WO2020082323A1 - 指纹检测打码装置、指纹检测系统和电子设备 - Google Patents

指纹检测打码装置、指纹检测系统和电子设备 Download PDF

Info

Publication number
WO2020082323A1
WO2020082323A1 PCT/CN2018/112038 CN2018112038W WO2020082323A1 WO 2020082323 A1 WO2020082323 A1 WO 2020082323A1 CN 2018112038 W CN2018112038 W CN 2018112038W WO 2020082323 A1 WO2020082323 A1 WO 2020082323A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fingerprint detection
coding
switch
chip
Prior art date
Application number
PCT/CN2018/112038
Other languages
English (en)
French (fr)
Inventor
谢浩
胡合云
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880002331.5A priority Critical patent/CN109496315B/zh
Priority to PCT/CN2018/112038 priority patent/WO2020082323A1/zh
Publication of WO2020082323A1 publication Critical patent/WO2020082323A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/94Hardware or software architectures specially adapted for image or video understanding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/719Interference-related aspects

Definitions

  • the present disclosure relates to the technical field of fingerprint detection, and in particular to a fingerprint detection and coding device, a fingerprint detection system, and electronic equipment.
  • fingerprints are unique and unique, so they can be used to identify individuals.
  • the function of fingerprint detection is generally realized by the fingerprint detection chip, and the fingerprint detection chip must rely on the coding signal to drive in order to work.
  • Current fingerprint detection chips mostly use fixed sequence coding signals to drive the fingerprint detection chip.
  • the electromagnetic radiation interference (EMI) generated by the fixed sequence coding signals in the whole frequency band is relatively large, so it is relatively easy to interfere with the radio frequency communication of mobile devices.
  • EMI electromagnetic radiation interference
  • the purpose of the present disclosure is to provide a fingerprint detection and coding device, which effectively reduces the EMI of the coded signal to the mobile device radio frequency communication during fingerprint detection, while using a low-voltage driver chip to achieve high-voltage coding Effect;
  • Another objective of the present disclosure is to provide a fingerprint detection system;
  • yet another objective of the present disclosure is to provide an electronic device.
  • An embodiment of the present disclosure provides a fingerprint detection and coding device, including: a fingerprint detection chip, the fingerprint detection chip includes a coding signal generation module and an edge time adjustment module; the coding signal generation module is used to generate expansion Frequency random coding signal, the edge time adjustment module is used to adjust the edge time of the spread spectrum random coding signal to obtain a dynamic edge coding signal.
  • the coding signal generation module includes a random signal generation module, and the random signal generation module is used to generate irregular random signals.
  • the coding signal generation module further includes an amplitude quantization module, and the amplitude quantization module is used to digitally quantize the random signal to obtain Digitally quantized signal.
  • the coding signal generation module further includes a pulse width adjustment module, and the pulse width adjustment module is used to adjust the pulse width of the digital quantization signal To get the pulse width adjustment signal.
  • the coding signal generation module further includes a spread spectrum random coding module, and the spread spectrum random coding module is used to adjust the pulse width
  • the signal undergoes a spread spectrum operation to obtain the spread spectrum random coding signal.
  • the spread-spectrum random coding signal includes a standard high level and a standard low level within a period, the standard high level and the standard low level are levels with a specific length of time, and the standard high level The number of the peace level and the standard low level is fixed respectively, the standard high level and the standard low level are randomly distributed in a cycle, and the total time of the standard high level and the standard low level is The length is the length of a cycle.
  • the edge time adjustment module includes an edge time adjustment circuit, a first current branch, and a second current branch, the first current branch or The second current branch is connected to the edge time adjustment circuit to provide a charging current, and the charging current provided by the second current branch is greater than the charging current provided by the first current branch.
  • the edge time adjustment module further includes a switch, the switch is used to switch the edge time adjustment circuit and the first current branch Or on and off with the second current branch, further controlling the edge time of the spread spectrum random coding signal entering the edge time adjustment module.
  • the switch switches the edge time adjustment circuit and the first On-off between a current branch to increase the edge time of the spread-spectrum random coding signal; the switch switches the on-off between the edge time adjustment circuit and the second current branch, It is used to quickly bring the edge of the spread spectrum random coding signal to a predetermined level, where the predetermined level is a high level or a low level of the spread spectrum random coding signal.
  • the fingerprint detection chip further includes a main chip circuit, and the main chip circuit is used to receive a power signal provided by the outside world to implement the fingerprint detection chip Normal communication and work.
  • the fingerprint detection and coding device further includes a booster circuit, and the dynamic edge coding signal output by the edge time adjustment module serves as the booster circuit
  • the input signal of the booster circuit is used to convert the dynamic edge coding signal into two sets of high-frequency coding signals of the same frequency, which are the chip power signal and the chip ground signal, and the chip power signal and the The difference in the amplitude of each point of the chip ground signal remains constant.
  • the chip power signal and the chip ground signal provide power for the main chip circuit to ensure normal communication and operation of the fingerprint detection chip.
  • the boosting circuit includes a coding signal receiving end, multiple boosting branches, and multiple voltage conversion branches.
  • the coding signal receiving end is used to receive the dynamic edge coding signal
  • the plurality of boosting branches are used for boosting the voltage amplitude of the dynamic edge coding signal multiple times to form two sets of high-frequency coding signals with the same frequency, which are used as the chip power signals, respectively And the signal of the chip;
  • the plurality of voltage conversion branches are used to turn on the boosting processing state of the plurality of boosting branches.
  • the plurality of voltage conversion branches simultaneously turn on the plurality of boosting branches respectively, the dynamic The voltage amplitude of the edge coding signal will be increased.
  • the booster circuit further includes a high-voltage power supply output terminal and a high-voltage signal output terminal.
  • the output terminal of the high-voltage power supply and the output terminal of the high-voltage signal are respectively used to output the chip power signal and the chip ground signal.
  • the fingerprint detection chip further includes a chip power receiving terminal and a chip ground terminal, and the chip power receiving terminal and the chip ground terminal are respectively used for receiving The chip power signal and the chip ground signal.
  • the plurality of voltage conversion branches include a first voltage conversion branch, a second voltage conversion branch, and a third voltage conversion branch.
  • the first voltage conversion branch includes a power receiving terminal and a first switch, and the power receiving terminal is directly connected to the first switch.
  • the power receiving end is used to receive an analog power provided by the outside world, so as to supply power to the booster circuit.
  • the second voltage conversion branch includes the power receiving end, a first diode, and a second switch, the power receiving end is connected to the anode of the first diode, and the cathode of the first diode Connect the second switch.
  • the third voltage conversion branch includes the power receiving end, a second diode, and a third switch, the power receiving end is connected to the anode of the second diode, and the cathode of the second diode One end of the third switch is connected, and the other end of the third switch is connected to the output terminal of the high-voltage signal.
  • the fourth voltage conversion branch includes the power receiving end and a third diode, the power receiving end is connected to the anode of the third diode, and the cathode of the third diode is connected to the high voltage Power output.
  • the first switch, the second switch, and the third switch are a first group of switches.
  • the plurality of boosting branches include a first boosting branch, a second boosting branch, and a third boosting branch.
  • the first boosting branch includes a first capacitor and a fourth switch.
  • the negative electrode of the first capacitor is grounded through the fourth switch, a first boost node is included between the negative electrode of the first capacitor and the fourth switch, and the first voltage conversion branch passes through the first
  • a switch is connected to the first boost node; an anode of the first capacitor is connected to a second boost node, the second boost node is connected to the second voltage conversion branch, and is connected to the first two Between the negative electrode of the polar tube and the second switch.
  • the second boosting branch includes a second capacitor and a fifth switch.
  • the negative electrode of the second capacitor is grounded through the fifth switch, a third boost node is included between the negative electrode of the second capacitor and the fifth switch, and the second voltage conversion branch passes through the second A switch is connected to the third boost node; an anode of the second capacitor is connected to a fourth boost node, the fourth boost node is connected to the third voltage conversion branch, and is connected to the second Between the negative electrode of the transistor and the third switch.
  • the third boosting branch includes a third capacitor and a sixth switch.
  • the negative electrode of the third capacitor is grounded through the sixth switch, a fifth boost node is included between the negative electrode of the third capacitor and the sixth switch, and the third voltage conversion branch passes through the third A switch is connected to the fifth boost node, and the fifth boost node is located between the third switch and the output terminal of the high-voltage signal; the positive electrode of the third capacitor is connected to the sixth boost node,
  • the fourth voltage conversion branch is connected to the sixth boost node through the cathode of the third diode, and the sixth boost node is located between the third diode and the high-voltage power supply output Between the ends.
  • the fourth switch, the fifth switch, and the sixth switch are a second group of switches.
  • the input signal of the boosting circuit further includes a reverse signal of the dynamic edge coding signal, and the dynamic edge coding signal controls the The first group of switches, the reverse signal controls the second group of switches.
