WO2020080373A1 - Optical ground station operational management system, optical operation planning device, and optical ground station operational management method and program - Google Patents

Optical ground station operational management system, optical operation planning device, and optical ground station operational management method and program Download PDF

Info

Publication number
WO2020080373A1
WO2020080373A1 PCT/JP2019/040530 JP2019040530W WO2020080373A1 WO 2020080373 A1 WO2020080373 A1 WO 2020080373A1 JP 2019040530 W JP2019040530 W JP 2019040530W WO 2020080373 A1 WO2020080373 A1 WO 2020080373A1
Authority
WO
WIPO (PCT)
Prior art keywords
cloud
optical
ground station
optical ground
arc
Prior art date
Application number
PCT/JP2019/040530
Other languages
French (fr)
Japanese (ja)
Inventor
達也 向井
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to AU2019363341A priority Critical patent/AU2019363341B2/en
Priority to JP2020528355A priority patent/JP6762643B1/en
Publication of WO2020080373A1 publication Critical patent/WO2020080373A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the present invention relates to an optical ground station operation management system, an optical operation planning device, an optical ground station operation management method, and a program for managing the operation of a system that downlinks data by optical communication from a spacecraft such as a spacecraft to an optical ground station.
  • Non-Patent Document 1 the optical ground station is added to the station dispersion technology (Site Diversity), the cloud image captured from the satellite is analyzed, and the location where the cloud blocking between the spacecraft and the optical ground station is small is selected and the light is selected.
  • Site Diversity station dispersion technology
  • a technique for selecting a ground station is disclosed.
  • an object of the present invention is to provide an optical ground station operation management system, an optical operation planning device, an optical ground station operation management method and a program capable of more efficiently managing the operation of the optical ground station. To do.
  • an optical ground station operation management system includes a low-layer cloud monitoring / determining device, a high-layer cloud monitoring / determining device, and an optical operation planning device.
  • the low-level cloud monitoring and discriminating device takes in cloud image data in the field of view, draws an expected orbit arc in the field of view of a spacecraft connecting an optical link with the optical ground station, and creates cloud image data in the field of view.
  • the cloud occupancy ratio of the predicted orbit arc in the visual field is determined by superposing the predicted orbit arcs in the visual field.
  • the high-level cloud monitoring / discriminating apparatus captures wide-area cloud image data, draws an expected orbit arc of the spacecraft in the wide area, and superimposes the wide-area expected orbit arc on the wide-area cloud image data to predict the wide area. Determine the cloud occupancy of the orbit arc.
  • the optical operation planning device superimposes a low cloud and a high cloud of the expected orbit arc of the spacecraft on the basis of the result of the determination by the low cloud monitoring and determining device and the result of the determination by the high cloud monitoring and determining device.
  • the cloud occupancy ratio is determined, and the operation plan of the optical ground station is managed and controlled based on the determination result.
  • a low cloud and a high cloud of a predicted spacecraft orbit arc are calculated based on a cloud occupancy ratio of the predicted orbit arc in the field of view and a cloud occupancy ratio of the predicted orbit arc in a wide area.
  • the cloud occupancy ratio is determined by superimposing and, and the operation plan of the optical ground station is managed based on the result of the determination of the cloud occupancy ratio by superimposing the low-rise clouds and high-rise clouds of the expected orbit arc of the spacecraft. Control.
  • cloud images taken from meteorological satellites can mainly be used to understand only high-level clouds, but in the present invention, high-level clouds and low-level clouds are superposed using predicted orbit arcs of spacecraft on the ground side and satellite side.
  • the cloud occupancy ratio thus determined is a more accurate value, and the operation plan of the optical ground station is managed based on it, so that the operation of the optical ground station can be managed more efficiently.
  • the low-level cloud monitoring / discriminating apparatus divides the predicted orbit arc in the field of view into two or more sections, and calculates the cloud occupancy ratio of the predicted orbit arc for each section. Judgment, the cloud occupancy ratio of the predicted orbit arc for each section and the total cloud occupancy ratio of the predicted orbit arc of each section are output to the optical operation planning device as a result of the judgment by the low-level cloud monitoring and determination device,
  • the high-rise cloud monitoring / discriminating apparatus divides the predicted orbit arc of the wide area into two or more sections, judges the cloud occupancy rate of the predicted orbit arc for each section, and determines the cloud occupancy rate of the predicted orbit arc for each section and each.
  • the cloud occupancy ratio of the total expected orbit arc of the section may be output to the optical operation planning device as a result of the determination by the high-rise cloud monitoring determination device. As a result, it is possible to more accurately determine the cloud approach to the expected orbit arc and more efficiently manage the operation of the optical ground station.
  • the high-rise cloud monitoring / determining device determines, based on the wide-area cloud image data, whether or not the cloud adjacent to the wide-area predicted orbit arc is closer to the predicted orbit arc. 1 arrival forecast information is generated and the first arrival forecast information is output to the optical operation planning apparatus, and the optical operation planning apparatus also operates the optical ground station in consideration of the first arrival forecast information. You may manage the plan. Further, the low-level cloud monitoring / discriminating device creates second arrival forecast information of a cloud adjacent to the predicted orbit arc in the field of view on the basis of cloud image data in the field of view, the second arrival forecast information.
  • the second arrival forecast information may be output to the optical operation planning apparatus, and the optical operation planning apparatus may manage the operation plan of the optical ground station in consideration of the second arrival forecast information.
  • the optical operation planning apparatus may manage the operation plan of the optical ground station in consideration of the second arrival forecast information.
  • the optical operation planning device accumulates any one of the cloud occupancy rates, and also adds the accumulated cloud occupancy rate to the operation plan of the optical ground station. May be managed. As a result, it is possible to more accurately determine the cloud approach to the expected orbit arc and more efficiently manage the operation of the optical ground station.
  • the optical ground station acquires position information of an aircraft within the field of view of the optical ground station, and outputs an operation stop message based on the position information.
  • the optical operation planning apparatus further includes an operation stop message transfer unit for transmitting to the operation planning apparatus, and the optical operation planning apparatus manages the operation plan of the optical ground station in consideration of the operation stop message transferred from the operation stop message transfer unit. May be. As a result, for example, it is possible to avoid the downlink service from being stopped for a certain period of time or more from the spacecraft and improve the downlink efficiency.
  • the low-layer cloud monitoring discriminating apparatus for each of the plurality of optical ground stations arranged in different areas.
  • the optical operation planning device is installed for each optical ground station, determines the cloud occupancy ratio of the low altitude cloud and the high altitude cloud of the expected orbit arc of the spacecraft for each optical ground station, and determines the orbital arc of the spacecraft. It is more preferable to manage an operation plan in which stations with good conditions are sequentially selected from a plurality of the optical ground stations based on the result of the overlapping state with and are operated.
  • the optical operation planning device takes in an orbit forecast value of the spacecraft, and performs an initial operation of sequentially operating the plurality of optical ground stations based on the orbit forecast value.
  • a plan is created and transferred to each of the optical ground stations, and at least one of the plurality of optical ground stations has a cloud occupancy rate in which a low cloud and a high cloud of the predicted orbit arc of the spacecraft are superimposed on each other exceeding a predetermined threshold value. In this case, it is more preferable to execute the process of changing the initial operation plan and transfer the changed operation plan to each optical ground station.
  • At least data exchange between the low-level cloud monitoring and determining device and the optical operation planning device and the high-level cloud monitoring and determining device and the optical operation planning device It is preferable to exchange data between them in the form of messages. As a result, the amount of data exchanged between the respective parts can be reduced, and more rapid operation is possible.
  • the spacecraft downlinks data to the optical ground station by optical communication.
  • An optical operation planning apparatus based on cloud occupancy information by a low-layer cloud monitoring and discriminating apparatus and cloud occupancy information by a high-layer cloud monitoring and discriminating apparatus, occupies low- and high-layer clouds with respect to an expected orbit arc of a spacecraft.
  • a control unit for determining the ratio and managing the operation plan of the optical ground station based on the determined result is provided.
  • cloud image data in the field of view near the optical ground station is captured, in the field of view of the spacecraft that connects an optical link with the optical ground station.
  • Draw an expected orbit arc superimpose the expected orbit arc in the field of view on the cloud image data in the field of view to determine the cloud occupancy rate of the expected orbit arc in the field of view, and capture wide-area cloud image data
  • Draw an expected orbit arc in the wide area of the aircraft superimpose the wide area expected orbit arc on the wide area cloud image data to determine the cloud occupancy rate of the wide area expected orbit arc, and within the determined field of view.
  • the cloud occupancy ratio of the low altitude cloud and the high altitude cloud of the predicted orbit arc of the spacecraft is determined, and the result of the determination is determined.
  • Manage and control the operation plan of the optical ground station based on .
  • a program captures cloud image data in a field of view near an optical ground station and draws an expected orbit arc in the field of view of a spacecraft that connects an optical link with the optical ground station.
  • the operation of the optical ground station can be managed more efficiently.
  • 6 is a table showing an example of operation plan information transmitted from the optical operation planning apparatus of the master station to each optical operation planning apparatus and the optical ground station according to an embodiment. It is a figure for explaining judgment of whether there is a changeable optical ground station concerning one embodiment. It is a figure which shows the example of the allocation plan state which concerns on one Embodiment. It is a state of each optical ground station according to one embodiment.
  • 6 is a timing chart showing data exchange between respective units in the initial operation plan according to the embodiment.
  • 7 is a timing chart showing an exchange of data between respective units in a plan change according to an embodiment.
  • FIG. 1 is a diagram for explaining an outline of an optical ground station operation management system according to an embodiment of the present invention.
  • the optical ground station operation management system manages an optical operation plan of a plurality of optical ground stations 2 (2a, 2b, 2c).
  • the optical ground stations 2a, 2b, 2c are typically installed in three different regions on the earth, such as Asia Pacific, Europe, and North America. In three regions of Asia Pacific, Europe, and North America, meteorological satellites 4a, 4b, and 4c observe clouds.
  • Reference numeral 5 in FIG. 1 is a spacecraft for exploring Mars or the like, and downlinks data such as imaging data from the spacecraft 5 to the optical ground stations 2a, 2b, 2c by optical communication.
  • FIG. 1 is a spacecraft for exploring Mars or the like, and downlinks data such as imaging data from the spacecraft 5 to the optical ground stations 2a, 2b, 2c by optical communication.
  • the optical ground station 2a in the Asia-Pacific region receives data from the spacecraft 5.
  • the data from the spacecraft 5 is received in accordance with the operation plan and control of the optical ground station operation management system according to this embodiment.
  • the optical ground station that receives the signal is switched from the optical ground station 2a to the other optical ground stations 2b and 2c.
  • the optical ground station 2a will be mainly described, but the other optical ground stations 2b and 2c have the same configuration unless otherwise described.
  • the spacecraft 5 is provided with a camera for capturing an object to be probed such as Mars, a memory for storing the imaged data, and a communication unit for transmitting (downlink) the data in the memory to the optical ground stations 2a, 2b, 2c. .
  • the spacecraft is not limited to the spacecraft, and also includes a structure having a communication function capable of moving in outer space such as an artificial satellite other than the spacecraft and a space station.
  • the artificial satellites are geostationary satellites that orbit (GEO: Geostationary Earth Orbit), low earth orbit (LEO) and medium orbit (MEO: Medium Earth Orbit), regardless of the rotation period of the earth. It also includes artificial satellites that fly in deep space. That is, the altitude from the surface of the spacecraft is not particularly limited.
  • the artificial satellites are typically meteorological satellites, communication satellites, etc., but may be launched for any purpose.
  • FIG. 2 is a diagram showing a schematic configuration of an optical ground station operation management system according to this embodiment.
  • the optical ground station operation management system 1 is mainly composed of a low-rise cloud monitoring / discrimination system 10, a high-rise cloud monitoring / discrimination system 20, and an optical operation planning device 30.
  • the low-level cloud monitoring / determining system 10, the high-level cloud monitoring / determining system 20, and the optical operation planning device 30 are arranged in the optical ground stations 2a, 2b, and 2c, respectively.
  • the low-level cloud monitoring / discrimination system 10 takes in cloud image data in the field of view, draws an expected orbit arc in the field of view of a spacecraft connecting an optical link with the optical ground station 2a, and draws cloud image data in the field of view. Then, the expected orbit arcs in the field of view are overlapped with each other to determine the cloud occupancy ratio of the expected orbit arcs in the field of view.
  • the low-rise cloud monitoring / discrimination system 10 is arranged near the optical ground station 2a.
  • the low-level cloud monitoring / discrimination system 10 is arranged in the same site as the optical ground station 2a (for example, near a telescope) and looks up from the optical ground station 2a (a low-level cloud in this specification).
  • the information on the cloud occupancy ratio (hereinafter, also referred to as a cloud occupancy message) for the low-layer cloud created by the low-layer cloud monitoring / discrimination system 10 is transmitted to the optical operation planning apparatus 30 via the communication network.
  • the high-level cloud monitoring / discrimination system 20 takes in wide-area cloud image data, draws the expected wide-area orbit arc of the probe 5, and superimposes the wide-area expected orbit arc on the wide-area cloud image data to create the wide-area cloud image data. Determine the cloud occupancy of the expected orbit arc.
  • the high-level cloud monitoring / discrimination system 20 receives wide-area cloud image data (full disk image) in the Asia-Pacific region from the weather satellite 4a via the weather data center 6a and the communication network.
  • the meteorological satellite 4a is located in an orbit around the earth or in a geostationary orbit, and monitors the presence or absence of a cloud (also referred to as a high-level cloud in this specification) overlooking the earth from the meteorological satellite 4a and its movement.
  • the information on the cloud occupancy ratio (hereinafter, also referred to as a cloud occupancy message) about the high-rise clouds created by the high-rise cloud monitoring / discrimination system 20 is transmitted to the optical operation planning apparatus 30 via the communication network.
  • the optical operation planning device 30 is composed of a computer in which a program for executing the optical ground station operation management described below is installed.
  • the optical operation planning device 30 determines the cloud occupancy ratio in which the low cloud and the high cloud of the expected orbit arc of the spacecraft 5 are superimposed on the basis of the cloud occupancy message for the low cloud and the cloud occupancy message for the high cloud, and the like.
  • the optical ground station 2a, 2b, 2c is provided with a control unit for creating an optical operation plan for managing the operation plan.
  • the optical operation plan created by the optical operation planning device 30 is transmitted to the optical ground station 2a or the like via the communication network.
  • the optical ground station 2a receives the imaging data and the like stored in the memory of the probe 5 from the probe 5 by optical communication according to the optical operation plan by downlink.
  • the optical ground station 2a obtains data on the approach of the aircraft 8 from the nearby radar 7, and based on this data, the laser light emitted from the optical ground station 2a to the probe 5 is not irradiated to the aircraft 8.
  • a laser beam is blocked by a shutter function (not shown).
  • the radar 7 functions as an operation stop message transmission unit that acquires position information of the aircraft 8 within the field of view of the optical ground station 2a and transfers an operation stop message to the optical operation planning device 30 based on the position information.
  • the optical operation planning device 30 manages the operation plan of the optical ground station 2a by adding the operation stop message transmitted from the radar 7 (planning, correction, execution, etc. of the optical operation plan).
  • the operation stop message transmission unit determines whether or not the aircraft 8 approaches the expected orbit arc of the spacecraft 5 based on, for example, the position or course of the aircraft 8 navigating above the optical ground station 2a.
  • an operation stop message is generated and transmitted to the optical operation planning apparatus 30.
  • the operation stop message may be generated when the approach distance of the spacecraft 5 to the expected orbit arc becomes equal to or less than the predetermined distance.
  • the operation stop message may be generated after a predetermined time has elapsed after the distance becomes the predetermined distance or less.
  • the optical ground station operation management system 1 provided in each optical ground station 2a, 2b, 2c may be described as reference numerals 1a, 1b, 1c, respectively.
