WO2020082361A1 - 一种高带宽的封装天线装置 - Google Patents

一种高带宽的封装天线装置 Download PDF

Info

Publication number
WO2020082361A1
WO2020082361A1 PCT/CN2018/112186 CN2018112186W WO2020082361A1 WO 2020082361 A1 WO2020082361 A1 WO 2020082361A1 CN 2018112186 W CN2018112186 W CN 2018112186W WO 2020082361 A1 WO2020082361 A1 WO 2020082361A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
substrate
antenna device
plate portion
packaged antenna
Prior art date
Application number
PCT/CN2018/112186
Other languages
English (en)
French (fr)
Inventor
张海伟
胡豪涛
张跃江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/112186 priority Critical patent/WO2020082361A1/zh
Priority to CN201880092395.9A priority patent/CN111971851B/zh
Priority to EP18937809.4A priority patent/EP3846286A4/en
Priority to CN202210220769.9A priority patent/CN114639945A/zh
Publication of WO2020082361A1 publication Critical patent/WO2020082361A1/zh
Priority to US17/234,920 priority patent/US11929543B2/en
Priority to US18/435,613 priority patent/US20240178547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • This application relates to the field of semiconductors, and in particular to the field of packaged antennas.
  • millimeter wave transmission has become an important choice for major operators around the world.
  • the millimeter wave antenna plays a crucial role as the terminal transceiver device.
  • AiP Antenna in Package
  • AiP integrates and encapsulates the antenna and the chip in a package structure, which reduces the transmission loss between the antenna and the chip, while improving the system integration.
  • the antenna in the terminal equipment needs to have endfire radiation (endfire radiation) in addition to the broadside radiation function )Features.
  • endfire radiation endfire radiation
  • a dual-polarization receiving and transmitting antenna is generally used for polarization diversity reception, or a MIMO (Multiple-Input Multiple-Output) communication is established in two polarization directions of the dual-polarization antenna. As shown in FIG.
  • a packaged antenna 100 in the prior art includes an edge-emitting antenna 110 and an end-firing antenna 120, in which a die 130 is flip-chip mounted on the bottom of the packaged antenna 100 and passes through a feeding path 140
  • the side-firing antenna 110 and the end-firing antenna 120 are respectively completed to complete dual polarization.
  • the vertical polarization of the end-fire antenna 120 is difficult to achieve.
  • the thickness of the packaged antenna in the terminal device is limited to about 0.9mm, and the physical size required for the end-fire antenna 120 to work properly is about half the wavelength of the resonance frequency (such as the half-wavelength of the millimeter wave 28GHz band is about 5mm).
  • the vertical polarization of the end-fire antenna 120 at a smaller package antenna thickness can be achieved by bending the end-fire antenna 120.
  • the above bending process shortens the vertical polarized effective current path of the end-fire antenna 120, thereby limiting the bandwidth of the antenna and failing to meet the bandwidth requirements of the 5G millimeter wave 28GHz band.
  • the embodiments of the present application provide a packaged antenna device, which can be used to solve the problems of a short vertical polarization current path and a low bandwidth of an end-fire antenna in a terminal device.
  • an embodiment of the present application provides a packaged antenna device, including a first radiator portion, a second radiator portion, a first feed path, a first metal piece, and first and second substrates disposed oppositely , wherein the first radiator portion and the first feed path are provided in the first substrate, the second radiator portion is provided in the second substrate, and the first feed path is used to feed the first radiator portion ,
  • the two radiator parts are connected by a first metal member disposed between the two substrates.
  • the equivalent height increased by the antenna is equal to the heights of the first metal part and the second radiator part, so that the vertical polarization current path generated by the antenna can not only be distributed in the first radiation
  • the body part can also be distributed between the first metal part and the second radiator part, thus increasing the vertical polarization current path, thereby improving the gain and bandwidth of the antenna in the packaged antenna device.
  • the above packaged antenna device further includes a second feeding path provided in the second substrate, and a second metal piece for connecting two feeding paths in the above two substrates, the above The second feeding path is used to feed the above-mentioned second radiator part. Since the second metal piece connects the above two feed paths, the equivalent height of the feed path is also increased, so the vertical polarized current path in the feed path is increased, which is more beneficial to the above two radiators Partially feed to increase the antenna gain and bandwidth.
  • the first radiator portion includes a first ground plate portion
  • the second radiator portion includes a second ground plate portion
  • the two ground plate portions are connected by the first metal member. Connecting the above two ground plates increases the vertical polarization current path on the ground plate, reduces the backward radiation of the antenna, and thus increases the gain of the antenna.
  • the first radiator portion includes a first main radiator plate portion
  • the second radiator portion includes a second main radiator plate portion
  • the two main radiator plate portions pass through the first metal member connection. Connecting the two main radiating plates above increases the vertical polarized current path on the main radiating plate, thereby improving the bandwidth and gain of the antenna.
  • the first radiator portion includes a first parasitic radiation plate portion
  • the second radiator portion includes a second parasitic radiation plate portion
  • the two parasitic radiation plate portions pass through the first metal piece connection. Connecting the above two parasitic radiating plates partially increases the vertical polarized current path on the parasitic radiating plates, thereby improving the directivity of the antenna.
  • the above-mentioned first main radiating plate portion and the second main radiating plate portion include ⁇ 45 ° polarized dual-polarized vibrators.
  • the first main radiating plate portion includes a first positive polarized vibrator and a first negative polarized vibrator at an angle of 90 °
  • the second main radiant plate portion includes a second positive polarized vibrator and a second negative polarized vibrator at an angle of 90 ° Vibrator.
  • the first radiator portion includes a first main radiator plate portion
  • the second radiator portion includes a second main radiator plate portion
  • the two main radiator plate portions are not directly connected
  • the first feeding path is used for coupling and feeding the first main radiation plate part
  • the second feeding path is used for coupling and feeding the second main radiation plate part.
  • the coupling and feeding method is used for coupling, so that when the vertical polarization current paths of the two main radiating plate portions are increased, the feeding method is more flexible.
  • the above-mentioned packaged antenna device further includes a first chip, the first chip is disposed on a side of the first substrate facing the second substrate, the first chip is used to provide the above two feeding paths RF signal.
  • the packaged antenna device integrates and packages the chip and the antenna, so that the loss of the radio frequency signal on the transmission line becomes smaller, thereby improving the communication quality.
  • the maximum radiation direction of the first radiator portion and the second radiator portion is perpendicular to the normal line of the first chip. That is, the above two radiator parts are end-fire antennas in the packaged antenna device. By increasing the equivalent height of the end-fire antenna, the vertical polarization current path is increased, thus increasing the antenna gain and bandwidth.
  • the packaged antenna device further includes a third radiator parallel to the normal of the first chip. That is, the third radiator is an edge-emitting antenna in a packaged antenna device. Integrating the side-firing antenna and the improved end-firing antenna into the same package antenna is beneficial to improve the overall gain and bandwidth of the antenna.
  • the first metal member and the second metal member are ball grid array BGA balls.
  • BGA balls as the material of metal parts has lower cost and can better control the distance between two substrates.
  • At least one of the first radiator portion, the second radiator portion, the first feed path, and the second feed path is implemented through a via. Implementing the above structure through vias can reduce the complexity of the process.
  • At least one of the first radiator portion, the second radiator portion, the first feed path, and the second feed path is implemented by an array of vias and traces arranged in a misaligned manner , Where the trace is used to connect the via array in the horizontal direction.
  • the above structure is realized through the via array and the wiring, which makes the direction and structure of the antenna and the feeding path more flexible, for example, it can achieve a polarization of ⁇ 45 °, or the via layout and routing according to the actual antenna array requirements line.
  • the second radiator portion is disposed on a side of the second substrate facing the first substrate, and the second radiator portion includes a pad or a trace.
  • the vertical polarization current path can be increased only by the bonding pads or traces on the surface of the second metal piece and the second substrate without the need to provide an antenna structure inside the second substrate.
  • the increase in the vertical polarization current path is the height of the second metal member.
  • the above-mentioned packaged antenna device further includes a second chip disposed on a side of the second substrate facing away from the first substrate.
  • the second chip may be a data processing chip, such as a CPU (Central Processing Unit), or a data cache chip, such as a DRAM (Dynamic Random Access Memory, dynamic random access memory). Integrating the second chip with the first chip and the antenna in the packaged antenna device can make the function of the packaged antenna device more complete and the data processing capability stronger.
  • the above-mentioned first substrate is an interposer.
  • the interposer as the material of the first substrate makes the structure of the packaged antenna device more stable.
  • the above-mentioned second substrate is a first printed circuit board PCB.
  • the second substrate is a high-frequency PCB, and other chips or circuits may be provided on the high-frequency PCB, so that the packaged antenna device has other data processing or transmission functions.
  • the above-mentioned first main radiation plate portion is connected to the first ground plate portion
  • the second main radiation plate portion is connected to the second ground plate portion
  • the first ground plate portion and the second ground plate portion Connected by a first metal member, the first feed path and the second feed path are provided in the first substrate and the second substrate, respectively, and connected by the second metal member to connect the first main radiating plate portion and the second main member
  • the radiation plate is partially coupled to the feed.
  • the above two feeding paths may be provided inside the two substrates, or may be provided on two opposite surfaces of the two substrates. Feeding by means of coupled feeding makes the design of the antenna in the packaged antenna device more flexible.
  • the packaged antenna device includes a Vivaldi antenna, wherein the first ground plate portion, the second ground plate portion, the first main radiation plate portion, the second main radiation plate portion, the first feed Both the electrical path and the second feed path are implemented by interlayer wiring and vias or via arrays.
  • the wiring between layers and the layout of vias or via arrays a variety of antenna implementations can be formed, making the design of the type of antenna that encapsulates the antenna device more flexible.
  • the packaged antenna device includes a monopole antenna.
  • the need for low-frequency operation of the antenna can be met, and the design of the type of antenna that encapsulates the antenna device is more flexible.
  • the above packaged antenna device includes a Yagi antenna, wherein the first feeding path is used to feed the first main radiating plate portion, and the second feeding path is used to connect the second main radiating plate portion and The second ground plate is partially shorted.
  • an embodiment of the present application provides a terminal device, the terminal device includes the packaged antenna device described in the first aspect and possible implementation manners thereof.
  • the equivalent height increased by the antenna is equal to the heights of the first metal part and the second radiator part, so that the vertical polarization current path generated by the antenna can not only be distributed in the first radiation
  • the body part can also be distributed between the first metal part and the second radiator part, thus increasing the vertical polarization current path, thereby improving the gain and bandwidth of the antenna in the terminal device.
  • the terminal device further includes a third radiator part, a first structural member, and a third metal member, wherein the first structural member is disposed on a side of the second substrate facing away from the first substrate,
  • the three radiator parts are arranged in the first structural part and connected with the second radiator part through the third metal part, and the above first feeding path is also used to feed the third radiator part.
  • the above terminal device further includes a fourth radiator, a second structural member, and a fourth metal member, wherein the second structural member is disposed on a side of the first substrate facing away from the second substrate, the fourth The radiator part is disposed in the second structural member and connected to the first radiator part through a third metal member, and the above first feeding path is also used to feed the fourth radiator part.
  • the above terminal device further includes a fifth radiator portion, a second PCB, and a fifth metal piece, where the second PCB is disposed on a side of the second substrate facing away from the first substrate, the fifth radiation
  • the body part is provided on the second PCB, and is connected to the second radiator part through the fifth metal piece, and the first feeding path is also used to feed the fifth radiator part.
  • the third metal piece, the fourth metal piece, and the fifth metal piece are metal bonding wires. Using metal bonding wires to connect each radiator part, so that the vertically polarized current can be better distributed between the above radiator parts, thereby improving the gain and bandwidth of the antenna in the device.
  • At least one of the above-mentioned third radiator portion, fourth radiator portion, and fifth radiator portion includes a metal post and a metal-plated trace.
  • an embodiment of the present application provides a packaged antenna device, including a first radiator portion, a first feed path, a first metal piece, and a first substrate, wherein the first radiator portion and the first feed path Provided in the first substrate, the first metal piece is used to connect the first radiator portion in the first substrate and the second radiator portion in the second substrate, and the first feeding path is used to feed the first radiator portion Electricity.
  • the equivalent height increased by the antenna is equal to the heights of the first metal part and the second radiator part, so that the vertical polarization current path generated by the antenna can not only be distributed in the first radiation
  • the body part can also be distributed between the first metal part and the second radiator part, thus increasing the vertical polarization current path, thereby improving the gain and bandwidth of the antenna in the packaged antenna device.
  • the above-mentioned packaged antenna device further includes a second metal member for connecting the first feeding path and the second feeding path in the above-mentioned second substrate, the second The feeding path is used to partially feed the second radiator. Since the second metal piece connects the above two feed paths, the equivalent height of the feed path is also increased, so the vertical polarized current path in the feed path is increased, which is more beneficial to the above two radiators Partially feed to increase the antenna gain and bandwidth.
  • the first radiator portion includes a first ground plate portion
  • the second radiator portion includes a second ground plate portion
  • the two ground plate portions are connected by the first metal member. Connecting the above two ground plates increases the vertical polarization current path on the ground plate, reduces the backward radiation of the antenna, and thus increases the gain of the antenna.
  • the first radiator portion includes a first main radiator plate portion
  • the second radiator portion includes a second main radiator plate portion
  • the two main radiator plate portions pass through the first metal member connection. Connecting the two main radiating plates above increases the vertical polarized current path on the main radiating plate, thereby improving the bandwidth and gain of the antenna.
  • the first radiator portion includes a first parasitic radiation plate portion
  • the second radiator portion includes a second parasitic radiation plate portion
  • the two parasitic radiation plate portions pass through the first metal piece connection. Connecting the above two parasitic radiating plates partially increases the vertical polarized current path on the parasitic radiating plates, thereby improving the directivity of the antenna.
  • the first main radiating plate portion and the second main radiating plate portion may include a dual-polarized vibrator with a polarization of ⁇ 45 °.
  • the first main radiating plate portion includes a first positive polarized vibrator and a first negative polarized vibrator at an angle of 90 °
  • the second main radiant plate portion includes a second positive polarized vibrator and a second negative polarized vibrator at an angle of 90 ° Vibrator.