  • the reverse signal is obtained from the dynamic edge coding signal through an inverter.
  • both the first group of switches and the second group of switches are active at a high level, and the high level of the dynamic edge coding signal comes When the first group of switches is closed and the second group of switches is open; when the high level of the reverse signal comes, the first group of switches is opened and the second group of switches is closed.
  • An embodiment of the present disclosure provides a fingerprint detection system, including the fingerprint detection and coding device as described above.
  • the fingerprint detection system further includes a host control module, and the host control module is used to provide an analog power supply to the booster circuit.
  • the fingerprint detection system further includes a level conversion module, and the level conversion module is used to convert between the host control module and the fingerprint detection chip To match the level between the host control module and the fingerprint detection chip.
  • An embodiment of the present disclosure provides an electronic device, including a display screen and a fingerprint detection and coding device located below the display screen.
  • the fingerprint detection and coding device includes the fingerprint detection and coding device described above.
  • the fingerprint detection and coding device includes a fingerprint detection chip, and the fingerprint detection chip includes a coding signal generation module and an edge time adjustment module, and the coding signal generation module is used to generate For the spread spectrum random coding signal, the edge time adjustment module is used to adjust the edge time of the spread spectrum random coding signal to obtain a dynamic edge coding signal.
  • the coding detection device also includes a booster circuit, so that the effect of high-voltage coding can be achieved by using a low-voltage driver chip.
  • FIG. 1 is a schematic structural diagram of a fingerprint detection system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a coding signal generation module according to the embodiment in FIG. 1;
  • FIG. 3 is a schematic diagram of a waveform structure of a spread-spectrum random coding signal generated by the coding signal generation module according to the embodiment in FIG. 1;
  • FIG. 4 is a schematic structural diagram of an edge time adjustment module according to the embodiment in FIG. 1;
  • FIG. 5 is a schematic structural diagram of a booster circuit according to the embodiment in FIG. 1;
  • FIG. 6 is a schematic diagram of a simulation curve of EMI values generated by a spread spectrum random coding signal and a fixed sequence coding signal in a full frequency band according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a fingerprint detection and coding device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a fingerprint detection system according to an embodiment of the present disclosure.
  • the fingerprint detection system 5 includes: a fingerprint detection chip 1, a booster circuit 2, a host control module 3, and a level conversion module 4.
  • the fingerprint detection chip 1 includes: a chip power receiving terminal 11a, a chip ground terminal 11b, a main chip circuit 12, a coding signal generating module 13 and an edge time adjusting module 14.
  • the main chip circuit 12 receives the power signal provided by the outside world through the chip power receiving terminal 11a and the chip ground terminal 11b to realize normal communication and operation of the fingerprint detection chip 1.
  • the coding signal generating module 13 is used to generate a spread-spectrum random coding signal TX;
  • the spread-spectrum random coding signal TX includes a standard high level and a standard low level in one cycle, the standard high level and the standard
  • the standard low level is a level with a specific length of time, and the number of the standard high level and the standard low level are fixed respectively, and the standard high level and the standard low level are within one cycle It is randomly distributed, and the total length of the standard high level and the standard low level is one cycle length.
  • the edge time adjustment module 14 is used to adjust the edge time of the spread-spectrum random coding signal TX to obtain a dynamic edge coding signal TXd.
  • the booster circuit 2 includes a coding signal receiving terminal 25, a power receiving terminal 28, a high-voltage power output terminal 29a, and a high-voltage signal output terminal 29b.
  • the booster circuit 2 After receiving the dynamic edge coding signal TXd through the coding signal receiving terminal 25, the booster circuit 2 converts the dynamic edge coding signal TXd into two sets of high-frequency coding signals of the same frequency, respectively The chip power signal SVCC and the chip ground signal SGND, and the difference between the amplitude of each point of the chip power signal SVCC and the chip ground signal SGND remains constant.
  • the power receiving terminal 28 is used to receive an external analog power supply AVDD to provide power to the booster circuit 2 to ensure the normal operation of the booster circuit 2.
  • the high-voltage power supply output terminal 29a and the high-voltage signal output terminal 29b are respectively connected to the chip power receiving terminal 11a and the chip ground terminal 11b of the fingerprint detection chip 1.
  • the chip power signal SVCC and the chip ground signal SGND are output to the chip power receiving terminal 11a and the chip ground terminal 11b through the high voltage power output terminal 29a and the high voltage signal ground output terminal 29b, respectively.
  • the main chip circuit 12 provides power to ensure the normal communication and operation of the fingerprint detection chip 1.
  • the host control module 3 includes a power output 31 to output the analog power AVDD to provide power to the booster circuit 2 to ensure the normal operation of the booster circuit 2.
  • the host control module 3 may be a main control module of a mobile device such as a mobile phone having functions of providing power and control or other functional modules.
  • the level conversion module 4 is used to convert the level between the host control module 3 and the fingerprint detection chip 1 to match the level between the host control module 3 and the fingerprint detection chip 1 .
  • FIG. 2 is a schematic structural diagram of a coding signal generating module according to the embodiment in FIG. 1.
  • the coding signal generation module 13 includes a random signal generation module 131, an amplitude quantization module 132, a pulse width adjustment module 133, and a spread spectrum random coding module 134.
  • the random signal generation module 131 is used to generate random random signals 135.
  • the random signal generation module 131 includes a random number generator.
  • the random number generator may be a thermal noise random number generator or a quantum random number generator, etc., as long as the random signal 135 can be generated.
  • the amplitude quantization module 132 is used to quantize the random signal 135 to obtain a digital quantized signal 136. Since the amplitude of the random signal 135 generated by the random signal module 131 is random, the amplitude needs to be quantized. A specific quantization method may be to select a critical value between the minimum value and the maximum value of the amplitude of the random signal 135, the point where the random signal 135 is greater than or equal to the critical value, and quantize it to a high level, The point where the random signal 135 is smaller than the threshold value is quantized as a low level. Finally, the random signal 135 is converted into the digital quantized signal 136.
  • the pulse width adjustment module 133 is used to adjust the pulse width of the digital quantization signal 136, adjust the interval between the high levels of the digital quantization signal 136 to the same time interval, and obtain the pulse width adjustment signal 137.
  • the spread-spectrum random coding module 134 is used to perform a spread-spectrum operation on the pulse width adjustment signal 137 to obtain a spread-spectrum random coding signal 138.
  • the spread-spectrum random coding signal 138 includes a standard high level and a standard low level within a period, the standard high level and the standard low level are levels with a specific time length, and the standard high The number of levels and the standard low level are fixed respectively, the standard high level and the standard low level are randomly distributed in a cycle, the total of the standard high level and the standard low level is The length of time is the length of a cycle.
  • the spread-spectrum random coding signal 138 is the spread-spectrum random coding signal TX provided to the edge time adjustment module 14 as shown in FIG. 1.
  • FIG. 3 is a schematic diagram of a waveform structure of a spread-spectrum random code signal generated by the code signal generation module according to the embodiment in FIG. 1.
  • FIG. 3 shows three cycles of spread-spectrum random coding signal 138, each cycle contains 4 standard low levels 1380 and 3 standard high levels 1381, but the standard low level 1380 and the standard The high level 1381 is randomly distributed in each cycle.
  • the time lengths of the standard low level 1380 and the standard high level 1381 may be equal or different, as long as the spreading random coding signal 138 of each cycle has the same time length.
  • the standard low level 1380 and the standard high level 1381 have the same length of time.
  • the standard low level 1380 and the standard high level 1381 are used to represent binary "0" and "1” respectively.
  • the spread spectrum random coding signal 138 shown in FIG. 3 is from left to The right can be expressed as ⁇ 1010100, 1100010, 0111000, ... ⁇ in turn.
  • each cycle contains three "1” and four "0", which is the random spread
  • the code module 134 performs a spread spectrum operation on the pulse width adjustment signal 137 to obtain the spread spectrum random code signal 138.
  • the edge time adjustment module 14 includes a signal input terminal 141, an edge time adjustment circuit 142, a switch 143, a first current branch 144a, a second current branch 144b, and a signal output terminal 145.
  • the first current branch 144a or the second current branch 144b turns on the edge time adjustment circuit 142 to provide a charging current, and the second current branch 144b provides a charging current greater than the first The charging current provided by the current branch 144a.
  • the switch 143 After the spread-spectrum random coding signal 138 generated by the coding signal generation module 13 enters the edge time adjustment module 14 from the signal input terminal 141, the switch 143 first turns on the edge time adjustment circuit 142 and The first current branch 144a provides a charging current for increasing the edge time of the rising edge of the spread spectrum random coding signal 138. After a predetermined charging time, the switch 143 turns on the edge time adjustment circuit 142 and the second current branch 144b so that the rising edge quickly reaches a high level.
  • a similar operation can be adopted for the falling edge of the spread-spectrum random coding signal 138, so that the edge time of the falling edge increases, and finally the spread-spectrum random coding signal 138 passes through the edge time adjustment module 14 to obtain