  • the optical operation planning apparatus 30 provided in each optical ground station 2a, 2b, 2c may be described as the optical operation planning apparatus 30a, 30b, 30c, respectively.
  • the meteorological data centers 6 provided in the respective ground stations 2a, 2b, 2c are referred to as meteorological data centers 6a, 6b, 6c (see FIG. 1).
  • the optical operation planning device 30a, 30b, 30c exchanges an optical operation plan and a cloud occupancy message (information of low-level clouds and information of high-level clouds are superimposed) via a communication network.
  • the cloud occupancy message includes the ratio of clouds (cloud occupancy ratio) to the predicted orbit arc of the searcher 5 within the field of view of the low-rise cloud monitoring / discrimination system 10.
  • FIG. 3 is a block diagram showing the configuration of the low-rise cloud monitoring / determining system 10.
  • the low-rise cloud monitoring / discrimination system 10 is equipped with a fisheye lens having a viewing angle of 180 degrees, an infrared camera 11 for capturing cloud image data in the field of view, a visible camera 12, and a heater 13 for temperature compensation.
  • a PC 14 that controls the infrared camera 11 and the visible camera 12 and takes in image data.
  • the infrared camera 11 has a fish-eye lens (not shown) and an image sensor that captures infrared rays (for example, infrared rays having a wavelength of 10.4 ⁇ m) emitted from water vapor (cloud).
  • the visible camera 12 may be installed arbitrarily and may be omitted if necessary. Further, the low-rise cloud monitoring / determining system 10 may further include a fan (not shown) for temperature compensation. Further, the low-layer cloud monitoring / determining system 10 creates a cloud occupancy message for the low-level cloud from the PC 14 based on image data and the like, and transmits the cloud-occupancy message to the optical operation planning device 30 via the communication network. A device 15 is provided.
  • FIG. 4 is a flowchart showing the operation of the low-rise cloud monitoring / determining device 15.
  • the low-level cloud monitoring / determining device 15 takes in cloud image data within the field of view from the PC 14 (step 401), and stores the cloud image data within the field of view as data for analysis (step 402).
  • the cloud image data in the field of view is typically image data in the field of view of a fisheye lens (infrared camera 11) capable of capturing a range (entire sky) from the zenith of the sky to the horizon (360 degrees).
  • the cloud image data in the field of view is low-level cloud data.
  • the low-level cloud monitoring / determining device 15 takes in the orbit forecast value of the spacecraft 5 from a predetermined site or the optical operation planning device 30 via the communication network, and draws the expected orbit arc of the spacecraft 5 within the field of view. (Step 403). Next, the low-level cloud monitoring / determining device 15 superimposes the predicted orbit arc within the field of view on the cloud image data within the field of view (step 404).
  • FIG. 5 shows an example thereof.
  • the low-level cloud monitoring / determining device 15 divides the area overlapping the predicted orbit arc in the field of view into, for example, three sections B1, B2, and B3, and calculates the cloud occupancy ratios of the sections B1 to B3. It is determined (step 405).
  • the imaging data of the infrared camera acquired via the fisheye lens is used to indicate the moving direction of the spacecraft 5 along the predicted orbit arc (indicated as an arrow from northeast to northwest in FIG. 5).
  • the area of FIG. 5 is an area that is partitioned along a line, and the example of FIG.
  • the orbital arc to be divided is not limited to 3 sections and may be 2 sections or 4 sections or more.
  • the sections B1 to B3 correspond to the sections obtained by further dividing a part of the section B into the section B in the high frequency image data shown in FIG.
  • the low-rise cloud monitoring / determining device 15 determines the presence / absence of a cloud based on the output information of each pixel of the cloud image data. For example, the low-level cloud monitoring / determining device 15 determines the presence / absence of a cloud based on information such as the brightness or temperature of each pixel of image data.
  • the cloud occupancy ratio with respect to the predicted orbit arc is the first pixel number, which is the total number of pixels to which the predicted orbit arc belongs, and the second pixel number, which is the total number of pixels that the cloud occupies among the first pixel number. It is calculated by the ratio of the second pixel number to the one pixel number ((second pixel number / first pixel number) ⁇ 100 [%]).
  • the first pixel number is from the current position of the explorer 5 on the expected orbit arc to the predicted orbit arc of the section to which the explorer belongs. It is the total number of pixels to the end, and gradually decreases as the probe 5 moves.
  • the section to which the spacecraft 5 does not belong section B2 and section B3 in the example of FIG. 5
  • the total number of pixels occupied by the predicted orbit arc in each section is the total number of pixels occupied by the predicted orbit arc in each section.
  • the low-level cloud monitoring / determining device 15 outputs, as a cloud occupancy message, information on the cloud occupancy ratios of the three sections B1 to B3 and their total to the optical operation planning device 30 (step 406).
  • FIG. 6 shows an example of the cloud occupation message CM1 transmitted from the low-rise cloud monitoring / determining device 15 to the optical operation planning device 30.
  • the cloud occupancy message CM1 is created in a message format (for example, text format) as shown in FIG. 6, showing the cloud occupancy rate of each section and the cloud occupancy rate of all sections at the present time.
  • the low level cloud monitoring / determining device 15 repeats the above processing (steps 401 to 406) in a predetermined cycle.
  • the predetermined cycle is not particularly limited, and may be, for example, 5 minutes, 10 minutes, 30 minutes or more. Further, by repeating the above processing at a predetermined cycle, the data of the cloud occupancy ratio corresponding to the position of the spacecraft 5 and the movement of the cloud which change every moment may be updated or overwritten.
  • the low-level cloud monitoring / determining device 15 determines the predicted orbit arc that can be understood from the cloud image data in the field of view and the optical design (lens viewing angle, focal length, sensor size, number of pixels, etc.) of the observation sensor (such as the infrared camera 11).
  • arrival forecast information (second arrival forecast information) of the low cloud approaching from the outside of the forecast orbit arc to the forecast orbit arc is created, and the arrival forecast information is sent to the optical operation planning device 30. It can also be configured to output.
  • the arrival forecast information is created, for example, based on the presence or absence of low-level clouds in the observation region outside the expected orbit arc of the spacecraft 5.
  • the optical operation planning device 30 manages the operation plan of the optical ground station 2a by taking the arrival forecast information into consideration.
  • the optical operation planning apparatus 30 manages operations related to network switching judgment and control of the optical ground stations 2a, 2b, 2c using arrival forecast information of low-layer clouds (for example, modifying the planned optical operation plan). By doing so, it is possible to manage the operation based on the near-real-time prediction by the prefetching process.
  • FIG. 7 is a block diagram showing the configuration of the high-rise cloud monitoring / determining system 20.
  • the high-level cloud monitoring / discrimination system 20 receives a wide area cloud image data (full disk image) from the meteorological satellite 4a via the meteorological data center 6 and a communication network, and stores the meteorological satellite data server 21. Equipped with.
  • the high-rise cloud monitoring / discrimination system 20 also creates a cloud occupancy message for the high-rise cloud based on the image data from the data server 21 and sends the cloud occupancy message to the optical operation planning apparatus 30 via the communication network.
  • the cloud monitoring and discrimination device 22 is provided.
  • FIG. 8 is a flowchart showing the operation of the high-rise cloud monitoring / determining device 22.
  • the high-level cloud monitoring / determining device 22 fetches full-disk infrared observation information (wide area) in the Asia- Pacific region from the meteorological satellite data server 21 (step 801). A wide area is an area on the earth that is typically visible from one meteorological satellite (see FIG. 9).
  • the high-level cloud monitoring / determining device 22 creates a full-disk infrared cloud image (wide area) from the acquired infrared observation information and outputs it as image data (step 802).
  • the high-rise cloud monitoring / determining device 22 repeats the above-described processing (steps 801 to 802).
  • the high-rise cloud monitoring / determining device 22 may be configured to be able to acquire not only an infrared cloud image but also a visible cloud image.
  • the high-level cloud monitoring / determining device 22 takes in the output image data (step 803), and takes in the orbit forecast value of the spacecraft 5 from a predetermined site or the optical operation planning device 30 via the communication network, and the wide area concerned. Draw the expected orbit arc of the spacecraft 5 at (step 804).
  • the high level cloud monitoring / determining device 22 superimposes the predicted orbit arc in the wide area on the wide area cloud image data (step 805).
  • FIG. 9 shows an example thereof.
  • the high-rise cloud monitoring / determining device 22 determines the presence / absence of a cloud based on the information such as the brightness or temperature of each pixel of the cloud image data in a wide area. As shown in FIG. 9, the high-level cloud monitoring / determining device 22 divides the area overlapping the predicted orbit arc in the infrared cloud image of the wide area into, for example, three sections A to C, and the cloud occupancy ratio of each section A to C. Is determined (step 806) and the forecasting process is executed (step 807).
  • the orbital arc to be divided is not limited to 3 sections and may be 2 sections or 4 sections or more.
  • Sections A to C are areas obtained by dividing the wide-area infrared cloud image along the moving direction of the spacecraft 5 along the expected orbit arc (shown as an arrow from southeast to northwest in FIG. 9).
  • the section A, the section B, and the section C are sequentially divided from the southeast to the northwest in a predetermined angle range viewed from the meteorological satellite 4a.
  • section B in addition to high clouds, low clouds existing from section B2 to section B3 in FIG. 5 are confirmed.
  • the method of calculating the cloud occupancy rate is the same as the method of calculating the cloud occupancy rate executed by the low-rise cloud monitoring / determining device 15 described above, and thus detailed description thereof will be omitted.
  • the conversion process may be performed.
  • cloud position change for each predetermined time for example, 10 minutes
  • cloud forecast information speed, direction, arrival time
  • warning information are created from the mesh definition at intervals of 2 km, for example.
  • the arrival time means the time from the present until the cloud shields the optical transmission line (optical communication link) between the optical ground station 2a and the probe 5.
  • the high-rise cloud monitor / discrimination device 22 outputs, as a cloud occupancy message, information on the cloud occupancy ratios of the three sections A to C and their total, and forecast information to the optical operation planning device 30 (step 808).
  • FIG. 10 shows an example of the cloud occupation message CM2 transmitted from the high-rise cloud monitoring / determining device 22 to the optical operation planning device 30.
  • the cloud occupation message CM2 is created in a message format (for example, text format) as shown in FIG.
  • the high-level cloud monitoring / determining device 22 repeats the above processing (steps 803 to 808) in a predetermined cycle.
  • the predetermined cycle is not particularly limited, and is typically the same cycle (for example, 10 minutes, 30 minutes, 1 hour, or more) as the processing (FIG. 4) in the above-described low-level cloud monitoring / discriminating apparatus 15. Is.
  • the optical operation planning apparatus 30 determines whether or not the cloud blocks the optical communication link between the universe and the ground based on the cloud occupancy ratios (cloud occupancy messages CM1 and CM2) in the sections A to C thus divided. Check each of the above sections along the communication time axis with 5. As a result, it becomes possible to avoid clouds by finely judging in advance whether or not there is a blockage due to cloud occupancy in each section with respect to the direction of travel of the spacecraft, and it is possible to secure a longer communication time for data transfer from the spacecraft 5 to each optical ground. It is possible to realize station selection and network switching control between stations. As a result, the space-to-ground optical communication link can flexibly transfer data without being blocked by clouds. It should be noted that this section setting can be changed depending on the region difference or the cloud occupancy situation that differs depending on the cloud type, and the judgment can be made more sophisticated.
  • the cloud occupancy rate for each of the three sections A to C can be used, for example, as the total cloud occupancy rate on the time axis of the optical communication link.
  • the total value of the cloud occupancy ratios of all the sections is known at the same time, it is possible to determine the switching of the optical ground station with a bird's-eye view of the entire value by the total value for each traveling time.
  • the forecast information can be used, for example, as an intrusion prediction from the outside of the orbital arc of the spacecraft 5 and an approach to the orbital arc of another cloud that is difficult to observe due to the limited observation area in the cloud observation device on the ground.
  • the high-rise cloud monitoring / determining device 22 provides arrival forecast information (first arrival forecast information) to the predicted orbit arc of a cloud close to the predicted orbit arc of the wide area based on the cloud image data of the wide area. It is created and the arrival forecast information is output to the optical operation planning device 30.
  • the optical operation planning device 30 manages the operation plan of the optical ground station 2a by taking the arrival forecast information into consideration.
  • the optical ground station operation management system 1 is provided with the low-rise cloud monitoring / determining device 15 and the high-rise cloud monitoring / determining device 22 having the above-described configurations, so as to determine the presence or absence of clouds of various altitudes from the ground and space. Can be determined.
  • the optical operation planning apparatus 30 superimposes the low-rise clouds and high-rise clouds of the expected orbit arc of the spacecraft on the basis of the result determined by the low-rise cloud monitoring determination apparatus 15 and the result determined by the high-rise cloud monitoring determination apparatus 22.
  • the occupation ratio is determined, and the operation plan of the optical ground station 2 is managed according to the determination result.
  • the cloud occupancy ratio for the low cloud and the cloud occupancy ratio for the high cloud are used for each section, whichever has the higher cloud occupancy ratio. It means to do.
  • the optical operation planning device 30 draws up an initial operation plan of the optical ground station 2, and based on the result determined by the above low-level cloud monitoring determination device 15 and the result determined by the high-level cloud monitoring determination device 22. Based on this, the plan will be revised accordingly. Then, the optical ground station operation management system 1 according to the present embodiment performs network switching control between the optical ground stations 2 based on the plan. This point will be described in more detail below.
  • FIG. 12 is a diagram showing the configuration on the network in the optical ground station operation management system 1 according to the present embodiment.
  • reference numeral 1a indicates an optical ground station operation management system for an Asia Pacific organization
  • reference numeral 1b indicates an optical ground station operation management system for a European organization
  • reference numeral 1c indicates an optical ground station operation management system for a North American organization.
  • CM is a general term for the cloud occupation messages CM1 and CM2 of low-rise clouds and high-rise clouds
  • NP indicates a network plan (operation plan).
  • LPS (Laser Planning Systems) _A indicates the optical operation planning apparatus 30a
  • LPS_B indicates the optical operation planning apparatus 30b
  • LPS_C indicates the optical operation planning apparatus 30c.
  • optical operation planning devices 30 There are a number of optical operation planning devices 30 according to the institution to which the spacecraft (for example, spacecraft 5) belongs. If there is one organization, the number of optical operation planning devices 30 is one, and as shown in FIG. 12, if there are three organizations, there are three.
  • the optical operation planning apparatus of each organization is the optical operation planning apparatus 30a, the optical operation planning apparatus 30b, and the optical operation planning apparatus 30c.
  • the limited optical operation planners 30 are the master stations that judge and execute the network control.
  • the master station has the authority to judge and control the station switching to improve the efficiency of the data downlink from the spacecraft that avoids clouds for the plurality of optical ground stations 2a, 2b, and 2c. be able to.
  • the optical operation planning device 30 of the master station controls the network switching between the optical ground stations based on the collected information and the network switching judgment criteria.
  • This network switching judgment standard (“standard ratio” described later) can be changed depending on the relationship between the annual cloud occupancy rate of the locations where the optical ground stations 2a, 2b, 2c are installed and the communication time with the spacecraft. ing. Further, the network switching control is on condition that the switching processing is sufficiently in time with respect to the processing (prepass processing) time before the start of operation in each optical ground station 2a, 2b, 2c of each spacecraft.
  • FIG. 13 is a flowchart showing the operation of the optical operation planning device 30.
  • the optical operation planning device 30a of the master station takes in the orbit forecast value of the spacecraft 5 and creates an initial operation plan (step 1301).
  • the orbit forecast value of the spacecraft 5 is fetched from a dedicated orbit analysis device via a communication network using orbit information provided by a predetermined site or a distance measurement service, for example.