  • the above-mentioned packaged antenna device further includes a first chip, the first chip is disposed on a side of the first substrate facing the second substrate, the first chip is used to provide the above two feeding paths RF signal.
  • the packaged antenna device integrates and packages the chip and the antenna, so that the loss of the radio frequency signal on the transmission line becomes smaller, thereby improving the communication quality.
  • the maximum radiation direction of the first radiator portion and the second radiator portion is perpendicular to the normal line of the first chip. That is, the above two radiator parts are end-fire antennas in the packaged antenna device. By increasing the equivalent height of the end-fire antenna, the vertical polarization current path is increased, thus increasing the antenna gain and bandwidth.
  • the first metal member and the second metal member are ball grid array BGA balls.
  • BGA balls as the material of metal parts has lower cost and can better control the distance between two substrates.
  • the packaged antenna device further includes a third radiator parallel to the normal of the first chip. That is, the third radiator is an edge-emitting antenna in a packaged antenna device. Integrating the side-firing antenna and the improved end-firing antenna into the same package antenna is beneficial to improve the overall gain and bandwidth of the antenna.
  • At least one of the above-mentioned first radiator portion and the first feed path is realized by a via.
  • Implementing the above structure through vias can reduce the complexity of the process.
  • At least one of the first radiator portion and the first feed path is implemented by an array of vias and traces arranged in a misaligned manner, where the traces are used to connect in the horizontal direction Hole array.
  • the above structure is realized through the via array and the wiring, which makes the direction and structure of the antenna and the feeding path more flexible, for example, it can achieve a polarization of ⁇ 45 °, or the via layout and routing according to the actual antenna array requirements line.
  • an embodiment of the present application provides a terminal device, including a back cover, a bezel, a display device, a middle frame, and a packaged antenna device, wherein the display device, the middle frame, and the packaged antenna device are sequentially stacked, and the back cover It is arranged on the side of the encapsulated antenna device facing away from the middle frame, wherein the middle frame and the display device are connected to one end of the frame, and the other end of the frame is connected to the back cover.
  • Packaged antenna device including a back cover, a bezel, a display device, a middle frame, and a packaged antenna device, wherein the display device, the middle frame, and the packaged antenna device are sequentially stacked, and the back cover It is arranged on the side of the encapsulated antenna device facing away from the middle frame, wherein the middle frame and the display device are connected to one end of the frame, and the other end of the frame is connected to the back cover.
  • the equivalent height increased by the antenna is equal to the heights of the first metal part and the second radiator part, so that the vertical polarization current path generated by the antenna can not only be distributed in the first radiation
  • the body part can also be distributed between the first metal part and the second radiator part, thus increasing the vertical polarization current path, thereby improving the gain and bandwidth of the antenna in the terminal device.
  • the foregoing terminal device further includes a second PCB disposed between the middle frame and the packaged antenna device.
  • Multiple PCBs are provided in the terminal device, and other chips or circuits can also be provided on the PCB, so that the terminal device has other data processing or transmission functions.
  • the above terminal device further includes a first shield frame disposed between the packaged antenna device and the second PCB, the first shield frame is used to shield and interfere between the second PCB and the second substrate Electromagnetic waves.
  • the first shield frame can reduce the influence of electromagnetic waves in the second PCB and the second substrate on other circuits.
  • the above terminal device further includes a second shield frame disposed between the second PCB and the middle frame, and the second shield frame is used to shield and interfere with electromagnetic waves between the second PCB and the middle frame .
  • the second shield frame can reduce the influence of electromagnetic waves in the second PCB on other circuits.
  • the above-mentioned frame includes a groove that is close to the packaged antenna device.
  • the frame part is hollowed out and a groove structure is formed, so that the frame has better supporting force while ensuring that the antenna performs end-fire radiation.
  • Figure 1 is a packaged antenna in the prior art.
  • FIG. 2 is a schematic cross-sectional structure diagram of a terminal device in an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structural diagram of a packaged antenna device according to an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of another packaged antenna device in an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional structure diagram of yet another packaged antenna device in an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structural diagram of a more specific packaged antenna device in an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional structural diagram of another more specific packaged antenna device in an embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional structure diagram of another terminal device in an embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional structure diagram of yet another terminal device in an embodiment of the present application.
  • FIG. 10 (a) is a schematic cross-sectional structural diagram of yet another more specific packaged antenna device in an embodiment of the present application.
  • FIG. 10 (b) is a 3D view of the packaged antenna device.
  • FIG. 11 (a) is a schematic cross-sectional structure diagram of yet another more specific packaged antenna device in an embodiment of the present application.
  • FIG. 11 (b) is a 3D view of the packaged antenna device.
  • FIG. 12 is a schematic cross-sectional structural diagram of yet another more specific packaged antenna device in an embodiment of the present application.
  • FIG. 13 (a) is a schematic cross-sectional structural diagram of yet another more specific packaged antenna device in an embodiment of the present application.
  • FIG. 13 (b) is a 3D view of the packaged antenna device.
  • FIG. 14 (b) is a 3D view of the packaged antenna device.
  • FIG. 15 (b) is a 3D view of the packaged antenna device.
  • FIG. 16 (a) is a schematic cross-sectional structure diagram of yet another more specific packaged antenna device in an embodiment of the present application.
  • 16 (b) is a 3D view of the packaged antenna device.
  • 17 is a schematic cross-sectional structure diagram of a more specific terminal device in an embodiment of the present application.
  • the terminal device 200 may be a smart phone, a portable computer, a tablet computer, an electronic bracelet, or other terminal devices with a communication function.
  • the above terminal device 200 may include a back cover 210, a bezel 220, a display device 230, and a middle frame 240, wherein the back cover 210 and the display device 230 are oppositely arranged and connected through the bezel 220 to form between the back cover 210 and the display device 230 Cavity.
  • the middle frame 240 is disposed on the side of the display device 230 facing the back cover 210.
  • a packaged antenna device 250 and a PCB (Printed Circuit Board) 262 are provided between the back cover 210 and the middle frame 240.
  • the packaged antenna device 250 is disposed on the side of the PCB 262 facing the back cover 210 and passes through a solder ball
  • the PCB 262 forms an electrical connection.
  • the above-mentioned packaged antenna device 250 may be used to receive, transmit, and process electromagnetic wave signals.
  • the packaged antenna device 250 includes a first substrate 300 and a second substrate 260, and the first substrate 300 and the second substrate 260 may be connected by metal connectors such as solder balls.
  • FIG. 3 is a schematic cross-sectional structural diagram of a packaged antenna device 250 provided by an embodiment of the present application.
  • the above-mentioned packaged antenna device 250 includes a first substrate 300 and a second substrate 260 disposed oppositely.
  • the first substrate 300 may be an interposer implemented with passive silicon wafers; the second substrate 260 may also be an interposer, or a printed circuit board implemented with a copper-clad laminate.
  • the first substrate 300 and the second substrate 260 are electrically connected by the BGA balls 312 provided therebetween.
  • a side of the lower surface of the first substrate 300 is provided with a radio frequency processing chip 310, which is used for processing radio frequency signals and soldered by solder balls or other metals
  • the material forms an electrical connection with the first substrate 300.
  • the side of the upper surface of the first substrate 300 that is, the side of the first substrate 300 facing away from the second substrate 260, is provided with an edge-emitting antenna 320 whose maximum radiation direction is parallel to the normal line of the RF processing chip 310 .
  • the direction of the RF processing chip 310 toward the first substrate 300 is defined as the normal direction of the RF processing chip 310, for example, the vertical direction in FIG.
  • the radio frequency processing chip 310 may feed the edge-emitting antenna 320 through a feeding path provided in the first substrate 300 so that the edge-emitting antenna 320 is excited to receive and transmit electromagnetic wave signals.
  • the packaged antenna device 250 further includes an end-fire antenna, and the maximum radiation direction of the end-fire antenna is perpendicular to the normal line of the radio frequency processing chip 310.
  • the above-mentioned end-fire antenna includes a first radiator portion 330 and a second radiator portion 340 in the same direction.
  • the first radiator portion 330 is disposed in the first substrate 300
  • the second radiator portion 340 is disposed in the second substrate 260
  • the first radiator portion 330 and the second radiator portion 340 pass through
  • the first metal piece 350 forms an electrical connection.
  • a pad may be provided at an end of the first radiator portion 330 close to the second substrate 260 and an end of the second radiator portion 340 close to the first substrate 300, so that the first metal member 350 and the first radiator portion 330 and the first
  • the connection between the two radiator parts 340 is more stable.
  • the radio frequency processing chip 310 may also feed the first radiator portion 330 through the first feed path 360 provided in the first substrate 300 so that the first radiator portion 330 and the second radiator portion 340 are excited to receive And emit electromagnetic signals.
  • the above antenna polarization modes include horizontal polarization and vertical polarization, and may also include ⁇ 45 ° polarization.
  • a current of ⁇ 45 ° polarization will be generated in the end-fire antenna.
  • the equivalent height of the end-fire antenna changes from the height of the original first radiator portion 330 to the first radiator portion 330, The height of the first metal member 350 and the second radiator portion 340.
  • the increase in the equivalent height of the end-fire antenna allows the vertical polarization current path generated by the end-fire antenna to be distributed on the first radiator portion 330, the first metal member 350, and the second radiator portion 340, which increases the end-fire antenna
  • the polarized current path of the antenna in the vertical direction thus increasing the gain and bandwidth of the endfire antenna.
  • the equivalent height of the antenna in this application refers to the height of the above-mentioned end-fire antenna in the vertical direction, that is, the direction parallel to the normal of the radio frequency processing chip 310.
  • the packaged antenna device 250 may further include a chip disposed on a side of the second substrate 250 facing away from the first substrate, the chip may be a CPU (Central Processing Unit, central processing unit) chip, or It is a cache chip, such as DRAM (Dynamic Random Access Memory, dynamic random access memory).
  • the chip is electrically connected to the second substrate 250 through solder balls or other metal connectors.
  • FIG. 4 is a schematic cross-sectional structure diagram of another embodiment of the packaged antenna device 250 described above.
  • the first radiator portion 330 and the second radiator portion 340 in FIG. 4 can also be arranged via a misaligned via array and via layers.
  • the inter-layer wiring is implemented (the inter-layer wiring is used to connect the misaligned vias), that is, the first radiator portion 330 and the second radiator portion 340 are bent, etc. to increase the bandwidth of the antenna.
  • the actual equivalent height achieved by the misaligned via arrays and the interlayer wiring is the same, and can also make the vertical polarized current paths in the first radiator part 330 and the first metal piece respectively 350 and the second radiator portion 340 to increase the gain and bandwidth of the end-fire antenna.
  • FIG. 5 is a schematic cross-sectional structure diagram of another embodiment of the above-mentioned packaged antenna device 250, where the same symbols in FIG. 5 can refer to FIG. 3.
  • the second radiator portion 340 in the packaged antenna device 250 in FIG. 5 can also be implemented by a trace or a pad provided on the side of the second substrate 260 facing the first substrate 300. Since the first metal member 350 (such as a solder ball) has a certain volume and height, the vertical polarization current can also be distributed in the first metal member 350 and the second radiator portion 340 to improve the gain and bandwidth of the end-fire antenna .
  • FIG. 6 is a schematic cross-sectional structural diagram of a more specific packaged antenna device 250 provided by an embodiment of the present application.
  • the radiator in the packaged antenna device 250 in FIG. 6 may further include at least one of a ground plate, a main radiation plate, and a parasitic radiation plate.
  • the ground plate is used to reflect the electromagnetic wave signal and is also the signal reference ground; the main radiation plate is fed and transmits or receives electromagnetic wave signals; the parasitic radiation plate acts as a director to enhance the directionality of the electromagnetic wave signal.
  • the first radiator portion 330 includes a first ground plate portion 332, a first main radiator plate portion 334, and a first parasitic radiator plate 336
  • the second radiator portion 340 includes a second ground plate portion 342 , The second main radiation plate portion 344 and the second parasitic radiation plate 346.
  • the first and second ground plate portions 332 and 342, the first and second main radiation plate portions 334 and 344, the first and second parasitic radiation plates 336 and 346 all pass through the independent first metal Piece 350 is connected.
  • the radio frequency processing chip 310 feeds the first main radiation plate portion 334 through the first feed path 360, so that the first main radiation plate portion 334 and the second main radiation plate portion 344 are excited.
  • the first parasitic radiation plate 336 and the second parasitic radiation plate 346 resonate with the first main radiation plate portion 334 and the second main radiation plate portion 344, respectively, to improve the directivity of the antenna radiation.
  • the first ground plate portion 332 and the second ground plate portion 342 are connected to the ground of the radio frequency processing chip 310 to provide a signal reference ground.
  • the first metal piece 350 separates the first ground plate portion 332 and the second ground plate portion 342
  • the first main radiation plate portion 334 and the second main radiation plate portion 344, the first parasitic radiation plate 336 and the second parasitic radiation plate 346 connection increases the equivalent height of the ground plate, main radiation plate and parasitic radiation plate of the end-fire antenna, thereby increasing the vertical polarization current path of the end-fire antenna, thus improving the gain and bandwidth of the end-fire antenna .
  • first ground plate portion 332, first main radiation plate portion 334, first parasitic radiation plate 336, and second ground plate portion 342, second The main radiation plate portion 344 and the second parasitic radiation plate 346 are provided in the first substrate 300, while the second ground plate 342, The second main radiation plate 344 and the second parasitic radiation plate 346 may be provided with the second ground plate 342 only in the second substrate 260.
  • the second substrate 260 needs to include the second ground plate 342, the second main radiation plate 344 and the second parasitic radiation plate 346. At least one.
  • the first feeding path 360 may be a direct feeding to the first main radiating plate portion 334, or a coupling feeding to the first main radiating plate portion 334.
  • the application does not limit the feeding method in any way.
  • the present application does not limit the height of the ground plate, the main radiation plate, and the parasitic radiation plate.
  • the first substrate 300 includes four wiring layers (where the wiring layer closest to the second substrate 260 is the fourth layer), then the first ground plate 332 may include a layer from the third layer to the fourth layer of the first substrate 300 Vias may include vias from the first layer to the fourth layer of the first substrate 300.
  • FIG. 7 is a schematic cross-sectional structural diagram of another more specific packaged antenna device 250 provided by an embodiment of the present application.
  • the packaged antenna device 250 in FIG. 7 further includes a second feeding path 362 provided in the second substrate 260.
  • the second feeding path 362 and the first feeding path 360 pass through the second The second metal member 352 between the substrate 300 and the second substrate 260 is connected.
  • the first feeding path 360 in FIG. 7 couples and feeds the first main radiating plate portion 334
  • the second feeding path 362 couples and feeds the second main radiating plate portion 344. There is no direct physical connection between the main radiating plate portion 334 and the second main radiating plate portion 344.
