WO2020080544A1 - Measuring device, component for measuring device, and operation processing device for measuring device - Google Patents

Measuring device, component for measuring device, and operation processing device for measuring device Download PDF

Info

Publication number
WO2020080544A1
WO2020080544A1 PCT/JP2019/041213 JP2019041213W WO2020080544A1 WO 2020080544 A1 WO2020080544 A1 WO 2020080544A1 JP 2019041213 W JP2019041213 W JP 2019041213W WO 2020080544 A1 WO2020080544 A1 WO 2020080544A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
vibration
measuring device
vibrating body
virtual
Prior art date
Application number
PCT/JP2019/041213
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 藪野
山本 泰之
壮平 松本
Original Assignee
国立大学法人 筑波大学
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 筑波大学, 国立研究開発法人産業技術総合研究所 filed Critical 国立大学法人 筑波大学
Priority to JP2020553366A priority Critical patent/JP7362060B2/en
Publication of WO2020080544A1 publication Critical patent/WO2020080544A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a measuring device for measuring mass, elasticity, and the like from the vibration behavior of a vibrating body such as a cantilever, a component for the measuring device, and a processing device for the measuring device.
  • two cantilevers of the same shape are provided on the same support member so that they can perform coupled vibration, and the measurement target added to the cantilever based on the shape of the natural vibration mode of the two cantilevers.
  • a technique for measuring the minute mass of an object is disclosed (for example, refer to Patent Document 1). It is said that by coupling two cantilevers, it is possible to detect minute changes in mass and elasticity with high sensitivity as compared with the case of using one cantilever.
  • the term "coupling” as used herein means that a part of the two cantilevers is connected by a very weak spring, and the displacement of one affects the displacement of the other.
  • the present invention has been made by paying attention to the above-mentioned unsolved problems of the related art, and an object thereof is to provide a measuring device having higher sensitivity, a component for the measuring device, and an arithmetic processing device for the measuring device. There is.
  • one of the two coupled cantilevers is removed. Then, instead of the removed cantilever, the force that should be applied to the other cantilever when two cantilevers are coupled is theoretically calculated in real time and applied to the actuator attached to the other cantilever. As a result, only the other cantilever is vibrated as if the two cantilevers are coupled and vibrating. By doing this, only one cantilever needs to be manufactured, and it becomes possible to ideally approximate the physical characteristics of the cantilever, and it is also possible to ideally reduce the coupling effect. It becomes possible to solve the above problems.
  • a measurement device that detects a value corresponding to a physical quantity of a measurement target by using the amplitudes of two vibrating bodies, and is used as one of the two vibrating bodies.
  • the actual vibrating body an actuator that applies a force in a preset displacement direction to the actual vibrating body, a vibration displacement detection unit that detects the vibrating displacement of the actual vibrating body, and a virtual vibrating body that can be coupled to each other.
  • Coupling control that simulates the virtual vibrating body as one of the two vibrating bodies and drives and controls the actuator based on the vibrating displacement of the real vibrating body detected by the virtual vibrating body and the vibration displacement detection unit.
  • a measuring device including an arithmetic processing device that executes a process.
  • a component for the measuring device which is an actual vibration body, an actuator that applies a force in a preset displacement direction to the real vibration body, and an actual vibration.
  • a component for a measuring device which includes a vibration displacement detection unit that detects a vibration displacement of a body.
  • the arithmetic processing device for the measuring device according to the above aspect which is virtually coupled to the actual vibrating body by using the vibration displacement of the actual vibrating body.
  • an arithmetic processing device for a measuring device that simulates a virtual vibrating body and generates a signal for driving and controlling an actuator.
  • a feedback value proportional to the vibration speed (displacement speed) of one of the vibrating bodies is positively fed back to give an equal excitation input to the two vibrating bodies.
  • self-excited vibration is generated in the two vibrating bodies.
  • the feedback gain is gradually increased (or decreased) from a preset value.
  • self-excited vibration occurs only in the low-order natural vibration mode.
  • the amplitude ratio of the two vibrating bodies at this time strictly corresponds to the low-order natural vibration mode.
  • the measurement target is added to one of the two vibrating bodies, and the amplitude ratio when the self-excited vibration occurs is measured. Then, for example, the mass of the measurement target is measured from the change in the amplitude ratio when the measurement target is added to the amplitude ratio when the measurement target is not added.
  • FIG. 1A is a diagram showing a configuration example of the vibrating unit 1 when measuring the mass of a measurement object using such a mass measuring method.
  • the vibrating section 1 includes a cantilever 1A, a cantilever 1B, a support member 1C, and an overhang portion 1D.
  • the cantilevers 1A and 1B are both made of the same material and have the same shape, and are arranged in parallel (coupled) with the support member 1C in a cantilever state in which one end is fixed to the support member 1C and the other end is a free end. There is. That is, the cantilevers 1A and 1B have the same spring rigidity and mass.
  • the root portions of the cantilevers 1A and 1B on the fixed end side are connected by an overhang portion 1D formed so as to project from the support member 1C.
  • the overhang portion 1D plays a role of a vibration transmitting portion for transmitting vibration between the cantilevers 1A and 1B, and the overhang portion 1D has a structure in which the cantilevers 1A and 1B are coupled and vibrated.
  • an object to be measured is attached to the cantilever 1B, and the cantilevers 1A and 1B are externally displaced as velocity feedback to generate self-excited vibrations in the cantilevers 1A and 1B.
  • ⁇ Mass measuring method in the present embodiment> When measuring the mass of an object to be measured using such a mass measuring method, the measuring device according to the present embodiment, as shown in FIG. 1B, cantilever 1A and overhang portion 1D (support member 1C). Is implemented as a virtual model on an arithmetic processing unit including a digital signal processor (DSP) or the like.
  • DSP digital signal processor
  • FIG. 2 is a diagram showing an example of an equivalent model of the dynamic system of the vibrating section 1 included in the measuring device according to the present embodiment.
  • the vibrating section 1 is an equivalent model of a “spring-mass (mass) -damper” system (hereinafter also referred to as a coupled model) in which two coupled cantilevers 1A and 1B are taken into consideration. .)
  • the cantilever 1A includes a first spring a1 having a spring constant k whose one end is supported by a supporting member 1C and a first damper a2 having a damping constant c whose one end is supported by the supporting member 1C.
  • the first spring a1 and the first object a3 having a mass m supported by the other end of the first damper a2.
  • the cantilever 1B includes a second spring b1 having a spring constant k supported at one end by a supporting member 1C and a second damper b2 having a damping constant c supported at one end by the supporting member 1C. And a second object b3 having a mass m supported by the other end of the second spring and the second damper, and a model in which a measurement object having a mass ⁇ m is added to the second object b3 having a mass m.
  • each of the cantilevers 1A and 1B has the same mass as the first spring a1 or the second spring b1 having the same spring constant k and the first damper a2 or the second damper b2 having the same damping constant c.
  • the model is provided with each of the first object a3 and the second object b3 that it has.
  • the first object a3 and the second object b3 are connected by the third spring c1 having the spring constant kc.
  • the third spring c1 having the spring constant kc corresponds to the overhang portion 1D in FIG. 1 and represents the coupled effect of the two cantilevers 1A and 1B.
  • a portion surrounded by a broken line in FIG. 2 is simulated as a virtual model.
  • an exciting force F is further applied from the outside to the support points of the cantilevers (virtual vibrating body) 1A and the cantilevers (actual vibrating body) 1B.
  • the equation of motion of the system is as shown in the following equations (1) and (2).
  • the equation (1) shows the equation of motion of the virtual model including the cantilever 1A
  • the equation (2) shows the equation of motion of the existing cantilever 1B.
  • x1 is the displacement of the cantilever 1A
  • dx1 / dt is the first-order differential value of the displacement of the cantilever 1A
  • d 2 x1 / dt 2 is the second-order differential value of the displacement of the cantilever 1A
  • x2 displacement of the cantilever 1B is the first derivative value of the cantilever 1B
  • d 2 x2 / dt 2 is the second order differential value of the cantilever 1B.
  • an external excitation force F applied to the cantilevers 1A and 1B so as to generate self-excited oscillation is given by the following equation (3) using the displacement x2 of the cantilever 1B.
  • b in the equation (3) is a feedback gain set to generate self-excited oscillation.
  • the feedback gain b is set to the value of the feedback gain when the self-excited oscillation occurs in the actual measurement environment. This feedback gain b does not need to be updated unless the measurement environment changes, and may be updated when measurement is performed in a different measurement environment.
  • F b ⁇ dx2 / dt (3)
  • the equation of motion of equation (6) is virtually simulated using the fourth-order Runge-Kutta method in the arithmetic processing device. Further, the right side of the equation (7) is applied to the existing cantilever 1B as the exciting force F.
  • the state variable X is set to the following equation (8), the equation (6) is converted into a state equation, and then the fourth-order Runge- It is solved using the Kutta method, and the state quantity (equation (10)) is derived from the state quantity (equation (9)) at time t after a unit step time, that is, at time t + h.
  • the virtual displacement of the cantilever 1A is calculated as x1 (t + h), and the speed is calculated as dx1 (t + h).
  • the exciting force F required to reproduce the expression (7) is expressed by the following expression (12).
  • F kc ⁇ (x1-x2) + b ⁇ (dx2 / dt) ... (12) That is, the exciting force F required to realize the equation (7) is the velocity feedback component (linear velocity feedback component) for self-oscillation and the displacement feedback (linear displacement feedback component) for simulating the coupling effect. Ingredient) and the sum. From the above, the calculation necessary for simulating the coupled cantilever and the information to be fed back are known.
  • FIG. 3 is a schematic configuration diagram showing an example of the measuring device 100.
  • the measuring apparatus 100 uses an actual vibrating body portion 11 including an existing cantilever 1B, a displacement meter 23 that detects the amplitude of the cantilever 1B, and an actuator that vibrates the cantilever 1B, and a detection signal from the displacement meter 23 to generate a virtual signal.
  • An arithmetic processing unit 12 configured by a digital signal processor (DSP) or the like for performing a coupled control process for simulating the motion of the cantilever 1A and controlling the actuator, and an actuator 22 according to a command signal from the arithmetic processing unit 12.
  • a drive circuit 13 for driving the display device and a display device 14 are included.
  • the actual vibrating body section 11 includes an existing cantilever 1B, a support member 21 that supports one end of the cantilever 1B, and an actuator 22 that vibrates the support member 21.
  • the parts described in FIGS. 4 and 5 correspond to parts for the measuring device.
  • the support member 21 supports one end of the elongated plate-shaped cantilever 1B so that the width direction of the cantilever 1B is vertical to the vertical direction.
  • the support member 21 also includes a holding portion 21a that holds the cantilever 1B, and a guide portion 21b that slidably supports the holding portion 21a in a direction orthogonal to the longitudinal direction of the cantilever 1B.
  • the holding portion 21a and the guide portion 21b are slidably supported via a linear bearing or the like.
  • the actuator 22 is configured to include, for example, a uniaxial piezo actuator, includes a shaft portion 22a that expands and contracts, and a support portion 22b that supports one end of the shaft portion 22a.
  • the holding portion 21a is provided at the other end of the shaft portion 22a. Is fixed.
  • the expansion / contraction direction of the shaft portion 22a and the guide direction of the holding portion 21a in the guide portion 21b are arranged so as to coincide with each other, and the actuator 22 expands / contracts the shaft portion 22a in response to a drive signal from the drive circuit 13 to hold the holding portion.
  • 21a moves with the guide portion 21b as a guide, and the cantilever 1B held by the holding portion 21a moves.
  • the actuator 22 is moved so as to alternately expand and contract the shaft portion 22a, whereby the holding portion 21a vibrates, and as a result, the cantilever 1B vibrates.
  • the displacement meter 23 is arranged at a position where the distance to the tip of the cantilever 1B can be measured, and measures the distance to the tip of the cantilever 1B.
  • the amplitude of the cantilever 1B can be detected by calculating the displacement of the distance to the tip of the cantilever 1B detected by the displacement meter 23.
  • FIG. 6 is a block diagram showing an example of the dynamics of the entire measuring device 100.
  • the equations (1) to (12) which have been described as being dimensionally in terms of calculation in the arithmetic processing unit 12 configured by a DSP or the like, need to be converted into a dimensionless amount.
  • the equations (6) and (7) are made dimensionless, they can be expressed by the following equations (13) and (14).
  • FIG. 6 is a block diagram showing the equations (13) and (14).
  • the displacement x2 of the cantilever 1B is detected by the displacement meter 23, multiplied by the gain G1 of the displacement meter 23 by the calculator 31, and then converted into a digital signal by the AD converter (ADC) 32, and calculated. It is processed by the processing device 12. That is, the output of the AD converter 32 is multiplied by the gain G2 in the calculator 33, and then passed through the LPF (low-pass filter) unit 34 and the differentiator (vibration velocity detecting unit) 35, and the first-order differential value dx2 of the displacement x2.
  • LPF low-pass filter
  • differentiator vibration velocity detecting unit
  • a feedback component for self-sustained pulsation is created by multiplying the first-order differential value dx2 * / dt * of the displacement x2 * by the velocity feedback gain ⁇ . This feedback component is input to the adder 37.
  • the output x2 * of the computing unit 33 is further input to the computing unit 38 and also to the computing unit 39 directly or via the differentiator 40.
  • the calculator 39 obtains the displacement x1 * of the virtual cantilever 1A using the Runge-Kutta method based on the output x2 * of the calculator 33 and the output dx2 * / dt * of the differentiator 40.
  • the displacement x1 * is input to the calculator 39, and the difference between the displacement x1 * and the displacement x2 * is output from the calculator 39. This difference is multiplied by the displacement feedback gain kc * for coupling the virtual cantilever 1A and the existing cantilever 1B by the multiplier 41 to generate a feedback component for simulating the coupling rigidity.
  • This feedback component is input to the adder 37.
  • the output ⁇ ⁇ (dx2 * / dt * ) of the multiplier 36 as the velocity feedback component and the output kc ⁇ (x1 * ⁇ x2 * ) of the multiplier 41 as the displacement feedback component are added by the adder 37 to generate the vibration. It is output as the input displacement ⁇ x.
  • the vibration input displacement ⁇ x is input to the calculator 42, multiplied by the gain G3, and then output to the actuator 22 via the DA converter (DAC) 43.
  • the output of the DA converter 43 is multiplied by the piezoelectric constant d33 of the actuator 22 (piezoactuator) by the multiplier (feedback control unit) 44 and input to the cantilever 1B as the vibration input displacement ⁇ x.
  • a feedback loop simulating the coupled effect of the virtual vibrator is constructed.
  • the gains G2 and G3 are set, for example, based on the representative length and the representative time for converting the dimensionless quantity into the dimensional quantity.
  • the material of the cantilever 1B is C5191P (phosphor bronze plate).
  • the shape of the cantilever 1B is 210 [mm] in length from the fixed end, 15 [mm] in width, and 0.3 [mm] in thickness.
  • the natural frequency f1 of the cantilever 1B is 3.964 Hz, and the dimensionless damping coefficient ⁇ is 1.770 ⁇ 10 ⁇ 3 .
  • the coupled rigidity between the virtual cantilever 1A and the existing cantilever 1B can be set to a desired value. I checked if it was. Specifically, the confirmation was performed by utilizing the change situation of the secondary mode natural frequency f2 of the existing cantilever 1B when the displacement feedback gain kc * for simulating the virtual coupled stiffness is changed.
  • FIG. 7A shows the value set as the displacement feedback gain kc * and the measured value of the secondary mode natural frequency f2 of the existing cantilever 1B at that time.
  • the secondary mode natural frequency f2 of the cantilever 1B can be obtained from the frequency analysis of free vibration of the cantilever 1B detected from the detection value of the displacement meter 23, for example.
  • FIG. 7B shows the correspondence between the set value set as the displacement feedback gain kc * and the experimental value kce * of the coupled stiffness calculated from the secondary mode natural frequency f2.
  • the horizontal axis is the set value set as the displacement feedback gain kc *
  • the vertical axis is the experimental value kce * of the coupled rigidity.
  • the experimental value kce * of the coupled rigidity was calculated from the following equation (15).
  • the value kce * can theoretically be expressed by equation (15).
  • ⁇ and ⁇ in the equations (13) and (14) are coefficients representing the characteristics of the existing cantilever 1B, and both ⁇ and ⁇ are zero here.
  • kce * (1/2) ⁇ ⁇ (f2 / f1) 2 ⁇ 1 ⁇ ... (15)
  • the displacement feedback gain kc * and the experimental value kce * of the coupled rigidity that is, the natural frequency f1 of the cantilever 1B obtained from the free vibration experiment when the displacement feedback gain kc * is given.
  • the relationship with the experimental value kce * of the coupled rigidity obtained from the equation (15) using the eigenfrequency f2 of the secondary mode of the cantilever 1B is almost located on the straight line with the inclination “1”. That is, it was confirmed that by adjusting the displacement feedback gain kc * , the virtual cantilever 1A connected to the cantilever 1B can be simulated at the desired experimental value kce * of the coupled rigidity.
  • the coupled cantilevers 1A and 1B can be simulated in real time. Therefore, the mass of the measuring object can be measured from the ratio of the amplitude of the cantilever 1B to which the measuring object is attached and the amplitude of the virtual cantilever 1A. Further, the sensitivity of measuring the mass of the object to be measured can be adjusted by arbitrarily changing the coupled rigidity. Further, the coupling rigidity can be arbitrarily changed, that is, the coupling rigidity can be made smaller than that in the case where two existing cantilevers are mechanically connected to form a coupling connection. . That is, it is possible to realize the measuring device 100 with higher accuracy.
  • the cantilever 1A and the overhang portion 1D are virtually simulated by the arithmetic processing device 12, in the measuring device that measures the mass of the measuring object using one existing cantilever. It can be realized only by mounting the simulation device 100a including the arithmetic processing unit 12, the drive circuit 13, and the display device 14 shown in FIG. Therefore, the accuracy of the measurement device can be easily improved by adding the simulation device 100a to the existing measurement device.
  • the measuring device 100 may be configured so that the amplitude of self-excited oscillation can be suppressed to a smaller value. That is, the value expressed by the following equation (16) is used with F as the excitation force.
  • F kc ⁇ (x1-x2) + b ⁇ (dx2 / dt) + F (x, (dx / dt)) (16)
  • f (x, (dx / dt)) in the equation (16) is a nonlinear velocity feedback component, and its phase needs to be antiphase or in-phase with dx2 / dt.
  • f (x, (dx / dt)) is set as shown in the following equation (17) and bn in the equation (17) is adjusted, the amplitude of the virtual cantilever 1A and the existing cantilever 1B can be reduced. Can be suppressed. As a result, the divergence of vibrations of the cantilevers 1A and 1B can be suppressed, and the divergence can be suppressed, so that the linear mode can be accurately measured.
  • Equations of motion shown in the equations (1) and (2) can be expressed by the following equations (18) and (19).
  • the virtual cantilever 1A is assumed to have the same shape and the same characteristics as the existing cantilever 1B has been described, but the present invention is not limited to this.
  • the virtual cantilever 1A and the existing cantilever 1B may have the same natural frequency, and may not have the same shape as long as the natural frequencies are the same.
  • the term “identical” here includes not only the case where they are exactly the same but also the case where there is a difference (for example, a deviation of 1% to 2%) that can be regarded as substantially the same.
  • the natural frequency of the cantilever 1B that could be actually measured within the measurable range is used and the natural frequencies of the cantilevers 1A and 1B are adjusted to be the same, the difference between the natural frequencies of the two is the minimum. Including cases where
  • the arithmetic processing unit 12 may further execute initial processing.
  • the actuator 22 is driven to drive only the existing cantilever 1B, and the frequency at which self-excited oscillation occurs is acquired.
  • the feedback gain is changed to obtain the frequency at the time when the vibration starts, that is, the resonance frequency.
  • This is set as a natural frequency, and information based on the acquired natural frequency is set as information necessary for simulating the virtual cantilever 1A.
  • the cantilever 1A is simulated using the set information.
  • This initial processing may be performed at a preset timing, for example, at the start of measurement of a series of measurement objects or periodically.
  • the natural frequency is a theoretical value, and the frequency that actually resonates is the resonance frequency. Unless the effect of viscosity is strong, the resonance frequency is almost equal to the natural frequency.
  • the initial process may include the process of setting the feedback gain b.
  • the arithmetic processing device 12 performs the arithmetic processing has been described, but the present invention is not limited to this.
  • an analog circuit for performing the above arithmetic processing may be configured and the arithmetic processing may be performed by this analog circuit. That is, as the length of the cantilever 1B becomes shorter, the vibration frequency of the cantilever 1B becomes higher, and higher-speed calculation is required. Therefore, it is necessary to use a higher performance digital signal processor or the like as the processing unit 12. Will increase costs.
  • the arithmetic processing unit 12 shown in FIG. 3 with an analog circuit, it can be realized without using a high-performance digital signal processor or the like, that is, an increase in cost can be suppressed. .
  • the function of the arithmetic processing unit 12 is realized by an analog circuit, it is preferable to form an analog resonance circuit that outputs an electric signal equivalent to that of the equation (1).
  • the model can be formed as if the displacement signal of the real cantilever 1B is input to the fixed end of the virtual cantilever 1A, and the model is coupled with the real cantilever 1B.
  • the combined virtual cantilever 1A can be realized with higher accuracy.
  • the uniaxial piezo actuator is used as the actuator 22
  • the present invention is not limited to this.
  • an actuator that can reciprocate the fixed end of the cantilever 1B such as a magnet
  • the tip side of the cantilever 1B may be vibrated.
  • any actuator that can vibrate the tip of the cantilever 1B, such as a magnet or a piezo actuator, can be applied.
  • the present invention is not limited to this.
  • it may be applied to a probe used in an AFM (Atomic Force Microscope) or the like to simulate a virtual model in which a real probe and a virtual probe are coupled and coupled.
  • AFM Acoustic Force Microscope
  • the physical quantity to be measured is not limited to mass, and may be any of the surface shape, elastic modulus, viscoelasticity, and force field.
  • the force field here includes an electric field in space, a magnetic field in space, a spatial distribution of gravitational force, and the like.
  • both of the two cantilevers may be affected by the electric field.
  • one cantilever 1A is a virtual cantilever
  • a situation equivalent to a case in which the two cantilevers are separated to a position where one cantilever is not affected by the electric field is assumed to be virtual.
  • the mass of the moving body can be detected. That is, since the gravitational force changes with the movement of the mass on the ground, the mass of the moving body can be detected by detecting the change in the gravitational force.
  • the invention is not limited to this.
  • a capacitance displacement sensor, an encoder, an optical displacement gauge (for example, a displacement sensor using the optical lever method), a strain gauge, or the like can be used.
  • the eddy current may be measured, and the displacement of the cantilever 1B may be detected from the displacement amount.
  • any method may be used as long as the displacement of the cantilever 1B can be detected.
  • the cantilever 1A and the overhang portion 1D are virtually simulated by the arithmetic processing unit 12
  • the present invention is not limited to this.
  • the cantilever 1A and the cantilever 1B may be actually provided, and the existing cantilever 1A and the cantilever 1B may be virtually coupled by the arithmetic processing unit 12.
  • the amplitude of the cantilever 1A and the amplitude of the cantilever 1B are detected, and based on these, the equivalent model in which the cantilever 1A and the cantilever 1B are virtually coupled to each other is used to obtain the cantilever. It suffices to control the actuators that drive 1A and 1B.
  • a plurality of cantilevers for improving sensitivity may be further provided between the cantilevers 1A and 1B.
  • FIG. 9 shows a virtual cantilever CL1 corresponding to the virtual cantilever 1A, a real cantilever CLn (n is an integer of n ⁇ 3) corresponding to the real cantilever 1B, and existing between the cantilevers CL1 and CLn.
  • FIG. 6 is an explanatory diagram for explaining a method of measuring an atomic force using the vibrating unit 1 having one or a plurality of cantilevers CLi (i is 2 ⁇ i ⁇ n ⁇ 1) for improving sensitivity.
  • the atomic force to be measured is applied to the existing cantilever CLn, and this atomic force is measured.
  • the virtual cantilever CL1 and the real cantilever CLn have the same natural frequency.
  • the virtual cantilever CL1 As a method of matching the natural frequencies, the virtual cantilever CL1, the sensitivity improving cantilevers CL2 to CLn-1 and the existing cantilever CLn are made of the same material and shape, and have the same spring rigidity and mass. And a method of making the ratio of spring rigidity and mass match.
  • the cantilevers CL2 to CLn-1 for improving sensitivity are formed in the same manner as the cantilevers CL1 and CLn. That is, in the state of a cantilever having one end fixed to the support member 1C and the other end being a free end, the cantilevers are juxtaposed side by side, and the root portions of the adjacent cantilevers on the fixed end side are formed on the support member 1C.
  • the virtual cantilever CL1, the cantilevers CL2 to CLn-1 for improving the sensitivity, and the existing cantilever CLn are coupled and vibrated by being connected by the overhang portion 1D.
  • the virtual cantilevers CL2 to CLn-1 for improving the sensitivity are realized as virtual models on the arithmetic processing device, like the virtual cantilever CL1.
  • the natural frequencies of the sensitivity-improving virtual cantilevers CL2 to CLn-1 are the natural frequencies of the virtual cantilever CL1 and the real cantilever CLn. It need not be the same as the frequency.
  • FIG. 10 is a diagram showing an example of an equivalent model (coupling model) of the dynamic system of the vibrating section 1.
  • the virtual cantilever CL1 includes a first spring K1 having a spring constant k1 whose one end is supported by the support member 1C and a first mass K1 which is supported at the other end of the first spring K1.
  • the model is provided with the object M1.
  • the existing cantilever CLn includes an n-th spring Kn having a spring constant kn, one end of which is supported by the support member 1C, and an n-th spring Kn, as shown by a cantilever in a frame of a dashed-dotted line at the right end of FIG.
  • n-th body Mn having a mass mn supported at the other end is provided, and the n-th spring Kn is a model in which the spring constant kn is added with the spring rigidity ⁇ k according to the atomic force of the measurement target. .
  • the virtual cantilever CLi (2 ⁇ i ⁇ n ⁇ 1) for improving sensitivity has an i-th spring Ki having a spring constant ki whose one end is supported by the support member 1C and a mass supported by the other end of the i-th spring Ki. It becomes a model including the i-th object Mi of mi. Further, in the coupled model shown in FIG. 10, the first object M1 and the second object M2 are connected by the spring Kc1 having the spring constant kc, and similarly, the adjacent objects are connected by the spring having the spring constant kc, and the real objects exist.
  • a measuring device having such a vibrating portion 1 when performing measurement, of the cantilevers supported by the supporting member 1C, an existing atomic force of the cantilever CLn, for example, an atomic force of the measurement target is applied to the supporting member 1C.
  • a vibration input is given to the cantilever CL1, which is a virtual cantilever that is a cantilever located at the end of the supported cantilevers.
  • Non-Patent Document 2 when the rigidity decreases ( ⁇ k ⁇ 0), the amplitude ratio of the secondary mode is measured. On the contrary, when the rigidity increases ( ⁇ k> 0), the amplitude ratio of the primary mode is measured.
  • the case where the rigidity decreases in the coupled model shown in FIG. 9 will be described according to Non-Patent Document 1.
  • equation (20) can be expressed by the following equation (21).
  • Condition 1 Increase the number of cantilevers n as much as possible. That is, a large number of cantilevers for improving sensitivity are provided.
  • Condition 2 ⁇ n mn / m1 is made as small as possible.
  • Condition 3 The masses m2 to mn-1 of the sensitivity improving cantilevers CL2 to CLn-1 are made larger than the mass m1 of the cantilever CL1.
  • Condition 4 The spring rigidity of each of the cantilevers CL2 to CLn-1, that is, the spring constant k2 to kn-1 is set to be larger than the spring rigidity of each of the cantilevers CL1 or the spring constant of k1.
  • the virtual cantilever CL1 and the sensitivity improving cantilevers CL2 to CLn-1 are realized as virtual cantilevers instead of existing cantilevers. is doing. Therefore, even if it is difficult to actually manufacture a plurality of cantilevers, in the measuring apparatus 100 according to the present embodiment, a virtual cantilever CL1 that is another cantilever other than the existing cantilever CLn and a cantilever for sensitivity improvement. Since CL2 to CLn-1 are virtually simulated, by manufacturing only the existing cantilevers CLn, it is possible to easily manufacture a high-sensitivity cantilever coupled with many cantilevers for improving sensitivity. it can.
  • Non-Patent Document 1 and Non-Patent Document 2 since it is assumed that a large number of existing cantilevers are coupled, it is technically difficult to manufacture, whereas in the present embodiment, the existing cantilevers are present. Since only one is required, it is technically easy to manufacture.
  • the virtual cantilever CL1 and a large number of cantilevers CL2 to CLn-1 for sensitivity improvement are created "simulated", but in the present invention, existing cantilevers exist, and further, the coupled
  • an arithmetic processing unit capable of executing the above with an existing cantilever, a performance superior to that of the known technology is realized, and therefore, it does not correspond to an abstract concept.
  • the sensitivity improving cantilevers CL2 to CLn-1 are realized as virtual cantilevers instead of existing cantilevers. Therefore, it is easy to increase the number of simulated cantilevers for improving sensitivity, and the sensitivity can be further improved as the number of coupled cantilevers increases.
  • the number of cantilevers for improving sensitivity is limited by physical size, strength, cost, etc., and thus cannot be increased indefinitely. Since the sensitivity can be easily improved in this way, even physical quantities that could not be measured due to low sensitivity can be measured by improving the sensitivity as described above, and the usability is improved. It can be improved and versatility can be improved.
  • the sensitivity can be easily improved in this way, even a light-weight substance or the like that could not be measured until now can be easily measured.
  • m1 is the mass of the first object M1 that the virtual cantilever CL1 has, so in the present embodiment, the sensitivity can be improved as the mass m1 is increased virtually, and the sensitivity can be easily improved. be able to.
  • the techniques described in Non-Patent Document 1 and Non-Patent Document 2 have a limit because increasing the mass m1 is limited by physical size, strength, cost, and the like.
  • the spring rigidity of the sensitivity improving cantilevers CL2 to CLn-1 is It is preferably higher than the spring rigidity of the cantilevers CL1 and CLn.
  • the sensitivity improving cantilevers CL2 to CLn-1 are not necessarily required to be provided that the sensitivity improving cantilevers CL2 to CLn-1 have a spring rigidity higher than that of the cantilevers CL1 and CLn.
  • CLn-1 do not have to be the same material and shape, and may have different spring stiffness and mass.
  • Vibration part 1A Cantilever (virtual vibration body) 1B cantilever (actual vibrator) 1C Supporting member 1D Overhang part 11 Actual vibrating body part 12 Arithmetic processing device 13 Driving circuit 14 Display device 21 Supporting member 21a Holding part 21b Guide part 22 Actuator 22a Shaft part 22b Supporting part 23 Displacement meter 100 Measuring device 100a Simulation device CL1 Virtual Cantilevers CL2-CLn-1 Cantilevers CLn for improving sensitivity Real-life cantilevers