  • the dynamic edge coding signal 146; the dynamic edge coding signal 146 is the dynamic edge coding signal TXd provided to the booster circuit 2 as shown in FIG.
  • the number of the first current branch 144a and the second current branch 144b is not limited, and can be set according to the needs of actual products.
  • the connection between the first current branch 144a and the second current branch 144b and the edge time adjustment circuit 142 can be controlled by programmable software by controlling the switching of the switch 143, the switch 143 The number of switching is unlimited.
  • the dynamic edge coding signal 146 may be an axisymmetric signal as shown in FIG. 4 or an asymmetric signal.
  • FIG. 5 is a schematic structural diagram of a booster circuit according to the embodiment in FIG. 1.
  • the boosting circuit 2 in this embodiment includes the coding signal receiving terminal 25, the power receiving terminal 28, the high-voltage power output terminal 29a and the high-voltage signal output terminal 29b shown in the boosting circuit 2 in FIG.
  • a plurality of voltage conversion branches 201a-201d and a plurality of boosting branches 202a-202c, the power receiving terminal 28 is included in the plurality of voltage conversion branches 201a-201d.
  • the power receiving terminal 28 is used to receive the analog power supply AVDD output by the host control module 3 through the power output terminal 31 to ensure the normal operation of the booster circuit 2.
  • the plurality of boosting branches 202a-202c are used to boost the voltage amplitude of the dynamic edge coding signal 146 multiple times to form two sets of high-frequency coding signals with the same frequency, which are used as The chip power signal SVCC and the chip ground signal SGND.
  • the plurality of voltage conversion branches 201a-201d are used to turn on the boosting processing state of the plurality of boosting branches 202a-202c, and the plurality of voltage conversion branches 201a-201d simultaneously turn on the multiple When the boosting branches 202a-202c are used, the voltage amplitude of the dynamic edge coding signal 146 will be increased.
  • the input signal of the booster circuit 2 includes a dynamic edge coding signal 25a and a reverse signal 25b.
  • the reverse signal 25b can be obtained from the dynamic edge coding signal 25a through an inverter 26, as shown in FIG. 5 Show.
  • the dynamic edge coding signal 25a is the dynamic edge coding signal 146 output by the edge time adjustment module 14 as shown in FIG. 4.
  • the output signal of the booster circuit 2 includes the chip power signal SVCC and the chip ground signal SGND.
  • the chip power signal SVCC and the chip ground signal SGND are output to the chip power receiving terminal 11a and the chip ground terminal 11b through the high-voltage power output terminal 29a and the high-voltage signal ground output terminal 29b,
  • the main chip circuit 12 is provided with power to ensure the normal communication and operation of the fingerprint detection chip 1.
  • the booster circuit 2 specifically uses three booster branches 202a-202c as examples, but it should be understood that in other alternative embodiments, the booster branch of the booster circuit 2
  • the number of channels can be determined according to the amplitude needs of the high frequency coding signal.
  • the three boosting branches 202a-202c are denoted as a first boosting branch 202a, a second boosting branch 202b, and a third boosting branch 202c, respectively.
  • the booster circuit 2 specifically uses four voltage conversion branches 201a-201d as an example, but it should be understood that in other alternative embodiments, the voltage conversion branch of the booster circuit 2
  • the number of circuits may be determined according to the number of the boosting branches.
  • the four voltage conversion branches 201a-201d are respectively denoted as a first voltage conversion branch 201a, a second voltage conversion branch 201b, a third voltage conversion branch 201c, and a fourth voltage conversion branch 201d.
  • the four voltage conversion branches 201a-201d and the three boosting branches 202a-202c may specifically include the power receiving terminal 28; diode 21a, diode 21b, diode 21c; capacitor 22a, capacitor 22b, capacitor 22c; switch 23a, switch 23b, switch 23c, switch 24a, switch 24b, switch 24c.
  • the switch 23a, the switch 23b and the switch 23c are the first group of switches
  • the switch 24a, the switch 24b and the switch 24c are the second group of switches.
  • the step-up circuit 2 After the step-up circuit 2 receives the dynamic edge coding signal 25a through the coding signal receiving terminal 25 (not shown in FIG. 5), the dynamic edge coding signal 25a is provided to the first Group switches 23a-23c to control the on-off state of the first group switches 23a-23c. On the other hand, after the dynamic edge coding signal 25a is converted into the reverse signal 25b by the inverter 26, it is provided to the second group of switches 24a-24c to control the second group On-off state of switches 24a-24c.
  • the first voltage conversion branch 201a includes the power receiving terminal 28 and the switch 23a, and the power receiving terminal 28 is directly connected to the switch 23a.
  • the second voltage conversion branch 201b includes the power receiving terminal 28, the diode 21a, and the switch 23b, the power receiving terminal 28 is connected to the anode of the diode 21a, and the cathode of the diode 21a is connected to the Switch 23b.
  • the third voltage conversion branch 201c includes the power receiving terminal 28, the diode 21b, and the switch 23c.
  • the power receiving terminal 28 is connected to the anode of the diode 21b, and the cathode of the diode 21b is connected to the One end of the switch 23c and the other end of the switch 23c are connected to the output terminal 29b of the high-voltage signal.
  • the fourth voltage conversion branch 201d includes the power receiving terminal 28 and the diode 21c, the power receiving terminal 28 is connected to the anode of the diode 21c, and the cathode of the diode 21c is connected to the high-voltage power output terminal 29a .
  • the first boosting branch 202a includes the capacitor 22a and the switch 24a.
  • the negative electrode of the capacitor 22a is grounded through the switch 24a, a boost node 210 is included between the negative electrode of the capacitor 22a and the switch 24a, and the first voltage conversion branch 201a passes through the switch 23a and the booster Voltage node 210 is connected;
  • the positive electrode of the capacitor 22a is connected to the boost node 211a, the boost node 211a is connected to the second voltage conversion branch 201b, and is connected between the cathode of the diode 21a and the switch 23b .
  • the second boosting branch 202b includes the capacitor 22b and the switch 24b.
  • the negative electrode of the capacitor 22b is grounded through the switch 24b, a boost node 211b is included between the negative electrode of the capacitor 22b and the switch 24b, and the second voltage conversion branch 201b passes through the switch 23b and the booster
  • the voltage node 211b is connected; the positive electrode of the capacitor 22b is connected to the boost node 212a, the boost node 212a is connected to the third voltage conversion branch 201c, and is connected between the cathode of the diode 21b and the switch 23c .
  • the third boosting branch 202c includes the capacitor 22c and the switch 24c.
  • the negative electrode of the capacitor 22c is grounded through the switch 24c, a boost node 212b is included between the negative electrode of the capacitor 22c and the switch 24c, and the third voltage conversion branch 201c passes through the switch 23c and the booster
  • the voltage node 212b is connected, and the boost node 212b is located between the switch 23c and the output terminal 29b of the high voltage signal;
  • the positive electrode of the capacitor 22c is connected to the boost node 213, and the fourth voltage conversion branch 201d
  • the cathode of the diode 21c is connected to the boosting node 213, and the boosting node 213 is located between the diode 21c and the high-voltage power supply output terminal 29a.
  • the working principle of the booster circuit 2 is that the first group of switches 23a-23c and the second group of switches 24a-24c are both high-level active, and the dynamic edge coding signal 25a controls the first Group switches 23a-23c; the reverse signal 25b controls the second group switches 24a-24c.
  • the first group of switches 23a-23c is opened and the second group of switches is closed 24a-24c, the analog power supply AVDD flows through the diode 21a, the After the diode 21b and the diode 21c respectively charge the capacitor 22a, the capacitor 22b and the capacitor 22c, the output terminal 29b of the high-voltage signal outputs a low level of 0V;
  • the first group of switches 23a-23c is closed and the second group of switches 24a-24c is open. Due to the presence of the diodes 21a-21c, the The connection between the analog power supply AVDD and the capacitors 22a-22c makes the capacitor 22a, the capacitor 22b and the capacitor 22c connected in series, the chip power signal SVCC and the chip ground signal SGND The voltage is increased due to the bootstrap effect of the capacitor. At this time, the amplitude of the output voltage of the chip ground signal SGND is 3 * analog power AVDD, and the waveform of the chip ground signal SGND is shown as 27.
  • FIG. 6 is a schematic diagram of a simulation curve of EMI values generated by a spread spectrum random code signal and a fixed sequence code signal in a full frequency band according to an embodiment of the present disclosure.
  • the solid line 11 represents the variation trend of the EMI value generated by the fixed sequence coding signal with frequency
  • the dashed line 12 represents the EMI value generated by the spread spectrum random coding signal. Trends in frequency.
  • the EMI value generated by the spread-spectrum random coding signal in the whole frequency band is lower overall.
  • the absolute value of the slope of the broken line 12 after the second inflection point in the direction of increasing frequency becomes larger than the absolute value of the slope of the solid line 11 at the same frequency. It means that after the second inflection point of the dashed line 12 of the spread spectrum random coding signal, the EMI value generated by it decreases at a faster rate, indicating that the use of the spread spectrum random coding signal to drive the fingerprint detection chip can effectively reduce The EMI generated in the whole frequency band can effectively reduce the interference of the coding signal on the radio frequency communication of the mobile device when performing fingerprint detection.
  • the fingerprint detection and coding device 6 includes a fingerprint detection chip 1 and a booster circuit 2 as shown in FIG. 1.
  • the booster circuit 2 can refer to the structure of the booster circuit shown in FIG. 5.
  • FIG. 8 is an electronic device according to one embodiment of the present disclosure.
  • the electronic device 7 includes a display screen 8 and a fingerprint detection and coding device 6 located below the display screen 8.
  • the fingerprint detection and coding device 6 is shown in FIG. 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本公开涉及指纹检测技术领域,公开了一种指纹检测打码装置、指纹检测系统和电子设备。指纹检测打码装置包括:指纹检测芯片,所述指纹检测芯片包括打码信号产生模块和边沿时间调整模块,所述打码信号产生模块用以产生扩频随机打码信号,所述边沿时间调整模块用以对所述扩频随机打码信号的边沿时间进行调整,得到动态边沿打码信号。采用扩频随机打码信号驱动指纹检测芯片可以有效降低打码信号对移动设备射频通信的EMI,采用边沿时间调整模块增加扩频随机打码信号的边沿时间可进一步降低上述干扰。