  • the first main radiating plate portion 334 and the second main radiating plate portion 344 both have vertical polarization currents, so that the equivalent height of the main radiating plate increases, Thereby increasing the polarized current path of the end-fire antenna in the vertical direction, thus increasing the gain and bandwidth of the end-fire antenna.
  • the above first feeding path 360 and the above second feeding path 362 may also be realized by via holes, or via via arrays and interlayer wiring ( The inter-layer traces are used to connect vias arranged in a misaligned manner) to reduce the volume of the packaged antenna device 250 and increase the bandwidth of the antenna.
  • the first metal member 350 and the second metal member 352 may be tin balls, such as ball grid array BGA (Ball Grid Array) balls, or other structural members with conductive properties.
  • a pad may be provided at an end of the first feeding path 360 close to the second substrate 260 and at an end of the second feeding path 362 close to the first substrate 300, so that the second metal piece 352 and the first feeding path 360 and the first The connection between the second feed path 362 is more stable.
  • FIG. 8 is a schematic cross-sectional structural diagram of another terminal device 200 according to an embodiment of the present application, including an encapsulated antenna device 250, a first structural member 370, and a second structural member 373.
  • the encapsulated antenna device 250 may be Any packaged antenna device provided in the embodiments of the application.
  • the first structural member 370 is disposed below the second substrate 260, that is, the side facing away from the first substrate 300.
  • the first structural member 370 includes a third radiator portion 371 disposed therein, and the third radiator portion 371 is connected to the second radiator portion 340 through a third metal member 372 that is disposed on the second substrate 260 and the first structural member 370.
  • the second structural member 373 is disposed above the first substrate 300, that is, the side facing away from the second substrate 260.
  • the second structural member 373 includes a fourth radiator portion 374 disposed therein, and the fourth radiator portion 374 is connected to the first radiator portion 330 through a fourth metal member 375, which is disposed on the first substrate Between 300 and the second structural member 373.
  • the first structural member 370 and the second structural member 373 may be a frame or a middle frame in the terminal device, or may be structural members in other terminal devices.
  • the third metal piece 372 and the fourth metal piece 375 may be metal bonding wires, or may be other bonding wires or connecting balls with conductive functions.
  • the third radiator part 371 and the fourth radiator part 374 can be realized by via holes, or via via arrays and interlayer wiring (interlayer wiring is used to connect the misaligned vias), or by Metal pillars and metal-plated traces are implemented.
  • other structural members, radiator parts, and metal members may be provided on the side of the first structural member 370 facing away from the first substrate 300 according to the design requirements of the terminal device 200.
  • other structural members, radiator parts, and metal members may be provided on the side of the second structural member 373 facing away from the first substrate 300.
  • only the first structural member 370, the third radiator part 371 and the third metal member 372 may be provided, or only the second structural member 373, the fourth radiator part 374 and the fourth metal may be provided Pieces 375. This application does not limit the number of structural parts, radiator parts, and metal parts in the terminal device 200.
  • FIG. 9 is a schematic cross-sectional structure diagram of yet another terminal device 200 according to an embodiment of the present application, where the same symbols in FIG. 9 can refer to FIG. 8. Unlike FIG. 8, the terminal device 200 in FIG. 9 further includes a PCB 262 that can be disposed between the second substrate 260 and the first structural member 370.
  • the above-mentioned PCB 262 includes a fifth radiator portion 376 disposed in the PCB 262, and one end of the fifth radiator portion 376 and the second radiator portion 340 pass through the fifth metal disposed between the second substrate 260 and the PCB 262
  • the piece 377 is connected, while the other end of the fifth radiator portion 376 and the third radiator portion 371 are connected by a third metal piece 372 disposed between the PCB 262 and the first structural member 370.
  • the second substrate 260 may be a high-frequency PCB board for transmitting and processing high-frequency signals; the PCB 262 may be a low-frequency PCB board for transmitting and processing medium-frequency and low-frequency signals.
  • PCBs may be provided on the side of the first structural member 370 facing the first substrate 300 or the side of the second structural member 373 facing the first substrate 300 according to design requirements. This application does not limit the number and position of PCBs in the terminal device 200 in any way.
  • the fifth metal member 377 may be a metal bonding wire, or may be another bonding wire or a connecting ball having a conductive function.
  • the above fifth radiator portion 376 can be realized by a via hole, or by a via array and an interlayer wiring (the interlayer wiring is used to connect the misaligned via holes), and can also be implemented by a metal post and metal plating ⁇ realized.
  • the third radiator portion 371, the fourth radiator portion 374, and the fifth radiator portion 376 include at least a ground plate, a main radiator plate, and a parasitic radiator plate, respectively At least one of them will not be repeated here.
  • FIG. 10 (a) is a schematic cross-sectional structure diagram of yet another more specific packaged antenna device 250 provided by an embodiment of the present application.
  • FIG. 10 (b) is a 3D view of the packaged antenna device 250. As shown in FIG. The same symbols in FIG. 10 (a) and FIG. 10 (b) can refer to FIG. 8.
  • the packaged antenna device 250 in FIGS. 10 (a) and 10 (b) adopts an “ ⁇ ” -shaped bending structure feed path to the first main radiating plate portion 334 and the second main radiating plate 344 Coupling feed.
  • the first main radiation plate portion 334 is electrically connected to the first ground plate portion 332
  • the second main radiation plate portion 344 is electrically connected to the second ground plate portion 342
  • the portions 342 are connected by the first metal member 350, and there is no direct connection relationship between the first main radiating plate portion 334 and the second main radiating plate portion 344.
  • the first feeding path 360 and the second feeding path 362 are respectively provided in the first substrate 300 and the second substrate 260, are connected by a second metal piece 352, and connect the first main radiating plate portion 334 and the second main radiating plate Section 344 is coupled to feed.
  • the first feeding path 360 and the second feeding path 362 may be provided in the intermediate wiring layer of the first substrate 300 and the second substrate 260, respectively; in another embodiment, the first The one feeding path 360 and the second feeding path 362 may also be disposed on the side of the first substrate 300 facing the second substrate 260, and the side of the second substrate 260 facing the first substrate 300, respectively.
  • the above-mentioned first feeding path 360 and second feeding path 362 are connected by a second metal piece 352 to form a “n” -shaped bent structure, wherein the first feeding path 360 is mainly used for the first main radiation plate part 334 is coupled to the feed, and the second feed path 362 is mainly used to feed the second main radiating plate portion 344.
  • the first main radiating plate portion 334, the second main radiating plate portion 344, the first grounding plate portion 332, and the second grounding plate portion 342 can all adopt a symmetrical vibrator shape and increase the operating bandwidth by widening.
  • FIG. 11 (a) is a schematic cross-sectional structure diagram of yet another more specific packaged antenna device 250 provided by an embodiment of the present application.
  • FIG. 11 (b) is a 3D view of the packaged antenna device 250. As shown in FIG. The same symbols in FIG. 11 (a) and FIG. 11 (b) can refer to FIG. 10 (a) and FIG. 10 (b). The difference is that the antenna in the packaged antenna device 250 of FIGS. 11 (a) and 11 (b) is a ⁇ 45 ° dual-polarized antenna.
  • the first main radiating plate portion 334 in the packaged antenna device 250 includes a first positive polarizing vibrator 3342 and a first negative polarizing vibrator 3344
  • the second main radiating plate portion 344 includes a second positive polarizing vibrator 3444 and a second negative electrode
  • the vibrator 3442 wherein the angle between the first positive polarizer 3342 and the first negative polarizer 3344 is 90 °, and the second positive polarizer 3444 and the second negative polarizer 3442 are also 90 °.
  • ⁇ 45 ° dual polarization of the antenna can be achieved, wherein part of the feeding path in the first feeding path 360 is used to polarize the first negative polarized oscillator 3344 at -45 °, and in the second feeding path 362 Part of the feed path is used to polarize the second negative polarized vibrator 3442 at -45 °, and the feed paths of the above two parts are connected through the second metal piece 352; the other part of the first feed path 360 feeds The path is used to + 45 ° polarize the first positively polarized oscillator 3342, and another part of the feed path in the second feed path 362 is used to + 45 ° polarized the second positively polarized pole 3444, and the above two Part of the feeding path is connected through the second metal piece 352.
  • the above feed path for the polarization of 45 ° and the feed path for the polarization of -45 ° are respectively cross-routed by the second metal piece 352, and by adjusting the front and rear positions of the second metal piece 352 and the wiring Bending ensures the amplitude and phase requirements of the two feed signals to form a complete ⁇ 45 ° dual-polarized antenna.
  • FIG. 12 is a schematic cross-sectional structural diagram of yet another more specific packaged antenna device 250 provided by an embodiment of the present application.
  • the first feeding path 260 and the second feeding path 362 in the packaged antenna device 250 of FIG. 12 feed the first main radiating plate portion 334 and the second main The radiant panel 344 is fed.
  • the packaged antenna device 250 further includes a first parasitic radiation plate portion 336 and a second parasitic radiation plate portion 346, and the first parasitic radiation plate portion 336 and the second parasitic radiation plate portion 346 are connected by the first metal piece 350 .
  • the first feeding path 360, the second feeding path 362, the first ground plate portion 332, the second ground plate portion 342, the first main radiation plate portion 334, the second main radiation plate 344, the first Both a parasitic radiating plate 336 and a second parasitic radiating plate 346 can be realized by a symmetrical and staggered array of vias and traces.
  • the first feeding path 360 and the second feeding path 362 are partially connected through the second metal piece 352 and form a coupling slot, the width of the coupling slot can be adjusted according to the size of the second metal piece 352, and the length of the coupling slot It can be controlled by adjusting the number of the first metal pieces 350.
  • FIG. 13 (a) is a schematic cross-sectional structure diagram of yet another more specific packaged antenna device 250 provided by an embodiment of the present application.
  • FIG. 13 (b) is a 3D view of the packaged antenna device 250. As shown in FIG. The same symbols in Fig. 13 (a) and Fig. 13 (b) can refer to Fig. 12. The difference is that the antenna in the packaged antenna device 250 in FIG. 13 (a) and FIG. 13 (b) is a vivoldi (Vivaldi) antenna.
  • the first main radiating plate portion 334 (provided in the first substrate 300) and the second main radiating plate portion 344 (provided in the second substrate 260) of the encapsulated antenna device 250 are trumpet-shaped, and pass through an exponential slit structure To control the electromagnetic wave to radiate electromagnetic energy from one end of the slot to the open end.
  • the first ground plate portion 332, the second ground plate portion 342, the first main radiating plate portion 334, the second main radiating plate portion 344, the first feeding path 360 and the second feeding path 362 all pass through the interlayer Line and via or via array to achieve.
  • the feeding position and coupling amount can be controlled by adjusting the position and offset of the via hole respectively.
  • the equivalent height of the first main radiating plate portion 334 and the second main radiating plate portion 344 can be increased by using a multi-layer substrate and a multi-layer PCB.
  • FIG. 14 (a) is a schematic cross-sectional structural diagram of yet another more specific packaged antenna device 250 provided by an embodiment of the present application, which can be used to implement a horn antenna.
  • FIG. 14 (b) shows the packaged antenna device 250 3D view.
  • the same symbols in Fig. 14 (a) and Fig. 14 (b) can be referred to Fig. 12.
  • the antenna in the packaged antenna device 250 in FIGS. 14 (a) and 14 (b) is a horn antenna.
  • the first radiator portion 330 (disposed in the first substrate 300) and the second radiator portion 340 (disposed in the second substrate 260) in the packaged antenna device 250 may have a symmetric structure and pass through the interlayer
  • the traces and the array of vias form a horn-shaped radiator.
  • the electric field forms resonance in the cavity and radiates electromagnetic waves.
  • the equivalent height of the first radiator portion 330 and the second radiator portion 340 may also be increased by using a multi-layer substrate and a multi-layer PCB.
  • the packaged antenna device 250 may adopt a direct feeding method or a coupled feeding method. The present application does not limit the specific feeding method.
  • FIG. 15 (a) is a schematic cross-sectional structural diagram of a more specific packaged antenna device 250 provided by an embodiment of the present application.
  • FIG. 15 (b) is a 3D view of the packaged antenna device 250.
  • the antenna in the packaged antenna device 250 of FIGS. 15 (a) and 15 (b) is a monopole antenna.
  • the first main radiator plate portion 334 and the first ground plate portion 332 in the packaged antenna device 250 are connected, and the first feed path 360 feeds the first main radiator plate portion 334.
  • the second main radiating plate portion 344 can be bent to meet the needs of the antenna for low frequency operation.
  • FIG. 16 (a) is a schematic cross-sectional structural diagram of a more specific packaged antenna device 250 provided by an embodiment of the present application.
  • FIG. 16 (b) is a 3D view of the packaged antenna device 250. As shown in FIG. The same symbols in FIG. 16 (a) and FIG. 16 (b) can refer to FIG. 14 (a) and FIG. 14 (b). The difference is that the antenna in the packaged antenna device 250 of FIGS. 16 (a) and 16 (b) is a Yagi antenna.
  • the packaged antenna device 250 further includes a first parasitic radiating plate portion 336 and a second parasitic radiating plate portion 346, and is connected by the first metal piece 350.
  • the first feeding path 360 is used to feed the first main radiating plate portion 334
  • the second feeding path 362 is used to short-circuit the second main radiating plate portion 344 and the second ground plate portion 342, thereby forming an endfire Characteristic Yagi antenna.
  • FIG. 17 is a schematic cross-sectional structure diagram of the terminal device 1700.
  • the above terminal device 1700 includes a back cover 210, a bezel 220, a display device 230, a middle frame 240, a first shield frame 242, a second shield frame 244, an encapsulated antenna device 250, a PCB 262, and an electronic device 270.
  • the packaged antenna device 250 may be any packaged antenna device in the embodiments of the present application.
  • the direction perpendicular to the middle frame 240 is taken as the vertical direction
  • the direction parallel to the middle frame 240 is taken as the horizontal direction.
  • the middle frame 240 is disposed on one side of the display device 230, and the first shield frame 242, the PCB 262, the second shield frame 244, and the package antenna device 250 are sequentially stacked in a vertical direction away from the center frame 240, wherein the package antenna device 250
  • the first substrate 300 and the second substrate 260 that are electrically connected are included. Whether to provide the first shield frame 242 and the PCB 262 can be selected according to the profile height of the terminal device 1700 and actual requirements.
  • the middle frame 240 and the display device 230 are connected to one end of the frame 220 and the other end is connected to the back cover 210.
  • the electronic device 270 is disposed on the side of the middle frame 240 facing away from the display device 230, and is located in a horizontal direction of the packaged antenna device 250 away from the bezel 220.
  • the back cover 210 is disposed on the side of the package antenna device 250 and the electronic device 270 facing away from the middle frame 240, and can be connected and fixed to the frame 220 through a structural member or an adhesive.
  • the electronic device 270 may be a sensor or other electronic devices.
  • the above-mentioned first shield frame 242 and second shield frame 244 are used to shield the interference electromagnetic waves of the PCB 262 and the second substrate 260.
  • Both the second substrate 260 and the PCB 262 may be high-frequency or low-frequency printed circuit boards, and the second substrate 260 and the PCB 262 may be provided with components and circuit layout wiring. As shown in FIG. 17, in order to allow electromagnetic waves to better radiate from the back cover 210 to the frame 220, the portion of the frame 220 near the packaged antenna device 250 may be hollowed out, so that the frame 220 ensures the end of the antenna At the same time, it has good support force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种高带宽封装天线(AiP,Antenna in Package)装置,涉及封装天线领域,用于实现高带宽天线的封装。该封装天线装置包括相对设置的、电连接的两个基板。其中,天线的一部分设置于其中一个基板中,天线的另一部分设置于另一基板中,天线的上述两个部分通过焊接在两个基板之间的锡球进行连接。上述天线可以包括辐射体(辐射元件),以及为辐射体馈电的馈电路径。通过将天线从一个基板延伸到另一基板中,使得天线的等效高度增大,从而增加垂直极化电流路径,提高天线的增益和带宽。