  • each optical operation planning apparatus 30 transfers the initial operation plan to each optical ground station 2a, 2b, 2c, sets it, receives a response to each setting, and confirms the setting completion (step 1302).
  • each optical operation planning device 30 has a cloud occupancy message CM (cloud occupancy message CM1 of low-level clouds and high-rise clouds) as a result of the determination made by the low-rise cloud monitoring determination device 15 and a result determined by the high-rise cloud monitoring determination device 22.
  • the capturing of the cloud occupancy message CM2) of the cloud is started (step 1303).
  • the optical operation planning device 30a of the master station based on the cloud occupation message CM, Cloud occupancy rate at optical ground station 2a ⁇ Reference rate [%] Cloud occupancy rate at optical ground station 2b ⁇ Reference rate [%] Cloud occupancy rate at optical ground station 2c ⁇ Reference rate [%] It is determined whether or not (step 1304).
  • the optical operation planning device 30a of the master station maintains the initial operation plan when the cloud occupancy ratio in the optical ground station does not exceed the reference ratio (step 1305).
  • the reference ratio corresponds to a threshold value that serves as a reference for whether or not to execute the process of changing the initially designed optical operation plan (initial optical operation plan), and the optical operation planning apparatus 30a determines that the cloud occupancy rate is the same.
  • the changed optical operation plan is transferred to each optical ground station.
  • the value of the reference ratio is not particularly limited, and can be arbitrarily set, for example, 50%, 60%, or 70% or more. Also, the reference ratio may be set to the same value or different values in each optical ground station.
  • the optical operation planning device 30a of the master station calculates the cloud cover expected allocation time (BP) of the optical ground station that has exceeded the reference rate (step 1306). For example, when the cloud occupancy of the optical ground station 2a exceeds the reference ratio, the cloud shielding expected allocation time (BP: Blocking Plan) of the optical ground station 2a is calculated.
  • BP cloud cover expected allocation time
  • the optical operation planning device 30a of the master station in the optical ground stations 2b and 2c other than the optical ground station 2a, t (change creation + transfer time) ⁇ tb (pre-pass processing time of optical ground station 2b) t (change creation + transfer time) ⁇ tc (pre-pass processing time of optical ground station 2c) It is determined whether or not (step 1307). That is, it is determined whether there is a changeable optical ground station from the optical ground station 2a.
  • the prepass processing time of the optical ground stations 2b and 2c is the time required for the preparation processing for station control.
  • the optical operation planning apparatus 30a of the master station for example, when the optical ground station 2b is possible, creates a change plan for the optical ground station 2b and shares it with the optical operation planning apparatus 30b.
  • the change plan is transferred to 2b, set, and a response is received (step 1308).
  • the optical operation planning device 30a of the master station makes a plan to change to the optical ground station 2b or the optical ground station 2c of the next path on the time axis.
  • the change plan is created and transferred to the optical ground station 2b or the optical ground station 2c via the optical operation planning device 30b or the optical operation planning device 30c for setting, and the response is received (step 1309).
  • the information of the operation plan transmitted from the optical operation planning apparatus 30a of the master station to the optical operation planning apparatuses 30b and 30c and the optical ground stations 2b and 2c is in the form of a message as shown in FIG.
  • FIG. 15 is a diagram illustrating a method of correcting an optical operation plan for avoiding cloud shielding.
  • the optical ground stations 2a, 2b, and 2c are assigned operation plans in different time bands.
  • the optical communication with the probe 5 is switched in the order of the optical ground station 2a, the optical ground station 2b, and the optical ground station 2c, and the data stored in the memory of the probe 5 ( For example, image data) is time-divisionally received by each ground station 2a to 2c.
  • the optical operation planning apparatus 30a of the master station makes an operation plan including an operation period (VP: Visible Plan) of the ground stations 2a to 2c.
  • VP Visible Plan
  • the VP includes an assigned time (AP: Assigned Plan) in which the ground stations 2a to 2c perform optical communication with the searcher 5, and pre-pass processing time and post-pass processing time set before and after that.
  • AP Assigned Plan
  • the optical operation planning device 30a determines that there is a period in which the cloud occupancy rate is equal to or higher than the reference rate within the AP period of one ground station, based on the cloud occupancy message CM, the cloud occupancy estimated allocation time ( BP: Blocking Plan) and modify the operation plan so that other optical ground stations can receive the data that was scheduled to be received during the BP period instead.
  • the reassigned time RP Reassigned Plan
  • the "time required for changing the initial plan" shown in FIG. 15 is the time from the start time of the BP of the optical ground station 2a to the start time of the RP of the optical ground station 2b.
  • FIG. 16 shows an example of an allocation plan state of each optical ground station 2a, 2b, 2c in each optical operation planning apparatus 30a, 30b, 30c according to step 1304 and step 1306 of FIG.
  • FIG. 17 shows the state of each optical ground station 2a, 2b, 2c.
  • each of the optical ground stations 2a to 2c in each of the optical operation planning devices 30a to 30c has past cloud occupancy information (cloud occupancy rate changes with time), current cloud occupancy information (current cloud occupancy rate). ) Etc.
  • these provide a cumulative service result that displays the amount of data received from the spacecraft 5 up to the present and the target amount of data, and the accumulated data of the amount of data received for each pass operation in the form of numerical values or an appropriate graph. Have a function.
  • the cumulative service result is the result of the data transmission service implementation by the optical communication link to each spacecraft that each optical ground station actually performed by the network switching control that realizes cloud avoidance, for example, the entire space-ground optical communication network. It is also used as an adjustment index for the setting change for the evaluation of the operation service utilization rate, and the switching determination process of the section information and the like described above for improving the service utilization rate.
  • the cumulative value of the received data amount at its own optical ground station and the received data amount at the other two optical ground stations are displayed for each path operation, and the cumulative value thereof is displayed.
  • the effectiveness of the optical operation plan is evaluated by the change over time.
  • the past cloud occupancy information (cloud occupancy rate) at the optical ground station 2a gradually increases, and the current cloud occupancy information (cloud occupancy rate) (at the time of determination in step 1304) is 70%.
  • the past cloud occupancy information (cloud occupancy rate) at the optical ground station 2b is gradually decreasing, and the current cloud occupancy information (cloud occupancy rate) is 30%.
  • the past cloud occupancy information (cloud occupancy rate) at the optical ground station 2c is gradually increasing, and the current cloud occupancy information (cloud occupancy rate) is 50%.
  • the optical ground station 2b or the optical ground station 2c is selected in step 1306. Then, for example, the optical ground station 2b is selected by the processing of step 1309. Therefore, as shown in FIG. 16, the data is cut off from the middle of the first path operation of the optical ground station 2a (corresponding to the BP period of FIG. 15), and the data is cut off from the beginning of the first path operation of the optical ground station 2b (of FIG. 15). Change to a plan to be inserted during the RP period).
  • FIG. 18 shows the exchange of data between the respective parts in the above step 1302 and step 1303.
  • FIG. 19 shows the exchange of data between the respective parts in step 1309 of FIG. 13, specifically, in the plan change shown in FIGS. 15 and 16.
  • the optical ground station indicated by reference numerals 2a, 2b, and 2c in FIGS. 18 and 19 is composed of three blocks 201, 202, and 203. From the left, a block 201 is a main body of an optical ground station (control block) forming an optical ground station, a block 202 is a modem (transmission / reception device), and a block 203 is hardware such as a telescope for performing optical communication with a spacecraft.
  • Each optical ground station 2a, 2b, 2c performs pre-processing (pre-pass processing), path (AP), and post-processing based on the optical operation plan (plan 1, plan 2, plan 3) prepared by the optical operation plan device 30a. (Post-pass processing) is executed. Then, for example, when it is determined that the cloud occupancy ratio exceeds the reference ratio in the optical ground station 2a, a change (correction) in the optical operation plan for setting the BP period of the optical ground station 2a to the AP period of the optical ground station 2b is performed. It is executed (see FIG. 19).
  • the optical ground station operation management system 1 determines cloud overlap with the target satellite orbit arc, and the optical operation planning device 30 performs cloud avoidance type optical ground station network control.
  • the optical ground stations 2 (2a, 2b, 2c) with good conditions are efficiently selected between the spacecraft (for example, the spacecraft 5) and the optical ground station 2 without being obstructed by the intrusion of clouds. This can improve the efficiency of the data downlink.
  • the spacecraft for example, the spacecraft 5
  • the optical ground station 2 without being obstructed by the intrusion of clouds. This can improve the efficiency of the data downlink.
  • data that could not be received by one optical ground station can be received by another optical ground station, it is possible to realize an optical operation plan by mutual complement (cross support) using multiple optical ground stations. it can.
  • the mission that has a problem that operation is suspended due to cloud intrusion between the spacecraft and the ground station is not only for optical communication, but also for laser ranging and debris observation for objects that can be called a spacecraft in a broad sense, sunlight by laser.
  • the present invention can also be applied to an optical ground system that optically operates through the earth's atmosphere, such as a power generation system.
  • the cloud observed in the above embodiment is used for the control processing for the future time, but in the present invention, the cloud state message at the time of long-term switching (see FIGS. 6 and 10) is stored.
  • the optical operation planning apparatus may be configured to perform an intelligent process of determining the switching timing based on the statistical data of the past cloud state tendency.
  • the image observed by the low-rise cloud monitoring / determining device 15 is an all-sky image in which the observation field of view through the fisheye lens is only the sky as shown in FIG.
  • the image observed by the low-rise cloud monitoring / determining device 15 includes artificial structures such as surrounding buildings, mountains, rocks, trees, and other natural objects in addition to the sky, these artificial structures and natural objects are observed from the observation viewpoint.
  • the low-rise cloud monitoring / determining device 15 is configured to further include a process for electronically removing the.
  • the problem of laser transmission in the atmosphere between the space and the ground is the influence of atmospheric fluctuations and the clouds that enter, but the aircraft 8 can see the increasing number of cases of laser emission from the ground these days. You must block the laser firing yourself when you enter inside. If the aircraft 8 enters the field of view for a long time, it will also cause a hindrance to communication between the spacecraft and the optical ground station. For this reason, the optical ground station has conventionally been provided with a security function as a mechanism for stopping the laser emission, but at present, there is no alternative but to stop the operation.
  • the optical ground station transmits a message to the optical operation planning apparatus 30 at a stage when a fixed time obtained from the stop of the operation time has elapsed, and the optical operation planning apparatus 30
  • the switching control as in the cloud avoidance, it is possible to avoid the downlink service from being stopped for a certain period of time or more due to this problem, and improve the downlink efficiency.
  • fog may be generated around the optical ground station, and a certain area within the visual field of the fisheye lens in the low cloud monitoring and discrimination system or the entire visual field may be covered with fog.
  • the fog scatters the rays of light, so it cuts off the communication like a cloud. Therefore, the present invention can make or modify the optical operation plan using the same method as the above-described embodiment for the purpose of avoiding not only the communication interruption due to the cloud but also the communication interruption due to the fog. is there.
  • the boundary between the fog and the area other than the fog is ambiguous, and it is difficult to specify the fog occupation area in the fisheye lens field of view.
  • the brightness of the celestial body in the vicinity of the orbit of the satellite to communicate is measured from the image output of the visible camera 12.
  • Brightness measuring means may be further provided.
  • the low-level cloud monitoring / discrimination system 10 that also has a luminance measuring means measures the luminance of the celestial body using the luminance measuring means of the celestial body, and the luminance of the celestial body recorded in advance in a database (not shown). Compare with threshold.
  • the brightness threshold may be the minimum brightness of the celestial body in an atmospheric state in which ground-satellite communication is possible, or the brightness of the celestial body in fine weather at night. In this way, by comparing the brightness of the celestial bodies in the vicinity of the orbit of the satellite with the brightness threshold of the database, it is determined whether or not there is a meteorological phenomenon that may cause communication failure such as fog in the orbit of the satellite to be communicated. Output to the operation planning device 30.
  • the optical operation planning device 30 creates an optical operation plan for the satellite to be communicated, and then considers not only cloud occupancy data for the satellite orbit but also the presence or absence of a meteorological phenomenon such as fog. Can be modified. For example, even if the cloud occupancy ratio to the satellite orbit to be communicated is small, if the communication is determined to be impossible by the brightness measurement of the celestial body, the communication at the optical ground station is interrupted and another optical ground station is interrupted. Switch to. Note that the above-mentioned celestial body has a luminance capable of measuring luminance and is not limited as long as it is a celestial body capable of predicting a trajectory.
  • the celestial body is a point light source such as a star
  • the second visible camera is tracked.
  • the brightness measurement may be performed using a second visible camera.
  • an example in which the fog is discriminated from the image captured by the visible camera has been described, but it is also possible to discriminate the fog from the image captured by the infrared camera.
  • an image captured by an infrared camera in the low-level cloud monitoring and discrimination system on the ground may be used, an infrared image captured by a meteorological satellite may be used, or both of them may be used.
  • infrared images of meteorological satellites are processed by a method called Night microphysics RGB composition. Clouds can be seen by corresponding to 10.4 ⁇ m of infrared channel, but it is possible to distinguish fog by using other infrared channels before and after that and performing data subtraction and synthesis.
  • Optical ground station operation management system 2a, 2b, 2c Optical ground station 4, 4a, 4b, 4c: Meteorological satellite 8: Aircraft 15: Low level cloud monitoring / determining device 22: High level cloud monitoring / determining device 30, 30a, 30b, 30c: Optical operation planning device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Optical Communication System (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This optical ground station operational management system 1 includes: a low-level cloud monitoring and determining device 15 which acquires cloud image data within a field of view, draws a predictive orbital arc within the field of view of a probe 5 that connects an optical link with an optical ground station 2, and determines a cloud occupation ratio in the predictive orbital arc within the field of view by superimposing the predictive orbital arc within the field of view onto the cloud image data within the field of view; a high-level cloud monitoring and determining device 22 which acquires cloud image data on a wide area from a meteorological satellite 4a, draws a predictive orbital arc of the probe 5 in a wide area, and determines a cloud occupation ratio in the predictive orbital arc of the wide area by superimposing the predictive orbital arc of the wide area onto the cloud image data for the wide area; and an optical operation planning device 30 which assess, on the basis of the determination results, a cloud occupation ratio obtained by overlapping the low-level clouds and the high-level clouds in the predictive orbital arc of the probe 5, and manages and controls operation planning of the optical ground station 2 on the basis of the assessment result.

Description

光地上局運用管理システム、光運用計画装置、光地上局運用管理方法及びプログラムOptical ground station operation management system, optical operation planning device, optical ground station operation management method and program
 本発明は、例えば探査機などの宇宙機から光地上局へ光通信によりデータをダウンリンクするシステムの運用を管理する光地上局運用管理システム、光運用計画装置、光地上局運用管理方法及びプログラムに関する。 The present invention relates to an optical ground station operation management system, an optical operation planning device, an optical ground station operation management method, and a program for managing the operation of a system that downlinks data by optical communication from a spacecraft such as a spacecraft to an optical ground station. Regarding
 宇宙-地上間の光通信では、レーザーが大気を通過するときに生じる大気揺らぎの影響だけでなく、伝送区間に雲が進入するとレーザーはブロッキングされ通信は成立しない。このため、年間の雲占有が非相関の場所に光地上局を複数分散する局分散技術(Site Diversity)が必要となる。しかし、雲が常に生じない場所というのは極めて稀であり、何らかの方法により、雲が伝送区間に進入した場合にリンクが途絶しないよう、雲を回避した光地上局の切り替えによる宇宙機からのデータダウンリンクの効率を向上する必要がある。 In space-to-ground optical communication, not only the effects of atmospheric fluctuations that occur when a laser passes through the atmosphere, but also when a cloud enters the transmission section, the laser is blocked and communication cannot be established. For this reason, a station distribution technology (Site Diversity) is required to disperse multiple optical ground stations in locations where annual cloud occupancy is uncorrelated. However, it is extremely rare that a cloud does not always occur, and by some method, data from the spacecraft is switched by avoiding clouds so that the link is not broken when the cloud enters the transmission section. Downlink efficiency needs to be improved.