Description

指纹检测打码装置、指纹检测系统和电子设备 技术领域
本公开涉及指纹检测技术领域,特别涉及一种指纹检测打码装置、指纹检测系统和电子设备。
背景技术
指纹作为人类特有的生物特征,具有独特性和唯一性,因而可以用来进行个体身份识别。指纹检测的功能一般由指纹检测芯片来实现,而指纹检测芯片要想工作就必须要依靠打码信号来进行驱动。当前指纹检测芯片多采用固定序列打码信号驱动指纹检测芯片,然而固定序列打码信号在全频段产生的电磁辐射干扰(Electromagnetic Interference,EMI)比较大,因而比较容易干扰移动设备的射频通信。
发明内容
针对背景技术中的问题,本公开的目的在于提供一种指纹检测打码装置,有效降低了指纹检测时打码信号对移动设备射频通信的EMI,同时采用低压驱动芯片便可实现高压打码的效果;本公开的另一个目的在于提供一种指纹检测系统;本公开的又一个目的在于提供一种电子设备。
本公开的一个实施例提供了一种指纹检测打码装置,包括:指纹检测芯片,所述指纹检测芯片包括打码信号产生模块和边沿时间调整模块;所述打码信号产生模块用以产生扩频随机打码信号,所述边沿时间调整模块用以对所述扩频随机打码信号的边沿时间进行调整,得到动态边沿打码信号。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述打码信号产生模块包括随机信号产生模块,所述随机信号产生模块用以产生无规律的随机信号。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述打码信号产生模块还包括幅值量化模块,所述幅值量化模块用以对所述随机信 号进行数字量化,得到数字量化信号。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述打码信号产生模块还包括脉宽调整模块,所述脉宽调整模块用以对所述数字量化信号进行脉宽调整,得到脉宽调整信号。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述打码信号产生模块还包括扩频随机打码模块,所述扩频随机打码模块用以对所述脉宽调整信号进行扩频操作,得到所述扩频随机打码信号。所述扩频随机打码信号在一个周期内包括标准高电平和标准低电平,所述标准高电平和所述标准低电平分别为具有特定时间长度的电平,并且所述标准高电平和所述标准低电平的数目分别是固定的,所述标准高电平和所述标准低电平在一个周期内是随机分布的,所述标准高电平和所述标准低电平的总时间长度就是一个周期长度。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述边沿时间调整模块包括边沿时间调整电路、第一电流支路和第二电流支路,所述第一电流支路或所述第二电流支路接通所述边沿时间调整电路,用以提供充电电流,并且所述第二电流支路提供的充电电流大于所述第一电流支路提供的充电电流。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述边沿时间调整模块还包括切换开关,所述切换开关用以切换所述边沿时间调整电路与所述第一电流支路或与所述第二电流支路之间的通断,进一步控制进入所述边沿时间调整模块的所述扩频随机打码信号的边沿时间。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述扩频随机打码信号进入所述边沿时间调整模块后,所述切换开关切换所述边沿时间调整电路与所述第一电流支路之间的通断,用以增加所述扩频随机打码信号的边沿时间;所述切换开关切换所述边沿时间调整电路与所述第二电流支路之间的通断,用以使所述扩频随机打码信号的边沿快速达到预定电平,所述预定电平为所述扩频随机打码信号的高电平或者低电平。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述指纹检测芯片还包括主芯片电路,所述主芯片电路用以接收外界提供的电源信号来实现所述指纹检测芯片的正常通信和工作。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述指纹检测打码装置还包括升压电路,所述边沿时间调整模块输出的动态边沿打码信号作为所述升压电路的输入信号,所述升压电路用以将所述动态边沿打码信号转换为两组同频的高压打码信号,分别为芯片电源信号和芯片地信号,且所述芯片电源信号与所述芯片地信号每一点的幅值之差保持恒定。所述芯片电源信号和所述芯片地信号为所述主芯片电路提供电源来保证所述指纹检测芯片的正常通信和工作。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述升压电路包括打码信号接收端、多条升压支路以及多条电压转换支路。
所述打码信号接收端用以接收所述动态边沿打码信号;
所述多条升压支路用以将所述动态边沿打码信号的电压幅值分别进行多次升压处理,以形成两组同频的高压打码信号,并分别作为所述芯片电源信号和所述芯片地信号;
所述多条电压转换支路用以开启所述多条升压支路的升压处理状态,所述多条电压转换支路同时分别接通所述多条升压支路时,所述动态边沿打码信号的电压幅值将被提升。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述升压电路还包括高压电源输出端和高压信号地输出端。所述高压电源输出端和所述高压信号地输出端分别用以输出所述芯片电源信号和所述芯片地信号。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述指纹检测芯片还包括芯片电源接收端和芯片地端,所述芯片电源接收端和所述芯片地端分别用以接收所述芯片电源信号和所述芯片地信号。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述多条电压转换支路包括第一电压转换支路、第二电压转换支路以及第三电压转换支路。
所述第一电压转换支路包括电源接收端以及第一开关,所述电源接收端与所述第一开关直接连接。所述电源接收端用以接收外界提供的模拟电源,从而为所述升压电路供电。
所述第二电压转换支路包括所述电源接收端、第一二极管以及第二开 关,所述电源接收端连接所述第一二极管的正极,所述第一二极管的负极连接所述第二开关。
所述第三电压转换支路包括所述电源接收端、第二二极管以及第三开关,所述电源接收端连接所述第二二极管的正极,所述第二二极管的负极连接所述第三开关的一端,所述第三开关的另一端连接所述高压信号地输出端。
所述第四电压转换支路包括所述电源接收端以及第三二极管,所述电源接收端连接所述第三二极管的正极,所述第三二极管的负极连接所述高压电源输出端。
所述第一开关、所述第二开关和所述第三开关为第一组开关。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述多条升压支路包括第一升压支路、第二升压支路以及第三升压支路。
所述第一升压支路包括第一电容以及第四开关。所述第一电容的负极通过所述第四开关接地,所述第一电容的负极与所述第四开关之间包含第一升压节点,所述第一电压转换支路通过所述第一开关与所述第一升压节点连接;所述第一电容的正极连接第二升压节点,所述第二升压节点连接所述第二电压转换支路,且连接在所述第一二极管的负极与所述第二开关之间。
所述第二升压支路包括第二电容以及第五开关。所述第二电容的负极通过所述第五开关接地,所述第二电容的负极与所述第五开关之间包含第三升压节点,所述第二电压转换支路通过所述第二开关与所述第三升压节点连接;所述第二电容的正极连接第四升压节点,所述第四升压节点连接所述第三电压转换支路,且连接在所述第二二极管的负极与所述第三开关之间。
所述第三升压支路包括第三电容以及第六开关。所述第三电容的负极通过所述第六开关接地,所述第三电容的负极与所述第六开关之间包含第五升压节点,所述第三电压转换支路通过所述第三开关与所述第五升压节点连接,且所述第五升压节点位于所述第三开关与所述高压信号地输出端之间;所述第三电容的正极连接第六升压节点,所述第四电压转换支路通过所述第三二极管的负极与所述第六升压节点连接,且所述第六升压节点 位于所述第三二极管与所述高压电源输出端之间。
所述第四开关、所述第五开关和所述第六开关为第二组开关。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述升压电路的输入信号还包括所述动态边沿打码信号的反向信号,所述动态边沿打码信号控制所述第一组开关,所述反向信号控制所述第二组开关。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述反向信号由所述动态边沿打码信号经过反相器得到。
作为本公开提供的指纹检测打码装置的一种可选实现方案,所述第一组开关和所述第二组开关都为高电平有效,所述动态边沿打码信号的高电平到来时,所述第一组开关闭合且所述第二组开关断开;所述反向信号的高电平到来时,所述第一组开关断开且所述第二组开关闭合。