Description

一种高带宽的封装天线装置 技术领域
本申请涉及半导体领域,尤其涉及封装天线领域。
背景技术
随着5G(5th-Generation)通信时代的来临,毫米波传输成为全球各大运营商的重要选择。在毫米波传输中,毫米波天线作为末端收发器件起着至关重要的作用。随着通信信号频率的升高,信号在传输线上的损耗也会急剧增大,从而影响通信质量。AiP(Antenna in Package,封装天线)可以较好地解决信号在传输线上损耗较大的问题。AiP将天线与芯片集成并封装在一个封装结构中,降低了天线与芯片之间的传输损耗,同时提高了系统集成度。
5G毫米波终端设备在与基站、数据中心等通信时,由于手持设备姿态的特殊性,终端设备中的天线除了需要具备边射辐射(broadside radiation)功能外,还需要具备端射辐射(endfire radiation)功能。此外,为了增加通信质量,通常采用双极化收发天线进行极化分集接收,或者以双极化天线的两个极化方向组建MIMO(Multiple-Input Multiple-Output,多入多出)通信。如图1所示的是现有技术中一种封装天线100,包括边射天线110、端射天线120,其中芯片(die)130被倒装于封装天线100的底部,并通过馈电路径140向边射天线110和端射天线120,以分别完成双极化。由于终端设备的小型化趋势对封装天线的厚度限制日益严格,端射天线120的垂直极化难以实现。例如,终端设备中封装天线的厚度被限制在0.9mm左右,而端射天线120正常工作需要的物理尺寸约为谐振频率的半波长(如毫米波28GHz频段半波长约5mm),因此在有限的厚度下使端射天线120垂直极化的难度较大。在现有技术中,可以通过弯折端射天线120来实现较小封装天线厚度下的端射天线120的垂直极化。然而,上述弯折处理使得端射天线120的垂直极化有效电流路径缩短,从而限制了天线的带宽,无法满足5G毫米波28GHz频段的带宽要求。
发明内容
本申请的实施例提供一种封装天线装置,可以用于解决终端设备中端射天线的垂直极化电流路径较短、带宽较低的问题。
第一方面,本申请实施例提供一种封装天线装置,包括第一辐射体部分、第二辐射体部分、第一馈电路径、第一金属件,以及相对设置的第一基板和第二基板,其中上述第一辐射体部分和第一馈电路径设置于上述第一基板中,第二辐射体部分设置于上述第二基板中,第一馈电路径用于对第一辐射体部分馈电,上述两个辐射体部分通过设置于两个基板之间的第一金属件连接。
由于第一金属件将上述两个辐射体部分连接,天线增加的等效高度等于第一金属件和第二辐射体部分的高度,使得天线产生的垂直极化电流路径不仅可以分布在第一辐射体部分,还可以分布在第一金属件和第二辐射体部分,因此增加了垂直极化电流路径,从而提高了封装天线装置中天线的增益和带宽。
在一种可能的实施方式中,上述封装天线装置还包括设置于第二基板中的第二馈电路径,以及用于连接上述两个基板中的两个馈电路径的第二金属件,上述第二馈电路径用于对上述第二辐射体部分馈电。由于第二金属件连接了上述两个馈电路径,使得馈电路径的等效高度也得到了增加,因此增加了馈电路径中的垂直极化电流路径,更有利于对上述两个辐射体部分馈电,从而提高天线的增益和带宽。
在一种可能的实施方式中,上述第一辐射体部分包括第一接地板部分,上述第二辐射体部分包括第二接地板部分,且两个接地板部分通过上述第一金属件连接。将上述两个接地板连接起来,增加了接地板上的垂直极化电流路径,减小天线的后向辐射,从而提升天线的增益。
在一种可能的实施方式中,上述第一辐射体部分包括第一主辐射板部分,上述第二辐射体部分包括第二主辐射板部分,且两个主辐射板部分通过上述第一金属件连接。将上述两个主辐射板部分连接起来,增加了主辐射板上的垂直极化电流路径,从而提高了天线的带宽和增益。
在一种可能的实施方式中,上述第一辐射体部分包括第一寄生辐射板部分,上述第二辐射体部分包括第二寄生辐射板部分,且两个寄生辐射板部分通过上述第一金属件连接。将上述两个寄生辐射板部分连接起来,增加了寄生辐射板上的垂直极化电流路径,从而提高了天线的方向性。
在一种可能的实施方式中,上述第一主辐射板部分和第二主辐射板部分包括±45°极化的双极化振子。其中,第一主辐射板部分包括夹角为90°的第一正极化振子和第一负极化振子,第二主辐射板部分包括夹角为90°的第二正极化振子和第二负极化振子。通过调整上述两个主辐射板部分的方向,可以实现±45°双极化天线,使得封装天线装置中天线的极化方式更加灵活。
在一种可能的实施方式中,上述第一辐射体部分包括第一主辐射板部分,上述第二辐射体部分包括第二主辐射板部分,且上述两个主辐射板部分没有直接连接,其中第一馈电路径用于对第一主辐射板部分耦合馈电,第二馈电路径用于对第二主辐射板部分耦合馈电。采用耦合馈电的方式进行耦合,使得在增加上述两个主辐射板部分的垂直极化电流路径的情况下,馈电的方式更加灵活。
在一种可能的实施方式中,上述封装天线装置还包括第一芯片,该第一芯片设置于第一基板朝向第二基板的一侧,该第一芯片用于为上述两个馈电路径提供射频信号。封装天线装置将芯片和天线集成并封装在一起,使得射频信号在传输线上的损耗变小,从而提升通信质量。
在一种可能的实施方式中,上述第一辐射体部分和第二辐射体部分的最大辐射方向与上述第一芯片的法线垂直。即,上述两个辐射体部分为封装天线装置中的端射天线。通过提高端射天线的等效高度,从而增加垂直极化电流路径,因此提升了天线的增益和带宽。
在一种可能的实施方式中,上述封装天线装置还包括与上述第一芯片的法线平行的第三辐射体。即,上述第三辐射体为封装天线装置中的边射天线。将边射天线和改进后的端射天线集成在同一个封装天线中,有利于提高天线整体的增益和带宽。
在一种可能的实施方式中,上述第一金属件和第二金属件为球栅阵列BGA球。将BGA球作为金属件的材料,成本较低且可以较好地控制两个基板之间的距离。
在一种可能的实施方式中,上述第一辐射体部分、第二辐射体部分、第一馈电路径和第二馈电路径中的至少一个通过过孔来实现。通过过孔实现上述结构可以降低工艺的复杂度。
在一种可能的实施方式中,上述第一辐射体部分、第二辐射体部分、第一馈电路径和第二馈电路径中的至少一个通过错位排布的过孔阵列和走线来实现,其中走线用于在水平方向上连接过孔阵列。通过过孔阵列和走线实现上述结构,使得天线以及馈电路径的方向和结构更加灵活,例如可以实现±45°的极化,或者根据实际的天线阵列排布的需求进行过孔布局和走线。
在一种可能的实施方式中,上述第二辐射体部分设置于第二基板朝向第一基板的一侧,并且第二辐射体部分包括焊垫或走线。当对天线的高度需求较小时,可以仅通过第二金属件和第二基板表面的焊垫或走线来增加垂直极化电流路径,而无需在第二基板内部设置天线结构。此时垂直极化电流路径的增加量即第二金属件的高度。采用上述结构可以简化封装天线装置的结构,降低成本。
在一种可能的实施方式中,上述封装天线装置还包括第二芯片,该第二芯片设置于第二基板背对第一基板的一侧。第二芯片可以是数据处理芯片,例如CPU(Central Processing Unit,中央处理器),或者数据缓存芯片,例如DRAM(Dynamic Random Access Memory,动态随机存取存储器)。将第二芯片与第一芯片、天线集成于封装天线装置中,可以使封装天线装置的功能更加完善,数据处理能力更强。
在一种可能的实施方式中,上述第一基板为中介层。将中介层作为第一基板的材料,使得封装天线装置结构的稳定性更强。
在一种可能的实施方式中,上述第二基板为第一印制电路板PCB。例如,第二基板为高频PCB,并在该高频PCB上还可以设置其他的芯片或电路,使得封装天线装置具有其他的数据处理或传输功能。
在一种可能的实施方式中,上述第一主辐射板部分与第一接地板部分连接,第二主辐射板部分与第二接地板部分连接,且第一接地板部分和第二接地板部分通过第一金属件连接,第一馈电路径和第二馈电路径分别设置于第一基板和第二基板中,并且通过第二金属件连接,以对第一主辐射板部分和第二主辐射板部分耦合馈电。上述两个馈电路径可以设置于两个基板内部,也可以设置于两个基板相对的两个表面上。通过耦合馈电的方式馈电,使得封装天线装置中天线的设计更加灵活。
在一种可能的实施方式中,上述封装天线装置包括维瓦尔第天线,其中上述第一接地板部分、第二接地板部分、第一主辐射板部分、第二主辐射板部分、第一馈电路径和第二馈电路径均通过层间走线和过孔或过孔阵列来实现。通过调整层间走线,以及过孔或过孔阵列的布局,可以形成多种天线的实现方式,使得封装天线装置的天线种类的设计更加灵活。
在一种可能的实施方式中,上述封装天线装置包括单极子天线。通过将第二主辐射板部分进行弯折处理,可以满足天线低频工作的需要,使得封装天线装置的天线种类的设计更加灵活。
在一种可能的实施方式中,上述封装天线装置包括八木天线,其中第一馈电路径用于对第一主辐射板部分馈电,第二馈电路径用于将第二主辐射板部分和第二接地板部分短接。通过改变上述两个馈电路径的馈电方式,使得封装天线装置的天线种类的设计更加灵活。
第二方面,本申请实施例提供一种终端设备,该终端设备包括如第一方面及其可能的实施方式所述的封装天线装置。
由于第一金属件将上述两个辐射体部分连接,天线增加的等效高度等于第一金属件和第二辐射体部分的高度,使得天线产生的垂直极化电流路径不仅可以分布在第一辐射体部分,还可以分布在第一金属件和第二辐射体部分,因此增加了垂直极化电流路径,从而提高了终端设备中天线的增益和带宽。
在一种可能的实施方式中,上述终端设备还包括第三辐射体部分、第一结构件和第三金属件,其中第一结构件设置于第二基板背对第一基板的一侧,第三辐射体部分设置于第一结构件中,且与第二辐射体部分通过第三金属件连接,上述第一馈电路径还用于对第三辐射体部分馈电。将天线延伸到上述封装天线装置之外的结构件中,充分利用终端设备的有限空间,有利于进一步增大天线的等效高度,增加垂直极化电流路径,从而提高终端设备中天线的增益和带宽。
在一种可能的实施方式中,上述终端设备还包括第四辐射体、第二结构件和第四金属件,其中第二结构件设置于第一基板背对第二基板的一侧,第四辐射体部分设置于第二结构件中,且与第一辐射体部分通过第三金属件连接,上述第一馈电路径还用于对第四辐射体部分馈电。将天线延伸到上述封装天线装置之外的结构件中,充分利用终端设备的有限空间,有利于进一步增大天线的等效高度,增加垂直极化电流路径,从而提高终端设备中天线的增益和带宽。
在一种可能的实施方式中,上述终端设备还包括第五辐射体部分、第二PCB和第五金属件,其中第二PCB设置于第二基板背对第一基板的一侧,第五辐射体部分设置于第二PCB种,并通过第五金属件和第二辐射体部分连接,第一馈电路径还用于对第五辐射体部分馈电。将天线延伸到其他PCB中,使得终端设备在包含多个层叠设置的PCB的情况下,充分利用终端设备的有限空间,有利于进一步增大天线的等效高度,增加垂直极化电流路径,从而提高终端设备中天线的增益和带宽。
在一种可能的实施方式中,上述第三金属件、第四金属件和第五金属件为金属搭接线。使用金属搭接线连接各个辐射体部分,使得垂直极化电流能够更好的在上述各个辐射体部分之间分布,从而提高设备中天线的增益和带宽。
在一种可能的实施方式中,上述第三辐射体部分、第四辐射体部分和第五辐射体部分中的至少一个包括金属柱和镀金属走线。通过在结构件和PCB的表面或内部设置金属柱和镀金属走线,可以以较低的成本实现上述辐射体部分的结构。
第三方面,本申请实施例提供一种封装天线装置,包括第一辐射体部分、第一馈电路 径、第一金属件,以及第一基板,其中第一辐射体部分和第一馈电路径设置于第一基板中,第一金属件用于连接第一基板中的第一辐射体部分和第二基板中的第二辐射体部分,第一馈电路径用于对第一辐射体部分馈电。
由于第一金属件将上述两个辐射体部分连接,天线增加的等效高度等于第一金属件和第二辐射体部分的高度,使得天线产生的垂直极化电流路径不仅可以分布在第一辐射体部分,还可以分布在第一金属件和第二辐射体部分,因此增加了垂直极化电流路径,从而提高了封装天线装置中天线的增益和带宽。
在一种可能的实施方式中,上述封装天线装置还包括第二金属件,该第二金属件用于连接第一馈电路径,以及上述第二基板中的第二馈电路径,该第二馈电路径用于对第二辐射体部分馈电。由于第二金属件连接了上述两个馈电路径,使得馈电路径的等效高度也得到了增加,因此增加了馈电路径中的垂直极化电流路径,更有利于对上述两个辐射体部分馈电,从而提高天线的增益和带宽。
在一种可能的实施方式中,上述第一辐射体部分包括第一接地板部分,上述第二辐射体部分包括第二接地板部分,且两个接地板部分通过上述第一金属件连接。将上述两个接地板连接起来,增加了接地板上的垂直极化电流路径,减小天线的后向辐射,从而提升天线的增益。
在一种可能的实施方式中,上述第一辐射体部分包括第一主辐射板部分,上述第二辐射体部分包括第二主辐射板部分,且两个主辐射板部分通过上述第一金属件连接。将上述两个主辐射板部分连接起来,增加了主辐射板上的垂直极化电流路径,从而提高了天线的带宽和增益。
在一种可能的实施方式中,上述第一辐射体部分包括第一寄生辐射板部分,上述第二辐射体部分包括第二寄生辐射板部分,且两个寄生辐射板部分通过上述第一金属件连接。将上述两个寄生辐射板部分连接起来,增加了寄生辐射板上的垂直极化电流路径,从而提高了天线的方向性。