 非特許文献1には、光地上局を局分散技術(Site Diversity)に加えて、衛星から撮影した雲画像を解析し、宇宙機と光地上局間における雲ブロッキングが少ない場所を選択して光地上局を選択する技術が開示されている。 In Non-Patent Document 1, the optical ground station is added to the station dispersion technology (Site Diversity), the cloud image captured from the satellite is analyzed, and the location where the cloud blocking between the spacecraft and the optical ground station is small is selected and the light is selected. A technique for selecting a ground station is disclosed.
 現状では、雲を回避できる仕組みが十分に確立されておらず、宇宙-地上間の光通信のように大気中でレーザーを使用する場合は、局分散技術(Site Diversity)だけでは、実際に雲が進入した場合は運用休止となる。本発明者らの知見によれば、局分散技術(Site Diversity)に非特許文献1に開示された技術を適用したとしても雲の進入による運用休止が発生する可能性が高いと考えられる。 At present, a mechanism for avoiding clouds has not been fully established, and when using a laser in the atmosphere like optical communication between space and ground, it is possible to actually use clouds only with local dispersion technology (Site Diversity). The operation will be suspended if a vehicle enters. According to the knowledge of the present inventors, even if the technology disclosed in Non-Patent Document 1 is applied to the local distribution technology (Site Diversity), it is considered that there is a high possibility that an operation suspension will occur due to the entry of clouds.
 以上のような事情に鑑み、本発明の目的は、より効率よく光地上局の運用を管理することができる光地上局運用管理システム、光運用計画装置、光地上局運用管理方法及びプログラムを提供することにある。 In view of the above circumstances, an object of the present invention is to provide an optical ground station operation management system, an optical operation planning device, an optical ground station operation management method and a program capable of more efficiently managing the operation of the optical ground station. To do.
 上記目的を達成するため、本発明の一形態に係る光地上局運用管理システムは、低層雲監視判別装置と、高層雲監視判別装置と、光運用計画装置とを具備する。 
 低層雲監視判別装置は、視野内の雲画像データを取り込み、前記光地上局との間で光リンクを結ぶ宇宙機の前記視野内での予想軌道弧を描き、前記視野内の雲画像データに前記視野内の予想軌道弧を重ね合わせて前記視野内の予想軌道弧の雲占有割合を判別する。 
 高層雲監視判別装置は、広域の雲画像データを取り込み、前記宇宙機の前記広域での予想軌道弧を描き、前記広域の雲画像データに前記広域の予想軌道弧を重ね合わせて前記広域の予想軌道弧の雲占有割合を判別する。 
 光運用計画装置は、前記低層雲監視判別装置により判別された結果及び前記高層雲監視判別装置により判別された結果に基づき、前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した総合的な雲占有割合を判断し、前記判断した結果に基づき前記光地上局の運用計画を管理し制御する。
In order to achieve the above object, an optical ground station operation management system according to an aspect of the present invention includes a low-layer cloud monitoring / determining device, a high-layer cloud monitoring / determining device, and an optical operation planning device.
The low-level cloud monitoring and discriminating device takes in cloud image data in the field of view, draws an expected orbit arc in the field of view of a spacecraft connecting an optical link with the optical ground station, and creates cloud image data in the field of view. The cloud occupancy ratio of the predicted orbit arc in the visual field is determined by superposing the predicted orbit arcs in the visual field.
The high-level cloud monitoring / discriminating apparatus captures wide-area cloud image data, draws an expected orbit arc of the spacecraft in the wide area, and superimposes the wide-area expected orbit arc on the wide-area cloud image data to predict the wide area. Determine the cloud occupancy of the orbit arc.
The optical operation planning device superimposes a low cloud and a high cloud of the expected orbit arc of the spacecraft on the basis of the result of the determination by the low cloud monitoring and determining device and the result of the determination by the high cloud monitoring and determining device. The cloud occupancy ratio is determined, and the operation plan of the optical ground station is managed and controlled based on the determination result.
 本発明の一形態に係る光地上局運用管理システムでは、視野内の予想軌道弧の雲占有割合及び広域の予想軌道弧の雲占有割合に基づき、宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判断し、宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判断した結果に基づき光地上局の運用計画を管理し、局切り替え運用を制御する。つまり、例えば気象衛星から撮像した雲画像では主に高層雲しか把握できないが、本発明では、地上側及び衛星側の相互の宇宙機の予想軌道弧を用いて高層雲と低層雲とを重畳して宇宙機の予想軌道弧上の雲占有割合を判別している。このように判別された雲占有割合はより正確な値であり、それに基づき光地上局の運用計画を管理しているため、より効率よく光地上局の運用を管理することができる。 In an optical ground station operation management system according to an aspect of the present invention, a low cloud and a high cloud of a predicted spacecraft orbit arc are calculated based on a cloud occupancy ratio of the predicted orbit arc in the field of view and a cloud occupancy ratio of the predicted orbit arc in a wide area. The cloud occupancy ratio is determined by superimposing and, and the operation plan of the optical ground station is managed based on the result of the determination of the cloud occupancy ratio by superimposing the low-rise clouds and high-rise clouds of the expected orbit arc of the spacecraft. Control. That is, for example, cloud images taken from meteorological satellites can mainly be used to understand only high-level clouds, but in the present invention, high-level clouds and low-level clouds are superposed using predicted orbit arcs of spacecraft on the ground side and satellite side. To determine the cloud occupancy on the spacecraft's expected orbit arc. The cloud occupancy ratio thus determined is a more accurate value, and the operation plan of the optical ground station is managed based on it, so that the operation of the optical ground station can be managed more efficiently.
 本発明の一形態に係る光地上局運用管理システムでは、前記低層雲監視判別装置は、前記視野内の予想軌道弧を2以上の区間に分け、前記区間ごとに予想軌道弧の雲占有割合を判別し、前記区間ごとの予想軌道弧の雲占有割合及び各前記区間の合計の予想軌道弧の雲占有割合を、当該低層雲監視判別装置により判別した結果として前記光運用計画装置に出力し、前記高層雲監視判別装置は、前記広域の予想軌道弧を2以上の区間に分け、前記区間ごとに予想軌道弧の雲占有割合を判別し、前記区間ごとの予想軌道弧の雲占有割合及び各前記区間の合計の予想軌道弧の雲占有割合を、当該高層雲監視判別装置により判別した結果として前記光運用計画装置に出力してもよい。これにより、予想軌道弧への雲の進入をより正確に判別でき、より効率よく光地上局の運用を管理することができる。 In the optical ground station operation management system according to an aspect of the present invention, the low-level cloud monitoring / discriminating apparatus divides the predicted orbit arc in the field of view into two or more sections, and calculates the cloud occupancy ratio of the predicted orbit arc for each section. Judgment, the cloud occupancy ratio of the predicted orbit arc for each section and the total cloud occupancy ratio of the predicted orbit arc of each section are output to the optical operation planning device as a result of the judgment by the low-level cloud monitoring and determination device, The high-rise cloud monitoring / discriminating apparatus divides the predicted orbit arc of the wide area into two or more sections, judges the cloud occupancy rate of the predicted orbit arc for each section, and determines the cloud occupancy rate of the predicted orbit arc for each section and each. The cloud occupancy ratio of the total expected orbit arc of the section may be output to the optical operation planning device as a result of the determination by the high-rise cloud monitoring determination device. As a result, it is possible to more accurately determine the cloud approach to the expected orbit arc and more efficiently manage the operation of the optical ground station.
 本発明の一形態に係る光地上局運用管理システムでは、前記高層雲監視判別装置は、前記広域の雲画像データに基づき、前記広域の予想軌道弧に近接する雲の当該予想軌道弧への第1の到達予報情報を作成し、前記第1の到達予報情報を前記光運用計画装置に出力し、前記光運用計画装置は、前記第1の到達予報情報も加味して前記光地上局の運用計画を管理してもよい。また、前記低層雲監視判別装置は、前記視野内の雲画像データに基づき、前記視野内の予想軌道弧に近接する雲の当該予想軌道弧への第2の到達予報情報を作成し、前記第2の到達予報情報を前記光運用計画装置に出力し、前記光運用計画装置は、前記第2の到達予報情報も加味して前記光地上局の運用計画を管理してもよい。これにより、予想軌道弧への雲の進入をより正確に判別でき、より効率よく光地上局の運用を管理することができる。 In the optical ground station operation management system according to an aspect of the present invention, the high-rise cloud monitoring / determining device determines, based on the wide-area cloud image data, whether or not the cloud adjacent to the wide-area predicted orbit arc is closer to the predicted orbit arc. 1 arrival forecast information is generated and the first arrival forecast information is output to the optical operation planning apparatus, and the optical operation planning apparatus also operates the optical ground station in consideration of the first arrival forecast information. You may manage the plan. Further, the low-level cloud monitoring / discriminating device creates second arrival forecast information of a cloud adjacent to the predicted orbit arc in the field of view on the basis of cloud image data in the field of view, the second arrival forecast information. The second arrival forecast information may be output to the optical operation planning apparatus, and the optical operation planning apparatus may manage the operation plan of the optical ground station in consideration of the second arrival forecast information. As a result, it is possible to more accurately determine the cloud approach to the expected orbit arc and more efficiently manage the operation of the optical ground station.
 本発明の一形態に係る光地上局運用管理システムでは、前記光運用計画装置は、いずれかの前記雲占有割合を蓄積し、前記蓄積した雲占有割合も加味して前記光地上局の運用計画を管理してもよい。これにより、予想軌道弧への雲の進入をより正確に判別でき、より効率よく光地上局の運用を管理することができる。 In the optical ground station operation management system according to an aspect of the present invention, the optical operation planning device accumulates any one of the cloud occupancy rates, and also adds the accumulated cloud occupancy rate to the operation plan of the optical ground station. May be managed. As a result, it is possible to more accurately determine the cloud approach to the expected orbit arc and more efficiently manage the operation of the optical ground station.
 本発明の一形態に係る光地上局運用管理システムでは、前記光地上局に設けられ、当該光地上局の視野内の航空機の位置情報を取得し、前記位置情報に基づき運用停止メッセージを前記光運用計画装置に伝達する運用停止メッセージ伝達部を更に具備し、前記光運用計画装置は、前記運用停止メッセージ伝達部から伝達された運用停止メッセージも加味して前記光地上局の運用計画を管理してもよい。これにより、例えば宇宙機からの一定時間以上のダウンリンクサービスの停止を回避し、ダウンリンクの効率を向上させることができる。 In the optical ground station operation management system according to an aspect of the present invention, the optical ground station is provided, acquires position information of an aircraft within the field of view of the optical ground station, and outputs an operation stop message based on the position information. The optical operation planning apparatus further includes an operation stop message transfer unit for transmitting to the operation planning apparatus, and the optical operation planning apparatus manages the operation plan of the optical ground station in consideration of the operation stop message transferred from the operation stop message transfer unit. May be. As a result, for example, it is possible to avoid the downlink service from being stopped for a certain period of time or more from the spacecraft and improve the downlink efficiency.
 本発明の一形態に係る光地上局運用管理システムでは、前記低層雲監視判別装置、前記高層雲監視判別装置及び前記光運用計画装置は、異なる地域に配置された複数の前記光地上局ごとに対して設置され、前記光運用計画装置は、前記光地上局ごとに、前記宇宙機の予想軌道弧の低層雲と高層雲を重畳した雲占有割合を判断し、前記判別した宇宙機の軌道弧との重なり状態の結果に基づき複数の前記光地上局から条件の良い局を順次選択して運用する運用計画を管理することがより好ましい。 In the optical ground station operation management system according to an aspect of the present invention, the low-layer cloud monitoring discriminating apparatus, the high-layer cloud monitoring discriminating apparatus, and the optical operation planning apparatus, for each of the plurality of optical ground stations arranged in different areas. The optical operation planning device is installed for each optical ground station, determines the cloud occupancy ratio of the low altitude cloud and the high altitude cloud of the expected orbit arc of the spacecraft for each optical ground station, and determines the orbital arc of the spacecraft. It is more preferable to manage an operation plan in which stations with good conditions are sequentially selected from a plurality of the optical ground stations based on the result of the overlapping state with and are operated.
 本発明の一形態に係る光地上局運用管理システムでは、前記光運用計画装置は、前記宇宙機の軌道予報値を取り込み、前記軌道予報値に基づき前記複数の光地上局を順次運用する初期運用計画を作成して各前記光地上局に転送し、前記複数の光地上局のうち少なくとも1つが前記宇宙機の予想軌道弧の低層雲と高層雲を重畳した雲占有割合が所定の閾値を超えた場合、前記初期運用計画を変更する処理を実行し、変更後の運用計画を各前記光地上局に転送することがより好ましい。 In the optical ground station operation management system according to an aspect of the present invention, the optical operation planning device takes in an orbit forecast value of the spacecraft, and performs an initial operation of sequentially operating the plurality of optical ground stations based on the orbit forecast value. A plan is created and transferred to each of the optical ground stations, and at least one of the plurality of optical ground stations has a cloud occupancy rate in which a low cloud and a high cloud of the predicted orbit arc of the spacecraft are superimposed on each other exceeding a predetermined threshold value. In this case, it is more preferable to execute the process of changing the initial operation plan and transfer the changed operation plan to each optical ground station.
 本発明の一形態に係る光地上局運用管理システムでは、少なくとも前記低層雲監視判別装置と前記光運用計画装置との間のデータのやりとり及び前記高層雲監視判別装置と前記光運用計画装置との間のデータのやりとりは、メッセージの形式で行うことが好ましい。これにより、各部間でやりとりするデータ量を小さくでき、より迅速な運用が可能である。 In an optical ground station operation management system according to an aspect of the present invention, at least data exchange between the low-level cloud monitoring and determining device and the optical operation planning device and the high-level cloud monitoring and determining device and the optical operation planning device It is preferable to exchange data between them in the form of messages. As a result, the amount of data exchanged between the respective parts can be reduced, and more rapid operation is possible.
 本発明の一形態に係る光地上局運用管理システムでは、前記宇宙機は、前記光地上局に光通信によりデータをダウンリンクする。 In the optical ground station operation management system according to an aspect of the present invention, the spacecraft downlinks data to the optical ground station by optical communication.
 本発明の一形態に係る光運用計画装置は、低層雲監視判別装置による雲占有情報及び高層雲監視判別装置による雲占有情報に基づき、宇宙機の予想軌道弧に対する低層雲及び高層雲の雲占有割合を判別し、前記判別した結果に基づき光地上局の運用計画を管理する制御部を具備する。 An optical operation planning apparatus according to an aspect of the present invention, based on cloud occupancy information by a low-layer cloud monitoring and discriminating apparatus and cloud occupancy information by a high-layer cloud monitoring and discriminating apparatus, occupies low- and high-layer clouds with respect to an expected orbit arc of a spacecraft. A control unit for determining the ratio and managing the operation plan of the optical ground station based on the determined result is provided.