本公开的一个实施例提供了一种指纹检测系统,包括如上所述的指纹检测打码装置。
作为本公开提供的指纹检测系统的一种可选实现方案,所述指纹检测系统还包括主机控制模块,所述主机控制模块用以给所述升压电路提供模拟电源。
作为本公开提供的指纹检测系统的一种可选实现方案,所述指纹检测系统还包括电平转换模块,所述电平转换模块用以转换所述主机控制模块和所述指纹检测芯片之间的电平,使所述主机控制模块和所述指纹检测芯片之间的电平匹配。
本公开的一个实施例提供了一种电子设备,包括显示屏和位于所述显示屏下方的指纹检测打码装置,所述指纹检测打码装置包括如上所述的指纹检测打码装置。
本公开具有以下有益效果:本公开实施例提供的指纹检测打码装置包括指纹检测芯片,所述指纹检测芯片包括打码信号产生模块和边沿时间调整模块,所述打码信号产生模块用以产生扩频随机打码信号,所述边沿时间调整模块用以对所述扩频随机打码信号的边沿时间进行调整,得到动态边沿打码信号。采用扩频随机打码信号驱动指纹检测芯片可以有效降低打码信号对移动设备射频通信的EMI,采用边沿时间调整模块增加扩频随机打码信号的边沿时间可进一步降低上述干扰,同时所述指纹打码检测装置 还包括升压电路,使得采用低压驱动芯片便可实现高压打码的效果。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本公开的一个实施例的指纹检测系统的结构示意图;
图2是根据图1当中的实施例的打码信号产生模块的结构示意图;
图3是根据图1当中的实施例的打码信号产生模块产生的扩频随机打码信号的波形结构示意图;
图4是根据图1当中的实施例的边沿时间调整模块的结构示意图;
图5是根据图1当中的实施例的升压电路的结构示意图;
图6是根据本公开的一个实施例的扩频随机打码信号与固定序列打码信号在全频段产生的EMI值的模拟曲线示意图;
图7是根据本公开的一个实施例的指纹检测打码装置的结构示意图;
图8是根据本公开的一个实施例的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本公开各实施例中,为了使读者更好地理解本公开而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本公开所要求保护的技术方案。
图1是根据本公开的一个实施例的指纹检测系统的结构示意图。所述指纹检测系统5包括:指纹检测芯片1、升压电路2、主机控制模块3以及电平转换模块4。
所述指纹检测芯片1包括:芯片电源接收端11a、芯片地端11b、主芯片电路12、打码信号产生模块13和边沿时间调整模块14。
所述主芯片电路12通过所述芯片电源接收端11a和所述芯片地端11b接收外界提供的电源信号来实现所述指纹检测芯片1的正常通信和工作。
所述打码信号产生模块13用以产生扩频随机打码信号TX;所述扩频随机打码信号TX在一个周期内包括标准高电平和标准低电平,所述标准高电平和所述标准低电平分别为具有特定时间长度的电平,并且所述标准高电平和所述标准低电平的数目分别是固定的,所述标准高电平和所述标准低电平在一个周期内是随机分布的,所述标准高电平和所述标准低电平的总时间长度就是一个周期长度。
所述边沿时间调整模块14用以对所述扩频随机打码信号TX的边沿时间进行调整,得到动态边沿打码信号TXd。
所述升压电路2包括:打码信号接收端25、电源接收端28、高压电源输出端29a和高压信号地输出端29b。
所述升压电路2通过所述打码信号接收端25接收到所述动态边沿打码信号TXd后,将所述动态边沿打码信号TXd转换为两组同频的高压打码信号,分别为芯片电源信号SVCC和芯片地信号SGND,且所述芯片电源信号SVCC与所述芯片地信号SGND每一点的幅值之差保持恒定。
所述电源接收端28用以接收外界提供的模拟电源AVDD来为所述升压电路2提供电源,保证所述升压电路2正常工作。
所述高压电源输出端29a和所述高压信号地输出端29b分别与所述指纹检测芯片1的芯片电源接收端11a和芯片地端11b相连接。所述芯片电源信号SVCC和所述芯片地信号SGND分别通过所述高压电源输出端29a和所述高压信号地输出端29b输出到所述芯片电源接收端11a和所述芯片地端11b后为所述主芯片电路12提供电源来保证所述指纹检测芯片1的正常通信和工作。
所述主机控制模块3包括电源输出端31,用以输出所述模拟电源AVDD为所述升压电路2提供电源来保证所述升压电路2的正常工作。所述主机控制模块3可以为手机等具有提供电源和控制等功能的移动设备的主控模块或者其他功能模块。
所述电平转换模4块用以转换所述主机控制模块3和所述指纹检测芯片1之间的电平,使所述主机控制模块3和所述指纹检测芯片1之间的电平匹配。
图2是根据图1当中的实施例的打码信号产生模块的结构示意图。如 图2所示,打码信号产生模块13包括:随机信号产生模块131、幅值量化模块132、脉宽调整模块133和扩频随机打码模块134。
所述随机信号产生模块131用以产生无规律的随机信号135。所述随机信号产生模块131包含随机数发生器,可选地,所述随机数发生器可以为热噪声随机数发生器或量子随机数发生器等,只要可以产生所述随机信号135即可。
所述幅值量化模块132用以对所述随机信号135进行量化,得到数字量化信号136。由于所述随机信号模块131产生的随机信号135的幅值是随机的,因此需要将其幅值进行量化。具体的量化方法可以为在所述随机信号135的幅值的最小值和最大值之间选取一个临界值,所述随机信号135大于等于所述临界值的点,将其量化为高电平,所述随机信号135小于所述临界值的点,将其量化为低电平。最终,所述随机信号135被转换为所述数字量化信号136。
所述脉宽调整模块133用以对所述数字量化信号136进行脉宽调整,将所述数字量化信号136的高电平之间的间隔调整为相同的时间间隔,得到脉宽调整信号137。
所述扩频随机打码模块134用以对所述脉宽调整信号137进行扩频操作,得到扩频随机打码信号138。所述扩频随机打码信号138在一个周期内包括标准高电平和标准低电平,所述标准高电平和所述标准低电平分别为具有特定时间长度的电平,并且所述标准高电平和所述标准低电平的数目分别是固定的,所述标准高电平和所述标准低电平在一个周期内是随机分布的,所述标准高电平和所述标准低电平的总时间长度就是一个周期长度。所述扩频随机打码信号138即是如图1所示的提供给所述边沿时间调整模块14的扩频随机打码信号TX。
所述扩频随机打码信号138的具体实施例可以参照图3。
图3是根据图1当中的实施例的打码信号产生模块产生的扩频随机打码信号的波形结构示意图。图3示出了三个周期的扩频随机打码信号138,每一个周期都包含4个标准低电平1380和3个标准高电平1381,但所述标准低电平1380和所述标准高电平1381在每个周期内是随机分布的。所述标准低电平1380和所述标准高电平1381的时间长度可以相等也可以不 同,只要保证每个周期的扩频随机打码信号138具有相同的时间长度即可。可选地,本实施例中所述标准低电平1380和所述标准高电平1381的时间长度相等。所述标准低电平1380和所述标准高电平1381分别用来代表二进制的“0”和“1”,按照此规则,图3示出的所述扩频随机打码信号138从左到右可以依次表示为{1010100,1100010,0111000,……}。尽管每个周期当中码值“1”和“0”的顺序不同,但每个周期均包含三个“1”和四个“0”,也就是如图2所示的所述扩频随机打码模块134对所述脉宽调整信号137进行了扩频操作,得到了所述扩频随机打码信号138。
图4是根据图1当中的实施例的边沿时间调整模块的结构示意图。边沿时间调整模块14包括:信号输入端141、边沿时间调整电路142、切换开关143、第一电流支路144a、第二电流支路144b以及信号输出端145。
所述第一电流支路144a或所述第二电流支路144b接通所述边沿时间调整电路142用以提供充电电流,并且所述第二电流支路144b提供的充电电流大于所述第一电流支路144a提供的充电电流。
所述打码信号产生模块13产生的扩频随机打码信号138从所述信号输入端141进入所述边沿时间调整模块14后,所述切换开关143首先接通所述边沿时间调整电路142和第一电流支路144a来提供充电电流,用以增加所述扩频随机打码信号138的上升沿的边沿时间。经过预定充电时间之后,所述切换开关143接通所述边沿时间调整电路142和所述第二电流支路144b使所述上升沿快速达到高电平。对于所述扩频随机打码信号138的下降沿可以采用类似的操作,使得所述下降沿的边沿时间增加,最终所述扩频随机打码信号138经过所述边沿时间调整模块14后,得到动态边沿打码信号146;所述动态边沿打码信号146即是如图1所示的提供给所述升压电路2的动态边沿打码信号TXd。
需要注意的是,所述第一电流支路144a和所述第二电流支路144b的数量不限,可以根据实际产品的需要而设定。同时所述第一电流支路144a和第二电流支路144b与所述边沿时间调整电路142连接的通断可以通过可编程软件控制所述切换开关143的切换来进行控制,所述切换开关143的切换次数不限。所述动态边沿打码信号146可以是如图4中所示的轴对称的信号,也可以是非对称的信号。