在一种可能的实施方式中,上述第一主辐射板部分和第二主辐射板部分可以包括±45°极化的双极化振子。其中,第一主辐射板部分包括夹角为90°的第一正极化振子和第一负极化振子,第二主辐射板部分包括夹角为90°的第二正极化振子和第二负极化振子。通过调整上述两个主辐射板部分的方向,可以实现±45°双极化天线,使得封装天线装置中天线的极化方式更加灵活。
在一种可能的实施方式中,上述封装天线装置还包括第一芯片,该第一芯片设置于第一基板朝向第二基板的一侧,该第一芯片用于为上述两个馈电路径提供射频信号。封装天线装置将芯片和天线集成并封装在一起,使得射频信号在传输线上的损耗变小,从而提升通信质量。
在一种可能的实施方式中,上述第一辐射体部分和第二辐射体部分的最大辐射方向与上述第一芯片的法线垂直。即,上述两个辐射体部分为封装天线装置中的端射天线。通过提高端射天线的等效高度,从而增加垂直极化电流路径,因此提升了天线的增益和带宽。
在一种可能的实施方式中,上述第一金属件和第二金属件为球栅阵列BGA球。将BGA球作为金属件的材料,成本较低且可以较好地控制两个基板之间的距离。
在一种可能的实施方式中,上述封装天线装置还包括与上述第一芯片的法线平行的第三辐射体。即,上述第三辐射体为封装天线装置中的边射天线。将边射天线和改进后的端射天线集成在同一个封装天线中,有利于提高天线整体的增益和带宽。
在一种可能的实施方式中,上述第一辐射体部分和第一馈电路径中的至少一个通过过孔来实现。通过过孔实现上述结构可以降低工艺的复杂度。
在一种可能的实施方式中,上述第一辐射体部分和第一馈电路径中的至少一个通过错位排布的过孔阵列和走线来实现,其中走线用于在水平方向上连接过孔阵列。通过过孔阵列和走线实现上述结构,使得天线以及馈电路径的方向和结构更加灵活,例如可以实现±45°的极化,或者根据实际的天线阵列排布的需求进行过孔布局和走线。
第四方面,本申请实施例提供一种终端设备,包括后盖、边框、显示装置、中框,以及封装天线装置,其中,上述显示装置、中框和封装天线装置依次层叠设置,上述后盖设置于封装天线装置背对中框的一侧,其中中框和显示装置与边框的一端连接,边框的另一端与后盖连接,上述封装天线装置为如第一方面及其可能的实施方式所述的封装天线装置
由于第一金属件将上述两个辐射体部分连接,天线增加的等效高度等于第一金属件和第二辐射体部分的高度,使得天线产生的垂直极化电流路径不仅可以分布在第一辐射体部分,还可以分布在第一金属件和第二辐射体部分,因此增加了垂直极化电流路径,从而提高了终端设备中天线的增益和带宽。
在一种可能的实施方式中,上述终端设备还包括设置于中框和封装天线装置之间的第二PCB。终端设备中设置多个PCB,并在该PCB上还可以设置其他的芯片或电路,使得终端设备具有其他的数据处理或传输功能。
在一种可能的实施方式中,上述终端设备还包括设置于封装天线装置和第二PCB之间的第一屏蔽框,该第一屏蔽框用于屏蔽和干扰第二PCB和第二基板之间的电磁波。第一屏蔽框能够减少第二PCB和第二基板中的电磁波对其他电路的影响。
在一种可能的实施方式中,上述终端设备还包括设置于第二PCB和中框之间的第二屏蔽框,该第二屏蔽框用于屏蔽和干扰第二PCB和中框之间的电磁波。第二屏蔽框能够减少第二PCB中的电磁波对其他电路的影响。
在一种可能的实施方式中,上述边框包括凹槽,该凹槽靠近封装天线装置。将边框部分挖空并形成凹槽结构,使得边框在保证天线进行端射辐射的同时有较好的支撑力。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为现有技术中的一种封装天线。
图2为本申请实施例中一种终端设备的剖面结构示意图。
图3为本申请实施例中一种封装天线装置的剖面结构示意图。
图4为本申请实施例中另一种封装天线装置的剖面结构示意图。
图5为本申请实施例中又一种封装天线装置的剖面结构示意图。
图6为本申请实施例中一种更为具体的封装天线装置的剖面结构示意图。
图7为本申请实施例中另一种更为具体的封装天线装置的剖面结构示意图。
图8为本申请实施例中另一种终端设备的剖面结构示意图。
图9为本申请实施例中又一种终端设备的剖面结构示意图。
图10(a)为本申请实施例中又一种更为具体的封装天线装置的剖面结构示意图;
图10(b)为该封装天线装置的3D视图。
图11(a)为本申请实施例中又一种更为具体的封装天线装置的剖面结构示意图;
图11(b)为该封装天线装置的3D视图。
图12为本申请实施例中又一种更为具体的封装天线装置的剖面结构示意图。
图13(a)为本申请实施例中又一种更为具体的封装天线装置的剖面结构示意图;
图13(b)为该封装天线装置的3D视图。
图14(a)为本申请实施例中又一种更为具体的封装天线装置的剖面结构示意图;
图14(b)为该封装天线装置的3D视图。
图15(a)为本申请实施例中又一种更为具体的封装天线装置的剖面结构示意图;
图15(b)为该封装天线装置的3D视图。
图16(a)为本申请实施例中又一种更为具体的封装天线装置的剖面结构示意图;
图16(b)为该封装天线装置的3D视图。
图17为本申请实施例中一种更为具体的终端设备的剖面结构示意图。
附图标记:封装天线装置250;第一基板300;第二基板260;射频处理芯片310;BGA球312;边射天线320;第一辐射体部分330;第一金属件350;第二金属件352;第二辐射体部分340;第一馈电路径360;第一接地板部分332;第二接地板部分342;第一馈电路径360;第二馈电路径362;第一主辐射板部分334;第二主辐射板部分344;第一寄生辐射板部分336;第二寄生辐射板部分346;第一正极化振子3342;第一负极化振子3344;第二正极化振子3444;第二负极化振子3442;第一结构件370;第三辐射体部分371;第三金属件372;第二结构件373;第四辐射体部分374;第四金属件375;PCB262;第五辐射体部分376;第五金属件377。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图2所示的是本申请实施例提供的一种终端设备200的剖面结构示意图,该终端设备200可以为智能手机、便携式电脑、平板电脑、电子手环或其他具有通信功能的终端设备。上述终端设备200可以包括后盖210、边框220、显示装置230和中框240,其中后盖210和显示装置230相对设置,并通过边框220连接,以在后盖210和显示装置230之间形成空腔。中框240设置于显示装置230朝向后盖210的一侧。后盖210和中框240之间 设置有封装天线装置250和PCB(Printed Circuit Board,印制电路板)262,该封装天线装置250设置于PCB262朝向后盖210的一侧,并通过锡球与PCB262形成电连接。上述封装天线装置250可以用于接收、发射和处理电磁波信号。封装天线装置250包括第一基板300和第二基板260,上述第一基板300和第二基板260可以通过锡球等金属连接件进行连接。
如图3所示的是本申请实施例提供的一种封装天线装置250的剖面结构示意图。上述封装天线装置250包括相对设置的第一基板300和第二基板260。上述第一基板300可以为采用无源硅片实现的中介层(interposer);上述第二基板260也可以为中介层,或者为采用覆铜箔层压板实现的印制电路板。第一基板300和第二基板260通过设置于二者间的BGA球312形成电连接。第一基板300的下表面的一侧,即第一基板300朝向第二基板260的一侧设置有射频处理芯片310,该射频处理芯片310用于处理射频信号,并通过锡球或其他金属焊接材料与第一基板300形成电连接。第一基板300的上表面的一侧,即第一基板300背对第二基板260的一侧设置有边射天线320,该边射天线320的最大辐射方向与射频处理芯片310的法线平行。需要注意的是,在本申请中,将射频处理芯片310朝向第一基板300的方向定义为射频处理芯片310的法线方向,例如图3中的垂直方向为射频处理芯片310的法线方向。射频处理芯片310可以通过设置于第一基板300中的馈电路径对边射天线320馈电,使得边射天线320被激励,以接收和发射电磁波信号。封装天线装置250还包括端射天线,该端射天线的最大辐射方向与射频处理芯片310的法线垂直。上述端射天线包括方向一致的第一辐射体部分330和第二辐射体部分340。
在上述封装天线装置250中,第一辐射体部分330设置于第一基板300中,第二辐射体部分340设置于第二基板260中,第一辐射体部分330和第二辐射体部分340通过第一金属件350形成电连接。可以在第一辐射体部分330靠近第二基板260的一端,以及第二辐射体部分340靠近第一基板300的一端设置焊垫,从而使得第一金属件350与第一辐射体部分330和第二辐射体部分340之间的连接更加稳固。射频处理芯片310也可以通过设置于第一基板300中的第一馈电路径360对第一辐射体部分330馈电,使得第一辐射体部分330和第二辐射体部分340被激励,以接收和发射电磁波信号。被激励的第一辐射体部分330、第一金属件350和第二辐射体部分340中存在垂直极化电流,其方向与射频处理芯片310的法线方向平行。上述天线极化的方式包括水平极化和垂直极化,也可以包括±45°极化。例如,当上述端射天线被垂直极化激励或±45°极化激励,则在该端射天线中会产生±45°极化的电流。
由于第一金属件350将第二辐射体部分340与第一辐射体部分330连接,使得端射天线的等效高度从原来的第一辐射体部分330的高度变为第一辐射体部分330、第一金属件350以及第二辐射体部分340的高度。端射天线的等效高度的增加,使得端射天线产生的垂直极化电流路径可以分布在第一辐射体部分330、第一金属件350和第二辐射体部分340上,即增加了端射天线在垂直方向的极化电流路径,因此提高了端射天线的增益和带宽。需要注意的是,本申请中天线的等效高度均指上述端射天线在垂直方向,也就是平行于射频处理芯片310法线的方向上的高度。
在一种实施方式中,上述封装天线装置250还可以包括设置于第二基板250背对第一基板的一侧的芯片,该芯片可以为CPU(Central Processing Unit,中央处理器)芯片,也 可以为缓存芯片,例如DRAM(Dynamic Random Access Memory,动态随机存取存储器)。该芯片通过锡球或其他金属连接件与第二基板250形成电连接。
上述第一辐射体部分330和第二辐射体部分340可以通过如图3所示的过孔(via)实现,其中第一辐射体部分330、第一金属件350和第二辐射体部分340位于一条直线上。如图4所示的是上述封装天线装置250的另一种实施方式的剖面结构示意图,其中图4中的相同标记可以参考图3。与图3不同的是,根据所需要的天线类型和布线要求,图4中的第一辐射体部分330和第二辐射体部分340也可以通过错位排布的过孔阵列(via array)以及层间走线来实现(层间走线用于连接错位排布的过孔),即将第一辐射体部分330和第二辐射体部分340进行弯折等处理,以提高天线的带宽。与过孔相比,通过错位排布的过孔阵列以及层间走线来实现的实际等效高度相同,并且同样可以使得垂直极化电流路径分别在第一辐射体部分330、第一金属件350和第二辐射体部分340上,以提高端射天线的增益和带宽。
如图5所示的是上述封装天线装置250的又一种实施方式的剖面结构示意图,其中图5中的相同标记可以参考图3。与图3不同的是,图5中的封装天线装置250中的第二辐射体部分340还可以通过设置于第二基板260朝向第一基板300一侧的走线或焊垫来实现。由于第一金属件350(例如锡球)有一定的体积和高度,因此垂直极化电流也可以分布在第一金属件350和第二辐射体部分340中,以提高端射天线的增益和带宽。
如图6所示的是本申请实施例提供的一种更为具体的封装天线装置250的剖面结构示意图,其中图6中的相同标记可以参考图3。不同的是,图6中的封装天线装置250中的辐射体可以进一步包括接地板、主辐射板和寄生辐射板中的至少一种。接地板用于反射电磁波信号,同时也是信号参考地;主辐射板被馈电并发射或接收电磁波信号;寄生辐射板作为引向器,可以增强电磁波信号的方向性。具体来说,第一辐射体部分330包括第一接地板部分332、第一主辐射板部分334和第一寄生辐射板336,相对应的,第二辐射体部分340包括第二接地板部分342、第二主辐射板部分344和第二寄生辐射板346。第一接地板部分332和第二接地板部分342、第一主辐射板部分334和第二主辐射板部分344、第一寄生辐射板336和第二寄生辐射板346均通过独立的第一金属件350连接。射频处理芯片310通过第一馈电路径360对第一主辐射板部分334馈电,使得第一主辐射板部分334和第二主辐射板部分344被激励。第一寄生辐射板336和第二寄生辐射板346分别与第一主辐射板部分334和第二主辐射板部分344产生谐振,以提高天线辐射的方向性。第一接地板部分332和第二接地板部分342与射频处理芯片310的地端连接,以提供信号参考地。由于第一金属件350分别将第一接地板部分332和第二接地板部分342、第一主辐射板部分334和第二主辐射板部分344、第一寄生辐射板336和第二寄生辐射板346连接,使得端射天线的接地板、主辐射板和寄生辐射板的等效高度增大,从而增加了端射天线在垂直方向的极化电流路径,因此提高了端射天线的增益和带宽。