Abstract

The present invention addresses the problem of improving sensitivity of a measuring device. In order to solve the problem, provided is a measuring device that detects a value that is equivalent to the physical quantity of a measurement target by the amplitudes of two vibrators, the measuring device comprising: a real cantilever (1B) as one of the two vibrators; an actuator (22) that applies a force in a preset displacement direction to the cantilever (1B); a vibration displacement detection unit that includes a displacement meter (23) of the cantilever (1B); and an operation processing device that simulates a cantilever (1A) that is virtually bonded with the cantilever (1B) so as to be capable of coupling with the cantilever (1B) as the other one of the two vibrators and that executes coupled control processing for driving and controlling the actuator (22) on the basis of the cantilever (1A) and the vibration displacement of the cantilever (1B) detected by the vibration displacement detection unit.

Description

計測装置、計測装置用の部品及び計測装置用の演算処理装置Measuring device, parts for measuring device, and arithmetic processing unit for measuring device
 本発明は、質量や弾性等をカンチレバー等の振動体の振動挙動から測定するための計測装置、計測装置用の部品及び計測装置用の演算処理装置に関する。 The present invention relates to a measuring device for measuring mass, elasticity, and the like from the vibration behavior of a vibrating body such as a cantilever, a component for the measuring device, and a processing device for the measuring device.
 従来、質量や弾性を計測する技術として、同一支持部材に同一形状の二つのカンチレバーを連成振動が可能なように設け、二つのカンチレバーの固有振動モードの形状から、カンチレバーに付加された測定対象物の微小質量を測定する技術が開示されている(例えば、特許文献1参照。)。二本のカンチレバーを連成させることで、一本のカンチレバーを用いた場合と比べて、微小な質量や弾性の変化を高感度に検出できるとされている。ここでいう連成とは、二本のカンチレバーの一部を非常に弱いばねで連結し、片方の変位が、もう一方の変位に影響を与えるようにされていることをいう。 Conventionally, as a technique for measuring mass and elasticity, two cantilevers of the same shape are provided on the same support member so that they can perform coupled vibration, and the measurement target added to the cantilever based on the shape of the natural vibration mode of the two cantilevers. A technique for measuring the minute mass of an object is disclosed (for example, refer to Patent Document 1). It is said that by coupling two cantilevers, it is possible to detect minute changes in mass and elasticity with high sensitivity as compared with the case of using one cantilever. The term "coupling" as used herein means that a part of the two cantilevers is connected by a very weak spring, and the displacement of one affects the displacement of the other.
特開2014-190771号公報JP, 2014-190771, A
 上記従来技術においては、二つのカンチレバーの連成効果が低い方が感度が向上し、また、二つのカンチレバーの物理特性を近づけるほど感度が向上することが知られている。しかしながら、これら二つの条件を十分に満たすカンチレバーを作製することは、機械設計上、また、製作上、限界がある。そのため、より高感度を実現することは困難であった。
 また、連成可能な二本のカンチレバーを製作することは、一本のカンチレバーを製作することと比べれば技術的難易度が高く、製作歩留まりの悪化、煩雑性の悪化、コスト上昇等のデメリットが生じていた。
In the above-mentioned prior art, it is known that the sensitivity is improved when the coupling effect of the two cantilevers is lower, and the sensitivity is improved as the physical characteristics of the two cantilevers are closer to each other. However, producing a cantilever that satisfies these two conditions is limited in terms of mechanical design and production. Therefore, it was difficult to realize higher sensitivity.
In addition, manufacturing two cantilevers that can be coupled is technically more difficult than manufacturing one cantilever, and has disadvantages such as deterioration of manufacturing yield, deterioration of complexity, and cost increase. It was happening.
 そこで、この発明は、上記従来の未解決の問題に着目してなされたものであり、感度がより高い計測装置、計測装置用の部品及び計測装置用の演算処理装置を提供することを目的としている。 Therefore, the present invention has been made by paying attention to the above-mentioned unsolved problems of the related art, and an object thereof is to provide a measuring device having higher sensitivity, a component for the measuring device, and an arithmetic processing device for the measuring device. There is.
 上記の課題を解決するため、本発明では、連成する二本のカンチレバーの内、一方を取り去る。そして、取り去ったカンチレバーの代わりに、カンチレバーが二本連成していた時に他方のカンチレバーに与えられるはずの力をリアルタイムに理論的に計算して、他方のカンチレバーに取り付けられたアクチュエータに与える。これによって、あたかも二本のカンチレバーが連成して振動しているかのように、他方のカンチレバーのみを振動させる。こうすることで、製作すべきカンチレバーは一本だけですみ、また、カンチレバーの物理特性を理想的に近づけることも可能になり、さらには連成効果を理想的に小さくすることも可能になるため、上記の課題を解決することが可能になる。 In order to solve the above problems, in the present invention, one of the two coupled cantilevers is removed. Then, instead of the removed cantilever, the force that should be applied to the other cantilever when two cantilevers are coupled is theoretically calculated in real time and applied to the actuator attached to the other cantilever. As a result, only the other cantilever is vibrated as if the two cantilevers are coupled and vibrating. By doing this, only one cantilever needs to be manufactured, and it becomes possible to ideally approximate the physical characteristics of the cantilever, and it is also possible to ideally reduce the coupling effect. It becomes possible to solve the above problems.
 すなわち、本発明の一態様によれば、二つの振動体の振幅を用いて、測定対象の物理量に相当する値を検出する計測装置であって、二つの振動体のうちの一つとしての実在する実振動体と、実振動体に予め設定した変位方向の力を付与するアクチュエータと、実振動体の振動変位を検出する振動変位検出部と、実振動体と仮想的に連成可能に結合される仮想振動体を二つの振動体のうちの他の一つとして模擬すると共に、仮想振動体と振動変位検出部で検出した実振動体の振動変位とに基づきアクチュエータを駆動制御する連成制御処理を実行する演算処理装置と、を備える計測装置が提供される。 That is, according to one aspect of the present invention, a measurement device that detects a value corresponding to a physical quantity of a measurement target by using the amplitudes of two vibrating bodies, and is used as one of the two vibrating bodies. The actual vibrating body, an actuator that applies a force in a preset displacement direction to the actual vibrating body, a vibration displacement detection unit that detects the vibrating displacement of the actual vibrating body, and a virtual vibrating body that can be coupled to each other. Coupling control that simulates the virtual vibrating body as one of the two vibrating bodies and drives and controls the actuator based on the vibrating displacement of the real vibrating body detected by the virtual vibrating body and the vibration displacement detection unit. Provided is a measuring device including an arithmetic processing device that executes a process.
 また、本発明の他の態様によれば、上記態様の計測装置用の部品であって、実在する実振動体と、実振動体に予め設定した変位方向の力を付与するアクチュエータと、実振動体の振動変位を検出する振動変位検出部と、を備える計測装置用の部品が提供される。
 さらに、本発明の他の態様によれば、上記態様の計測装置用の演算処理装置であって、実振動体の振動変位を用いて、実振動体と仮想的に連成可能に結合される仮想振動体を模擬すると共にアクチュエータを駆動制御する信号を生成する計測装置用の演算処理装置が提供される。
According to another aspect of the present invention, there are provided a component for the measuring device according to the above aspect, which is an actual vibration body, an actuator that applies a force in a preset displacement direction to the real vibration body, and an actual vibration. Provided is a component for a measuring device, which includes a vibration displacement detection unit that detects a vibration displacement of a body.
Further, according to another aspect of the present invention, there is provided the arithmetic processing device for the measuring device according to the above aspect, which is virtually coupled to the actual vibrating body by using the vibration displacement of the actual vibrating body. There is provided an arithmetic processing device for a measuring device that simulates a virtual vibrating body and generates a signal for driving and controlling an actuator.
 本発明の一態様によれば、感度がより高い計測装置を容易に実現することができる。 According to one aspect of the present invention, it is possible to easily realize a measuring device having higher sensitivity.
本発明を適用した計測装置における質量測定方法を説明するための説明図である。It is explanatory drawing for demonstrating the mass measuring method in the measuring device to which this invention is applied. 振動部の力学系の等価モデルの一例を示す図である。It is a figure which shows an example of the equivalent model of the dynamic system of a vibration part. 計測装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of a measuring device. 実振動体部の一例を示す上面図である。It is a top view which shows an example of an actual vibrating body part. 実振動体部の一例を示す正面図である。It is a front view which shows an example of an actual vibrating body part. 計測装置全体のダイナミクスの一例を示すブロック線図である。It is a block diagram showing an example of dynamics of the whole measuring device. 検証結果を説明するための図である。It is a figure for demonstrating a verification result. 検証結果を説明するための図である。It is a figure for demonstrating a verification result. 本発明を適用した計測装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of the measuring device to which this invention is applied. 変形例における振動部の力学系の等価モデルの一例を示す図である。It is a figure which shows an example of the equivalent model of the dynamic system of the vibration part in a modification.
 以下、図面を参照して本発明の実施形態について説明する。
 なお、以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかである。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 本実施形態では、計測装置により測定対象物の質量を測定する場合について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
It should be noted that in the following detailed description, numerous specific specific configurations are set forth in order to provide a thorough understanding of the embodiments of the invention. However, it is obvious that other embodiments can be implemented without being limited to such a specific specific configuration. Further, the following embodiments do not limit the invention according to the claims. In addition, not all of the combinations of features described in the embodiments are essential to the solving means of the invention.
In the present embodiment, a case will be described in which the measuring device measures the mass of a measurement target.
<従来技術の質量測定方法>
 初めに、同等なバネ剛性と質量とをもち、同一支持部材に連成振動が可能なように設けられた二つの振動体(例えば、カンチレバー等)を有する振動部を用いた、質量測定方法を説明する。
<Prior art mass measurement method>
First, a mass measuring method using a vibrating section having two vibrating bodies (for example, a cantilever) having the same spring rigidity and mass and provided on the same supporting member so as to be capable of coupled vibration is described. explain.
 まず、二つの振動体のうち、一方の振動体の振動速度(変位速度)に比例したフィードバック値を正帰還して二つの振動体に対して等しい加振入力を与える。これにより、二つの振動体に自励振動を発生させる。ここで、自励振動を発生させるために、フィードバックゲインを、予め設定した値から徐々に上げていく(または下げていく。)。そうすると、まず低次の固有振動モードのみで自励振動が発生する。このときの二つの振動体の振幅比が、厳密に低次の固有振動モードに対応する。
 一方、測定対象物を二つの振動体のうちの一方に付加して、自励振動が発生したときの振幅比を測定する。そして、例えば、測定対象物を付加していないときの振幅比に対する、測定対象物を付加したときの振幅比の変化から、測定対象物の質量を計測する。
First, of the two vibrating bodies, a feedback value proportional to the vibration speed (displacement speed) of one of the vibrating bodies is positively fed back to give an equal excitation input to the two vibrating bodies. As a result, self-excited vibration is generated in the two vibrating bodies. Here, in order to generate self-excited vibration, the feedback gain is gradually increased (or decreased) from a preset value. Then, first, self-excited vibration occurs only in the low-order natural vibration mode. The amplitude ratio of the two vibrating bodies at this time strictly corresponds to the low-order natural vibration mode.
On the other hand, the measurement target is added to one of the two vibrating bodies, and the amplitude ratio when the self-excited vibration occurs is measured. Then, for example, the mass of the measurement target is measured from the change in the amplitude ratio when the measurement target is added to the amplitude ratio when the measurement target is not added.
 図1(a)は、このような質量測定方法を用いて測定対象物の質量を計測する際の、振動部1の構成例を示す図である。
 図1(a)に示すように、振動部1は、カンチレバー1Aと、カンチレバー1Bと、支持部材1Cと、オーバーハング部1Dとを含んで構成される。
 カンチレバー1A及び1Bは、共に同じ材料及び形状で構成されており、支持部材1Cに一端が固定され他端が自由端となる片持ち梁の状態で支持部材1Cに並設(連成)されている。つまり、カンチレバー1A及び1Bは、同等なバネ剛性と質量とを有している。
FIG. 1A is a diagram showing a configuration example of the vibrating unit 1 when measuring the mass of a measurement object using such a mass measuring method.
As shown in FIG. 1A, the vibrating section 1 includes a cantilever 1A, a cantilever 1B, a support member 1C, and an overhang portion 1D.
The cantilevers 1A and 1B are both made of the same material and have the same shape, and are arranged in parallel (coupled) with the support member 1C in a cantilever state in which one end is fixed to the support member 1C and the other end is a free end. There is. That is, the cantilevers 1A and 1B have the same spring rigidity and mass.
 さらに、カンチレバー1A及び1Bの固定端側の根元部分は、支持部材1Cに突設形成されたオーバーハング部1Dによって接続されている。このオーバーハング部1Dは、カンチレバー1A及び1B間で相互に振動を伝える振動伝達部の役割を果たしており、このオーバーハング部1Dによって、カンチレバー1A及び1Bが連成振動する構造となっている。
 図1(a)では、カンチレバー1Bに測定対象物を取り付け、カンチレバー1A及び1Bに外部から速度フィードバックとして変位を与えることで、カンチレバー1A及び1Bに自励振動を発生させる。
Further, the root portions of the cantilevers 1A and 1B on the fixed end side are connected by an overhang portion 1D formed so as to project from the support member 1C. The overhang portion 1D plays a role of a vibration transmitting portion for transmitting vibration between the cantilevers 1A and 1B, and the overhang portion 1D has a structure in which the cantilevers 1A and 1B are coupled and vibrated.
In FIG. 1A, an object to be measured is attached to the cantilever 1B, and the cantilevers 1A and 1B are externally displaced as velocity feedback to generate self-excited vibrations in the cantilevers 1A and 1B.
<本実施形態における質量測定方法>
 本実施形態に係る計測装置は、このような質量測定方法を用いて測定対象物の質量を計測する際に、図1(b)に示すように、カンチレバー1A及びオーバーハング部1D(支持部材1Cを含む。)をデジタルシグナルプロセッサ(DSP)等で構成される演算処理装置上で仮想モデルとして実現する。
<Mass measuring method in the present embodiment>
When measuring the mass of an object to be measured using such a mass measuring method, the measuring device according to the present embodiment, as shown in FIG. 1B, cantilever 1A and overhang portion 1D (support member 1C). Is implemented as a virtual model on an arithmetic processing unit including a digital signal processor (DSP) or the like.
〔等価モデル〕
 図2は、本実施形態に係る計測装置に含まれる振動部1の力学系の等価モデルの一例を示す図である。
 図2に示すように、振動部1を、連成された二つのカンチレバー1A及び1Bを考慮にいれた、「バネ-質量(マス)-ダンパ」系の等価モデル(以下、連成モデルともいう。)として考える。
 図2に示す連成モデルでは、カンチレバー1Aは、支持部材1Cに一端が支持されたバネ定数kの第1バネa1と、支持部材1Cに一端が支持された減衰定数cの第1ダンパa2と、第1バネa1及び第1ダンパa2の他端に支持された質量mの第1物体a3とを備えたモデルとなる。
[Equivalent model]
FIG. 2 is a diagram showing an example of an equivalent model of the dynamic system of the vibrating section 1 included in the measuring device according to the present embodiment.