图5是根据图1当中的实施例的升压电路的结构示意图。本实施例中的升压电路2除了包括图1中升压电路2示出的打码信号接收端25、电源接收端28、高压电源输出端29a和高压信号地输出端29b之外,还包括多条电压转换支路201a-201d和多条升压支路202a-202c,所述电源接收端28包含在所述多条电压转换支路201a-201d中。所述电源接收端28用以接收所述主机控制模块3通过所述电源输出端31输出的所述模拟电源AVDD以保证所述升压电路2正常工作。
所述多条升压支路202a-202c用以将所述动态边沿打码信号146的电压幅值分别进行多次升压处理,以形成两组同频的高压打码信号,并分别作为所述芯片电源信号SVCC和所述芯片地信号SGND。
所述多条电压转换支路201a-201d,用以开启所述多条升压支路202a-202c的升压处理状态,所述多条电压转换支路201a-201d同时分别接通所述多条升压支路202a-202c时,所述动态边沿打码信号146的电压幅值将被提升。
所述升压电路2的输入信号包括动态边沿打码信号25a和反向信号25b,所述反向信号25b可以由所述动态边沿打码信号25a经过反相器26获得,如图5中所示。所述动态边沿打码信号25a即是如图4所示的所述边沿时间调整模块14输出的动态边沿打码信号146。所述升压电路2的输出信号包括所述芯片电源信号SVCC和所述芯片地信号SGND。其中,所述芯片电源信号SVCC和所述芯片地信号SGND分别通过所述高压电源输出端29a和所述高压信号地输出端29b输出到所述芯片电源接收端11a和所述芯片地端11b,为所述主芯片电路12提供电源来保证指纹检测芯片1的正常通信和工作。
在图5所示的实施例中,所述升压电路2具体以三条升压支路202a-202c为例,不过应当理解,在其他替代实施例中,所述升压电路2的升压支路的数量可以根据所述高频打码信号的幅值需要而定。所述三条升压支路202a-202c分别记为第一升压支路202a、第二升压支路202b和第三升压支路202c。
在图5所示的实施例中,所述升压电路2具体以四条电压转换支路201a-201d为例,不过应当理解,在其他替代实施例中,所述升压电路2 的电压转换支路的数量可以根据所述升压支路的数量而定。所述四条电压转换支路201a-201d分别记为第一电压转换支路201a、第二电压转换支路201b、第三电压转换支路201c和第四电压转换支路201d。
所述四条电压转换支路201a-201d和所述三条升压支路202a-202c可以具体包括所述电源接收端28;二极管21a,二极管21b,二极管21c;电容22a,电容22b,电容22c;开关23a、开关23b、开关23c、开关24a、开关24b、开关24c。其中,所述开关23a、所述开关23b和所述开关23c为第一组开关,所述开关24a、所述开关24b和所述开关24c为第二组开关。
所述升压电路2通过所述打码信号接收端25(图5中未示出)接收到所述动态边沿打码信号25a后,所述动态边沿打码信号25a再提供给所述第一组开关23a-23c,以控制所述第一组开关23a-23c的通断状态。另一方面,所述动态边沿打码信号25a通过所述反相器26被转换为所述反向信号25b之后,被提供给所述第二组开关24a-24c,以控制所述第二组开关24a-24c的通断状态。
所述第一电压转换支路201a包括所述电源接收端28以及所述开关23a,所述电源接收端28与所述开关23a直接连接。
所述第二电压转换支路201b包括所述电源接收端28、所述二极管21a以及所述开关23b,所述电源接收端28连接所述二极管21a的正极,所述二极管21a的负极连接所述开关23b。
所述第三电压转换支路201c包括所述电源接收端28、所述二极管21b以及所述开关23c,所述电源接收端28连接所述二极管21b的正极,所述二极管21b的负极连接所述开关23c的一端,所述开关23c的另一端连接所述高压信号地输出端29b。
所述第四电压转换支路201d包括所述电源接收端28以及所述二极管21c,所述电源接收端28连接所述二极管21c的正极,所述二极管21c的负极连接所述高压电源输出端29a。
所述第一升压支路202a包括所述电容22a以及所述开关24a。所述电容22a的负极通过所述开关24a接地,所述电容22a的负极与所述开关24a之间包含升压节点210,所述第一电压转换支路201a通过所述开关23a与 所述升压节点210连接;所述电容22a的正极连接升压节点211a,所述升压节点211a连接所述第二电压转换支路201b,且连接在所述二极管21a的负极与所述开关23b之间。
所述第二升压支路202b包括所述电容22b以及所述开关24b。所述电容22b的负极通过所述开关24b接地,所述电容22b的负极与所述开关24b之间包含升压节点211b,所述第二电压转换支路201b通过所述开关23b与所述升压节点211b连接;所述电容22b的正极连接升压节点212a,所述升压节点212a连接所述第三电压转换支路201c,且连接在所述二极管21b的负极与所述开关23c之间。
所述第三升压支路202c包括所述电容22c以及所述开关24c。所述电容22c的负极通过所述开关24c接地,所述电容22c的负极与所述开关24c之间包含升压节点212b,所述第三电压转换支路201c通过所述开关23c与所述升压节点212b连接,且所述升压节点212b位于所述开关23c与所述高压信号地输出端29b之间;所述电容22c的正极连接升压节点213,所述第四电压转换支路201d通过所述二极管21c的负极与所述升压节点213连接,且所述升压节点213位于所述二极管21c与所述高压电源输出端29a之间。
所述升压电路2的工作原理为:所述第一组开关23a-23c和所述第二组开关24a-24c都是高电平有效,所述动态边沿打码信号25a控制所述第一组开关23a-23c;所述反向信号25b控制所述第二组开关24a-24c。
当所述反向信号25b高电平到来时,所述第一组开关23a-23c断开且所述第二组开关闭合24a-24c,所述模拟电源AVDD流经所述二极管21a、所述二极管21b和所述二极管21c后分别对所述电容22a、所述电容22b和所述电容22c进行充电,此时所述高压信号地输出端29b输出低电平0V;
当所述动态边沿打码信号25a高电平到来时,所述第一组开关23a-23c闭合且所述第二组开关24a-24c断开,由于所述二极管21a-21c的存在,切断了所述模拟电源AVDD与所述电容22a-22c之间的联系,使得所述电容22a、所述电容22b和所述电容22c串联在一起,所述芯片电源信号SVCC和所述芯片地信号SGND的电压由于电容的自举作用被抬高,此时所述芯片地信号SGND输出电压的幅值为3*模拟电源AVDD,其中所述芯片地 信号SGND的波形如27所示。
图6是根据本公开的一个实施例的扩频随机打码信号与固定序列打码信号在全频段产生的EMI值的模拟曲线示意图。如图6所示,图中直角坐标系中,实线11代表所述固定序列打码信号产生的EMI值随频率的变化趋势,虚线12代表所述扩频随机打码信号产生的EMI值随频率的变化趋势。与所述固定序列打码信号在全频段产生的EMI值相比,所述扩频随机打码信号在全频段产生的EMI值整体更低。而且,随着频率的增加,虚线12随着频率增加方向的第二个拐点之后,其斜率的绝对值变大,大于相同频率下实线11斜率的绝对值。意味着,所述扩频随机打码信号在虚线12的第二个拐点之后,其产生的EMI值以更快的速率降低,说明采用所述扩频随机打码信号驱动指纹检测芯片可以有效降低在全频段产生的EMI,在进行指纹检测时可以有效降低打码信号对移动设备射频通信的干扰。
图7是根据本公开的一个实施例的指纹检测打码装置的结构示意图。指纹检测打码装置6包括如图1所示的指纹检测芯片1和升压电路2。所述升压电路2可以参照如图5所示的升压电路的结构。
图8是根据本公开的一个实施例的电子设备。电子设备7包括显示屏8和位于所述显示屏8下方的指纹检测打码装置6,所述指纹检测打码装置6如图7所示。
虽然本公开文件包含许多细节,但是这些不应被解释为对任何发明或要求保护的范围的限制,而是被解释为可以是对特定发明的特定实施例所特有的特征的描述。本专利文件中描述的某些特征在单独实施例的上下文中还可以在单个实施例中组合实现。相反,在单个实施例的上下文中描述的各种特征还可以在多个实施例中单独实现或以任何合适的子组合形式实现。而且,虽然特征可以在上面描述为在某些组合中起作用,并且甚至最初如此要求保护,但是来自要求保护的组合的一个或多个特征在一些情况下可以从组合中删除,并且要求保护的组合可以涉及子组合或子组合的变形。
类似地,虽然在附图中以特定顺序描述了操作,但是这不应理解为要求这些操作以所示的特定顺序或按照顺序依次执行,或者要求执行所有所示的操作,以实现期望的结果。而且,在本专利文件中描述的实施例中的 各种单独的系统部件不应理解为在所有实施例中需要这种分离。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的范围。