 本発明の一形態に係る光地上局運用管理方法は、光地上局の近くの視野内の雲画像データを取り込み、前記光地上局との間で光リンクを結ぶ宇宙機の前記視野内での予想軌道弧を描き、前記視野内の雲画像データに前記視野内の予想軌道弧を重ね合わせて前記視野内の予想軌道弧の雲占有割合を判別し、広域の雲画像データを取り込み、前記宇宙機の前記広域での予想軌道弧を描き、前記広域の雲画像データに前記広域の予想軌道弧を重ね合わせて前記広域の予想軌道弧の雲占有割合を判別し、判別された前記視野内の予想軌道弧の雲占有割合及び前記広域の予想軌道弧の雲占有割合に基づき、前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判断し、前記判断した結果に基づき前記光地上局の運用計画を管理し制御する。 An optical ground station operation management method according to an aspect of the present invention, cloud image data in the field of view near the optical ground station is captured, in the field of view of the spacecraft that connects an optical link with the optical ground station. Draw an expected orbit arc, superimpose the expected orbit arc in the field of view on the cloud image data in the field of view to determine the cloud occupancy rate of the expected orbit arc in the field of view, and capture wide-area cloud image data, Draw an expected orbit arc in the wide area of the aircraft, superimpose the wide area expected orbit arc on the wide area cloud image data to determine the cloud occupancy rate of the wide area expected orbit arc, and within the determined field of view. Based on the cloud occupancy ratio of the predicted orbit arc and the cloud occupancy ratio of the wide area of the predicted orbit arc, the cloud occupancy ratio of the low altitude cloud and the high altitude cloud of the predicted orbit arc of the spacecraft is determined, and the result of the determination is determined. Manage and control the operation plan of the optical ground station based on .
 本発明の一形態に係るプログラムは、光地上局の近くの視野内の雲画像データを取り込み、前記光地上局との間で光リンクを結ぶ宇宙機の前記視野内での予想軌道弧を描き、前記視野内の雲画像データに前記視野内の予想軌道弧を重ね合わせて前記視野内の予想軌道弧の雲占有割合を判別した結果を入力するステップと、広域の雲画像データを取り込み、前記宇宙機の前記広域での予想軌道弧を描き、前記広域の雲画像データに前記広域の予想軌道弧を重ね合わせて前記広域の予想軌道弧の雲占有割合を判別した結果を入力するステップと、前記入力した前記視野内の予想軌道弧の雲占有割合及び前記広域の予想軌道弧の雲占有割合に基づき、前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判断するステップと、前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判断した結果に基づき前記光地上局の運用計画を管理し制御するステップとをコンピュータに実行させる。 A program according to an aspect of the present invention captures cloud image data in a field of view near an optical ground station and draws an expected orbit arc in the field of view of a spacecraft that connects an optical link with the optical ground station. The step of inputting the result of determining the cloud occupancy ratio of the predicted orbit arc in the field of view by superimposing the predicted orbit arc in the field of view on the cloud image data in the field of view, and capturing wide area cloud image data, Drawing a predicted orbit arc in the wide area of the spacecraft, and inputting the result of determining the cloud occupancy ratio of the wide area predicted orbit arc by superimposing the wide area predicted orbit arc on the wide area cloud image data, Based on the input cloud occupancy ratio of the predicted orbit arc in the field of view and the cloud occupancy ratio of the predicted orbit arc of the wide area, the cloud occupancy ratio of the low altitude cloud and the high altitude cloud of the predicted orbit arc of the spacecraft is determined. And the step To perform the steps on a computer that manages and controls the operation plan of Chu machine anticipated trajectory arc the optical ground station based on the lower clouds and altostratus to the results to determine the cloud occupancy superimposed a.
 本発明によれば、より効率よく光地上局の運用を管理することができる。 According to the present invention, the operation of the optical ground station can be managed more efficiently.
本発明の一実施形態に係る光地上局運用管理システムの概要を説明するための図である。It is a figure for explaining the outline of the optical ground station operation management system concerning one embodiment of the present invention. 一実施形態に係る光地上局運用管理システムの概略構成を示す図である。It is a figure which shows schematic structure of the optical ground station operation management system which concerns on one Embodiment. 一実施形態に係る低層雲監視判別システムの構成を示すブロック図である。It is a block diagram which shows the structure of the low-rise cloud monitoring discrimination system which concerns on one Embodiment. 一実施形態に係る低層雲監視判別装置の動作を示すフローチャートである。It is a flow chart which shows operation of the low-rise cloud monitoring discrimination device concerning one embodiment. 一実施形態に係る視野内の雲画像に予想軌道弧を重ね合わせた画像の一例を示す図である。It is a figure which shows an example of the image which overlapped the forecasted trajectory arc on the cloud image in the visual field which concerns on one Embodiment. 一実施形態に係る低層雲監視判別装置から光運用計画装置へ送信される雲占有割合の情報を示す表である。It is a table which shows the information of the cloud occupancy ratio transmitted from the low-rise cloud monitoring discrimination device which concerns on one Embodiment to an optical operation planning apparatus. 一実施形態に係る高層雲監視判別システムの構成を示すブロック図である。It is a block diagram which shows the structure of the high-rise cloud monitoring discrimination system which concerns on one Embodiment. 一実施形態に係る高層雲監視判別装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the high-rise cloud monitoring discrimination device which concerns on one Embodiment. 一実施形態に係る広域の雲画像に予想軌道弧を重ね合わせた画像の一例を示す図である。It is a figure which shows an example of the image which overlapped the expected orbit arc on the cloud image of a wide area which concerns on one Embodiment. 一実施形態に係る高層雲監視判別装置から光運用計画装置へ送信される雲占有割合の情報を示す表である。It is a table which shows the information of the cloud occupancy ratio transmitted from the high-rise cloud monitoring discrimination device which concerns on one Embodiment to an optical operation planning device. 大気中に存在する雲の一例を示す図である。It is a figure which shows an example of the cloud which exists in the atmosphere. 一実施形態に係る光地上局運用管理システムにおけるネットワーク上の構成を示す図である。It is a figure which shows the structure on the network in the optical ground station operation management system which concerns on one Embodiment. 一実施形態に係る光運用計画装置の動作を示すフローチャートである。It is a flow chart which shows operation of the optical operation planning device concerning one embodiment. 一実施形態に係るマスター局の光運用計画装置から各光運用計画装置及び光地上局へ送信される運用計画の情報の一例を示す表である。6 is a table showing an example of operation plan information transmitted from the optical operation planning apparatus of the master station to each optical operation planning apparatus and the optical ground station according to an embodiment. 一実施形態に係る変更可能な光地上局があるかどうかの判断を説明するための図である。It is a figure for explaining judgment of whether there is a changeable optical ground station concerning one embodiment. 一実施形態に係る割り当て計画状態の例を示す図である。It is a figure which shows the example of the allocation plan state which concerns on one Embodiment. 一実施形態に係る各光地上局の状態を示すである。It is a state of each optical ground station according to one embodiment. 一実施形態に係る初期運用計画での各部間のデータのやりとりを示すタイミングチャートである。6 is a timing chart showing data exchange between respective units in the initial operation plan according to the embodiment. 一実施形態に係る計画変更における各部間のデータのやりとりを示すタイミングチャートである。7 is a timing chart showing an exchange of data between respective units in a plan change according to an embodiment.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 図1は、本発明の一実施形態に係る光地上局運用管理システムの概要を説明するための図である。
 この実施形態に係る光地上局運用管理システムは、図1に示すように、複数の光地上局2(2a、2b、2c)の光運用計画を管理する。ここで、光地上局2a、2b、2cは、典型的には、地球上のアジア太平洋、欧州、北米等の3つの異なる地域にそれぞれ設置されている。また、アジア太平洋、欧州、北米の3つの地域では、それぞれの気象衛星4a、4b、4cが雲を観測している。図1中符号5は宇宙機としての火星等を探査する探査機であり、探査機5から光地上局2a、2b、2cへ光通信により撮像データ等のデータをダウンリンクする。図1中では、アジア太平洋の光地上局2aが探査機5からデータを受信しているが、この実施形態に係る光地上局運用管理システムの運用計画と制御に沿って、探査機5からデータを受信する光地上局が光地上局2aから他の光地上局2b、2cに切り替えられる。以下、主として光地上局2aについて説明するが、特に個別に説明する場合を除き、他の光地上局2b、2cについても同様に構成される。
FIG. 1 is a diagram for explaining an outline of an optical ground station operation management system according to an embodiment of the present invention.
As shown in FIG. 1, the optical ground station operation management system according to this embodiment manages an optical operation plan of a plurality of optical ground stations 2 (2a, 2b, 2c). Here, the optical ground stations 2a, 2b, 2c are typically installed in three different regions on the earth, such as Asia Pacific, Europe, and North America. In three regions of Asia Pacific, Europe, and North America, meteorological satellites 4a, 4b, and 4c observe clouds. Reference numeral 5 in FIG. 1 is a spacecraft for exploring Mars or the like, and downlinks data such as imaging data from the spacecraft 5 to the optical ground stations 2a, 2b, 2c by optical communication. In FIG. 1, the optical ground station 2a in the Asia-Pacific region receives data from the spacecraft 5. However, the data from the spacecraft 5 is received in accordance with the operation plan and control of the optical ground station operation management system according to this embodiment. The optical ground station that receives the signal is switched from the optical ground station 2a to the other optical ground stations 2b and 2c. Hereinafter, the optical ground station 2a will be mainly described, but the other optical ground stations 2b and 2c have the same configuration unless otherwise described.
 探査機5は、火星等の探査対象を撮影するカメラとその撮像データを格納するメモリ、メモリ内のデータを光地上局2a,2b,2cへ送信(ダウンリンク)するための通信部などを備える。
 なお、宇宙機は、探査機に限られず、探査機以外の人工衛星、宇宙ステーションなどの宇宙空間を移動可能な通信機能を有する構造体も含む。人工衛星は、静止軌道(GEO:Geostationary Earth Orbit)を周回する静止衛星のほか、地球の自転周期とは無関係に地球低軌道(LEO:Low Earth Orbit)や中軌道(MEO:Medium Earth Orbit)、さらには深宇宙等を飛翔する人工衛星などを含む。すなわち宇宙機の地表からの高度は特に制限されない。人工衛星は、典型的には気象衛星や通信衛星などであるが、いかなる目的に基づいて打ち上げられたものであってもよい。
The spacecraft 5 is provided with a camera for capturing an object to be probed such as Mars, a memory for storing the imaged data, and a communication unit for transmitting (downlink) the data in the memory to the optical ground stations 2a, 2b, 2c. .
The spacecraft is not limited to the spacecraft, and also includes a structure having a communication function capable of moving in outer space such as an artificial satellite other than the spacecraft and a space station. The artificial satellites are geostationary satellites that orbit (GEO: Geostationary Earth Orbit), low earth orbit (LEO) and medium orbit (MEO: Medium Earth Orbit), regardless of the rotation period of the earth. It also includes artificial satellites that fly in deep space. That is, the altitude from the surface of the spacecraft is not particularly limited. The artificial satellites are typically meteorological satellites, communication satellites, etc., but may be launched for any purpose.
 図2はこの実施形態に係る光地上局運用管理システムの概略構成を示す図である。
 図2に示すように、光地上局運用管理システム1は、低層雲監視判別システム10と、高層雲監視判別システム20と、光運用計画装置30とからその主要部が構成される。低層雲監視判別システム10、高層雲監視判別システム20および光運用計画装置30は、それぞれ光地上局2a、2b、2cに配置される。
FIG. 2 is a diagram showing a schematic configuration of an optical ground station operation management system according to this embodiment.
As shown in FIG. 2, the optical ground station operation management system 1 is mainly composed of a low-rise cloud monitoring / discrimination system 10, a high-rise cloud monitoring / discrimination system 20, and an optical operation planning device 30. The low-level cloud monitoring / determining system 10, the high-level cloud monitoring / determining system 20, and the optical operation planning device 30 are arranged in the optical ground stations 2a, 2b, and 2c, respectively.
 低層雲監視判別システム10は、視野内の雲画像データを取り込み、光地上局2aとの間で光リンクを結ぶ宇宙機の上記視野内での予想軌道弧を描き、上記視野内の雲画像データに上記視野内の予想軌道弧を重ね合わせて上記視野内の予想軌道弧の雲占有割合を判別する。
 低層雲監視判別システム10は、光地上局2aの近くに配置されている。典型的には、低層雲監視判別システム10は、光地上局2aと同一のサイト内(例えば、望遠鏡の近傍)に配置され、光地上局2aから見上げた上空の雲(本明細書において低層雲ともいう)の有無あるいはその動きを監視する。低層雲監視判別システム10で作成された低層雲についての上記雲占有割合に関する情報(以下、雲占有メッセージともいう)は、通信ネットワークを介して光運用計画装置30に送信される。
The low-level cloud monitoring / discrimination system 10 takes in cloud image data in the field of view, draws an expected orbit arc in the field of view of a spacecraft connecting an optical link with the optical ground station 2a, and draws cloud image data in the field of view. Then, the expected orbit arcs in the field of view are overlapped with each other to determine the cloud occupancy ratio of the expected orbit arcs in the field of view.
The low-rise cloud monitoring / discrimination system 10 is arranged near the optical ground station 2a. Typically, the low-level cloud monitoring / discrimination system 10 is arranged in the same site as the optical ground station 2a (for example, near a telescope) and looks up from the optical ground station 2a (a low-level cloud in this specification). (Also called)) or its movement. The information on the cloud occupancy ratio (hereinafter, also referred to as a cloud occupancy message) for the low-layer cloud created by the low-layer cloud monitoring / discrimination system 10 is transmitted to the optical operation planning apparatus 30 via the communication network.
 高層雲監視判別システム20は、広域の雲画像データを取り込み、探査機5の上記広域での予想軌道弧を描き、上記広域の雲画像データに上記広域の予想軌道弧を重ね合わせて上記広域の予想軌道弧の雲占有割合を判別する。
 高層雲監視判別システム20は、気象衛星4aから気象データセンター6a及び通信ネットワークを介してアジア太平洋地域の広域の雲画像データ(フルディスク画像)を受信する。気象衛星4aは、地球周回軌道上または静止軌道上に位置し、気象衛星4aから地球を見下ろした雲(本明細書において高層雲ともいう)の有無あるいはその動きを監視する。高層雲監視判別システム20で作成された高層雲についての上記雲占有割合に関する情報(以下、雲占有メッセージともいう)は、通信ネットワークを介して光運用計画装置30に送信される。
The high-level cloud monitoring / discrimination system 20 takes in wide-area cloud image data, draws the expected wide-area orbit arc of the probe 5, and superimposes the wide-area expected orbit arc on the wide-area cloud image data to create the wide-area cloud image data. Determine the cloud occupancy of the expected orbit arc.
The high-level cloud monitoring / discrimination system 20 receives wide-area cloud image data (full disk image) in the Asia-Pacific region from the weather satellite 4a via the weather data center 6a and the communication network. The meteorological satellite 4a is located in an orbit around the earth or in a geostationary orbit, and monitors the presence or absence of a cloud (also referred to as a high-level cloud in this specification) overlooking the earth from the meteorological satellite 4a and its movement. The information on the cloud occupancy ratio (hereinafter, also referred to as a cloud occupancy message) about the high-rise clouds created by the high-rise cloud monitoring / discrimination system 20 is transmitted to the optical operation planning apparatus 30 via the communication network.
 光運用計画装置30は、以下に説明する光地上局運用管理を実行するためのプログラムがインストールされたコンピュータで構成される。光運用計画装置30は、低層雲についての雲占有メッセージ及び高層雲についての雲占有メッセージなどに基づき、探査機5の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判別し、光地上局2a、2b、2cの運用計画を管理するための光運用計画を作成する制御部を備える。光運用計画装置30で作成された光運用計画は、通信ネットワークを介して光地上局2aなどに送信される。 The optical operation planning device 30 is composed of a computer in which a program for executing the optical ground station operation management described below is installed. The optical operation planning device 30 determines the cloud occupancy ratio in which the low cloud and the high cloud of the expected orbit arc of the spacecraft 5 are superimposed on the basis of the cloud occupancy message for the low cloud and the cloud occupancy message for the high cloud, and the like. The optical ground station 2a, 2b, 2c is provided with a control unit for creating an optical operation plan for managing the operation plan. The optical operation plan created by the optical operation planning device 30 is transmitted to the optical ground station 2a or the like via the communication network.