需要注意的是,可以根据天线设计的需求和基板布线的需求设置上述第一接地板部分332、第一主辐射板部分334、第一寄生辐射板336,以及第二接地板部分342、第二主辐射板部分344和第二寄生辐射板346。例如,在第一基板300中设置第一接地板332、第一馈电路径360、第一主辐射板334和第一寄生辐射板336,同时在第二基板260中设置第二接地板342、第二主辐射板344和第二寄生辐射板346,也可以仅在第二基板260中设置第 二接地板342。本申请不对接地板、主辐射板和寄生辐射板的数量和具体位置做其他限定,但需要第二基板260包括第二接地板342、第二主辐射板344和第二寄生辐射板346中的至少一种。第一馈电路径360可以为对第一主辐射板部分334的直接馈电,也可以为对第一主辐射板部分334的耦合馈电,本申请不对馈电方式做任何限定。此外,本申请也不对接地板、主辐射板和寄生辐射板的高度做限定。例如,第一基板300包括4层布线层(其中最靠近第二基板260的布线层为第4层),则第一接地板332可以包括从第一基板300的第3层到第4层的过孔,也可以包括从第一基板300的第1层到第4层的过孔。
如图7所示的是本申请实施例提供的另一种更为具体的封装天线装置250的剖面结构示意图,其中图7中的相同标记可以参考图6。与图6不同的是,图7中的封装天线装置250还包括设置于第二基板260中的第二馈电路径362,该第二馈电路径362与第一馈电路径360通过设置于第一基板300和第二基板260之间的第二金属件352连接。与图6不同的是,图7中的第一馈电路径360对第一主辐射板部分334耦合馈电,第二馈电路径362对第二主辐射板部分344耦合馈电,上述第一主辐射板部分334和第二主辐射板部分344之间没有直接的物理连接。由于馈电路径和主辐射板部分形成了耦合馈电,使得第一主辐射板部分334和第二主辐射板部分344中均存在垂直极化电流,使得主辐射板的等效高度增大,从而增加了端射天线在垂直方向的极化电流路径,因此提高了端射天线的增益和带宽。
与第一辐射体部分330和第二辐射体部分340类似,上述第一馈电路径360和上述第二馈电路径362也可以通过过孔,或者通过过孔阵列以及层间走线来实现(层间走线用于连接错位排布的过孔),以缩小封装天线装置250的体积,提高天线的带宽。
上述第一金属件350和第二金属件352可以为锡球,例如球栅阵列BGA(Ball Grid Array,球栅阵列)球,或者其他具有导电性能的结构件。可以在第一馈电路径360靠近第二基板260的一端,以及第二馈电路径362靠近第一基板300的一端设置焊垫,从而使得第二金属件352与第一馈电路径360和第二馈电路径362之间的连接更加稳固。
如图8所示的是根据本申请实施例的另一种终端设备200的剖面结构示意图,包括封装天线装置250、第一结构件370和第二结构件373,该封装天线装置250可以为本申请实施例提供的任意一种封装天线装置。其中,第一结构件370设置于第二基板260的下方,即背向第一基板300的一侧。第一结构件370包括设置于其中的第三辐射体部分371,该第三辐射体部分371通过第三金属件372与第二辐射体部分340连接,上述第三金属件372设置于第二基板260和第一结构件370之间。第二结构件373设置于第一基板300的上方,即背向第二基板260的一侧。第二结构件373包括设置于其中的第四辐射体部分374,该第四辐射体部分374通过第四金属件375与第一辐射体部分330连接,上述第四金属件375设置于第一基板300和第二结构件373之间。
上述第一结构件370和第二结构件373可以为终端设备中的边框或中框,也可以为其他终端设备中的结构件。上述第三金属件372和第四金属件375可以为金属搭接线,也可以为其他具有导电功能的搭接线或连接球。上述第三辐射体部分371和第四辐射体部分374可以通过过孔,或者通过过孔阵列以及层间走线来实现(层间走线用于连接错位排布的过孔),也可以通过金属柱和镀金属走线实现。在一种实施方式中,可以根据终端设备200的设计需求在上述第一结构件370背对第一基板300的一侧设置其他结构件、辐射体部分和 金属件。在一种实施方式中,可以在上述第二结构件373背对第一基板300的一侧设置其他结构件、辐射体部分和金属件。在另一种实施方式中,也可以只设置第一结构件370、第三辐射体部分371和第三金属件372,或者只设置第二结构件373、第四辐射体部分374和第四金属件375。本申请不对终端设备200中结构件、辐射体部分和金属件的个数做任何限定。
如图9所示的是根据本申请实施例的又一种终端设备200的剖面结构示意图,其中图9中的相同标记可以参考图8。与图8不同的是,图9中的终端设备200还包括PCB262,该PCB262可以设置于第二基板260和第一结构件370之间。具体来说,上述PCB262包括设置于PCB262中的第五辐射体部分376,该第五辐射体部分376的一端与第二辐射体部分340通过设置于第二基板260和PCB262之间的第五金属件377连接,同时该第五辐射体部分376的另一端与第三辐射体部分371通过设置于PCB262和第一结构件370之间的第三金属件372连接。在一种实施方式中,第二基板260可以为高频PCB板,用于传输和处理高频信号;PCB262可以为低频PCB板,用于传输和处理中频和低频信号。在一种实施方式中,可以根据设计需求在第一结构件370朝向第一基板300的一侧,或者第二结构件373朝向第一基板300的一侧设置其他PCB。本申请不对终端设备200中PCB的个数和位置做任何限定。
上述第五金属件377可以为金属搭接线,也可以为其他具有导电功能的搭接线或连接球。上述第五辐射体部分376可以通过过孔实现,或者通过过孔阵列以及层间走线来实现(层间走线用于连接错位排布的过孔),也可以通过金属柱和镀金属走线实现。与第一辐射体部分330和第二辐射体部分340类似,上述第三辐射体部分371、第四辐射体部分374和第五辐射体部分376分别至少包括接地板、主辐射板和寄生辐射板中的至少一种,此处不再赘述。
如图10(a)所示的是本申请实施例提供的又一种更为具体的封装天线装置250的剖面结构示意图,图10(b)为该封装天线装置250的3D视图。图10(a)和图10(b)中的相同标记可以参考图8。与图8不同的是,图10(a)和图10(b)中的封装天线装置250采用“η”形弯折结构馈电路径对第一主辐射板部分334和第二主辐射板344耦合馈电。具体来说,第一主辐射板部分334与第一接地板部分332电连接,第二主辐射板部分344与第二接地板部分342电连接,且第一接地板部分332和第二接地板部分342通过第一金属件350连接,而第一主辐射板部分334和第二主辐射板部分344之间没有形成直接的连接关系。第一馈电路径360和第二馈电路径362分别设置于第一基板300和第二基板260中,通过第二金属件352连接,并对第一主辐射板部分334和第二主辐射板部分344耦合馈电。在一种实施方式中,上述第一馈电路径360和第二馈电路径362可以分别设置于第一基板300和第二基板260的中间布线层中;在另一种实施方式中,上述第一馈电路径360和第二馈电路径362也可以分别设置于第一基板300朝向第二基板260的一侧,以及第二基板260朝向第一基板300的一侧。上述第一馈电路径360和第二馈电路径362通过第二金属件352连接,以形成“η”形的弯折结构,其中第一馈电路径360主要用于对第一主辐射板部分334耦合馈电,第二馈电路径362主要用于对第二主辐射板部分344耦合馈电。上述第一主辐射板部分334、第二主辐射板部分344、第一接地板部分332和第二接地板部分342均可以采用对称振子形态,并通过加宽处理以增加工作带宽。
如图11(a)所示的是本申请实施例提供的又一种更为具体的封装天线装置250的剖面结构示意图,图11(b)为该封装天线装置250的3D视图。图11(a)和图11(b)中的相同标记可以参考图10(a)和图10(b)。不同的是,图11(a)和图11(b)的封装天线装置250中的天线为±45°双极化天线。具体来说,封装天线装置250中的第一主辐射板部分334包括第一正极化振子3342和第一负极化振子3344,第二主辐射板部分344包括第二正极化振子3444和第二负极化振子3442,其中上述第一正极化振子3342和第一负极化振子3344的夹角为90°,第二正极化振子3444和第二负极化振子3442也为90°。通过上述结构可以实现天线的±45°双极化,其中第一馈电路径360中的部分馈电路径用于对第一负极化振子3344进行-45°极化,第二馈电路径362中的部分馈电路径用于对第二负极化振子3442进行-45°极化,且上述两部分的馈电路径通过第二金属件352进行连接;第一馈电路径360中的另一部分馈电路径用于对第一正极化振子3342进行+45°极化,第二馈电路径362中的另一部分馈电路径用于对第二正极化极子3444进行+45°极化,且上述两部分馈电路径通过第二金属件352进行连接。上述用于﹢45°极化的馈电路径和用于-45°极化的馈电路径分别通过第二金属件352进行交叉走线,并通过调整第二金属件352前后位置以及走线的弯折保证两路馈电信号的幅相需求,以形成完整的±45°双极化天线。
如图12所示的是本申请实施例提供的又一种更为具体的封装天线装置250的剖面结构示意图,其中图12中的相同标记可以参考图10(a)。与图10(a)不同的是,图12的封装天线装置250中的第一馈电路径260和第二馈电路径362通过耦合馈电的方式对第一主辐射板部分334和第二主辐射板344馈电。具体来说,封装天线装置250还包括第一寄生辐射板部分336和第二寄生辐射板部分346,且上述第一寄生辐射板部分336和第二寄生辐射板部分346通过第一金属件350连接。封装天线装置250中的第一馈电路径360、第二馈电路径362、第一接地板部分332、第二接地板部分342、第一主辐射板部分334、第二主辐射板344、第一寄生辐射板336和第二寄生辐射板346均可以通过对称的、错位排布的过孔阵列和走线来实现。其中,第一馈电路径360和第二馈电路径362通过第二金属件352部分连通并形成耦合缝隙,该耦合缝隙的宽度可以根据第二金属件352的大小进行调整,该耦合缝隙的长度可以通过调整第一金属件350的数量来控制。
如图13(a)所示的是本申请实施例提供的又一种更为具体的封装天线装置250的剖面结构示意图,图13(b)为该封装天线装置250的3D视图。图13(a)和图13(b)中的相同标记可以参考图12。不同的是,图13(a)和图13(b)中的封装天线装置250中的天线为vivaldi(维瓦尔第)天线。其中,封装天线装置250的第一主辐射板部分334(设置于第一基板300中)和第二主辐射板部分344(设置于第二基板260中)呈喇叭状,通过指数形状的缝隙结构来控制电磁波从缝隙的一端向开口端辐射电磁能量。其中,第一接地板部分332、第二接地板部分342、第一主辐射板部分334、第二主辐射板部分344、第一馈电路径360和第二馈电路径362均通过层间走线和过孔或过孔阵列来实现。馈电位置和耦合量可以分别调整上述过孔的位置和偏移量来控制。为了增大喇叭天线的口径,可以采用多层基板和多层PCB的方式增大第一主辐射板部分334和第二主辐射板部分344的等效高度。
如图14(a)所示的是本申请实施例提供的又一种更为具体的封装天线装置250的剖面结构示意图,可以用于实现喇叭天线,图14(b)为该封装天线装置250的3D视图。图 14(a)和图14(b)中的相同标记可以参考图12。不同的是,图14(a)和图14(b)中的封装天线装置250中的天线为喇叭天线。具体来说,封装天线装置250中的第一辐射体部分330(设置于第一基板300中)和第二辐射体部分340(设置于第二基板260中)可以为对称结构,并通过层间走线,以及过孔阵列形成喇叭状的辐射体。由于第一辐射体部分330和第二辐射体部分340形成腔体结构,使得电场在腔内形成谐振,并辐射出电磁波。为了增大喇叭天线的口径,也可以采用多层基板和多层PCB的方式增大第一辐射体部分330和第二辐射体部分340的等效高度。该封装天线装置250可以采用直接馈电的方式,也可以采用耦合馈电的方式,本申请不对具体的馈电方式做限定。
如图15(a)所示的是本申请实施例提供的一种更为具体的封装天线装置250的剖面结构示意图,图15(b)为该封装天线装置250的3D视图。图15(a)和图15(b)中的相同标记可以参考图10(a)和图10(b)。不同的是,图15(a)和图15(b)的封装天线装置250中的天线为单极子天线。具体来说,封装天线装置250中的第一主辐射板部分334和第一接地板部分332连接,第一馈电路径360对第一主辐射板部分334馈电。根据天线设计的需要,可以将第二主辐射板部分344进行弯折处理,以满足天线低频工作的需要。
如图16(a)所示的是本申请实施例提供的一种更为具体的封装天线装置250的剖面结构示意图,图16(b)为该封装天线装置250的3D视图。图16(a)和图16(b)中的相同标记可以参考图14(a)和图14(b)。不同的是,图16(a)和图16(b)的封装天线装置250中的天线为八木天线。具体来说,封装天线装置250还包括第一寄生辐射板部分336和第二寄生辐射板部分346,并通过第一金属件350连接。第一馈电路径360用于对第一主辐射板部分334馈电,第二馈电路径362用于将第二主辐射板部分344和第二接地板部分342短接,从而构成具有端射特性的八木天线。