Claims (22)

  1. 一种指纹检测打码装置,其特征在于,包括:指纹检测芯片,所述指纹检测芯片包括打码信号产生模块和边沿时间调整模块;
    所述打码信号产生模块用以产生扩频随机打码信号,所述边沿时间调整模块用以对所述扩频随机打码信号的边沿时间进行调整,得到动态边沿打码信号。
  2. 根据权利要求1所述的指纹检测打码装置,其特征在于,所述打码信号产生模块包括随机信号产生模块,所述随机信号产生模块用以产生无规律的随机信号。
  3. 根据权利要求2所述的指纹检测打码装置,其特征在于,所述打码信号产生模块还包括幅值量化模块,所述幅值量化模块用以对所述随机信号进行数字量化,得到数字量化信号。
  4. 根据权利要求3所述的指纹检测打码装置,其特征在于,所述打码信号产生模块还包括脉宽调整模块,所述脉宽调整模块用以对所述数字量化信号进行脉宽调整,得到脉宽调整信号。
  5. 根据权利要求4所述的指纹检测打码装置,其特征在于,所述打码信号产生模块还包括扩频随机打码模块,所述扩频随机打码模块用以对所述脉宽调整信号进行扩频操作,得到所述扩频随机打码信号。所述扩频随机打码信号在一个周期内包括标准高电平和标准低电平,所述标准高电平和所述标准低电平分别为具有特定时间长度的电平,并且所述标准高电平和所述标准低电平的数目分别是固定的,所述标准高电平和所述标准低电平在一个周期内是随机分布的,所述标准高电平和所述标准低电平的总时间长度就是一个周期长度。
  6. 根据权利要求1所述的指纹检测打码装置,其特征在于,所述边沿时间调整模块包括边沿时间调整电路、第一电流支路和第二电流支路,所述第一电流支路或所述第二电流支路接通所述边沿时间调整电路,用以提供充电电流,并且所述第二电流支路提供的充电电流大于所述第一电流支路提供的充电电流。
  7. 根据权利要求6所述的指纹检测打码装置,其特征在于,所述边沿时间调整模块还包括切换开关,所述切换开关用以切换所述边沿时间调 整电路与所述第一电流支路或与所述第二电流支路之间的通断,进一步控制进入所述边沿时间调整模块的所述扩频随机打码信号的边沿时间。
  8. 根据权利要求7所述的指纹检测打码装置,其特征在于,所述扩频随机打码信号进入所述边沿时间调整模块后,所述切换开关切换所述边沿时间调整电路与所述第一电流支路之间的通断,用以增加所述扩频随机打码信号的边沿时间;所述切换开关切换所述边沿时间调整电路与所述第二电流支路之间的通断,用以使所述扩频随机打码信号的边沿快速达到预定电平,所述预定电平为所述扩频随机打码信号的高电平或者低电平。
  9. 根据权利要求1所述的指纹检测打码装置,其特征在于,所述指纹检测芯片还包括主芯片电路,所述主芯片电路用以接收外界提供的电源信号来实现所述指纹检测芯片的正常通信和工作。
  10. 根据权利要求9所述的指纹检测打码装置,其特征在于,所述指纹检测打码装置还包括升压电路,所述边沿时间调整模块输出的动态边沿打码信号作为所述升压电路的输入信号,所述升压电路用以将所述动态边沿打码信号转换为两组同频的高压打码信号,分别为芯片电源信号和芯片地信号,且所述芯片电源信号与所述芯片地信号每一点的幅值之差保持恒定。所述芯片电源信号和所述芯片地信号为所述主芯片电路提供电源来保证所述指纹检测芯片的正常通信和工作。
  11. 根据权利要求10所述的指纹检测打码装置,其特征在于,所述升压电路包括打码信号接收端、多条升压支路以及多条电压转换支路。
    所述打码信号接收端用以接收所述动态边沿打码信号;
    所述多条升压支路用以将所述动态边沿打码信号的电压幅值分别进行多次升压处理,以形成两组同频的高压打码信号,并分别作为所述芯片电源信号和所述芯片地信号;
    所述多条电压转换支路用以开启所述多条升压支路的升压处理状态,所述多条电压转换支路同时分别接通所述多条升压支路时,所述动态边沿打码信号的电压幅值将被提升。
  12. 根据权利要求11所述的指纹检测打码装置,其特征在于,所述升压电路还包括高压电源输出端和高压信号地输出端。所述高压电源输出 端和所述高压信号地输出端分别用以输出所述芯片电源信号和所述芯片地信号。
  13. 根据权利要求10所述的指纹检测打码装置,其特征在于,所述指纹检测芯片还包括芯片电源接收端和芯片地端,所述芯片电源接收端和所述芯片地端分别用以接收所述芯片电源信号和所述芯片地信号。
  14. 根据权利要求12所述的指纹检测打码装置,其特征在于,所述多条电压转换支路包括第一电压转换支路、第二电压转换支路以及第三电压转换支路。
    所述第一电压转换支路包括电源接收端以及第一开关,所述电源接收端与所述第一开关直接连接。所述电源接收端用以接收外界提供的模拟电源,从而为所述升压电路供电。
    所述第二电压转换支路包括所述电源接收端、第一二极管以及第二开关,所述电源接收端连接所述第一二极管的正极,所述第一二极管的负极连接所述第二开关。
    所述第三电压转换支路包括所述电源接收端、第二二极管以及第三开关,所述电源接收端连接所述第二二极管的正极,所述第二二极管的负极连接所述第三开关的一端,所述第三开关的另一端连接所述高压信号地输出端。
    所述第四电压转换支路包括所述电源接收端以及第三二极管,所述电源接收端连接所述第三二极管的正极,所述第三二极管的负极连接所述高压电源输出端。
    所述第一开关、所述第二开关和所述第三开关为第一组开关。
  15. 根据权利要求14所述的指纹检测打码装置,其特征在于,所述多条升压支路包括第一升压支路、第二升压支路以及第三升压支路。
    所述第一升压支路包括第一电容以及第四开关。所述第一电容的负极通过所述第四开关接地,所述第一电容的负极与所述第四开关之间包含第一升压节点,所述第一电压转换支路通过所述第一开关与所述第一升压节点连接;所述第一电容的正极连接第二升压节点,所述第二升压节点连接所述第二电压转换支路,且连接在所述第一二极管的负极与所述第二开关之间。
    所述第二升压支路包括第二电容以及第五开关。所述第二电容的负极通过所述第五开关接地,所述第二电容的负极与所述第五开关之间包含第三升压节点,所述第二电压转换支路通过所述第二开关与所述第三升压节点连接;所述第二电容的正极连接第四升压节点,所述第四升压节点连接所述第三电压转换支路,且连接在所述第二二极管的负极与所述第三开关之间。
    所述第三升压支路包括第三电容以及第六开关。所述第三电容的负极通过所述第六开关接地,所述第三电容的负极与所述第六开关之间包含第五升压节点,所述第三电压转换支路通过所述第三开关与所述第五升压节点连接,且所述第五升压节点位于所述第三开关与所述高压信号地输出端之间;所述第三电容的正极连接第六升压节点,所述第四电压转换支路通过所述第三二极管的负极与所述第六升压节点连接,且所述第六升压节点位于所述第三二极管与所述高压电源输出端之间。
    所述第四开关、所述第五开关和所述第六开关为第二组开关。
  16. 根据权利要求15所述的指纹检测打码装置,其特征在于,所述升压电路的输入信号还包括所述动态边沿打码信号的反向信号,所述动态边沿打码信号控制所述第一组开关,所述反向信号控制所述第二组开关。
  17. 根据权利要求16所述的指纹检测打码装置,其特征在于,所述反向信号由所述动态边沿打码信号经过反相器得到。
  18. 根据权利要求16所述的指纹检测打码装置,其特征在于,所述第一组开关和所述第二组开关都为高电平有效,所述动态边沿打码信号的高电平到来时,所述第一组开关闭合且所述第二组开关断开;所述反向信号的高电平到来时,所述第一组开关断开且所述第二组开关闭合。
  19. 一种指纹检测系统,其特征在于,包括权利要求1至18中任一项所述的指纹检测打码装置。
  20. 根据权利要求19所述的指纹检测系统,其特征在于,所述指纹检测系统还包括主机控制模块,所述主机控制模块用以给所述升压电路提供模拟电源。
  21. 根据权利要求20所述的指纹检测系统,其特征在于,所述指纹检测系统还包括电平转换模块,所述电平转换模块用以转换所述主机控制 模块和所述指纹检测芯片之间的电平,使所述主机控制模块和所述指纹检测芯片之间的电平匹配。
  22. 一种电子设备,其特征在于,包括显示屏和位于所述显示屏下方的指纹检测打码装置,所述指纹检测打码装置包括如权利要求1至18中任一项所述的指纹检测打码装置。
PCT/CN2018/112038 2018-10-26 2018-10-26 指纹检测打码装置、指纹检测系统和电子设备 WO2020082323A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880002331.5A CN109496315B (zh) 2018-10-26 2018-10-26 指纹检测打码装置、指纹检测系统和电子设备
PCT/CN2018/112038 WO2020082323A1 (zh) 2018-10-26 2018-10-26 指纹检测打码装置、指纹检测系统和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112038 WO2020082323A1 (zh) 2018-10-26 2018-10-26 指纹检测打码装置、指纹检测系统和电子设备