 光地上局2aは、光運用計画に沿って探査機5から光通信により探査機5のメモリに格納された撮像データ等をダウンリンクにより受信する。なお、光地上局2aは、近くのレーダー7より航空機8の進入に関するデータを入手し、このデータに基づき、光地上局2aより探査機5へ出射するレーザー光が航空機8に照射されないように、シャッター機能(図示を省略)によりレーザー光を遮蔽する。
 この場合、レーダー7は、光地上局2aの視野内の航空機8の位置情報を取得し、当該位置情報に基づき運用停止メッセージを光運用計画装置30に伝達する運用停止メッセージ伝達部として機能する。光運用計画装置30は、レーダー7から伝達された運用停止メッセージも加味して光地上局2aの運用計画を管理(光運用計画の立案、修正、実行など。)する。
 上記運用停止メッセージ伝達部は、例えば、光地上局2aの上空を航行する航空機8の位置や進路に基づき、航空機8が探査機5の予想軌道弧に接近するか否かを判定し、航空機8が探査機5と光地上局2aとを結ぶ領域に接近すると判定したときは、運用停止メッセージを生成し、光運用計画装置30へ送信する。この場合、探査機5の予想軌道弧との接近距離が所定の距離以下になったときに、運用停止メッセージが生成されてもよい。あるいは、上記所定の距離の大きさによっては、当該所定の距離以下となってから所定時間経過後に運用停止メッセージが生成されてもよい。
The optical ground station 2a receives the imaging data and the like stored in the memory of the probe 5 from the probe 5 by optical communication according to the optical operation plan by downlink. The optical ground station 2a obtains data on the approach of the aircraft 8 from the nearby radar 7, and based on this data, the laser light emitted from the optical ground station 2a to the probe 5 is not irradiated to the aircraft 8. A laser beam is blocked by a shutter function (not shown).
In this case, the radar 7 functions as an operation stop message transmission unit that acquires position information of the aircraft 8 within the field of view of the optical ground station 2a and transfers an operation stop message to the optical operation planning device 30 based on the position information. The optical operation planning device 30 manages the operation plan of the optical ground station 2a by adding the operation stop message transmitted from the radar 7 (planning, correction, execution, etc. of the optical operation plan).
The operation stop message transmission unit determines whether or not the aircraft 8 approaches the expected orbit arc of the spacecraft 5 based on, for example, the position or course of the aircraft 8 navigating above the optical ground station 2a. When it is determined that the vehicle approaches the area connecting the spacecraft 5 and the optical ground station 2a, an operation stop message is generated and transmitted to the optical operation planning apparatus 30. In this case, the operation stop message may be generated when the approach distance of the spacecraft 5 to the expected orbit arc becomes equal to or less than the predetermined distance. Alternatively, depending on the size of the predetermined distance, the operation stop message may be generated after a predetermined time has elapsed after the distance becomes the predetermined distance or less.
 なお、以下では、各光地上局2a、2b、2cに設けられた光地上局運用管理システム1をそれぞれ符号1a、1b、1cとして説明する場合がある。また、各光地上局2a、2b、2cに設けられた光運用計画装置30をそれぞれ光運用計画装置30a、30b、30cとして説明する場合がある。さらに、各地上局2a、2b、2cに設けられた気象データセンター6をそれぞれ気象データセンター6a、6b、6cとする(図1参照)。 In the following, the optical ground station operation management system 1 provided in each optical ground station 2a, 2b, 2c may be described as reference numerals 1a, 1b, 1c, respectively. Further, the optical operation planning apparatus 30 provided in each optical ground station 2a, 2b, 2c may be described as the optical operation planning apparatus 30a, 30b, 30c, respectively. Further, the meteorological data centers 6 provided in the respective ground stations 2a, 2b, 2c are referred to as meteorological data centers 6a, 6b, 6c (see FIG. 1).
 図2に示すように、光運用計画装置30a、30b、30c間では通信ネットワークを介して光運用計画及び雲占有メッセージ(低層雲の情報及び高層雲の情報が重畳されている)のやりとりが行われる。雲占有メッセージは、後述するように、低層雲監視判別システム10の視野内における探索機5の予想軌道弧に占める雲の割合(雲占有割合)を含む。 As shown in FIG. 2, the optical operation planning device 30a, 30b, 30c exchanges an optical operation plan and a cloud occupancy message (information of low-level clouds and information of high-level clouds are superimposed) via a communication network. Be seen. As will be described later, the cloud occupancy message includes the ratio of clouds (cloud occupancy ratio) to the predicted orbit arc of the searcher 5 within the field of view of the low-rise cloud monitoring / discrimination system 10.
 図3は低層雲監視判別システム10の構成を示すブロック図である。
 図3に示すように、低層雲監視判別システム10は、視野角180度の魚眼レンズが装着され、視野内の雲画像データを取り込む赤外線カメラ11と、可視カメラ12と、温度補償用のヒーター13と、赤外線カメラ11及び可視カメラ12の制御及び画像データの取り込みなどを行うPC14とを備える。赤外線カメラ11は、魚眼レンズ(図示せず)と、水蒸気(雲)から放射される赤外線(例えば、波長10.4μmを含む赤外線)を撮像する撮像素子を有する。可視カメラ12の設置は任意であり、必要に応じて省略されてもよい。また、低層雲監視判別システム10は、温度補償用のファン(図示せず)をさらに備えてもよい。
 また、低層雲監視判別システム10は、PC14から画像データ等に基づき低層雲についての雲占有メッセージを作成し、通信ネットワークを介してその雲占有メッセージを光運用計画装置30に送信する低層雲監視判別装置15を備える。
FIG. 3 is a block diagram showing the configuration of the low-rise cloud monitoring / determining system 10.
As shown in FIG. 3, the low-rise cloud monitoring / discrimination system 10 is equipped with a fisheye lens having a viewing angle of 180 degrees, an infrared camera 11 for capturing cloud image data in the field of view, a visible camera 12, and a heater 13 for temperature compensation. A PC 14 that controls the infrared camera 11 and the visible camera 12 and takes in image data. The infrared camera 11 has a fish-eye lens (not shown) and an image sensor that captures infrared rays (for example, infrared rays having a wavelength of 10.4 μm) emitted from water vapor (cloud). The visible camera 12 may be installed arbitrarily and may be omitted if necessary. Further, the low-rise cloud monitoring / determining system 10 may further include a fan (not shown) for temperature compensation.
Further, the low-layer cloud monitoring / determining system 10 creates a cloud occupancy message for the low-level cloud from the PC 14 based on image data and the like, and transmits the cloud-occupancy message to the optical operation planning device 30 via the communication network. A device 15 is provided.
 図4は低層雲監視判別装置15の動作を示すフローチャートである。
 低層雲監視判別装置15は、PC14から視野内の雲画像データを取り込む(ステップ401)と共に、視野内の雲画像データを解析用のデータとして保存する(ステップ402)。視野内の雲画像データとは、典型的には上空の天頂から水平線(360度)に至る範囲(全天)を撮影できる魚眼レンズ(赤外線カメラ11)の視野内の画像データである。視野内の雲画像データは、低層雲のデータである。
 次に、低層雲監視判別装置15は、通信ネットワークを介して所定のサイト又は光運用計画装置30から探査機5の軌道予報値を取り込み、当該視野内での探査機5の予想軌道弧を描く(ステップ403)。
 次に、低層雲監視判別装置15は、前記の視野内の雲画像データに前記の視野内の予想軌道弧を重ね合わせる(ステップ404)。図5にその一例を示す。
FIG. 4 is a flowchart showing the operation of the low-rise cloud monitoring / determining device 15.
The low-level cloud monitoring / determining device 15 takes in cloud image data within the field of view from the PC 14 (step 401), and stores the cloud image data within the field of view as data for analysis (step 402). The cloud image data in the field of view is typically image data in the field of view of a fisheye lens (infrared camera 11) capable of capturing a range (entire sky) from the zenith of the sky to the horizon (360 degrees). The cloud image data in the field of view is low-level cloud data.
Next, the low-level cloud monitoring / determining device 15 takes in the orbit forecast value of the spacecraft 5 from a predetermined site or the optical operation planning device 30 via the communication network, and draws the expected orbit arc of the spacecraft 5 within the field of view. (Step 403).
Next, the low-level cloud monitoring / determining device 15 superimposes the predicted orbit arc within the field of view on the cloud image data within the field of view (step 404). FIG. 5 shows an example thereof.
 次に、低層雲監視判別装置15は、図5に示すように、視野内の予想軌道弧と重なる領域を例えば3区間B1、B2、B3に分け、それぞれの区間B1~B3の雲占有割合を判別する(ステップ405)。区間B1~B3は、魚眼レンズを介して取得された赤外線カメラの撮像データを上記予想軌道弧に沿う探査機5の移動方向(図5において、南東から北東を経由して北西に向かう矢印として図示)に沿って区画した領域であり、図5の例は、南東から北西に向かって区間B1、区間B2及び区間B3が順に任意の角度範囲で区画された例を示している。分割する軌道弧は3区間に限定されず、2区間或いは4区間以上であってもよい。なお、区間B1~B3は、図9に示す高域画像データにおける区間Bの範囲内で、その一部をさらに3つに分割した各区間に相当する。 Next, as shown in FIG. 5, the low-level cloud monitoring / determining device 15 divides the area overlapping the predicted orbit arc in the field of view into, for example, three sections B1, B2, and B3, and calculates the cloud occupancy ratios of the sections B1 to B3. It is determined (step 405). In the sections B1 to B3, the imaging data of the infrared camera acquired via the fisheye lens is used to indicate the moving direction of the spacecraft 5 along the predicted orbit arc (indicated as an arrow from northeast to northwest in FIG. 5). The area of FIG. 5 is an area that is partitioned along a line, and the example of FIG. 5 illustrates an example in which the section B1, the section B2, and the section B3 are sequentially partitioned from the southeast to the northwest in an arbitrary angle range. The orbital arc to be divided is not limited to 3 sections and may be 2 sections or 4 sections or more. The sections B1 to B3 correspond to the sections obtained by further dividing a part of the section B into the section B in the high frequency image data shown in FIG.
 低層雲監視判別装置15は、雲画像データの各ピクセルの出力情報に基づき雲有無を判別する。例えば、低層雲監視判別装置15は、画像データの各ピクセルの輝度又は温度などの情報に基づき雲有無を判別する。
 本実施形態において、予想軌道弧に対する雲占有割合は、予想軌道弧が属する画素の総数を第1画素数、第1画素数のうち雲が占める画素の総数を第2画素数としたとき、第1画素数に対する第2画素数の割合((第2画素数/第1画素数)×100[%])で算出される。
 第1画素数は、探査機5が属する区間(図5の例では区間B1)にあっては、予想軌道弧上における現在の探査機5の位置から当該探査機が属する区間の予想軌道弧の終端までのピクセルの総数をいい、探査機5の移動に応じて徐々に減少する。一方、探査機5が属さない区間(図5の例では区間B2および区間B3)にあっては、当該各区間において予想軌道弧が占めるピクセルの総数をいう。
The low-rise cloud monitoring / determining device 15 determines the presence / absence of a cloud based on the output information of each pixel of the cloud image data. For example, the low-level cloud monitoring / determining device 15 determines the presence / absence of a cloud based on information such as the brightness or temperature of each pixel of image data.
In the present embodiment, the cloud occupancy ratio with respect to the predicted orbit arc is the first pixel number, which is the total number of pixels to which the predicted orbit arc belongs, and the second pixel number, which is the total number of pixels that the cloud occupies among the first pixel number. It is calculated by the ratio of the second pixel number to the one pixel number ((second pixel number / first pixel number) × 100 [%]).
In the section to which the explorer 5 belongs (section B1 in the example of FIG. 5), the first pixel number is from the current position of the explorer 5 on the expected orbit arc to the predicted orbit arc of the section to which the explorer belongs. It is the total number of pixels to the end, and gradually decreases as the probe 5 moves. On the other hand, in the section to which the spacecraft 5 does not belong (section B2 and section B3 in the example of FIG. 5), the total number of pixels occupied by the predicted orbit arc in each section.
 低層雲監視判別装置15は、雲占有メッセージとして、3区間B1~B3の雲占有割合とこれらの合計に関する情報を光運用計画装置30に出力する(ステップ406)。図6に、低層雲監視判別装置15から光運用計画装置30へ送信される雲占有メッセージCM1の一例を示す。雲占有メッセージCM1は、現時点における各区間の雲占有割合および全区間の雲占有割合を、図6に示す如くメッセージの形式(例えば、テキスト形式)で作成される。 The low-level cloud monitoring / determining device 15 outputs, as a cloud occupancy message, information on the cloud occupancy ratios of the three sections B1 to B3 and their total to the optical operation planning device 30 (step 406). FIG. 6 shows an example of the cloud occupation message CM1 transmitted from the low-rise cloud monitoring / determining device 15 to the optical operation planning device 30. The cloud occupancy message CM1 is created in a message format (for example, text format) as shown in FIG. 6, showing the cloud occupancy rate of each section and the cloud occupancy rate of all sections at the present time.
 低層雲監視判別装置15は、以上の処理(ステップ401~406)を所定の周期で繰り返す。これにより、時々刻々と変化する探査機5の位置と雲の動きに対応した雲占有割合の時間変化を取得することができる。所定の周期は特に限定されず、例えば、5分、10分、30分あるいはそれ以上の時間であってもよい。また、所定の周期で上記処理を繰り返すことによって、時々刻々と変化する探査機5の位置と雲の動きに対応した雲占有割合のデータは更新、上書きされてもよい。 The low level cloud monitoring / determining device 15 repeats the above processing (steps 401 to 406) in a predetermined cycle. As a result, it is possible to acquire the temporal change of the cloud occupancy rate corresponding to the position of the spacecraft 5 and the movement of the cloud, which changes every moment. The predetermined cycle is not particularly limited, and may be, for example, 5 minutes, 10 minutes, 30 minutes or more. Further, by repeating the above processing at a predetermined cycle, the data of the cloud occupancy ratio corresponding to the position of the spacecraft 5 and the movement of the cloud which change every moment may be updated or overwritten.
 なお、低層雲監視判別装置15は、前記視野内の雲画像データと観測センサー(赤外線カメラ11等)の光学設計(レンズ視野角、焦点距離、センサーサイズ、ピクセル数等)から分かる予想軌道弧の外側の観測領域内において、予想軌道弧の外側から近接する低層雲の当該予想軌道弧への到達予報情報(第2の到達予報情報)を作成し、当該到達予報情報を光運用計画装置30に出力するように構成することもできる。当該到達予報情報は、例えば、探査機5の予想軌道弧の外側の観測領域における低層雲の有無等に基づいて作成される。この場合、光運用計画装置30は、当該到達予報情報も加味して光地上局2aの運用計画を管理する。例えば、光運用計画装置30は、低層雲の到達予報情報を用いた光地上局2a,2b,2cの局間のネットワーク切り替え判断と制御に関する運用を管理(例えば、立案した光運用計画を修正)することで、先読み処理による、リアルタイムに近い予測に基づいた運用の管理を行うことができる。 In addition, the low-level cloud monitoring / determining device 15 determines the predicted orbit arc that can be understood from the cloud image data in the field of view and the optical design (lens viewing angle, focal length, sensor size, number of pixels, etc.) of the observation sensor (such as the infrared camera 11). In the outer observation region, arrival forecast information (second arrival forecast information) of the low cloud approaching from the outside of the forecast orbit arc to the forecast orbit arc is created, and the arrival forecast information is sent to the optical operation planning device 30. It can also be configured to output. The arrival forecast information is created, for example, based on the presence or absence of low-level clouds in the observation region outside the expected orbit arc of the spacecraft 5. In this case, the optical operation planning device 30 manages the operation plan of the optical ground station 2a by taking the arrival forecast information into consideration. For example, the optical operation planning apparatus 30 manages operations related to network switching judgment and control of the optical ground stations 2a, 2b, 2c using arrival forecast information of low-layer clouds (for example, modifying the planned optical operation plan). By doing so, it is possible to manage the operation based on the near-real-time prediction by the prefetching process.