本申请实施例还提供一种更为具体的终端设备1700,其中图17为该终端设备1700的剖面结构示意图。上述终端设备1700包括后盖210、边框220、显示装置230、中框240、第一屏蔽框242、第二屏蔽框244、封装天线装置250、PCB262和电子器件270。该封装天线装置250可以为本申请实施例中任意一种封装天线装置。为了便于描述,将垂直于中框240的方向作为垂直方向,将与中框240平行的方向作为水平方向。上述中框240设置于显示装置230的一侧,上述第一屏蔽框242、PCB262、第二屏蔽框244和封装天线装置250依次在远离中框240的垂直方向上层叠设置,其中封装天线装置250包括电连接的第一基板300和第二基板260。可以根据终端设备1700的剖面高度和实际需求选择是否设置第一屏蔽框242和PCB262。上述中框240和显示装置230与边框220的一端连接,另一端与后盖210连接。电子器件270设置于上述中框240背对显示装置230的一侧,并位于上述封装天线装置250远离边框220的水平方向。后盖210设置于上述封装天线装置250和电子器件270背对中框240的一侧,并可以通过结构件或粘合剂与边框220进行连接并固定。上述电子器件270可以为传感器,或其他电子器件。上述第一屏蔽框242和第二屏蔽框244用于屏蔽PCB262和第二基板260的干扰电磁波。上述第二基板260和PCB262均可以为高频或低频的印制电路板,且可以对第二基板260和PCB262进行元器件的设置和电路布局布线。如图17所示,为了使电磁波可以更好地从后盖210和边框220之间进行端射辐射,可以将边框220的靠近封装天线装置250的部分挖空,使得边框220在保证天线进行端射辐射的同时有较好的支撑力。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种封装天线装置,其特征在于,所述封装天线装置包括第一辐射体部分、第二辐射体部分、第一馈电路径、第一金属件,以及第一基板和第二基板,其中:
    所述第一辐射体部分和所述第一馈电路径设置于所述第一基板中;
    所述第二辐射体部分设置于所述第二基板中,所述第一馈电路径用于对所述第一辐射体部分馈电,所述第二辐射体部分与所述第一辐射体部分通过设置于所述第一基板和所述第二基板之间的所述第一金属件连接。
  2. 如权利要求1所述的封装天线装置,其特征在于,所述封装天线装置还包括第二馈电路径和第二金属件,所述第二馈电路径设置于所述第二基板中,所述第二馈电路径用于对所述第二辐射体部分馈电,所述第一馈电路径与所述第二馈电路径通过设置于所述第一基板和所述第二基板之间的所述第二金属件连接。
  3. 如权利要求1或2所述的封装天线装置,其特征在于,所述第一辐射体部分包括第一接地板部分,所述第二辐射体部分包括第二接地板部分,所述第一接地板部分和所述第二接地板部分通过设置于所述第一基板和所述第二基板之间的所述第一金属件连接。
  4. 如权利要求1至3任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分包括第一寄生辐射板部分,所述第二辐射体部分包括第二寄生辐射板部分,所述第一寄生辐射板部分和所述第二寄生辐射板部分通过设置于所述第一基板和所述第二基板之间的所述第一金属件连接。
  5. 如权利要求1至4任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分包括第一主辐射板部分,所述第二辐射体部分包括第二主辐射板部分,所述第一主辐射板部分和所述第二主辐射板部分通过设置于所述第一基板和所述第二基板之间的所述第一金属件连接。
  6. 如权利要求5所述的封装天线装置,其特征在于,所述第一主辐射板部分包括第一正极化振子和第一负极化振子,所述第二主辐射板部分包括第二正极化振子和第二负极化振子,所述第一正极化振子和所述第一负极化振子的夹角为90°,所述第二正极化振子和所述第二负极化振子的夹角为90°。
  7. 如权利要求2至4任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分包括第一主辐射板部分,所述第二辐射体部分包括第二主辐射板部分,其中所述第一馈电路径用于对所述第一主辐射板部分耦合馈电,所述第二馈电路径用于对所述第二主辐射板部分耦合馈电。
  8. 如权利要求2至7任意一项所述的封装天线装置,其特征在于,所述封装天线装置还包括第一芯片,所述第一芯片设置于所述第一基板朝向所述第二基板的一侧,所述第一芯片用于为所述第一馈电路径和所述第二馈电路径提供射频信号。
  9. 如权利要求1至8任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分和所述第二辐射体部分的最大辐射方向与所述第一芯片的法线垂直。
  10. 如权利要求2至9任意一项所述的封装天线装置,其特征在于,所述第一金属件和所述第二金属件为球栅阵列BGA球。
  11. 如权利要求2至10任意一项所述的封装天线装置,其特征在于,所述第一辐射体 部分、所述第二辐射体部分、所述第一馈电路径和所述第二馈电路径中的至少一个包括过孔
  12. 如权利要求2至10任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分、所述第二辐射体部分、所述第一馈电路径和所述第二馈电路径中的至少一个包括错位排布的过孔阵列和走线,所述走线用于连接所述过孔阵列。
  13. 如权利要求2至10任意一项所述的封装天线装置,其特征在于,所述第二辐射体部分设置于所述第二基板朝向所述第一基板的一侧,所述第二辐射体部分包括焊垫或走线。
  14. 如权利要求2至13任意一项所述的封装天线装置,其特征在于,所述封装天线装置还包括第二芯片,所述第二芯片设置于所述第二基板背对所述第一基板的一侧。
  15. 如权利要求1至14任意一项所述的封装天线装置,其特征在于,所述第一基板为中介层。
  16. 如权利要求1至15任意一项所述的封装天线装置,其特征在于,所述第二基板为第一印制电路板PCB。
  17. 一种终端设备,其特征在于,所述终端设备包括如权利要求1至16任意一项所述的封装天线装置。
  18. 如权利要求17所述的终端设备,其特征在于,所述终端设备还包括第三辐射体部分、第一结构件和第三金属件,其中:
    所述第一结构件设置于所述第二基板背对所述第一基板的一侧;
    所述第三辐射体部分设置于所述第一结构件中,所述第一馈电路径还用于对所述第三辐射体部分馈电,所述第三辐射体部分与所述第二辐射体部分通过设置于所述第二基板和所述第一结构件之间的所述第三金属件连接。
  19. 如权利要求17或18所述的终端设备,其特征在于,所述终端设备还包括第四辐射体部分、第二结构件和第四金属件,其中:
    所述第二结构件设置于所述第一基板背对所述第二基板的一侧;
    所述第四辐射体部分设置于所述第二结构件中,所述第一馈电路径还用于对所述第四辐射体部分馈电,所述第四辐射体部分与所述第一辐射体部分通过设置于所述第一基板和所述第二结构件之间的所述第四金属件连接。
  20. 如权利要求17至19任意一项所述的终端设备,其特征在于,所述终端设备还包括第五辐射体部分、第二PCB和第五金属件,其中:
    所述第二PCB设置于所述第二基板背对所述第一基板的一侧;
    所述第五辐射体部分设置于所述第二PCB中,所述第一馈电路径还用于对所述第五辐射体部分馈电,所述第五辐射体部分与所述第二辐射体部分通过设置于所述第二基板和所述第二PCB之间的所述第五金属件连接。
  21. 如权利要求20所述的终端设备,其特征在于,所述第三金属件、所述第四金属件和所述第五金属件为金属搭接线。
  22. 如权利要求20或21所述的终端设备,其特征在于,所述第三辐射体部分、所述第四辐射体部分和所述第五辐射体部分中的至少一个包括金属柱和镀金属走线。
  23. 一种封装天线装置,其特征在于,所述封装天线装置包括第一辐射体部分、第一馈电路径、第一金属件,以及第一基板,其中:
    所述第一辐射体部分和所述第一馈电路径设置于所述第一基板中;
    所述第一金属件用于连接所述第一辐射体部分和第二辐射体部分,所述第二辐射体部分设置于第二基板中,所述第二基板设置于所述第一基板的所述第一金属件的一侧,所述第一馈电路径用于对所述第一辐射体部分馈电。
  24. 如权利要求23所述的封装天线装置,其特征在于,所述封装天线装置还包括第二金属件,其中:
    所述第二金属件用于连接所述第一馈电路径和第二馈电路径,所述第二馈电路径设置于所述第二基板中,所述第二馈电路径用于对所述第二辐射体部分馈电。
  25. 如权利要求23或24所述的封装天线装置,其特征在于,所述第一辐射体部分包括第一接地板部分,所述第二辐射体部分包括第二接地板部分,所述第一接地板部分和所述第二接地板部分通过设置于所述第一基板和所述第二基板之间的所述第一金属件连接。
  26. 如权利要求23至25任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分包括第一主辐射板部分,所述第二辐射体部分包括第二主辐射板部分,所述第一主辐射板部分和所述第二主辐射板部分通过设置于所述第一基板和所述第二基板之间的所述第一金属件连接。
  27. 如权利要求23至26任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分包括第一寄生辐射板部分,所述第二辐射体部分包括第二寄生辐射板部分,所述第一寄生辐射板部分和所述第二寄生辐射板部分通过设置于所述第一基板和所述第二基板之间的所述第一金属件连接。
  28. 如权利要求26所述的封装天线装置,其特征在于,所述第一主辐射板部分包括第一正极化振子和第一负极化振子,所述第二主辐射板部分包括第二正极化振子和第二负极化振子,所述第一正极化振子和所述第一负极化振子的夹角为90°,所述第二正极化振子和所述第二负极化振子的夹角为90°。
  29. 如权利要求23至28任意一项所述的封装天线装置,其特征在于,所述封装天线装置还包括所述第一芯片,所述第一芯片设置于所述第一基板朝向所述第二基板的一侧,所述第一芯片用于为所述第一馈电路径和所述第二馈电路径提供射频信号。
  30. 如权利要求23至29任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分和所述第二辐射体部分的最大辐射方向与所述第一芯片的法线垂直。
  31. 如权利要求23至29任意一项所述的封装天线装置,其特征在于,所述第一金属件和所述第二金属件为球栅阵列BGA球。
  32. 如权利要求23至31任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分和所述第一馈电路径中的至少一个包括过孔。
  33. 如权利要求23至32任意一项所述的封装天线装置,其特征在于,所述第一辐射体部分和所述第一馈电路径中的至少一个包括错位排布的过孔阵列和走线,所述走线用于连接所述过孔阵列。
PCT/CN2018/112186 2018-10-26 2018-10-26 一种高带宽的封装天线装置 WO2020082361A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2018/112186 WO2020082361A1 (zh) 2018-10-26 2018-10-26 一种高带宽的封装天线装置
CN201880092395.9A CN111971851B (zh) 2018-10-26 2018-10-26 一种高带宽的封装天线装置
EP18937809.4A EP3846286A4 (en) 2018-10-26 2018-10-26 BROADBAND ANTENNA IN A PACKAGING
CN202210220769.9A CN114639945A (zh) 2018-10-26 2018-10-26 一种高带宽的封装天线装置
US17/234,920 US11929543B2 (en) 2018-10-26 2021-04-20 High-bandwidth antenna in package apparatus
US18/435,613 US20240178547A1 (en) 2018-10-26 2024-02-07 High-bandwidth antenna in package apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112186 WO2020082361A1 (zh) 2018-10-26 2018-10-26 一种高带宽的封装天线装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/234,920 Continuation US11929543B2 (en) 2018-10-26 2021-04-20 High-bandwidth antenna in package apparatus