Publications (1)

Publication Number Publication Date
WO2020082323A1 true WO2020082323A1 (zh) 2020-04-30

Family

ID=65713862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112038 WO2020082323A1 (zh) 2018-10-26 2018-10-26 指纹检测打码装置、指纹检测系统和电子设备

Country Status (2)

Country Link
CN (1) CN109496315B (zh)
WO (1) WO2020082323A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256864A (zh) * 2021-12-13 2022-03-29 湖南大学 高压直流输电系统中svcc的定时间控制方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022056860A1 (zh) * 2020-09-18 2022-03-24 深圳市汇顶科技股份有限公司 触控芯片、打码方法和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105488496A (zh) * 2015-02-13 2016-04-13 比亚迪股份有限公司 指纹检测电路及指纹检测方法及电子装置
CN107980141A (zh) * 2017-10-18 2018-05-01 深圳市汇顶科技股份有限公司 指纹传感器和终端设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050192727A1 (en) * 1994-05-09 2005-09-01 Automotive Technologies International Inc. Sensor Assemblies
CN100438599C (zh) * 2003-06-13 2008-11-26 奇景光电股份有限公司 降低电磁波干扰的装置及调整扩频时钟频率的方法
RO121497B1 (ro) * 2005-02-09 2007-06-29 Softwin S.R.L. Sistem informatic şi metodă pentru achiziţia, analiza şi autentificarea semnăturii olografe
US8483704B2 (en) * 2005-07-25 2013-07-09 Qualcomm Incorporated Method and apparatus for maintaining a fingerprint for a wireless network
US8144115B2 (en) * 2006-03-17 2012-03-27 Konicek Jeffrey C Flat panel display screen operable for touch position determination system and methods
US8190919B2 (en) * 2006-11-07 2012-05-29 Spansion Llc Multiple stakeholder secure memory partitioning and access control
US8180006B2 (en) * 2009-08-13 2012-05-15 Himax Technologies Limited Spread-spectrum generator
CN102404062B (zh) * 2011-12-02 2014-02-12 四川和芯微电子股份有限公司 扩频时钟信号检测系统及方法
US9230150B1 (en) * 2014-07-28 2016-01-05 Google Technology Holdings LLC Finger print sensor and auxiliary processor integration in an electronic device
CN105335715A (zh) * 2015-10-28 2016-02-17 深圳市汇顶科技股份有限公司 指纹识别系统
CN205486179U (zh) * 2016-03-31 2016-08-17 上海孚恩电子科技有限公司 超高频指纹手持终端
CN106203340A (zh) * 2016-07-11 2016-12-07 深圳天珑无线科技有限公司 指纹识别感测器及移动终端
US10395164B2 (en) * 2016-12-15 2019-08-27 Fingerprint Cards Ab Fingerprint sensing module and method for manufacturing the fingerprint sensing module
CN107223303B (zh) * 2017-05-05 2018-12-14 深圳市汇顶科技股份有限公司 电压转换装置和指纹检测系统
CN108391447B (zh) * 2018-03-01 2022-04-01 深圳市汇顶科技股份有限公司 电容指纹芯片、失配调整方法和终端设备
CN108596164B (zh) * 2018-07-18 2024-06-04 昆山丘钛生物识别科技有限公司 指纹模组及电子设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105488496A (zh) * 2015-02-13 2016-04-13 比亚迪股份有限公司 指纹检测电路及指纹检测方法及电子装置
CN107980141A (zh) * 2017-10-18 2018-05-01 深圳市汇顶科技股份有限公司 指纹传感器和终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256864A (zh) * 2021-12-13 2022-03-29 湖南大学 高压直流输电系统中svcc的定时间控制方法及装置
CN114256864B (zh) * 2021-12-13 2023-10-13 湖南大学 高压直流输电系统中svcc的定时间控制方法及装置

Also Published As

Publication number Publication date
CN109496315B (zh) 2022-05-03
CN109496315A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
US10230275B2 (en) Power supply device, and control method of power supply device
JP4547581B2 (ja) デジタル変調を用いるデジタルdc−dcコンバータ
CN108282937A (zh) Led驱动器电路及具有所述led驱动器电路的发光设备
CN103179745B (zh) 发光二极管驱动装置
WO2020082323A1 (zh) 指纹检测打码装置、指纹检测系统和电子设备
TW201445861A (zh) 電源轉換器及功率因數修正裝置
CN105186859B (zh) 开关变换器及对其输出端子放电的方法
EP3481154B1 (en) Led lamp control system
JP2016082702A (ja) スイッチング電源回路
CN108012386B (zh) 控制电路、芯片、方法及开关装置
US6778012B2 (en) Polyphase impedance transformation amplifier
CN109900981B (zh) 一种基于自动增益控制的低功耗rssi检测电路
CN107681888B (zh) 控制器、开关控制方法及所适用的led驱动系统
US8796947B2 (en) Light source driving device
CN105530720A (zh) 驱动装置及其方法
CN107493022A (zh) 一种低电压高效电荷泵
TW202115518A (zh) 電源供應電路以及運作方法
US20160105117A1 (en) Isolated power control device, power conversion device and isolated power control method used in power conversion device
CN208461693U (zh) 高压输入dc-dc变换器
CN100365909C (zh) 闪光灯充电装置
CN212392866U (zh) 单通道多类型信号输出电路及单通道多类型信号输出装置
WO2023097799A1 (zh) 可降低开关电源电磁干扰的Ton计时电路、方法及开关电源
TW201424235A (zh) 熱能利用電路、電子裝置及方法
WO2024098979A1 (zh) 驱动电路、主动笔和触控芯片
KR102349045B1 (ko) 디커플링 동작을 수행하는 벅-부스트 컨버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938057

Country of ref document: EP

Kind code of ref document: A1