As shown in FIG. 2, the vibrating section 1 is an equivalent model of a “spring-mass (mass) -damper” system (hereinafter also referred to as a coupled model) in which two coupled cantilevers 1A and 1B are taken into consideration. .) Think as.
In the coupled model shown in FIG. 2, the cantilever 1A includes a first spring a1 having a spring constant k whose one end is supported by a supporting member 1C and a first damper a2 having a damping constant c whose one end is supported by the supporting member 1C. , The first spring a1 and the first object a3 having a mass m supported by the other end of the first damper a2.
 同様に、カンチレバー1Bは、図2に示すように、支持部材1Cに一端が支持されたバネ定数kの第2バネb1と、支持部材1Cに一端が支持された減衰定数cの第2ダンパb2と、第2バネ及び第2ダンパの他端に支持された質量mの第2物体b3とを備え、さらに、質量mの第2物体b3には、質量Δmの測定対象物が付加されたモデルとなる。つまり、カンチレバー1Aと1Bとはそれぞれ、同一のバネ定数kを有する第1バネa1又は第2バネb1と、同一の減衰定数cを有する第1ダンパa2又は第2ダンパb2と、同一の質量を有する第1物体a3及び第2物体b3とをそれぞれ備えたモデルとなる。 Similarly, as shown in FIG. 2, the cantilever 1B includes a second spring b1 having a spring constant k supported at one end by a supporting member 1C and a second damper b2 having a damping constant c supported at one end by the supporting member 1C. And a second object b3 having a mass m supported by the other end of the second spring and the second damper, and a model in which a measurement object having a mass Δm is added to the second object b3 having a mass m. Becomes That is, each of the cantilevers 1A and 1B has the same mass as the first spring a1 or the second spring b1 having the same spring constant k and the first damper a2 or the second damper b2 having the same damping constant c. The model is provided with each of the first object a3 and the second object b3 that it has.
 さらに、図2に示す連成モデルでは、図2に示すように、第1物体a3と第2物体b3とは、バネ定数kcの第3バネc1によって接続されている。このバネ定数kcの第3バネc1が、図1のオーバーハング部1Dに相当し、二つのカンチレバー1A及び1Bの連成効果を表している。
 そして、本実施形態に係る計測装置は、図2中、破線で囲む部分が、仮想モデルとして模擬される。
Further, in the coupled model shown in FIG. 2, as shown in FIG. 2, the first object a3 and the second object b3 are connected by the third spring c1 having the spring constant kc. The third spring c1 having the spring constant kc corresponds to the overhang portion 1D in FIG. 1 and represents the coupled effect of the two cantilevers 1A and 1B.
Then, in the measuring device according to the present embodiment, a portion surrounded by a broken line in FIG. 2 is simulated as a virtual model.
 ここで、図2に示す等価モデルにおいて、さらに外部からカンチレバー(仮想振動体)1A及びカンチレバー(実振動体)1Bの支持点に加振力Fを与える。このとき、システム(図2の連成モデル)の運動方程式は次式(1)及び(2)のようになる。なお、式(1)は、カンチレバー1Aを含む仮想モデルの運動方程式を示し、式(2)は実在のカンチレバー1Bの運動方程式を示す。
  m・(dx1/dt)+c・(dx1/dt)
  +(k+kc)・x1-kc・x2=F
                          …(1)
  (m+Δm)・(dx2/dt)+c・(dx2/dt)
  -kc・x1+(k+kc)・x2=F
                          …(2)
Here, in the equivalent model shown in FIG. 2, an exciting force F is further applied from the outside to the support points of the cantilevers (virtual vibrating body) 1A and the cantilevers (actual vibrating body) 1B. At this time, the equation of motion of the system (coupling model of FIG. 2) is as shown in the following equations (1) and (2). The equation (1) shows the equation of motion of the virtual model including the cantilever 1A, and the equation (2) shows the equation of motion of the existing cantilever 1B.
m ・ (d 2 x1 / dt 2 ) + c ・ (dx1 / dt)
+ (K + kc) * x1-kc * x2 = F
… (1)
(m + Δm) ・ (d 2 x2 / dt 2 ) + c ・ (dx2 / dt)
-Kc · x1 + (k + kc) · x2 = F
… (2)
 なお、(1)及び(2)式中の、x1はカンチレバー1Aの変位、dx1/dtはカンチレバー1Aの変位の一階微分値、dx1/dtはカンチレバー1Aの変位の二階微分値、x2はカンチレバー1Bの変位、dx2/dtはカンチレバー1Bの一階微分値、dx2/dtはカンチレバー1Bの二階微分値である。 In the equations (1) and (2), x1 is the displacement of the cantilever 1A, dx1 / dt is the first-order differential value of the displacement of the cantilever 1A, and d 2 x1 / dt 2 is the second-order differential value of the displacement of the cantilever 1A. x2 displacement of the cantilever 1B, dx2 / dt is the first derivative value of the cantilever 1B, d 2 x2 / dt 2 is the second order differential value of the cantilever 1B.
 ここで、自励発振が発生するようにカンチレバー1A及び1Bに与える外部からの加振力Fを、カンチレバー1Bの変位x2を用いて次式(3)のように与える。なお、(3)式中のbは、自励発振を発生させるために設定されるフィードバックゲインである。フィードバックゲインbは、実際の測定環境下において、自励発振が発生したときのフィードバックゲインの値に設定される。このフィードバックゲインbは、測定環境が変化しなければ更新する必要はなく、異なる測定環境下で測定を行うときに更新すればよい。
  F=b・dx2/dt   …(3)
Here, an external excitation force F applied to the cantilevers 1A and 1B so as to generate self-excited oscillation is given by the following equation (3) using the displacement x2 of the cantilever 1B. It should be noted that b in the equation (3) is a feedback gain set to generate self-excited oscillation. The feedback gain b is set to the value of the feedback gain when the self-excited oscillation occurs in the actual measurement environment. This feedback gain b does not need to be updated unless the measurement environment changes, and may be updated when measurement is performed in a different measurement environment.
F = b · dx2 / dt (3)
 (1)式及び(2)式は、(3)式を用いて次式(4)及び(5)に書き換えることができる。
  m・(dx1/dt)+c・(dx1/dt)
  +(k+kc)・x1-kc・x2=b・(dx2/dt)
                          …(4)
  (m+Δm)・(dx2/dt)+c・(dx2/dt)
  -kc・x1+(k+kc)・x2=b・(dx2/dt)
                          …(5)
The expressions (1) and (2) can be rewritten into the following expressions (4) and (5) using the expression (3).
m ・ (d 2 x1 / dt 2 ) + c ・ (dx1 / dt)
+ (K + kc) * x1-kc * x2 = b * (dx2 / dt)
… (4)
(m + Δm) ・ (d 2 x2 / dt 2 ) + c ・ (dx2 / dt)
-Kc · x1 + (k + kc) · x2 = b · (dx2 / dt)
… (5)
 (4)式及び(5)式は、次式(6)及び(7)に置き換えることができる。
  m・(dx1/dt)+c・(dx1/dt)
  +(k+kc)・x1-kc・x2-b・(dx2/dt)=0
                          …(6)
  (m+Δm)・(dx2/dt)+c・(dx2/dt)
  +k・x2=kc・(x1-x2)+b・(dx2/dt)
                          …(7)
The expressions (4) and (5) can be replaced with the following expressions (6) and (7).
m ・ (d 2 x1 / dt 2 ) + c ・ (dx1 / dt)
+ (K + kc) * x1-kc * x2-b * (dx2 / dt) = 0
… (6)
(m + Δm) ・ (d 2 x2 / dt 2 ) + c ・ (dx2 / dt)
+ K · x2 = kc · (x1-x2) + b · (dx2 / dt)
… (7)
 本実施形態では、(6)式の運動方程式を、演算処理装置において四次のRunge-Kutta法を用いて仮想的に模擬する。また、(7)式中の右辺を、加振力Fとして実在のカンチレバー1Bに加える。
 ここで、(6)式を、演算処理装置で仮想的に模擬するためには、状態変数Xを次式(8)として、式(6)を状態方程式に変換したのち、四次のRunge-Kutta法を用いてそれを解き、時刻tでの状態量(式(9))から単位ステップ時間後すなわち時刻t+hで状態量(式(10))を導出する。この時の仮想的なカンチレバー1Aの変位がx1(t+h)、速度がdx1(t+h)として求まる。
In the present embodiment, the equation of motion of equation (6) is virtually simulated using the fourth-order Runge-Kutta method in the arithmetic processing device. Further, the right side of the equation (7) is applied to the existing cantilever 1B as the exciting force F.
Here, in order to virtually simulate the equation (6) by the arithmetic processing device, the state variable X is set to the following equation (8), the equation (6) is converted into a state equation, and then the fourth-order Runge- It is solved using the Kutta method, and the state quantity (equation (10)) is derived from the state quantity (equation (9)) at time t after a unit step time, that is, at time t + h. At this time, the virtual displacement of the cantilever 1A is calculated as x1 (t + h), and the speed is calculated as dx1 (t + h).
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 なお、(9)式中のx1(t)及びdx1(t)/dtは、数値演算結果を利用する。また、x2(t)及びdx2(t)/dtは、実在のカンチレバー1Bの変位計測結果を利用する。
 次に、(7)式の運動方程式、つまり、実在のカンチレバー1Bの運動方程式において、右辺の項を、加振力Fで表す。
 つまり、運動方程式(7)は、加振力をFとすると、次式(11)で表される。
  (m+Δm)・(dx2/dt)+c・(dx2/dt)
  +k・x2=F
                         …(11)
The numerical calculation result is used for x1 (t) and dx1 (t) / dt in the expression (9). Further, x2 (t) and dx2 (t) / dt use the displacement measurement result of the existing cantilever 1B.
Next, in the equation of motion of equation (7), that is, the equation of motion of the existing cantilever 1B, the term on the right side is represented by the excitation force F.
That is, the equation of motion (7) is expressed by the following equation (11), where F is the excitation force.
(m + Δm) ・ (d 2 x2 / dt 2 ) + c ・ (dx2 / dt)
+ K · x2 = F
… (11)
 そのため、(7)式を再現するために必要な加振力Fは、次式(12)で表される。
  F=kc・(x1-x2)+b・(dx2/dt)
                         …(12)
 つまり、(7)式を実現するために必要な加振力Fは、自励発振させるための速度フィードバック成分(線形速度フィードバック成分)と、連成効果を模擬するための変位フィードバック(線形変位フィードバック成分)との和となる。
 以上から、連成カンチレバーの模擬に必要な演算とフィードバックすべき情報とがわかる。
Therefore, the exciting force F required to reproduce the expression (7) is expressed by the following expression (12).
F = kc · (x1-x2) + b · (dx2 / dt)
… (12)
That is, the exciting force F required to realize the equation (7) is the velocity feedback component (linear velocity feedback component) for self-oscillation and the displacement feedback (linear displacement feedback component) for simulating the coupling effect. Ingredient) and the sum.
From the above, the calculation necessary for simulating the coupled cantilever and the information to be fed back are known.
〔等価モデルの検証例〕
 次に、図2に示す仮想的な連成モデルの模擬方法が正しいかどうかを検証するために、マクロカンチレバーを用いて計測を行った。この計測は、図2に示す仮想的な連成モデルを模擬する図3~図5に示す計測装置100で行った。計測装置100では、実在のカンチレバー1Bの固定端がピエゾアクチュエータと接合されたマクロカンチレバーの先端から10mmの位置に、測定対象物としての付加質量を取り付け、計測を行った。
[Example of verification of equivalent model]
Next, in order to verify whether the simulation method of the virtual coupled model shown in FIG. 2 is correct, measurement was performed using a macro cantilever. This measurement was performed by the measuring device 100 shown in FIGS. 3 to 5, which simulates the virtual coupled model shown in FIG. In the measuring device 100, an additional mass as a measurement object was attached at a position 10 mm from the tip of the macro cantilever where the fixed end of the existing cantilever 1B was joined to the piezo actuator, and measurement was performed.
〔計測装置の構成〕
 図3は、計測装置100の一例を示す概略構成図である。
 計測装置100は、実在のカンチレバー1B、カンチレバー1Bの振幅を検出する変位計23及びカンチレバー1Bを振動させるアクチュエータを含む実振動体部11と、変位計23からの検出信号を用いて、仮想的なカンチレバー1Aの運動を模擬すると共にアクチュエータを制御するための連成制御処理を行う、デジタルシグナルプロセッサ(DSP)等で構成される演算処理装置12と、演算処理装置12からの指令信号にしたがってアクチュエータ22を駆動する駆動回路13と、表示装置14とを含む。
[Configuration of measuring device]
FIG. 3 is a schematic configuration diagram showing an example of the measuring device 100.
The measuring apparatus 100 uses an actual vibrating body portion 11 including an existing cantilever 1B, a displacement meter 23 that detects the amplitude of the cantilever 1B, and an actuator that vibrates the cantilever 1B, and a detection signal from the displacement meter 23 to generate a virtual signal. An arithmetic processing unit 12 configured by a digital signal processor (DSP) or the like for performing a coupled control process for simulating the motion of the cantilever 1A and controlling the actuator, and an actuator 22 according to a command signal from the arithmetic processing unit 12. A drive circuit 13 for driving the display device and a display device 14 are included.
 実振動体部11は、図4の上面図及び図5の正面図に示すように、実在のカンチレバー1Bと、カンチレバー1Bの一端を支持する支持部材21と、支持部材21を振動させるアクチュエータ22と、カンチレバー1Bの先端の変位を検出するレーザ変位センサ等を含む変位計(振動変位検出部)23と、を備える。なお、図4及び図5に記載の部分が計測装置用の部品に対応する。
 支持部材21は、図5に示すように、細長い板状のカンチレバー1Bの一端を、カンチレバー1Bの幅方向が上下方向に垂直となるように支持する。
 また、支持部材21は、カンチレバー1Bを保持する保持部21aと、保持部21aを、カンチレバー1Bの長手方向と直交する方向に摺動自在に支持する案内部21bを備える。保持部21aと案内部21bとは、直線ベアリング等を介して摺動自在に支持される。
As shown in the top view of FIG. 4 and the front view of FIG. 5, the actual vibrating body section 11 includes an existing cantilever 1B, a support member 21 that supports one end of the cantilever 1B, and an actuator 22 that vibrates the support member 21. A displacement gauge (vibration displacement detector) 23 including a laser displacement sensor for detecting displacement of the tip of the cantilever 1B. The parts described in FIGS. 4 and 5 correspond to parts for the measuring device.
As shown in FIG. 5, the support member 21 supports one end of the elongated plate-shaped cantilever 1B so that the width direction of the cantilever 1B is vertical to the vertical direction.
The support member 21 also includes a holding portion 21a that holds the cantilever 1B, and a guide portion 21b that slidably supports the holding portion 21a in a direction orthogonal to the longitudinal direction of the cantilever 1B. The holding portion 21a and the guide portion 21b are slidably supported via a linear bearing or the like.
 アクチュエータ22は、例えば、1軸ピエゾアクチュエータ等を含んで構成され、伸縮する軸部22aと、軸部22aの一端を支持する支持部22bと、を備え、軸部22aの他端に保持部21aが固定される。軸部22aの伸縮方向と案内部21bにおける保持部21aの案内方向とは一致して配置され、アクチュエータ22が、駆動回路13からの駆動信号に応じて軸部22aを伸縮させることにより、保持部21aが案内部21bを案内として移動し、保持部21aによって保持されるカンチレバー1Bが移動する。その結果、アクチュエータ22が軸部22aの伸縮を交互に繰り返すように移動させることによって、保持部21aが振動し、その結果、カンチレバー1Bが振動するようになっている。 The actuator 22 is configured to include, for example, a uniaxial piezo actuator, includes a shaft portion 22a that expands and contracts, and a support portion 22b that supports one end of the shaft portion 22a. The holding portion 21a is provided at the other end of the shaft portion 22a. Is fixed. The expansion / contraction direction of the shaft portion 22a and the guide direction of the holding portion 21a in the guide portion 21b are arranged so as to coincide with each other, and the actuator 22 expands / contracts the shaft portion 22a in response to a drive signal from the drive circuit 13 to hold the holding portion. 21a moves with the guide portion 21b as a guide, and the cantilever 1B held by the holding portion 21a moves. As a result, the actuator 22 is moved so as to alternately expand and contract the shaft portion 22a, whereby the holding portion 21a vibrates, and as a result, the cantilever 1B vibrates.
 変位計23は、カンチレバー1Bの先端との間の距離を計測可能な位置に配置され、カンチレバー1Bの先端までの距離を計測する。変位計23で検出されたカンチレバー1Bの先端までの距離の変位を演算することによって、カンチレバー1Bの振幅を検出することができる。 The displacement meter 23 is arranged at a position where the distance to the tip of the cantilever 1B can be measured, and measures the distance to the tip of the cantilever 1B. The amplitude of the cantilever 1B can be detected by calculating the displacement of the distance to the tip of the cantilever 1B detected by the displacement meter 23.
〔計測装置のダイナミクスを示すブロック線図〕
 図6は、計測装置100全体のダイナミクスの一例を示すブロック線図である。
 ここで、DSP等で構成される演算処理装置12での計算上、有次元で説明されていた式(1)~式(12)は無次元量に換算する必要がある。式(6)及び式(7)を無次元化すると、次式(13)及び(14)で表すことができる。
  (dx1/dt*2)+γ・(dx1/dt)