Publications (1)

Publication Number Publication Date
WO2020082361A1 true WO2020082361A1 (zh) 2020-04-30

Family

ID=70330379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112186 WO2020082361A1 (zh) 2018-10-26 2018-10-26 一种高带宽的封装天线装置

Country Status (4)

Country Link
US (2) US11929543B2 (zh)
EP (1) EP3846286A4 (zh)
CN (2) CN114639945A (zh)
WO (1) WO2020082361A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201119B2 (en) 2018-06-06 2021-12-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft RF functionality and electromagnetic radiation shielding in a component carrier
EP4106105A4 (en) * 2021-04-30 2023-08-30 Honor Device Co., Ltd. CONNECTION STRUCTURE FOR ELECTRONIC COMPONENTS AND ELECTRONIC DEVICE
US11817617B2 (en) 2020-08-19 2023-11-14 Infineon Technologies Ag Antenna package with via structure and method of formation thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102663103B1 (ko) * 2019-01-24 2024-05-07 삼성전자주식회사 복수의 인쇄 회로 기판들이 적층된 안테나 모듈 및 이를 포함하는 전자 장치
KR20210009531A (ko) 2019-07-17 2021-01-27 삼성전자주식회사 안테나 모듈 및 그것을 포함하는 전자 장치
CN111129711A (zh) * 2020-01-10 2020-05-08 深圳市信维通信股份有限公司 5g双极化天线模组及终端设备
CN115189119A (zh) * 2022-05-24 2022-10-14 深圳市信维通信股份有限公司 天线模组、通信设备及天线模组的制造方法
US20240039141A1 (en) * 2022-07-28 2024-02-01 Avago Technologies International Sales Pte. Limited Integrated Antennas on Side Wall of 3D Stacked Die
CN115513153B (zh) * 2022-11-11 2023-02-07 成都华芯天微科技有限公司 一种大功率多通道多芯片3d立体封装结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341026A (ja) * 1999-05-26 2000-12-08 Kokusai Electric Co Ltd アンテナ基板及びそれを用いた無線通信機
CN1627562A (zh) * 2003-12-09 2005-06-15 国际商业机器公司 使用基片中的通路作为辐射元件而构造天线的设备和方法
CN103779336A (zh) * 2012-10-19 2014-05-07 英飞凌科技股份有限公司 具有集成天线的半导体封装及其形成方法
US9711866B1 (en) * 2010-12-21 2017-07-18 Rockwell Collins, Inc. Stacked parasitic array

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830312B2 (en) * 2008-03-11 2010-11-09 Intel Corporation Wireless antenna array system architecture and methods to achieve 3D beam coverage
US9819098B2 (en) 2013-09-11 2017-11-14 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
US9806422B2 (en) * 2013-09-11 2017-10-31 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
KR101905507B1 (ko) 2013-09-23 2018-10-10 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 기기
US9912071B2 (en) 2014-01-08 2018-03-06 Qualcomm Incorporated Quasi-yagi-type antenna
KR102151425B1 (ko) 2014-08-05 2020-09-03 삼성전자주식회사 안테나 장치
KR102138909B1 (ko) 2014-09-19 2020-07-28 삼성전자주식회사 안테나 장치 및 그의 운용 방법
KR102305975B1 (ko) 2014-10-22 2021-09-28 삼성전자주식회사 무선 기기의 안테나 장치
US9667290B2 (en) 2015-04-17 2017-05-30 Apple Inc. Electronic device with millimeter wave antennas
KR102333559B1 (ko) * 2015-05-11 2021-12-01 삼성전자 주식회사 안테나 장치 및 그를 포함하는 전자 장치
US10186779B2 (en) * 2016-11-10 2019-01-22 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same
CN107196059B (zh) * 2017-07-10 2023-09-22 京信通信技术(广州)有限公司 一种天线及其天线封装装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341026A (ja) * 1999-05-26 2000-12-08 Kokusai Electric Co Ltd アンテナ基板及びそれを用いた無線通信機
CN1627562A (zh) * 2003-12-09 2005-06-15 国际商业机器公司 使用基片中的通路作为辐射元件而构造天线的设备和方法
US9711866B1 (en) * 2010-12-21 2017-07-18 Rockwell Collins, Inc. Stacked parasitic array
CN103779336A (zh) * 2012-10-19 2014-05-07 英飞凌科技股份有限公司 具有集成天线的半导体封装及其形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3846286A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201119B2 (en) 2018-06-06 2021-12-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft RF functionality and electromagnetic radiation shielding in a component carrier
US11817617B2 (en) 2020-08-19 2023-11-14 Infineon Technologies Ag Antenna package with via structure and method of formation thereof
EP4106105A4 (en) * 2021-04-30 2023-08-30 Honor Device Co., Ltd. CONNECTION STRUCTURE FOR ELECTRONIC COMPONENTS AND ELECTRONIC DEVICE
EP4109918A4 (en) * 2021-04-30 2024-04-03 Honor Device Co Ltd CONNECTION STRUCTURE OF ELECTRONIC ELEMENT AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
CN111971851A (zh) 2020-11-20
US11929543B2 (en) 2024-03-12
EP3846286A4 (en) 2021-08-18
US20240178547A1 (en) 2024-05-30
US20210242568A1 (en) 2021-08-05
CN111971851B (zh) 2022-04-29
CN114639945A (zh) 2022-06-17
EP3846286A1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2020082361A1 (zh) 一种高带宽的封装天线装置
US10431892B2 (en) Antenna-in-package structures with broadside and end-fire radiations
US10944181B2 (en) Antenna module and communication device
US10498025B2 (en) Wireless communication module
US11211689B2 (en) Chip antenna
US10978785B2 (en) Chip antenna module
US11069954B2 (en) Chip antenna
US11881630B2 (en) Beam steering antenna structure and electronic device comprising said structure
CN113678318B (zh) 一种封装天线装置及终端设备
EP3688840B1 (en) Perpendicular end fire antennas
KR102382241B1 (ko) 칩 안테나 및 이를 포함하는 칩 안테나 모듈
TWM376922U (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018937809

Country of ref document: EP

Effective date: 20210330

NENP Non-entry into the national phase

Ref country code: DE