2009-11-13 2012-02-01 四川虹视显示技术有限公司 Double-sided display
JP5174988B2 (en) * 2010-04-07 2013-04-03 シャープ株式会社 Circuit board and display device
CN102664187B (en) * 2012-05-29 2016-01-20 南京中电熊猫液晶显示科技有限公司 Organic light emitting diode display and manufacture method thereof
CN103681717B (en) 2013-09-24 2017-04-26 徐廷贵 An image sensor of an alpha-IGZO film sensing array and a manufacturing method thereof
CN104102382B (en) * 2014-06-05 2017-02-15 京东方科技集团股份有限公司 Touch display driving circuit and touch display device
JP2016109915A (en) * 2014-12-08 2016-06-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Pixel circuit and display device
CN204348302U (en) * 2014-12-31 2015-05-20 昆山工研院新型平板显示技术中心有限公司 Display panel
US9853084B2 (en) 2015-09-23 2017-12-26 Dpix, Llc Method of manufacturing a semiconductor device
US20170186782A1 (en) * 2015-12-24 2017-06-29 Innolux Corporation Pixel circuit of active-matrix light-emitting diode and display panel having the same
CN113936601A (en) 2016-04-22 2022-01-14 索尼公司 Display device and electronic equipment
WO2018073706A1 (en) * 2016-10-21 2018-04-26 Semiconductor Energy Laboratory Co., Ltd. Display device and operating method thereof
KR102570180B1 (en) * 2016-11-28 2023-08-25 엘지디스플레이 주식회사 Electroluminescent display device integrated with fingerprint sensor
WO2018136464A1 (en) * 2017-01-17 2018-07-26 Chromera, Inc. Optically determining the condition of goods
CN106782273A (en) * 2017-01-18 2017-05-31 京东方科技集团股份有限公司 Image element circuit and its driving method, display device
CN106875893B (en) 2017-03-07 2019-03-15 京东方科技集团股份有限公司 Pixel circuit and display device with the pixel circuit
CN106898636B (en) * 2017-04-27 2019-10-15 京东方科技集团股份有限公司 OLED display panel and the method for carrying out fingerprint recognition using OLED display panel
CN108615032B (en) * 2018-06-25 2021-06-15 Oppo广东移动通信有限公司 Module, terminal equipment and fingerprint identification method supporting full-screen fingerprint identification

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016108A (en) * 1987-07-02 1991-05-14 Hitachi, Ltd. Solid-state imaging device having series-connected pairs of switching MOS transistors for transferring signal electric charges therethrough
US20080203930A1 (en) * 2005-05-19 2008-08-28 Koninklijke Philips Electronics, N.V. Electroluminescent Display Devices
CN102224730A (en) * 2008-12-08 2011-10-19 索尼公司 Pixel circuit, solid-state image pickup device, and camera system
US20110215323A1 (en) * 2010-03-08 2011-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20130313621A1 (en) 2012-05-28 2013-11-28 Sony Corporation Image pickup unit and image pickup display system
US20150055047A1 (en) 2013-08-26 2015-02-26 Apple Inc. Liquid Crystal Displays with Oxide-Based Thin-Film Transistors
CN203481233U (en) 2013-09-24 2014-03-12 徐廷贵 Alpha-IGZO thin film sensing array image sensor
CN108291961A (en) * 2015-12-08 2018-07-17 松下知识产权经营株式会社 Solid-state imaging apparatus, Distnace determination device and method for measuring distance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3861715A4

Also Published As

Publication number Publication date
EP3861715A1 (en) 2021-08-11
US20210264829A1 (en) 2021-08-26
CN112868223B (en) 2022-06-10
CN112868223A (en) 2021-05-28
US11594161B2 (en) 2023-02-28
EP3861715A4 (en) 2022-04-27
EP3861715B1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
US11594161B2 (en) Sensor and display device
KR102471810B1 (en) Semiconductor device and method for driving the same
US9865644B2 (en) Image sensor
JP5982527B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI556416B (en) Semiconductor device and driving method thereof
US20160284750A1 (en) One Transistor Active Pixel Sensor with Tunnel FET
US9111836B2 (en) Semiconductor device and driving method thereof
US9941315B2 (en) Photoelectric conversion device and imaging system
US20100321356A1 (en) Thin-film transistor, photodetector circuit including the same, and display device
JP2016033983A (en) Photoelectric conversion device and imaging system
KR20080056648A (en) High-sensitive light sensor device and light sensor apparatus using the same
US11646330B2 (en) Unit cell of display panel including integrated TFT photodetector
US20220084466A1 (en) Pixel circuit and pixel control method
US8456460B2 (en) Sensor element and method of driving sensor element, and input device, display device with input function and communication device
JP2012033835A (en) Driving method of photoelectric element and photoelectric device driven by the driving method
JP2019125907A (en) Semiconductor device and equipment
JP2017098815A (en) Photoelectric conversion device and imaging system
Saito et al. P‐16: Single‐photon Avalanche Diode Array Integrated with InGaZnO Thin‐film Transistors for Time‐correlated Applications
US9536921B2 (en) Radiation image-pickup device and radiation image-pickup display system
US11849237B1 (en) Pixel circuit adopting optically sensitive material with suppressed dark current
US10930642B2 (en) Offset gate metal oxide switching transistor device for use in medical device applications
Taghibakhsh et al. Charge-gated thin-film transistors for high resolution digital imaging applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018937830

Country of ref document: EP

Effective date: 20210504