  +(1+kc)・x1-kc・x2
  -β・(dx2/dt)=0
                         …(13)
[Block diagram showing the dynamics of the measuring device]
FIG. 6 is a block diagram showing an example of the dynamics of the entire measuring device 100.
Here, the equations (1) to (12), which have been described as being dimensionally in terms of calculation in the arithmetic processing unit 12 configured by a DSP or the like, need to be converted into a dimensionless amount. When the equations (6) and (7) are made dimensionless, they can be expressed by the following equations (13) and (14).
(d 2 x1 * / dt * 2 ) + γ · (dx1 * / dt * )
+ (1 + kc * ) * x1 * -kc ** x2 *
-Β · (dx2 * / dt * ) = 0
… (13)
  (1+δ)・(dx2/dt*2)
  +γ・(dx2/dt)+x2
 =kc・(x1-x2)+β・(dx2/dt)
                         …(14)
 なお、式(14)中の、記号「*」は無次元量であることを表し、x1、x2は、それぞれx1、x2に対応する。また、t=(k/m)1/2・t、γ=c/(m・k)1/2、kc=kc/k、β=b/(m・k)1/2、δ=Δm/mである。
(1 + δ) ・ (d 2 x2 * / dt * 2 )
+ Γ ・ (dx2 * / dt * ) + x2 *
= Kc * · (x1 * −x2 * ) + β · (dx2 * / dt * )
… (14)
The symbol “*” in the equation (14) represents a dimensionless quantity, and x1 * and x2 * correspond to x1 and x2, respectively. Further, t * = (k / m) 1/2 · t, γ = c / (m · k) 1/2 , kc * = kc / k, β = b / (m · k) 1/2 , δ = Δm / m.
 図6は、式(13)及び(14)をブロック線図で表したものである。
 図6に示すように、カンチレバー1Bの変位x2は変位計23で検出され演算器31で変位計23のゲインG1が乗算された後、AD変換器(ADC)32でデジタル信号に変換され、演算処理装置12で処理される。すなわち、AD変換器32の出力は、演算器33でゲインG2が乗算された後、LPF(ローパスフィルタ)部34、微分器(振動速度検出部)35を経て、変位x2の一階微分値dx2/dtに変換されて乗算器36に入力され、乗算器36からβ・(dx2/dt)が出力される。変位x2の一階微分値dx2/dtに速度フィードバックゲインβを乗算することで自励発振させるためのフィードバック成分を作り出す。このフィードバック成分は加算器37に入力される。
FIG. 6 is a block diagram showing the equations (13) and (14).
As shown in FIG. 6, the displacement x2 of the cantilever 1B is detected by the displacement meter 23, multiplied by the gain G1 of the displacement meter 23 by the calculator 31, and then converted into a digital signal by the AD converter (ADC) 32, and calculated. It is processed by the processing device 12. That is, the output of the AD converter 32 is multiplied by the gain G2 in the calculator 33, and then passed through the LPF (low-pass filter) unit 34 and the differentiator (vibration velocity detecting unit) 35, and the first-order differential value dx2 of the displacement x2. It is converted into * / dt * and input to the multiplier 36, and β · (dx2 * / dt * ) is output from the multiplier 36. A feedback component for self-sustained pulsation is created by multiplying the first-order differential value dx2 * / dt * of the displacement x2 * by the velocity feedback gain β. This feedback component is input to the adder 37.
 演算器33の出力x2はさらに演算器38に入力されると共に、演算器39に直接又は微分器40を介して入力される。
 演算器39は、演算器33の出力x2及び微分器40の出力dx2/dtをもとに、Runge-Kutta法を用いて仮想のカンチレバー1Aの変位x1を求める。変位x1は、演算器39に入力され、演算器39から変位x1と変位x2との差分が出力される。この差分に、仮想のカンチレバー1Aと実在のカンチレバー1Bとを連成させるための変位フィードバックゲインkcを、乗算器41で乗算することで、連成剛性を模擬するためのフィードバック成分を作り出す。このフィードバック成分は、加算器37に入力される。速度フィードバック成分としての乗算器36の出力β・(dx2/dt)と変位フィードバック成分としての乗算器41の出力kc・(x1-x2)は、加算器37で加算され、加振入力変位Δxとして出力される。加振入力変位Δxは、演算器42に入力されゲインG3が乗算された後、DA変換器(DAC)43を介してアクチュエータ22に出力される。つまり、DA変換器43の出力は、乗算器(フィードバック制御部)44でアクチュエータ22(ピエゾアクチュエータ)の圧電定数d33が乗算されて、カンチレバー1Bに加振入力変位Δxとして入力される。これにより、仮想的な振動体の連成効果を模擬したフィードバックループが構成される。
 なお、ゲインG2、G3は、例えば、無次元量から有次元量に換算するための代表長さ及び代表時間に基づき設定される。
The output x2 * of the computing unit 33 is further input to the computing unit 38 and also to the computing unit 39 directly or via the differentiator 40.
The calculator 39 obtains the displacement x1 * of the virtual cantilever 1A using the Runge-Kutta method based on the output x2 * of the calculator 33 and the output dx2 * / dt * of the differentiator 40. The displacement x1 * is input to the calculator 39, and the difference between the displacement x1 * and the displacement x2 * is output from the calculator 39. This difference is multiplied by the displacement feedback gain kc * for coupling the virtual cantilever 1A and the existing cantilever 1B by the multiplier 41 to generate a feedback component for simulating the coupling rigidity. This feedback component is input to the adder 37. The output β · (dx2 * / dt * ) of the multiplier 36 as the velocity feedback component and the output kc · (x1 * −x2 * ) of the multiplier 41 as the displacement feedback component are added by the adder 37 to generate the vibration. It is output as the input displacement Δx. The vibration input displacement Δx is input to the calculator 42, multiplied by the gain G3, and then output to the actuator 22 via the DA converter (DAC) 43. That is, the output of the DA converter 43 is multiplied by the piezoelectric constant d33 of the actuator 22 (piezoactuator) by the multiplier (feedback control unit) 44 and input to the cantilever 1B as the vibration input displacement Δx. As a result, a feedback loop simulating the coupled effect of the virtual vibrator is constructed.
The gains G2 and G3 are set, for example, based on the representative length and the representative time for converting the dimensionless quantity into the dimensional quantity.
〔検証実験に用いたカンチレバー1Bの特性〕
 次に、計測装置100で用いた実在のカンチレバー1Bの特性を説明する。
 カンチレバー1Bの材質は、C5191P(リン青銅板)である。カンチレバー1Bの形状は固定端からの長さが210[mm]、幅が15[mm]、厚さが0.3[mm]である。また、カンチレバー1Bの固有周波数f1は3.964Hz、無次元減衰係数γは1.770×10-3である。
[Characteristics of cantilever 1B used in verification experiment]
Next, the characteristics of the existing cantilever 1B used in the measuring device 100 will be described.
The material of the cantilever 1B is C5191P (phosphor bronze plate). The shape of the cantilever 1B is 210 [mm] in length from the fixed end, 15 [mm] in width, and 0.3 [mm] in thickness. The natural frequency f1 of the cantilever 1B is 3.964 Hz, and the dimensionless damping coefficient γ is 1.770 × 10 −3 .
〔検証結果〕
 以上の構成を有する計測装置100において、変位フィードバックゲインkcを任意の値に設定することによって、仮想のカンチレバー1Aと実在のカンチレバー1Bとの連成剛性を、所望の値に設定することができているかの確認を行った。具体的には、仮想の連成剛性を模擬するための変位フィードバックゲインkcを変化させたときの、実在のカンチレバー1Bの二次モード固有周波数f2の変化状況を利用して確認を行った。
 図7(a)は、変位フィードバックゲインkcとして設定した値と、そのときの実在のカンチレバー1Bの二次モード固有周波数f2の測定値とを示す。なお、カンチレバー1Bの二次モード固有周波数f2は、例えば変位計23の検出値から検出されるカンチレバー1Bの自由振動の周波数分析から得ることができる。
〔inspection result〕
In the measuring device 100 having the above configuration, by setting the displacement feedback gain kc * to an arbitrary value, the coupled rigidity between the virtual cantilever 1A and the existing cantilever 1B can be set to a desired value. I checked if it was. Specifically, the confirmation was performed by utilizing the change situation of the secondary mode natural frequency f2 of the existing cantilever 1B when the displacement feedback gain kc * for simulating the virtual coupled stiffness is changed.
FIG. 7A shows the value set as the displacement feedback gain kc * and the measured value of the secondary mode natural frequency f2 of the existing cantilever 1B at that time. The secondary mode natural frequency f2 of the cantilever 1B can be obtained from the frequency analysis of free vibration of the cantilever 1B detected from the detection value of the displacement meter 23, for example.
 また、図7(b)に変位フィードバックゲインkcとして設定した設定値と、二次モード固有周波数f2から演算した連成剛性の実験値kceとの対応を示す。図7(b)において、横軸が変位フィードバックゲインkcとして設定した設定値、縦軸が連成剛性の実験値kceである。連成剛性の実験値kceは、次式(15)から算出した。なお、(15)式は、速度フィードバックゲインをβ=0として、(13)式及び(14)式から導いたものであり、速度フィードバックゲインをβ=0としたときの、連成剛性の実験値kceは理論的には、(15)式で表すことができる。なお、(13)式及び(14)式中のδ及びγは、実在のカンチレバー1Bの特性を表す係数であって、ここでは、δ及びγは共に零としている。
  kce=(1/2)×{(f2/f1)-1}
                         …(15)
Further, FIG. 7B shows the correspondence between the set value set as the displacement feedback gain kc * and the experimental value kce * of the coupled stiffness calculated from the secondary mode natural frequency f2. In FIG. 7B, the horizontal axis is the set value set as the displacement feedback gain kc * , and the vertical axis is the experimental value kce * of the coupled rigidity. The experimental value kce * of the coupled rigidity was calculated from the following equation (15). The equation (15) is derived from the equations (13) and (14) with the velocity feedback gain β = 0, and is an experiment of the coupled stiffness when the velocity feedback gain β = 0. The value kce * can theoretically be expressed by equation (15). Δ and γ in the equations (13) and (14) are coefficients representing the characteristics of the existing cantilever 1B, and both δ and γ are zero here.
kce * = (1/2) × {(f2 / f1) 2 −1}
… (15)
 図7(b)に示すように、変位フィードバックゲインkcと、連成剛性の実験値kce、つまり、変位フィードバックゲインkcを与えた時の自由振動実験から得たカンチレバー1Bの固有周波数f1及びカンチレバー1Bの二次モード固有周波数f2を使い式(15)から求めた連成剛性の実験値kceとの関係は、傾き「1」の直線上にほぼ位置することが確認できた。つまり、変位フィードバックゲインkcを調整することによって、所望の連成剛性の実験値kceでカンチレバー1Bと接続された仮想のカンチレバー1Aを模擬できることが確認された。 As shown in FIG. 7B, the displacement feedback gain kc * and the experimental value kce * of the coupled rigidity, that is, the natural frequency f1 of the cantilever 1B obtained from the free vibration experiment when the displacement feedback gain kc * is given. Also, it was confirmed that the relationship with the experimental value kce * of the coupled rigidity obtained from the equation (15) using the eigenfrequency f2 of the secondary mode of the cantilever 1B is almost located on the straight line with the inclination “1”. That is, it was confirmed that by adjusting the displacement feedback gain kc * , the virtual cantilever 1A connected to the cantilever 1B can be simulated at the desired experimental value kce * of the coupled rigidity.
 図8は、計測装置100において、変位フィードバックゲインkcがkc=0.01であるとき(図8(a))及びkc=0.005であるとき(図8(b))の、カンチレバー1Aと1Bとの振幅比及び質量比との関係を示したものである。
 図8(a)及び(b)において、横軸は質量比、縦軸は振幅比(x1/x2)である。
 図8(a)及び(b)から、振幅比は質量比の増加に伴い単調に減少していることがわかる。つまり、振幅比から質量計測を行うことができることが確認された。
 また、図8(a)及び(b)から、変位フィードバックゲインkcが小さい方が、質量比の変化に対する振幅比の変化量が大きいことがわかる。つまり、変位フィードバックゲインkcを変化させることで、測定対象物の質量の計測感度を調整することができ、変位フィードバックゲインkcが小さいほど、計測感度がより向上することが確認できた。
FIG. 8 shows the measurement device 100 when the displacement feedback gain kc * is kc * = 0.01 (FIG. 8A) and when kc * = 0.005 (FIG. 8B). It shows the relationship between the amplitude ratio and the mass ratio of the cantilevers 1A and 1B.
8A and 8B, the horizontal axis represents the mass ratio and the vertical axis represents the amplitude ratio (x1 / x2).
From FIGS. 8A and 8B, it can be seen that the amplitude ratio monotonically decreases as the mass ratio increases. That is, it was confirmed that mass measurement can be performed from the amplitude ratio.
Further, it is understood from FIGS. 8A and 8B that the smaller the displacement feedback gain kc *, the larger the amount of change in the amplitude ratio with respect to the change in mass ratio. In other words, by changing the displacement feedback gain kc *, it is possible to adjust the mass of the measuring sensitivity of the measuring object, the more the displacement feedback gain kc * is small, it was confirmed that the measurement sensitivity is further improved.
 以上から、計測装置100の演算処理装置12により、図2に示す等価モデルを模擬することによって、連成結合された仮想のカンチレバー1Aと実在のカンチレバー1Bとを用いた、カンチレバー1Bに付加した測定対象物の質量計測を行うことができることがわかる。
 また、計測装置100では、実在のカンチレバー1Bと仮想のカンチレバー1Aとの変位の差分に比例した変位フィードバックをカンチレバー1Bに与えるようにしたため、連成剛性を模擬することができる。また、変位フィードバックゲインkcを調整することで、任意の連成剛性を模擬することができる。
From the above, the measurement applied to the cantilever 1B using the virtual cantilever 1A and the real cantilever 1B coupled by coupling by simulating the equivalent model shown in FIG. 2 by the arithmetic processing unit 12 of the measuring device 100. It is understood that the mass measurement of the object can be performed.
Further, in the measuring device 100, since the displacement feedback proportional to the difference in displacement between the existing cantilever 1B and the virtual cantilever 1A is given to the cantilever 1B, the coupled rigidity can be simulated. Further, by adjusting the displacement feedback gain kc * , it is possible to simulate arbitrary coupled rigidity.
 そして、Runge-Kutta法を用いることで、連成結合されたカンチレバー1A及び1Bをリアルタイムで模擬することができる。そのため、測定対象物が取り付けられたカンチレバー1Bの振幅と、仮想のカンチレバー1Aの振幅との比から測定対象物の質量を測定することができる。
 さらに連成剛性を任意に変化させることによって、測定対象物の質量の計測感度を調整することができる。また、連成剛性は任意に変化させることができ、すなわち、機械工作を行って実在の二つのカンチレバーを接続して連成接続する場合に比較して、連成剛性をより小さくすることができる。すなわち、より精度の高い計測装置100を実現することができる。
Then, by using the Runge-Kutta method, the coupled cantilevers 1A and 1B can be simulated in real time. Therefore, the mass of the measuring object can be measured from the ratio of the amplitude of the cantilever 1B to which the measuring object is attached and the amplitude of the virtual cantilever 1A.
Further, the sensitivity of measuring the mass of the object to be measured can be adjusted by arbitrarily changing the coupled rigidity. Further, the coupling rigidity can be arbitrarily changed, that is, the coupling rigidity can be made smaller than that in the case where two existing cantilevers are mechanically connected to form a coupling connection. . That is, it is possible to realize the measuring device 100 with higher accuracy.
 また、上述のように、カンチレバー1A及びオーバーハング部1Dを、演算処理装置12で仮想的に模擬しているため、既存の一つのカンチレバーを用いて、測定対象物の質量測定を行う計測装置において、図3に示す演算処理装置12、駆動回路13及び表示装置14を含む模擬装置100aを搭載するだけで、実現することができる。そのため、既存の計測装置において模擬装置100aを追加することによって、計測装置の精度を容易に向上させることができる。 Further, as described above, since the cantilever 1A and the overhang portion 1D are virtually simulated by the arithmetic processing device 12, in the measuring device that measures the mass of the measuring object using one existing cantilever. It can be realized only by mounting the simulation device 100a including the arithmetic processing unit 12, the drive circuit 13, and the display device 14 shown in FIG. Therefore, the accuracy of the measurement device can be easily improved by adding the simulation device 100a to the existing measurement device.
<変形例>
〔1〕上記実施形態において、計測装置100を、自励発振の振幅をより小さく抑えることができるように構成してもよい。
 すなわち、加振力をFとして、次式(16)で表される値を用いる。
  F=kc・(x1-x2)+b・(dx2/dt)
  +f(x,(dx/dt))          …(16)
<Modification>
[1] In the above embodiment, the measuring device 100 may be configured so that the amplitude of self-excited oscillation can be suppressed to a smaller value.
That is, the value expressed by the following equation (16) is used with F as the excitation force.
F = kc · (x1-x2) + b · (dx2 / dt)