 図7は高層雲監視判別システム20の構成を示すブロック図である。
 図7に示すように、高層雲監視判別システム20は、気象衛星4aから気象データセンター6及び通信ネットワークを介して広域の雲画像データ(フルディスク画像)を受信して蓄積する気象衛星データサーバー21を備える。また、高層雲監視判別システム20は、データサーバー21からの画像データ等に基づき高層雲についての雲占有メッセージを作成し、通信ネットワークを介してその雲占有メッセージを光運用計画装置30に送信する高層雲監視判別装置22を備える。
FIG. 7 is a block diagram showing the configuration of the high-rise cloud monitoring / determining system 20.
As shown in FIG. 7, the high-level cloud monitoring / discrimination system 20 receives a wide area cloud image data (full disk image) from the meteorological satellite 4a via the meteorological data center 6 and a communication network, and stores the meteorological satellite data server 21. Equipped with. The high-rise cloud monitoring / discrimination system 20 also creates a cloud occupancy message for the high-rise cloud based on the image data from the data server 21 and sends the cloud occupancy message to the optical operation planning apparatus 30 via the communication network. The cloud monitoring and discrimination device 22 is provided.
 図8は高層雲監視判別装置22の動作を示すフローチャートである。
 高層雲監視判別装置22は、気象衛星データサーバー21よりアジア太平洋領域のフルディスクの赤外観測情報(広域)を取り込む(ステップ801)。広域とは、典型的には、1つの気象衛星から見える地球上の領域である(図9参照)。
 次に、高層雲監視判別装置22は、取得した赤外観測情報よりフルディスクの赤外雲画像(広域)を作成し画像データとして出力する(ステップ802)。
 高層雲監視判別装置22は、以上の処理(ステップ801~802)を繰り返す。
 なお、高層雲監視判別装置22は、赤外雲画像だけでなく、可視雲画像を取得可能に構成されてもよい。
FIG. 8 is a flowchart showing the operation of the high-rise cloud monitoring / determining device 22.
The high-level cloud monitoring / determining device 22 fetches full-disk infrared observation information (wide area) in the Asia-Pacific region from the meteorological satellite data server 21 (step 801). A wide area is an area on the earth that is typically visible from one meteorological satellite (see FIG. 9).
Next, the high-level cloud monitoring / determining device 22 creates a full-disk infrared cloud image (wide area) from the acquired infrared observation information and outputs it as image data (step 802).
The high-rise cloud monitoring / determining device 22 repeats the above-described processing (steps 801 to 802).
The high-rise cloud monitoring / determining device 22 may be configured to be able to acquire not only an infrared cloud image but also a visible cloud image.
 次に、高層雲監視判別装置22は、出力した画像データを取り込み(ステップ803)、また通信ネットワークを介して所定のサイト又は光運用計画装置30から探査機5の軌道予報値を取り込み、当該広域での探査機5の予想軌道弧を描く(ステップ804)。
 次に、高層雲監視判別装置22は、前記の広域の雲画像データに前記の広域での予想軌道弧を重ね合わせる(ステップ805)。図9にその一例を示す。
Next, the high-level cloud monitoring / determining device 22 takes in the output image data (step 803), and takes in the orbit forecast value of the spacecraft 5 from a predetermined site or the optical operation planning device 30 via the communication network, and the wide area concerned. Draw the expected orbit arc of the spacecraft 5 at (step 804).
Next, the high level cloud monitoring / determining device 22 superimposes the predicted orbit arc in the wide area on the wide area cloud image data (step 805). FIG. 9 shows an example thereof.
 高層雲監視判別装置22は、広域の雲画像データの各ピクセルの輝度又は温度などの情報に基づき雲有無を判別する。高層雲監視判別装置22は、図9に示すように、当該広域の赤外雲画像内の予想軌道弧と重なる領域を例えば3区間A~Cに分け、それぞれの区間A~Cの雲占有割合を判別する(ステップ806)と共に、予報処理を実行する(ステップ807)。分割する軌道弧は3区間に限定されず、2区間或いは4区間以上であってもよい。 The high-rise cloud monitoring / determining device 22 determines the presence / absence of a cloud based on the information such as the brightness or temperature of each pixel of the cloud image data in a wide area. As shown in FIG. 9, the high-level cloud monitoring / determining device 22 divides the area overlapping the predicted orbit arc in the infrared cloud image of the wide area into, for example, three sections A to C, and the cloud occupancy ratio of each section A to C. Is determined (step 806) and the forecasting process is executed (step 807). The orbital arc to be divided is not limited to 3 sections and may be 2 sections or 4 sections or more.
 区間A~Cは、当該広域の赤外雲画像を予想軌道弧に沿う探査機5の移動方向(図9において、南東から北西に向かう矢印として図示)に沿って区画した領域であり、図9の例では、南東から北西に向かって区間A、区間B及び区間Cが順に気象衛星4aから見た所定の角度範囲で区画された例を示している。区間Bには、高層雲のほか、図5の区間B2から区間B3にかけて存在する低層雲が確認される。
 雲占有割合の算出方法は、上述した低層雲監視判別装置15において実行される雲占有割合の算出方法と同様であるため、その詳細な説明は省略する。この場合、低層雲監視判別装置15において取得される低層雲の雲画像データと高層雲監視判別装置22において取得される広域の雲画像データとの間の解像度を合わせるためのデータ補完処理、または解像度変換処理が実施されてもよい。
 予報処理では、所定時間(例えば10分)毎の雲位置変化と、例えば2km間隔のメッシュ定義より雲予報情報(速度、方向、到達時間)及び警告情報を作成する。ここで到達時間とは、現在から光地上局2aと探査機5との2点間光伝送路(光通信リンク)を雲が遮蔽するまでの時間を意味する。
Sections A to C are areas obtained by dividing the wide-area infrared cloud image along the moving direction of the spacecraft 5 along the expected orbit arc (shown as an arrow from southeast to northwest in FIG. 9). In the example of, the section A, the section B, and the section C are sequentially divided from the southeast to the northwest in a predetermined angle range viewed from the meteorological satellite 4a. In section B, in addition to high clouds, low clouds existing from section B2 to section B3 in FIG. 5 are confirmed.
The method of calculating the cloud occupancy rate is the same as the method of calculating the cloud occupancy rate executed by the low-rise cloud monitoring / determining device 15 described above, and thus detailed description thereof will be omitted. In this case, a data complement process for adjusting the resolution between the low-level cloud image data acquired by the low-level cloud monitoring / determining device 15 and the wide-area cloud image data acquired by the high-level cloud monitoring / determining device 22, or the resolution. The conversion process may be performed.
In the forecasting process, cloud position change for each predetermined time (for example, 10 minutes) and cloud forecast information (speed, direction, arrival time) and warning information are created from the mesh definition at intervals of 2 km, for example. Here, the arrival time means the time from the present until the cloud shields the optical transmission line (optical communication link) between the optical ground station 2a and the probe 5.
 次に、高層雲監視判別装置22は、雲占有メッセージとして、3区間A~Cの雲占有割合とこれらの合計に関する情報、ならびに予報情報を光運用計画装置30に出力する(ステップ808)。図10に、高層雲監視判別装置22から光運用計画装置30へ送信される雲占有メッセージCM2の一例を示す。雲占有メッセージCM2は、図10に示す如くメッセージの形式(例えば、テキスト形式)で作成される。 Next, the high-rise cloud monitor / discrimination device 22 outputs, as a cloud occupancy message, information on the cloud occupancy ratios of the three sections A to C and their total, and forecast information to the optical operation planning device 30 (step 808). FIG. 10 shows an example of the cloud occupation message CM2 transmitted from the high-rise cloud monitoring / determining device 22 to the optical operation planning device 30. The cloud occupation message CM2 is created in a message format (for example, text format) as shown in FIG.
 高層雲監視判別装置22は、以上の処理(ステップ803~808)を所定の周期で繰り返す。これにより、時々刻々と変化する探査機5の位置と雲の動きに対応した雲占有割合の時間変化を取得することができる。所定の周期は特に限定されず、典型的には、上述した低層雲監視判別装置15における処理(図4)と同一の周期(例えば、10分、30分、1時間、あるいはそれ以上の時間)である。 The high-level cloud monitoring / determining device 22 repeats the above processing (steps 803 to 808) in a predetermined cycle. As a result, it is possible to acquire the temporal change of the cloud occupancy rate corresponding to the position of the spacecraft 5 and the movement of the cloud, which changes every moment. The predetermined cycle is not particularly limited, and is typically the same cycle (for example, 10 minutes, 30 minutes, 1 hour, or more) as the processing (FIG. 4) in the above-described low-level cloud monitoring / discriminating apparatus 15. Is.
 光運用計画装置30は、このように分割された区間A~Cの雲占有割合(雲占有メッセージCM1,CM2)に基づき、宇宙と地上間の光通信リンクの雲による遮断の有無について、探査機5との通信時間軸に沿って上記区間毎に確認する。これにより、宇宙機の進行方向に対する各区間に対して雲占有による遮断の有無を細かく事前に判断した雲回避が可能となり、探査機5からのデータ転送の通信時間がより確保可能な各光地上局の選択と局間のネットワーク切り替え制御を実現できる。結果として宇宙‐地上間の光通信リンクは、雲に遮断されることなく柔軟にデータ転送を実施できる。なお、この区間設定は地域差や雲の種類で相違のある雲占有の状況に応じて変更可能とし判断をより高度化することもできる。 The optical operation planning apparatus 30 determines whether or not the cloud blocks the optical communication link between the universe and the ground based on the cloud occupancy ratios (cloud occupancy messages CM1 and CM2) in the sections A to C thus divided. Check each of the above sections along the communication time axis with 5. As a result, it becomes possible to avoid clouds by finely judging in advance whether or not there is a blockage due to cloud occupancy in each section with respect to the direction of travel of the spacecraft, and it is possible to secure a longer communication time for data transfer from the spacecraft 5 to each optical ground. It is possible to realize station selection and network switching control between stations. As a result, the space-to-ground optical communication link can flexibly transfer data without being blocked by clouds. It should be noted that this section setting can be changed depending on the region difference or the cloud occupancy situation that differs depending on the cloud type, and the judgment can be made more sophisticated.
 また、3区間A~Cの区間毎の雲占有割合だけではなく、それらの合計を例えば、光通信リンクの時間軸上の全体の雲占有率として用いることができる。例えば、区間毎では、区間毎の評価でしかなく、区間毎の細かな対応が判断できるが、探査機5の移動により過去の区間は意味をなさなくなる場合がある。これに対して、同時に全区間の雲占有割合の合計値が分かると、進行時間毎の合計値で全体を俯瞰した光地上局の切り替え判断をすることができる。 Also, not only the cloud occupancy rate for each of the three sections A to C, but also the total thereof can be used, for example, as the total cloud occupancy rate on the time axis of the optical communication link. For example, for each section, only the evaluation for each section can be performed, and the detailed correspondence for each section can be determined, but the past section may not be meaningful due to the movement of the spacecraft 5. On the other hand, if the total value of the cloud occupancy ratios of all the sections is known at the same time, it is possible to determine the switching of the optical ground station with a bird's-eye view of the entire value by the total value for each traveling time.
 更に、予報情報を例えば探査機5の軌道弧の外側から侵入し、地上の雲観測装置では限定された観測領域により観測困難な他の雲の軌道弧への進入予測として用いることができる。
 本実施形態において、高層雲監視判別装置22は、広域の雲画像データに基づき、当該広域の予想軌道弧に近接する雲の当該予想軌道弧への到達予報情報(第1の到達予報情報)を作成し、当該到達予報情報を光運用計画装置30に出力する。この場合、光運用計画装置30は、当該到達予報情報も加味して光地上局2aの運用計画を管理する。
 これにより、地上観測では視野外にある他の雲の軌道弧への進入予測に使用できる先読みをした雲回避のための光地上局間の切り替え判断が実施可能となり、光通信リンクの雲による途絶機会をより低減し、宇宙‐地上局間のデータ伝送サービスの向上を実現することが可能となる。
Further, the forecast information can be used, for example, as an intrusion prediction from the outside of the orbital arc of the spacecraft 5 and an approach to the orbital arc of another cloud that is difficult to observe due to the limited observation area in the cloud observation device on the ground.
In the present embodiment, the high-rise cloud monitoring / determining device 22 provides arrival forecast information (first arrival forecast information) to the predicted orbit arc of a cloud close to the predicted orbit arc of the wide area based on the cloud image data of the wide area. It is created and the arrival forecast information is output to the optical operation planning device 30. In this case, the optical operation planning device 30 manages the operation plan of the optical ground station 2a by taking the arrival forecast information into consideration.
This enables ground observation to determine the switching between optical ground stations for avoiding clouds that can be used to predict the approach of other clouds outside the field of view to the orbit arc, and disruption of optical communication links due to clouds. It is possible to further reduce the opportunities and improve the data transmission service between space and ground stations.
 図11に示すように、光地上局2と探査機5との間の大気中には様々な高度に様々な種類の雲が存在する。本実施形態に係る光地上局運用管理システム1は、上記の構成の低層雲監視判別装置15及び高層雲監視判別装置22を備えることで、地上および宇宙からこれらの様々な高度の雲の有無を判別することができる。 As shown in FIG. 11, there are various types of clouds at various altitudes in the atmosphere between the optical ground station 2 and the spacecraft 5. The optical ground station operation management system 1 according to the present embodiment is provided with the low-rise cloud monitoring / determining device 15 and the high-rise cloud monitoring / determining device 22 having the above-described configurations, so as to determine the presence or absence of clouds of various altitudes from the ground and space. Can be determined.
 光運用計画装置30は、低層雲監視判別装置15により判別された結果及び高層雲監視判別装置22により判別された結果に基づき、宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判断し、その判断結果によって光地上局2の運用計画を管理するものである。ここで、低層雲と高層雲とを重畳した雲占有割合を判断するとは、低層雲に関する雲占有割合と高層雲に関する雲占有割合の2つのうち、区間ごとに、雲占有割合の高い方を採用することをいう。 The optical operation planning apparatus 30 superimposes the low-rise clouds and high-rise clouds of the expected orbit arc of the spacecraft on the basis of the result determined by the low-rise cloud monitoring determination apparatus 15 and the result determined by the high-rise cloud monitoring determination apparatus 22. The occupation ratio is determined, and the operation plan of the optical ground station 2 is managed according to the determination result. Here, to determine the cloud occupancy ratio in which the low cloud and the high cloud are superposed, the cloud occupancy ratio for the low cloud and the cloud occupancy ratio for the high cloud are used for each section, whichever has the higher cloud occupancy ratio. It means to do.
 典型的には、光運用計画装置30は、光地上局2の初期運用計画を立案し、上記の低層雲監視判別装置15により判別された結果及び高層雲監視判別装置22により判別された結果に基づき、当該計画を適宜修正する。そして、本実施形態に係る光地上局運用管理システム1は、当該計画に基づき光地上局2間のネットワーク切り替え制御を実施する。この点を以下でより詳細に説明する。 Typically, the optical operation planning device 30 draws up an initial operation plan of the optical ground station 2, and based on the result determined by the above low-level cloud monitoring determination device 15 and the result determined by the high-level cloud monitoring determination device 22. Based on this, the plan will be revised accordingly. Then, the optical ground station operation management system 1 according to the present embodiment performs network switching control between the optical ground stations 2 based on the plan. This point will be described in more detail below.