+ F (x, (dx / dt)) (16)
 なお、(16)式中のf(x,(dx/dt))は、非線形速度フィードバック成分であり、その位相が、dx2/dtと反相または同相である必要がある。例えば、f(x,(dx/dt))を次式(17)に示すように設定し、(17)式中のbnを調整すれば、仮想のカンチレバー1A及び実在のカンチレバー1Bの振幅を小さく抑えることができる。その結果、カンチレバー1A、1Bの振動が発散することを抑制することができると共に、発散を抑制することができるため、線形モードを精度よく測定することができる。 Note that f (x, (dx / dt)) in the equation (16) is a nonlinear velocity feedback component, and its phase needs to be antiphase or in-phase with dx2 / dt. For example, if f (x, (dx / dt)) is set as shown in the following equation (17) and bn in the equation (17) is adjusted, the amplitude of the virtual cantilever 1A and the existing cantilever 1B can be reduced. Can be suppressed. As a result, the divergence of vibrations of the cantilevers 1A and 1B can be suppressed, and the divergence can be suppressed, so that the linear mode can be accurately measured.
 この場合、(1)式及び(2)式に示す運動方程式は、次式(18)及び(19)で表すことができる。
  f(x,(dx/dt))=bn・(dx2/dt)
                         …(17)
  m・(dx1/dt)+c・(dx1/dt)
  +(k+kc)・x1-kc・x2
 =b・(dx2/dt)+bn・(dx2/dt)
                         …(18)
  (m+Δm)・(dx2/dt)+c・(dx2/dt)
  -kc・x1+(k+kc)・x2
 =b・(dx2/dt)+bn・(dx2/dt)
                         …(19)
In this case, the equations of motion shown in the equations (1) and (2) can be expressed by the following equations (18) and (19).
f (x, (dx / dt)) = bn · (dx2 / dt) 3
… (17)
m ・ (d 2 x1 / dt 2 ) + c ・ (dx1 / dt)
+ (K + kc) · x1-kc · x2
= B · (dx2 / dt) + bn · (dx2 / dt) 3
… (18)
(m + Δm) ・ (d 2 x2 / dt 2 ) + c ・ (dx2 / dt)
-Kc x1 + (k + kc) x2
= B · (dx2 / dt) + bn · (dx2 / dt) 3
… (19)
〔2〕上記実施形態では、仮想のカンチレバー1Aとして、実在のカンチレバー1Bと同一形状及び同一特性を有するカンチレバーを想定した場合について説明したが、これに限るものではない。仮想のカンチレバー1Aと実在のカンチレバー1Bとで固有周波数が同一であればよく、固有周波数が同一であれば、同一形状でなくともよい。カンチレバー1Aと1Bの固有周波数が一致する精度が高いほど、計測装置100における測定精度が高くなる。ここでいう同一とは、厳密に一致する場合のみならず、実質的に同一とみなせる程度の差(例えば、1%~2%のずれ)がある場合も含む。測定可能な範囲で実際に測定することができたカンチレバー1Bの固有周波数を用いて、カンチレバー1Aと1Bの固有周波数とが同一となるように調整した場合に、両者の固有周波数の差が最小となる場合を含む。 [2] In the above embodiment, the case where the virtual cantilever 1A is assumed to have the same shape and the same characteristics as the existing cantilever 1B has been described, but the present invention is not limited to this. The virtual cantilever 1A and the existing cantilever 1B may have the same natural frequency, and may not have the same shape as long as the natural frequencies are the same. The higher the accuracy of matching the natural frequencies of the cantilevers 1A and 1B, the higher the accuracy of measurement by the measuring device 100. The term “identical” here includes not only the case where they are exactly the same but also the case where there is a difference (for example, a deviation of 1% to 2%) that can be regarded as substantially the same. When the natural frequency of the cantilever 1B that could be actually measured within the measurable range is used and the natural frequencies of the cantilevers 1A and 1B are adjusted to be the same, the difference between the natural frequencies of the two is the minimum. Including cases where
〔3〕上記実施形態において、さらに、演算処理装置12で初期処理を実行するようにしてもよい。例えば、アクチュエータ22を駆動して実在のカンチレバー1Bのみを駆動し、自励発振するときの周波数を取得する。具体的には、カンチレバー1Bの振動状況を観察しつつ、フィードバックゲインを変化させ、振動し始めた時点の周波数、つまり共振周波数を取得する。これを固有周波数とし、この取得した固有周波数に基づく情報を、仮想のカンチレバー1Aの模擬に必要な情報として設定する。以後、設定した情報を用いて、カンチレバー1Aの模擬を行う。この初期処理は、例えば、一連の測定対象物に対する計測開始時、或いは、定期的等、予め設定したタイミングで行えばよい。なお、固有周波数とは、理論的な値であり、実際に共振した周波数が共振周波数である。粘性の影響が強く生じない限り、固有周波数とほぼ等しい共振周波数となる。
 なお、初期処理として、フィードバックゲインbの設定を行う処理も含めて行うようにしてもよい。
[3] In the above embodiment, the arithmetic processing unit 12 may further execute initial processing. For example, the actuator 22 is driven to drive only the existing cantilever 1B, and the frequency at which self-excited oscillation occurs is acquired. Specifically, while observing the vibration state of the cantilever 1B, the feedback gain is changed to obtain the frequency at the time when the vibration starts, that is, the resonance frequency. This is set as a natural frequency, and information based on the acquired natural frequency is set as information necessary for simulating the virtual cantilever 1A. After that, the cantilever 1A is simulated using the set information. This initial processing may be performed at a preset timing, for example, at the start of measurement of a series of measurement objects or periodically. The natural frequency is a theoretical value, and the frequency that actually resonates is the resonance frequency. Unless the effect of viscosity is strong, the resonance frequency is almost equal to the natural frequency.
The initial process may include the process of setting the feedback gain b.
〔4〕上記実施形態では、演算処理装置12において上記演算処理を行うようにした場合について説明したが、これに限るものではない。例えば、上記演算処理を行うアナログ回路を構成し、このアナログ回路によって演算処理を行うようにしてもよい。つまり、カンチレバー1Bの長さが短くなると、カンチレバー1Bの振動周波数が高くなり、より高速演算が要求されるため、演算処理装置12として、より高性能なデジタルシグナルプロセッサ等を用いる必要があり、これはコストの増加につながる。この場合には、図3に示す演算処理装置12を、アナログ回路で構成することにより、高性能なデジタルシグナルプロセッサ等を用いることなく実現することができ、すなわちコストの増加を抑制することができる。 [4] In the above embodiment, the case where the arithmetic processing device 12 performs the arithmetic processing has been described, but the present invention is not limited to this. For example, an analog circuit for performing the above arithmetic processing may be configured and the arithmetic processing may be performed by this analog circuit. That is, as the length of the cantilever 1B becomes shorter, the vibration frequency of the cantilever 1B becomes higher, and higher-speed calculation is required. Therefore, it is necessary to use a higher performance digital signal processor or the like as the processing unit 12. Will increase costs. In this case, by configuring the arithmetic processing unit 12 shown in FIG. 3 with an analog circuit, it can be realized without using a high-performance digital signal processor or the like, that is, an increase in cost can be suppressed. .
 演算処理装置12の機能をアナログ回路で実現する場合、(1)式と同等の電気信号を出力するアナログ共振回路を組むことが好ましい。例えば、LCR回路でバネマスモデルを組むことで、あたかも、仮想のカンチレバー1Aの固定端に実在のカンチレバー1Bの変位信号が入力されたかのようにモデルを組むことができ、実在のカンチレバー1Bと連成結合された仮想のカンチレバー1Aをより高精度に実現することができる。 When the function of the arithmetic processing unit 12 is realized by an analog circuit, it is preferable to form an analog resonance circuit that outputs an electric signal equivalent to that of the equation (1). For example, by forming a spring-mass model in the LCR circuit, the model can be formed as if the displacement signal of the real cantilever 1B is input to the fixed end of the virtual cantilever 1A, and the model is coupled with the real cantilever 1B. The combined virtual cantilever 1A can be realized with higher accuracy.
〔5〕上記実施形態においては、アクチュエータ22として一軸のピエゾアクチュエータを用いた場合について説明したが、これに限るものではない。
 例えば、磁石等、カンチレバー1Bの固定端を、往復動させることができるアクチュエータであれば適用することができる。
 また、上記実施形態において、カンチレバー1Bの先端側を振動させるようにしてもよい。例えば、磁石或いはピエゾアクチュエータ等、カンチレバー1Bの先端を振動させることができるアクチュエータであれば適用することができる。
[5] In the above embodiment, the case where the uniaxial piezo actuator is used as the actuator 22 has been described, but the present invention is not limited to this.
For example, an actuator that can reciprocate the fixed end of the cantilever 1B, such as a magnet, can be applied.
In the above embodiment, the tip side of the cantilever 1B may be vibrated. For example, any actuator that can vibrate the tip of the cantilever 1B, such as a magnet or a piezo actuator, can be applied.
〔6〕上記実施形態においては、測定対象物の質量を計測するカンチレバー1Bに適用した場合について説明したが、これに限るものではない。
 例えば、AFM(原子間力顕微鏡)等で用いられるプローブに適用し、実在のプローブと仮想のプローブとを連成結合した仮想モデルを模擬してもよい。
 また、測定対象の物理量としては、質量に限るものではなく、表面形状、弾性率、粘弾性率、力の場のいずれかであってもよい。ここでいう、力の場とは、空間の電場、空間の磁場、万有引力の空間分布等を含む。
[6] In the above embodiment, the case where the present invention is applied to the cantilever 1B that measures the mass of the measurement object has been described, but the present invention is not limited to this.
For example, it may be applied to a probe used in an AFM (Atomic Force Microscope) or the like to simulate a virtual model in which a real probe and a virtual probe are coupled and coupled.
The physical quantity to be measured is not limited to mass, and may be any of the surface shape, elastic modulus, viscoelasticity, and force field. The force field here includes an electric field in space, a magnetic field in space, a spatial distribution of gravitational force, and the like.
 例えば、測定対象の電場を測定する場合、実在の二つのカンチレバーを用いて測定する方法にあっては、二つのカンチレバーが共に電場の影響を受ける可能性がある。
 本実施形態における計測装置100では、一方のカンチレバー1Aは仮想のカンチレバーであるため、二つのカンチレバーを、一方のカンチレバーが電場の影響を受けない位置まで離して配置した場合と同等の状況を、仮想的に実現することができる。そのため、二つのカンチレバーが共に電場の影響を受けることを回避することができ、その分、計測精度を向上させることができる。
 また、万有引力の空間分布を測定することにより、例えば、移動体の質量を検出することができる。つまり、地上では質量体の移動に伴い、万有引力の変化が生じるため、この万有引力の変化を検出することで、移動体の質量を検出することができる。
For example, when measuring the electric field of the measurement target, in the method of measuring using two existing cantilevers, both of the two cantilevers may be affected by the electric field.
In the measuring device 100 according to the present embodiment, since one cantilever 1A is a virtual cantilever, a situation equivalent to a case in which the two cantilevers are separated to a position where one cantilever is not affected by the electric field is assumed to be virtual. Can be realized in real time. Therefore, it is possible to prevent both the two cantilevers from being affected by the electric field, and the measurement accuracy can be improved accordingly.
Further, by measuring the spatial distribution of universal gravitational force, for example, the mass of the moving body can be detected. That is, since the gravitational force changes with the movement of the mass on the ground, the mass of the moving body can be detected by detecting the change in the gravitational force.
〔7〕上記実施形態においては、変位計23として、レーザ変位計を用いた場合について説明したがこれに限るものではない。例えば、静電容量変位センサ、エンコーダ、光学式変位計(例えば光てこ法を用いた変位センサ等)、ひずみゲージ等を用いることができる。また、渦電流を計測し、その変位量からカンチレバー1Bの変位を検出するようにしてもよく、要は、カンチレバー1Bの変位を検出することができればどのような手法で計測してもよい。 [7] In the above embodiment, the case where the laser displacement meter is used as the displacement meter 23 has been described, but the invention is not limited to this. For example, a capacitance displacement sensor, an encoder, an optical displacement gauge (for example, a displacement sensor using the optical lever method), a strain gauge, or the like can be used. Further, the eddy current may be measured, and the displacement of the cantilever 1B may be detected from the displacement amount. In short, any method may be used as long as the displacement of the cantilever 1B can be detected.
〔8〕上記実施形態においては、振動体としてカンチレバーを用いた場合について説明したが、これに限るものではない。振動体としてコイルバネを適用することも可能である。 [8] In the above embodiment, the case where the cantilever is used as the vibrating body has been described, but the present invention is not limited to this. It is also possible to apply a coil spring as the vibrating body.
〔9〕上記実施形態において、カンチレバー1Aと、オーバーハング部1Dとを演算処理装置12によって、仮想的に模擬する場合について説明したが、これに限るものではない。例えば、カンチレバー1Aとカンチレバー1Bとを実際に設け、これら実在のカンチレバー1Aとカンチレバー1Bとを、演算処理装置12によって仮想的に連成結合させるように構成してもよい。この場合には、例えば、カンチレバー1Aの振幅と、カンチレバー1Bの振幅とを検出し、これらをもとに、カンチレバー1Aとカンチレバー1Bとを仮想的に連成結合する等価モデルを利用して、カンチレバー1A及び1Bを駆動するアクチュエータを制御すればよい。 [9] In the above embodiment, the case where the cantilever 1A and the overhang portion 1D are virtually simulated by the arithmetic processing unit 12 has been described, but the present invention is not limited to this. For example, the cantilever 1A and the cantilever 1B may be actually provided, and the existing cantilever 1A and the cantilever 1B may be virtually coupled by the arithmetic processing unit 12. In this case, for example, the amplitude of the cantilever 1A and the amplitude of the cantilever 1B are detected, and based on these, the equivalent model in which the cantilever 1A and the cantilever 1B are virtually coupled to each other is used to obtain the cantilever. It suffices to control the actuators that drive 1A and 1B.
〔10〕上記実施形態において、さらに、カンチレバー1Aとカンチレバー1Bの間に、感度向上用のカンチレバーを複数設けてもよい。 [10] In the above embodiment, a plurality of cantilevers for improving sensitivity may be further provided between the cantilevers 1A and 1B.
 図9は、仮想のカンチレバー1Aに相当する仮想のカンチレバーCL1と、実在のカンチレバー1Bに相当する実在のカンチレバーCLn(nはn≧3の整数)と、カンチレバーCL1とCLnとの間に存在する、感度向上用の1又は複数のカンチレバーCLi(iは2≦i≦n-1)とを有する振動部1を用いた、原子間力の測定方法を説明するための説明図である。実在のカンチレバーCLnに、測定対象の原子間力を作用させ、この原子間力を測定する。
 図9において、仮想のカンチレバーCL1と実在のカンチレバーCLnとは、同一の固有周波数を有する。固有周波数を一致させる方法としては、仮想のカンチレバーCL1と感度向上用のカンチレバーCL2~CLn-1と実在のカンチレバーCLnとを同一の材料及び形状で構成し、同等のバネ剛性と質量とを有するように形成する方法や、バネ剛性と質量との比を一致させる方法等がある。
FIG. 9 shows a virtual cantilever CL1 corresponding to the virtual cantilever 1A, a real cantilever CLn (n is an integer of n ≧ 3) corresponding to the real cantilever 1B, and existing between the cantilevers CL1 and CLn. FIG. 6 is an explanatory diagram for explaining a method of measuring an atomic force using the vibrating unit 1 having one or a plurality of cantilevers CLi (i is 2 ≦ i ≦ n−1) for improving sensitivity. The atomic force to be measured is applied to the existing cantilever CLn, and this atomic force is measured.
In FIG. 9, the virtual cantilever CL1 and the real cantilever CLn have the same natural frequency. As a method of matching the natural frequencies, the virtual cantilever CL1, the sensitivity improving cantilevers CL2 to CLn-1 and the existing cantilever CLn are made of the same material and shape, and have the same spring rigidity and mass. And a method of making the ratio of spring rigidity and mass match.
 感度向上用のカンチレバーCL2~CLn-1は、カンチレバーCL1及びカンチレバーCLnと同等に形成される。すなわち、支持部材1Cに一端が固定され他端が自由端となる片持ち梁の状態で、支持部材1Cに並設され、隣り合うカンチレバーの固定端側の根元部分は、支持部材1Cに形成されたオーバーハング部1Dによって接続され、仮想のカンチレバーCL1と感度向上用のカンチレバーCL2~CLn-1と実在のカンチレバーCLnとは連成振動する構造となっている。
 感度向上用の仮想のカンチレバーCL2~CLn-1は、仮想のカンチレバーCL1と同様に、演算処理装置上で仮想モデルとして実現される。仮想のカンチレバーCL1と実在のカンチレバーCLnとが同一の固有周波数を有していれば、感度向上用の仮想のカンチレバーCL2~CLn-1の固有周波数は、仮想のカンチレバーCL1及び実在のカンチレバーCLnの固有周波数と同一でなくてもよい。
The cantilevers CL2 to CLn-1 for improving sensitivity are formed in the same manner as the cantilevers CL1 and CLn. That is, in the state of a cantilever having one end fixed to the support member 1C and the other end being a free end, the cantilevers are juxtaposed side by side, and the root portions of the adjacent cantilevers on the fixed end side are formed on the support member 1C. The virtual cantilever CL1, the cantilevers CL2 to CLn-1 for improving the sensitivity, and the existing cantilever CLn are coupled and vibrated by being connected by the overhang portion 1D.
The virtual cantilevers CL2 to CLn-1 for improving the sensitivity are realized as virtual models on the arithmetic processing device, like the virtual cantilever CL1. If the virtual cantilever CL1 and the real cantilever CLn have the same natural frequency, the natural frequencies of the sensitivity-improving virtual cantilevers CL2 to CLn-1 are the natural frequencies of the virtual cantilever CL1 and the real cantilever CLn. It need not be the same as the frequency.
 図10は、振動部1の力学系の等価モデル(連成モデル)の一例を示す図である。図10に示す連成モデルでは、仮想のカンチレバーCL1は、支持部材1Cに一端が支持されたバネ定数k1の第1バネK1と、第1バネK1の他端に支持された質量m1の第1物体M1とを備えたモデルとなる。
 同様に、実在のカンチレバーCLnは、図10の右端の一点鎖線の枠内のカンチレバーとして示すように、支持部材1Cに一端が支持されたバネ定数knの第nバネKnと、第nバネKnの他端に支持された質量mnの第n物体Mnと、を備え、さらに、第nバネKnは、バネ定数knに、測定対象の原子間力に応じたバネ剛性Δkが付加されたモデルとなる。
FIG. 10 is a diagram showing an example of an equivalent model (coupling model) of the dynamic system of the vibrating section 1. In the coupled model shown in FIG. 10, the virtual cantilever CL1 includes a first spring K1 having a spring constant k1 whose one end is supported by the support member 1C and a first mass K1 which is supported at the other end of the first spring K1. The model is provided with the object M1.
Similarly, the existing cantilever CLn includes an n-th spring Kn having a spring constant kn, one end of which is supported by the support member 1C, and an n-th spring Kn, as shown by a cantilever in a frame of a dashed-dotted line at the right end of FIG. An n-th body Mn having a mass mn supported at the other end is provided, and the n-th spring Kn is a model in which the spring constant kn is added with the spring rigidity Δk according to the atomic force of the measurement target. .
 感度向上用の仮想のカンチレバーCLi(2≦i≦n-1)は、支持部材1Cに一端が支持されたバネ定数kiの第iバネKiと、第iバネKiの他端に支持された質量miの第i物体Miとを備えたモデルとなる。
 さらに、図10に示す連成モデルでは、第1物体M1と第2物体M2とはバネ定数kcのバネKc1によって接続され、同様に、隣り合う物体同士がバネ定数kcのバネによって接続され、実在のカンチレバーCLnに対応する第n物体Mnと感度向上用のカンチレバーCLn-1に対応する第(n-1)物体Mn-1とがバネ定数kcのバネKcn-1によって接続される。このバネ定数kcのバネKc1~Kcn-1が、図9のオーバーハング部1Dに相当し、カンチレバーCL1~CLnの連成効果を生じさせる。図10において、破線で囲む部分が仮想モデルとして模擬される。
The virtual cantilever CLi (2 ≦ i ≦ n−1) for improving sensitivity has an i-th spring Ki having a spring constant ki whose one end is supported by the support member 1C and a mass supported by the other end of the i-th spring Ki. It becomes a model including the i-th object Mi of mi.
Further, in the coupled model shown in FIG. 10, the first object M1 and the second object M2 are connected by the spring Kc1 having the spring constant kc, and similarly, the adjacent objects are connected by the spring having the spring constant kc, and the real objects exist. The nth object Mn corresponding to the cantilever CLn of No. 1 and the (n-1) th object Mn-1 corresponding to the sensitivity improving cantilever CLn-1 are connected by the spring Kcn-1 having the spring constant kc. The springs Kc1 to Kcn-1 having the spring constant kc correspond to the overhang portion 1D in FIG. 9 and generate the coupled effect of the cantilevers CL1 to CLn. In FIG. 10, a portion surrounded by a broken line is simulated as a virtual model.
 このような振動部1を有する計測装置において、測定を行う場合には、支持部材1Cに支持されたカンチレバーのうち、実在のカンチレバーCLnに測定対象の例えば原子間力を作用させ、支持部材1Cに支持されたカンチレバーのうち端部に位置するカンチレバーであり且つ仮想のカンチレバーである、カンチレバーCL1に加振入力を与える。
 ここで、非特許文献1及び非特許文献2には、レゾネータ(カンチレバー)を用いた計測装置において、多数のレゾネータを弱連成すると、レゾネータの数を増加させるほど、計測装置を高感度化することができることが記載されている。
In a measuring device having such a vibrating portion 1, when performing measurement, of the cantilevers supported by the supporting member 1C, an existing atomic force of the cantilever CLn, for example, an atomic force of the measurement target is applied to the supporting member 1C. A vibration input is given to the cantilever CL1, which is a virtual cantilever that is a cantilever located at the end of the supported cantilevers.
Here, in Non-Patent Document 1 and Non-Patent Document 2, in a measuring device using a resonator (cantilever), if a large number of resonators are weakly coupled, the measuring device becomes highly sensitive as the number of resonators increases. It is described that it is possible.
 非特許文献2に記載されているように、剛性が低下するとき(Δk<0)には、二次モードの振幅比を測定する。逆に、剛性が増加するとき(Δk>0)には、一次モードの振幅比を測定する。ここでは、図9に示す連成モデルについて剛性が低下するときを非特許文献1にしたがって説明する。
 非特許文献1の式(13)から、n番目のカンチレバーCLnの無次元の剛性変化δ=Δk/k1に対する、二次モードにおける1番目のカンチレバーCL1とn番目のカンチレバーCLnとの振幅比an2(振幅比1からのずれ)の変化割合S2は、次式(20)(非特許文献1の式(13)に対応)で与えられる。なお、(20)式中の、αiは、αi=mi/m1(i=2、…、n)、δ=Δk/k1、κ=kc/k1、λpはn個のカンチレバーCL1~CLnを有する振動部を備えた計測装置におけるp次の固有値である。
As described in Non-Patent Document 2, when the rigidity decreases (Δk <0), the amplitude ratio of the secondary mode is measured. On the contrary, when the rigidity increases (Δk> 0), the amplitude ratio of the primary mode is measured. Here, the case where the rigidity decreases in the coupled model shown in FIG. 9 will be described according to Non-Patent Document 1.
From Equation (13) of Non-Patent Document 1, with respect to the dimensionless rigidity change δ = Δk / k1 of the nth cantilever CLn, the amplitude ratio an2 between the first cantilever CL1 and the nth cantilever CLn in the secondary mode ( The change rate S2 of the deviation from the amplitude ratio 1) is given by the following equation (20) (corresponding to equation (13) of Non-Patent Document 1). In the equation (20), αi has αi = mi / m1 (i = 2, ..., N), δ = Δk / k1, κ = kc / k1, and λp has n cantilevers CL1 to CLn. It is an eigenvalue of the p-th order in a measuring device equipped with a vibrating section.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 弱連成カンチレバーが2つの場合、(20)式は、次式(21)で表すことができる。 When there are two weakly coupled cantilevers, equation (20) can be expressed by the following equation (21).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 したがって、(20)式から、以下の条件を満足するときに、変化割合すなわち感度S2が大幅に向上することがわかる。
 条件1 カンチレバーの数nをできるだけ多くする。つまり、感度向上用のカンチレバーを多数設ける。
 条件2 αn=mn/m1をできるたけ小さくする。
 条件3 感度向上用のカンチレバーCL2~CLn-1の各質量m2~mn-1を、カンチレバーCL1の質量m1よりも大きくする。
 条件4 カンチレバーCL2~CLn-1の各バネ剛性すなわちバネ定数k2~kn-1をカンチレバーCL1のバネ剛性すなわちバネ定数k1よりも大きくする。
Therefore, from the equation (20), it is understood that the change rate, that is, the sensitivity S2 is significantly improved when the following condition is satisfied.
Condition 1 Increase the number of cantilevers n as much as possible. That is, a large number of cantilevers for improving sensitivity are provided.
Condition 2 αn = mn / m1 is made as small as possible.
Condition 3 The masses m2 to mn-1 of the sensitivity improving cantilevers CL2 to CLn-1 are made larger than the mass m1 of the cantilever CL1.
Condition 4 The spring rigidity of each of the cantilevers CL2 to CLn-1, that is, the spring constant k2 to kn-1 is set to be larger than the spring rigidity of each of the cantilevers CL1 or the spring constant of k1.
 以上から、図9及び図10に示すように、仮想のカンチレバーCL1と実在のカンチレバーCLnとの間に、感度向上用の仮想のカンチレバーCL2~CLn-1を設け、連成振動させるカンチレバーCL1~CLnの数を増やすことで、感度が向上することがわかる。 From the above, as shown in FIGS. 9 and 10, between the virtual cantilever CL1 and the real cantilever CLn, virtual cantilevers CL2 to CLn-1 for sensitivity improvement are provided, and cantilevers CL1 to CLn for coupled vibration are provided. It can be seen that the sensitivity is improved by increasing the number of.
 そして、図9及び図10に示すように、本実施形態に係る振動部1では、仮想のカンチレバーCL1と感度向上用のカンチレバーCL2~CLn-1とを実在のカンチレバーではなく、仮想のカンチレバーとして実現している。そのため、複数のカンチレバーを実際に製造することは困難であったとしても、本実施形態に係る計測装置100では、実在のカンチレバーCLnを除く他のカンチレバーである仮想のカンチレバーCL1と感度向上用のカンチレバーCL2~CLn―1とを、仮想的に模擬しているため、実存のカンチレバーCLnのみを製造することで、容易に多数の感度向上用のカンチレバーと連成した高感度なカンチレバーを製作することができる。このことは、非特許文献1及び非特許文献2と本実施形態の最も異なる点である。すなわち、非特許文献1及び非特許文献2では多数の実存のカンチレバーを連成させることを想定しているため、技術的に製造が困難であるのに対して、本実施形態は、実存のカンチレバーは一本だけでよいため、技術的に製造が容易である。本実施形態では、仮想のカンチレバーCL1及び感度向上用の多数のカンチレバーCL2~CLn-1を“模擬的に”作成しているものの、本発明では実存のカンチレバーが存在しており、さらに、連成を実行できる演算処理装置を実存のカンチレバーと組み合わせることで、既知の技術より優れた性能を実現するものであるから、抽象的概念には該当しない。 Then, as shown in FIGS. 9 and 10, in the vibrating section 1 according to the present embodiment, the virtual cantilever CL1 and the sensitivity improving cantilevers CL2 to CLn-1 are realized as virtual cantilevers instead of existing cantilevers. is doing. Therefore, even if it is difficult to actually manufacture a plurality of cantilevers, in the measuring apparatus 100 according to the present embodiment, a virtual cantilever CL1 that is another cantilever other than the existing cantilever CLn and a cantilever for sensitivity improvement. Since CL2 to CLn-1 are virtually simulated, by manufacturing only the existing cantilevers CLn, it is possible to easily manufacture a high-sensitivity cantilever coupled with many cantilevers for improving sensitivity. it can. This is the most different point between this embodiment and Non-Patent Documents 1 and 2. That is, in Non-Patent Document 1 and Non-Patent Document 2, since it is assumed that a large number of existing cantilevers are coupled, it is technically difficult to manufacture, whereas in the present embodiment, the existing cantilevers are present. Since only one is required, it is technically easy to manufacture. In the present embodiment, the virtual cantilever CL1 and a large number of cantilevers CL2 to CLn-1 for sensitivity improvement are created "simulated", but in the present invention, existing cantilevers exist, and further, the coupled By combining an arithmetic processing unit capable of executing the above with an existing cantilever, a performance superior to that of the known technology is realized, and therefore, it does not correspond to an abstract concept.
 そして、本実施形態に係る振動部1では、感度向上用のカンチレバーCL2~CLn-1を実在のカンチレバーではなく、仮想のカンチレバーとして実現している。そのため、感度向上用のカンチレバーとして模擬する数を増加させることが容易であり、連成振動させるカンチレバーの数が多いときほど、より一層感度を向上させることができる。非特許文献1や非特許文献2に記載の技術では、感度向上のためのカンチレバーの数は、物理的なサイズや、強度、コストなどに制限されるため、際限なく増やすことはできない。
 このように容易に感度を向上させることができるため、感度が低いため計測することのできなかった物理量であっても、上述のように感度を向上させることで計測することが可能となり、使い勝手を向上させることができ、汎用性を高めることができる。
In the vibrating section 1 according to the present embodiment, the sensitivity improving cantilevers CL2 to CLn-1 are realized as virtual cantilevers instead of existing cantilevers. Therefore, it is easy to increase the number of simulated cantilevers for improving sensitivity, and the sensitivity can be further improved as the number of coupled cantilevers increases. In the techniques described in Non-Patent Document 1 and Non-Patent Document 2, the number of cantilevers for improving sensitivity is limited by physical size, strength, cost, etc., and thus cannot be increased indefinitely.
Since the sensitivity can be easily improved in this way, even physical quantities that could not be measured due to low sensitivity can be measured by improving the sensitivity as described above, and the usability is improved. It can be improved and versatility can be improved.
 また、このように容易に感度を向上させることができるため、今まで計測することのできなかった軽量の物質等であっても容易に計測することができる。
 また、条件2にあるように、αn=mn/m1をできるだけ小さくすることで、感度があがる。ここで、m1は、仮想のカンチレバーCL1が有する第1物体M1の質量であるため、本実施形態では、質量m1を仮想的に増加させるほど感度を向上させることができ、感度を容易に向上させることができる。非特許文献1や非特許文献2に記載の技術では、質量m1を増加させることは物理的なサイズや、強度、コストなどに制限されるため、限界がある。
In addition, since the sensitivity can be easily improved in this way, even a light-weight substance or the like that could not be measured until now can be easily measured.
Further, as in the condition 2, the sensitivity is increased by making αn = mn / m1 as small as possible. Here, m1 is the mass of the first object M1 that the virtual cantilever CL1 has, so in the present embodiment, the sensitivity can be improved as the mass m1 is increased virtually, and the sensitivity can be easily improved. be able to. The techniques described in Non-Patent Document 1 and Non-Patent Document 2 have a limit because increasing the mass m1 is limited by physical size, strength, cost, and the like.
 なお、上記実施形態において、少なくとも、仮想のカンチレバーCL1と、実在のカンチレバーCLnとの固有周波数が一致していればよいが、好ましくは、感度向上用のカンチレバーCL2~CLn-1のバネ剛性が、カンチレバーCL1及びCLnのバネ剛性よりも高いことが好ましい。また、感度向上用のカンチレバーCL2~CLn-1は、感度向上用のカンチレバーCL2~CLn-1のバネ剛性が、カンチレバーCL1及びCLnのバネ剛性よりも高ければ、必ずしも、感度向上用のカンチレバーCL2~CLn-1どうしは、同じ材料及び形状である必要はなく、バネ剛性及び質量が異なっていてもよい。 In the above embodiment, at least the natural frequencies of the virtual cantilever CL1 and the existing cantilever CLn may match, but preferably, the spring rigidity of the sensitivity improving cantilevers CL2 to CLn-1 is It is preferably higher than the spring rigidity of the cantilevers CL1 and CLn. Further, the sensitivity improving cantilevers CL2 to CLn-1 are not necessarily required to be provided that the sensitivity improving cantilevers CL2 to CLn-1 have a spring rigidity higher than that of the cantilevers CL1 and CLn. CLn-1 do not have to be the same material and shape, and may have different spring stiffness and mass.
 なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得る。 It should be noted that the scope of the present invention is not limited to the illustrated and described exemplary embodiments, but includes all embodiments that bring about an effect equivalent to that intended by the present invention. Furthermore, the scope of the present invention may be delineated by any desired combination of specific features of each disclosed feature.
1 振動部
1A カンチレバー(仮想振動体)
1B カンチレバー(実振動体)
1C 支持部材
1D オーバーハング部
11 実振動体部
12 演算処理装置
13 駆動回路
14 表示装置
21 支持部材
21a 保持部
21b 案内部
22 アクチュエータ
22a 軸部
22b 支持部
23 変位計
100 計測装置
100a 模擬装置
CL1 仮想のカンチレバー
CL2~CLn-1 感度向上用のカンチレバー
CLn 実在のカンチレバー
1 Vibration part 1A Cantilever (virtual vibration body)
1B cantilever (actual vibrator)
1C Supporting member 1D Overhang part 11 Actual vibrating body part 12 Arithmetic processing device 13 Driving circuit 14 Display device 21 Supporting member 21a Holding part 21b Guide part 22 Actuator 22a Shaft part 22b Supporting part 23 Displacement meter 100 Measuring device 100a Simulation device CL1 Virtual Cantilevers CL2-CLn-1 Cantilevers CLn for improving sensitivity Real-life cantilevers

Claims (10)

  1.  二つの振動体の振幅を用いて、測定対象の物理量に相当する値を検出する計測装置であって、
     前記二つの振動体のうちの一つとしての実在する実振動体と、
     当該実振動体に予め設定した変位方向の力を付与するアクチュエータと、
     前記実振動体の振動変位を検出する振動変位検出部と、
     前記実振動体と仮想的に連成可能に結合される仮想振動体を前記二つの振動体のうちの他の一つとして模擬すると共に、当該仮想振動体と前記振動変位検出部で検出した前記実振動体の振動変位とに基づき前記アクチュエータを駆動制御する連成制御処理を実行する演算処理装置と、
    を備えることを特徴とする計測装置。
    A measuring device for detecting a value corresponding to a physical quantity to be measured by using the amplitudes of two vibrating bodies,
    An actual real vibrating body as one of the two vibrating bodies,
    An actuator that applies a force in a preset displacement direction to the actual vibrating body,
    A vibration displacement detection unit that detects the vibration displacement of the actual vibrating body,
    The virtual vibrating body that is virtually coupled to the real vibrating body is simulated as another one of the two vibrating bodies, and the virtual vibrating body and the vibration displacement detection unit detect the virtual vibrating body. An arithmetic processing unit that executes a coupled control process for driving and controlling the actuator based on the vibration displacement of the actual vibrating body,
    A measuring device comprising:
  2.  前記仮想振動体は、前記実振動体と連成する振動体の物理モデルを理論数式で模擬する数値情報で表現されていることを特徴とする請求項1に記載の計測装置。 The measuring device according to claim 1, wherein the virtual vibrating body is represented by numerical information that simulates a physical model of a vibrating body coupled to the real vibrating body by a theoretical mathematical formula.
  3.  前記演算処理装置は、前記仮想振動体の固有周波数が、前記実振動体の固有周波数と一致するように前記仮想振動体を模擬することを特徴とする請求項1又は請求項2に記載の計測装置。 3. The measurement according to claim 1, wherein the arithmetic processing device simulates the virtual vibration body so that the natural frequency of the virtual vibration body matches the natural frequency of the actual vibration body. apparatus.
  4.  前記演算処理装置は、
     前記実振動体の振動速度を検出する振動速度検出部と、
     フィードバック制御信号により前記アクチュエータを駆動するフィードバック制御部と、
     を備え、
     前記フィードバック制御信号は、
     前記振動変位検出部で検出した前記実振動体の振動変位と前記演算処理装置で模擬される前記仮想振動体の振動変位との差に基づく線形変位フィードバック成分と、前記振動速度検出部で検出した前記振動速度に基づく線形速度フィードバック成分とを含むことを特徴とする請求項1から請求項3のいずれか一項に記載の計測装置。
    The arithmetic processing unit,
    A vibration speed detection unit that detects the vibration speed of the actual vibrating body,
    A feedback control unit for driving the actuator by a feedback control signal,
    Equipped with
    The feedback control signal is
    A linear displacement feedback component based on the difference between the vibration displacement of the actual vibration body detected by the vibration displacement detection unit and the vibration displacement of the virtual vibration body simulated by the arithmetic processing device, and the vibration velocity detection unit detected. The linear velocity feedback component based on the said vibration velocity is included, The measuring device as described in any one of Claim 1 to 3 characterized by the above-mentioned.
  5.  前記フィードバック制御信号は、前記実振動体の振幅を抑制するために、前記振動速度に対して同相または反相の非線形速度フィードバック成分を含むことを特徴とする請求項4に記載の計測装置。 The measuring device according to claim 4, wherein the feedback control signal includes a non-linear velocity feedback component in-phase or anti-phase with respect to the vibration velocity in order to suppress the amplitude of the actual vibration body.
  6.  前記演算処理装置は、前記アクチュエータを駆動制御し、前記実振動体を振動させて共振点における共振周波数を取得し、当該取得した共振周波数に基づく前記仮想振動体の模擬に必要な情報を設定する初期処理を実行するようになっている請求項1から請求項5のいずれか一項に記載の計測装置。 The arithmetic processing device drives and controls the actuator, vibrates the actual vibrating body to acquire a resonance frequency at a resonance point, and sets information necessary for simulating the virtual vibrating body based on the acquired resonance frequency. The measuring device according to any one of claims 1 to 5, which is adapted to perform an initial process.
  7.  前記物理量は、質量、表面形状、弾性率、粘弾性率、及び力の場の少なくともいずれか一つであることを特徴とする請求項1から請求項6のいずれか一項に記載の計測装置。 The measuring device according to any one of claims 1 to 6, wherein the physical quantity is at least one of mass, surface shape, elastic modulus, viscoelasticity, and force field. .
  8.  前記演算処理装置は、前記仮想振動体とは別に、当該仮想振動体と前記実振動体との間に仮想的に連成可能に結合される感度向上用の他の仮想振動体を模擬し、前記仮想振動体と、前記感度向上用の他の仮想振動体と、前記振動変位とに基づき前記アクチュエータを駆動制御する連成制御処理を実行することを特徴とする請求項1から請求項7のいずれか一項に記載の計測装置。 The arithmetic processing device, in addition to the virtual vibrating body, simulates another virtual vibrating body for sensitivity improvement that is virtually coupled between the virtual vibrating body and the actual vibrating body, 8. The coupled control process for driving and controlling the actuator based on the virtual vibration body, another virtual vibration body for improving the sensitivity, and the vibration displacement, according to claim 1 to claim 7. The measuring device according to any one of claims.
  9.  請求項1から請求項8のいずれか一項に記載の計測装置用の部品であって、
     実在する実振動体と、
     当該実振動体に予め設定した変位方向の力を付与するアクチュエータと、
     前記実振動体の振動変位を検出する振動変位検出部と、
    を備えることを特徴とする計測装置用の部品。
    A component for a measuring device according to any one of claims 1 to 8,
    With a real vibration body,
    An actuator that applies a force in a preset displacement direction to the actual vibrating body,
    A vibration displacement detection unit that detects the vibration displacement of the actual vibrating body,
    A component for a measuring device, characterized by comprising:
  10.  請求項1から請求項7のいずれか一項に記載の計測装置用の演算処理装置であって、
     前記実振動体の振動変位を用いて、前記実振動体と仮想的に連成可能に結合される仮想振動体を模擬すると共に前記アクチュエータを駆動制御する信号を生成することを特徴とする計測装置用の演算処理装置。
    An arithmetic processing device for a measuring device according to any one of claims 1 to 7,
    A measuring device characterized by using a vibration displacement of the actual vibrating body to simulate a virtual vibrating body that is virtually coupled to the actual vibrating body and to generate a signal for driving and controlling the actuator. Processor for computer.
PCT/JP2019/041213 2018-10-19 2019-10-18 Measuring device, component for measuring device, and operation processing device for measuring device WO2020080544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553366A JP7362060B2 (en) 2018-10-19 2019-10-18 Measuring devices and arithmetic processing devices for measuring devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018197993 2018-10-19
JP2018-197993 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080544A1 true WO2020080544A1 (en) 2020-04-23

Family

ID=70283949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041213 WO2020080544A1 (en) 2018-10-19 2019-10-18 Measuring device, component for measuring device, and operation processing device for measuring device

Country Status (2)

Country Link
JP (1) JP7362060B2 (en)
WO (1) WO2020080544A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083840A (en) * 2001-09-17 2003-03-19 Hitachi Ltd Vibration testing device and vibration response evaluation method
JP2016065817A (en) * 2014-09-25 2016-04-28 洋明 津野 Ultra-small mass detection device
US20180074018A1 (en) * 2015-03-25 2018-03-15 Endress+Hauser Gmbh+Co. Kg Electromagnetic driving/receiving unit for a field device of automation technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133772A (en) 2007-11-30 2009-06-18 National Institute Of Advanced Industrial & Technology Detection sensor and oscillator
JP5419767B2 (en) 2010-03-24 2014-02-19 オリンパス株式会社 Detection sensor, substance detection method
WO2013146732A1 (en) 2012-03-27 2013-10-03 住友精密工業株式会社 Physical quantity sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083840A (en) * 2001-09-17 2003-03-19 Hitachi Ltd Vibration testing device and vibration response evaluation method
JP2016065817A (en) * 2014-09-25 2016-04-28 洋明 津野 Ultra-small mass detection device
US20180074018A1 (en) * 2015-03-25 2018-03-15 Endress+Hauser Gmbh+Co. Kg Electromagnetic driving/receiving unit for a field device of automation technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAI, GUIBING ET AL.: "Net-overhang Coupled Microcantilevers for Sensitive Mass Detection", SENSORS 2013 IEEE, 4 November 2013 (2013-11-04), XP032532488, DOI: 10.1109/ICSENS.2013.6688214 *

Also Published As

Publication number Publication date
JP7362060B2 (en) 2023-10-17
JPWO2020080544A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
Schmid et al. Fundamentals of nanomechanical resonators
Ghommem et al. Modeling and performance study of a beam microgyroscope
Mazeika et al. Linear inertial piezoelectric motor with bimorph disc
Ghommem et al. Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications
Potekin et al. A micromechanical mass sensing method based on amplitude tracking within an ultra-wide broadband resonance
Qin et al. Actively controlling the contact force of a stick-slip piezoelectric linear actuator by a composite flexible hinge
Vatankhah et al. Observer-based vibration control of non-classical microcantilevers using extended Kalman filters
Jalili et al. Study of a piezo-electric actuated vibratory micro-robot in stick-slip mode and investigating the design parameters
Li et al. Mathieu equation with application to analysis of dynamic characteristics of resonant inertial sensors
Moreira et al. Highly sensitive MEMS frequency modulated accelerometer with small footprint
Li et al. Theoretical analysis and experiment of multi-modal coupled vibration of piezo-driven Π-shaped resonator
JP2018517898A (en) Vibration gyroscope using non-linear modal interaction
Gonçalves et al. Double resonance capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor
Moore et al. Serial-kinematic monolithic nanopositioner with in-plane bender actuators
WO2020080544A1 (en) Measuring device, component for measuring device, and operation processing device for measuring device
Sarraf et al. Novel band-pass sliding mode control for driving MEMS-based resonators
Leniowska et al. Vibration control of a circular plate using parametric controller with phase shift adjustment
Ma et al. Simultaneous determination of position and mass of a particle by the vibration of a diaphragm-based nanomechanical resonator
Lin et al. Static force measurement for automation assembly systems
Šiaudinytė et al. Modal analysis and experimental research into improved centering–leveling devices
Zhang et al. Primary resonance of coupled cantilevers subjected to magnetic interaction
Korayem et al. GDQEM analysis for free vibration of V-shaped atomic force microscope cantilevers
Dzedzickis et al. Modelling of mechanical structure of atomic force microscope
Lee et al. Nonlinear complex response of a parametrically excited tuning fork
Shakoor et al. Experimental evaluation of resonant frequencies with associated mode shapes and power analysis of thermally actuated vibratory microgyroscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872643

Country of ref document: EP

Kind code of ref document: A1