 図12は本実施形態に係る光地上局運用管理システム1におけるネットワーク上の構成を示す図である。
 図12において、符号1aはアジア太平洋機関における光地上局運用管理システム、符号1bは欧州機関における光地上局運用管理システム、符号1cは北米機関における光地上局運用管理システムを示している。CMは低層雲および高層雲の雲占有メッセージCM1,CM2の総称であり、NPはネットワーク計画(運用計画)を示している。そして、LPS(Laser Planning Systems)_Aは光運用計画装置30aを、LPS_Bは光運用計画装置30bを、LPS_Cは光運用計画装置30cをそれぞれ示している。
FIG. 12 is a diagram showing the configuration on the network in the optical ground station operation management system 1 according to the present embodiment.
In FIG. 12, reference numeral 1a indicates an optical ground station operation management system for an Asia Pacific organization, reference numeral 1b indicates an optical ground station operation management system for a European organization, and reference numeral 1c indicates an optical ground station operation management system for a North American organization. CM is a general term for the cloud occupation messages CM1 and CM2 of low-rise clouds and high-rise clouds, and NP indicates a network plan (operation plan). LPS (Laser Planning Systems) _A indicates the optical operation planning apparatus 30a, LPS_B indicates the optical operation planning apparatus 30b, and LPS_C indicates the optical operation planning apparatus 30c.
 光運用計画装置30は、宇宙機(例えば探査機5)の所属機関に応じた数が存在する。1機関であれば、光運用計画装置30は1台であり、図12に示した如く3機関であれば3台となる。ここでは、各機関の光運用計画装置を光運用計画装置30a、光運用計画装置30b、光運用計画装置30cとする。 There are a number of optical operation planning devices 30 according to the institution to which the spacecraft (for example, spacecraft 5) belongs. If there is one organization, the number of optical operation planning devices 30 is one, and as shown in FIG. 12, if there are three organizations, there are three. Here, the optical operation planning apparatus of each organization is the optical operation planning apparatus 30a, the optical operation planning apparatus 30b, and the optical operation planning apparatus 30c.
 本実施形態に係る光地上局運用管理システム1においては、光運用計画装置30が1台の場合、限定された光運用計画装置30がネットワーク制御の判断と実施を行うマスター局となる。一方、図12に示す如く光運用計画装置30が3台の場合、例えば所属機関の宇宙機の運用優先順などに応じて切り替えられる各光運用計画装置30a、30b、30cのうち1つをマスター局、他は支援装置と定義する。いずれの場合もマスター局が、局切り替えの判断と制御の権限をもつことにより複数の光地上局2a、2b、2cに対して雲を回避した宇宙機からのデータダウンリンクの効率の向上を図ることができる。 In the optical ground station operation management system 1 according to the present embodiment, when the number of the optical operation planners 30 is one, the limited optical operation planners 30 are the master stations that judge and execute the network control. On the other hand, when there are three optical operation planning devices 30 as shown in FIG. 12, for example, one of the optical operation planning devices 30a, 30b, and 30c that can be switched according to the operation priority order of the spacecraft of the institution is mastered. Stations and others are defined as supporting devices. In either case, the master station has the authority to judge and control the station switching to improve the efficiency of the data downlink from the spacecraft that avoids clouds for the plurality of optical ground stations 2a, 2b, and 2c. be able to.
 マスター局の光運用計画装置30(例えば光運用計画装置30a)では、収集した情報とネットワーク切り替え判断基準に基づき光地上局間のネットワーク切り替え制御を実施する。このネットワーク切り替え判断基準(後述する「基準割合」)は、光地上局2a、2b、2cが設置されている場所の年間の雲占有率と宇宙機との通信時間との関係で変更可能とされている。また、ネットワーク切り替え制御は、各宇宙機の各光地上局2a、2b、2cにおける運用開始前の処理(プリパス処理)時刻に対して切り替え処理が十分に間に合うことを条件としている。 The optical operation planning device 30 of the master station (for example, the optical operation planning device 30a) controls the network switching between the optical ground stations based on the collected information and the network switching judgment criteria. This network switching judgment standard (“standard ratio” described later) can be changed depending on the relationship between the annual cloud occupancy rate of the locations where the optical ground stations 2a, 2b, 2c are installed and the communication time with the spacecraft. ing. Further, the network switching control is on condition that the switching processing is sufficiently in time with respect to the processing (prepass processing) time before the start of operation in each optical ground station 2a, 2b, 2c of each spacecraft.
 図13は光運用計画装置30の動作を示すフローチャートである。
 マスター局の光運用計画装置30aは、探査機5の軌道予報値を取り込み、初期運用計画を作成する(ステップ1301)。探査機5の軌道予報値は、例えば所定のサイト又は測距サービスにより提供される軌道情報を用いて専用の軌道解析装置から通信ネットワークを介して取り込む。
 次に、各光運用計画装置30は、初期運用計画を各光地上局2a、2b、2cへ転送し、設定し、各設定に対する応答を受信し、設定完了を確認する(ステップ1302)。
 次に、各光運用計画装置30は、低層雲監視判別装置15により判別された結果及び高層雲監視判別装置22により判別された結果としての雲占有メッセージCM(低層雲の雲占有メッセージCM1及び高層雲の雲占有メッセージCM2)の取り込みを開始する(ステップ1303)。
FIG. 13 is a flowchart showing the operation of the optical operation planning device 30.
The optical operation planning device 30a of the master station takes in the orbit forecast value of the spacecraft 5 and creates an initial operation plan (step 1301). The orbit forecast value of the spacecraft 5 is fetched from a dedicated orbit analysis device via a communication network using orbit information provided by a predetermined site or a distance measurement service, for example.
Next, each optical operation planning apparatus 30 transfers the initial operation plan to each optical ground station 2a, 2b, 2c, sets it, receives a response to each setting, and confirms the setting completion (step 1302).
Next, each optical operation planning device 30 has a cloud occupancy message CM (cloud occupancy message CM1 of low-level clouds and high-rise clouds) as a result of the determination made by the low-rise cloud monitoring determination device 15 and a result determined by the high-rise cloud monitoring determination device 22. The capturing of the cloud occupancy message CM2) of the cloud is started (step 1303).
 次に、マスター局の光運用計画装置30aは、雲占有メッセージCMに基づき、
 光地上局2aでの雲占有割合 ≦ 基準割合[%]
 光地上局2bでの雲占有割合 ≦ 基準割合[%]
 光地上局2cでの雲占有割合 ≦ 基準割合[%]
かどうかを判断する(ステップ1304)。
 マスター局の光運用計画装置30aは、光地上局での雲占有割合が基準割合を超えない場合には、初期運用計画を維持する(ステップ1305)。
 なお、基準割合は、当初立案された光運用計画(初期光運用計画)を変更する処理を実行するか否かの基準となる閾値に相当し、光運用計画装置30aは、雲占有割合が当該基準割合を超えた場合、変更後の光運用計画を各光地上局へ転送する。基準割合の値は特に限定されず、例えば、50%、60%、あるいは70%以上など、任意に設定可能である。また、基準割合は各光地上局において同一の値に設定されてもよいし、異なる値に設定されてもよい。
Next, the optical operation planning device 30a of the master station, based on the cloud occupation message CM,
Cloud occupancy rate at optical ground station 2a ≤ Reference rate [%]
Cloud occupancy rate at optical ground station 2b ≤ Reference rate [%]
Cloud occupancy rate at optical ground station 2c ≤ Reference rate [%]
It is determined whether or not (step 1304).
The optical operation planning device 30a of the master station maintains the initial operation plan when the cloud occupancy ratio in the optical ground station does not exceed the reference ratio (step 1305).
The reference ratio corresponds to a threshold value that serves as a reference for whether or not to execute the process of changing the initially designed optical operation plan (initial optical operation plan), and the optical operation planning apparatus 30a determines that the cloud occupancy rate is the same. When the standard ratio is exceeded, the changed optical operation plan is transferred to each optical ground station. The value of the reference ratio is not particularly limited, and can be arbitrarily set, for example, 50%, 60%, or 70% or more. Also, the reference ratio may be set to the same value or different values in each optical ground station.
 一方、マスター局の光運用計画装置30aは、雲占有割合が基準割合を超えた場合には、基準割合を超えた光地上局の雲遮蔽予想割当時間(BP)を算出する(ステップ1306)。例えば、光地上局2aの雲占有率が基準割合を超えた場合には、光地上局2aの雲遮蔽予想割当時間(BP:Blocking Plan)を算出する。
 次に、マスター局の光運用計画装置30aは、光地上局2a以外の他の光地上局2b、2cにおいて、
 t(変更作成+転送時間)≦tb(光地上局2bのプリパス処理時間)
 t(変更作成+転送時間)≦tc(光地上局2cのプリパス処理時間)
かどうかを判断する(ステップ1307)。つまり、光地上局2aから変更可能な光地上局があるかどうかを判断する。ここで、光地上局2b、2cのプリパス処理時間とは、局制御の準備処理に必要な時間である。
On the other hand, if the cloud occupancy rate exceeds the reference rate, the optical operation planning device 30a of the master station calculates the cloud cover expected allocation time (BP) of the optical ground station that has exceeded the reference rate (step 1306). For example, when the cloud occupancy of the optical ground station 2a exceeds the reference ratio, the cloud shielding expected allocation time (BP: Blocking Plan) of the optical ground station 2a is calculated.
Next, the optical operation planning device 30a of the master station, in the optical ground stations 2b and 2c other than the optical ground station 2a,
t (change creation + transfer time) ≤ tb (pre-pass processing time of optical ground station 2b)
t (change creation + transfer time) ≤ tc (pre-pass processing time of optical ground station 2c)
It is determined whether or not (step 1307). That is, it is determined whether there is a changeable optical ground station from the optical ground station 2a. Here, the prepass processing time of the optical ground stations 2b and 2c is the time required for the preparation processing for station control.
 マスター局の光運用計画装置30aは、例えば光地上局2bが可能な場合には、光地上局2bへの変更計画を作成し、光運用計画装置30bと共有し、そこを介して光地上局2bにその変更計画を転送して設定し、応答を受信する(ステップ1308)。また、マスター局の光運用計画装置30aは、光地上局2b及び光地上局2cの両方が可能な場合には、時間軸で次パスの光地上局2b又は光地上局2cへの変更計画を作成し、光運用計画装置30b又は光運用計画装置30cを介して光地上局2b又は光地上局2cにその変更計画を転送して設定し、応答を受信する(ステップ1309)。
 マスター局の光運用計画装置30aから各光運用計画装置30b、30c及び光地上局2b、2cへ送信される運用計画の情報は、図14に示す如くメッセージの形式で行われる。
The optical operation planning apparatus 30a of the master station, for example, when the optical ground station 2b is possible, creates a change plan for the optical ground station 2b and shares it with the optical operation planning apparatus 30b. The change plan is transferred to 2b, set, and a response is received (step 1308). When both the optical ground station 2b and the optical ground station 2c are available, the optical operation planning device 30a of the master station makes a plan to change to the optical ground station 2b or the optical ground station 2c of the next path on the time axis. The change plan is created and transferred to the optical ground station 2b or the optical ground station 2c via the optical operation planning device 30b or the optical operation planning device 30c for setting, and the response is received (step 1309).
The information of the operation plan transmitted from the optical operation planning apparatus 30a of the master station to the optical operation planning apparatuses 30b and 30c and the optical ground stations 2b and 2c is in the form of a message as shown in FIG.
 図15は、雲遮蔽を回避するための光運用計画の修正方法を説明する図である。同図に示すように、光地上局2a、2b、2cは、それぞれ異なる時間帯域において運用計画が割り当てられる。本実施形態では図1に示すように、光地上局2a、光地上局2b及び光地上局2cの順で探査機5との光通信が切り替えられ、探査機5のメモリに蓄積されたデータ(例えば画像データ)が各地上局2a~2cによって時分割して受信される。
 マスター局の光運用計画装置30aは、地上局2a~2cの運用期間(VP:Visible Plan)を含む運用計画を立案する。VPは、地上局2a~2cが探査機5と光通信を行う割り当て時間(AP:Assigned Plan)と、その前後に設定されたプリパス処理時間およびポストパス処理時間とを含む。光運用計画装置30aは、雲占有メッセージCMに基づき、一の地上局のAPの期間内に雲占有割合が基準割合以上となる期間が生じると判定した場合、その期間を雲遮蔽予想割当時間(BP:Blocking Plan)として設定し、当該BPの期間において受信予定であったデータを他の光地上局が代わりに受信できるように運用計画を修正する。この場合、当該他の地上局のAPに、上記一の地上局のBP期間内に受信予定であったデータを受信するための再割り当て時間RP(Reassigned Plan)が設定される。図15に示す「初期計画変更に必要な時間」は、光地上局2aのBPの開始時刻から光地上局2bのRPの開始時刻までの時間をいう。
FIG. 15 is a diagram illustrating a method of correcting an optical operation plan for avoiding cloud shielding. As shown in the figure, the optical ground stations 2a, 2b, and 2c are assigned operation plans in different time bands. In this embodiment, as shown in FIG. 1, the optical communication with the probe 5 is switched in the order of the optical ground station 2a, the optical ground station 2b, and the optical ground station 2c, and the data stored in the memory of the probe 5 ( For example, image data) is time-divisionally received by each ground station 2a to 2c.
The optical operation planning apparatus 30a of the master station makes an operation plan including an operation period (VP: Visible Plan) of the ground stations 2a to 2c. The VP includes an assigned time (AP: Assigned Plan) in which the ground stations 2a to 2c perform optical communication with the searcher 5, and pre-pass processing time and post-pass processing time set before and after that. When the optical operation planning device 30a determines that there is a period in which the cloud occupancy rate is equal to or higher than the reference rate within the AP period of one ground station, based on the cloud occupancy message CM, the cloud occupancy estimated allocation time ( BP: Blocking Plan) and modify the operation plan so that other optical ground stations can receive the data that was scheduled to be received during the BP period instead. In this case, the reassigned time RP (Reassigned Plan) for receiving the data scheduled to be received within the BP period of the one ground station is set in the AP of the other ground station. The "time required for changing the initial plan" shown in FIG. 15 is the time from the start time of the BP of the optical ground station 2a to the start time of the RP of the optical ground station 2b.
 次に、図16~図19をも参照して、本実施形態に係る光地上局運用管理システム1の具体的な動作を説明する。 Next, a specific operation of the optical ground station operation management system 1 according to the present embodiment will be described with reference to FIGS. 16 to 19.
 図16は、図13のステップ1304及びステップ1306に応じた各光運用計画装置30a、30b、30cにおける各光地上局2a、2b、2cの割り当て計画状態の例を示している。図17は、各光地上局2a、2b、2cの状態を示している。
 図17に示すように、各光運用計画装置30a~30cにおける各光地上局2a~2cは、過去の雲占有情報(雲占有割合の時間変化)、現在の雲占有情報(現在の雲占有割合)等を保有する。また、これらは、探査機5から受信した現在までのデータ量と目標データ量、さらには各回のパス運用ごとのデータ受信量の累積データを数値や適宜のグラフで表示する累積サービス結果を提供する機能を有する。
 累積サービス結果とは、雲回避を実現するネットワーク切り替え制御によって各光地上局が実際に実施した各宇宙機に対する光通信リンクによるデータ伝送サービス実施結果であり、例えば、宇宙‐地上間光通信ネットワーク全体の運用サービス稼働率等の評価や、そのサービス稼働率の向上のために先に説明した区間情報等の切り替え判断処理のための設定変更の調整指標としても使用される。ここでは、図中右側のグラフに示すように、自身の光地上局における受信データ量と他の2つの光地上局における受信データ量の累積値が各回のパス運用ごとに表示され、その累積値の時間変化によって光運用計画の実効性が評価される。
FIG. 16 shows an example of an allocation plan state of each optical ground station 2a, 2b, 2c in each optical operation planning apparatus 30a, 30b, 30c according to step 1304 and step 1306 of FIG. FIG. 17 shows the state of each optical ground station 2a, 2b, 2c.
As shown in FIG. 17, each of the optical ground stations 2a to 2c in each of the optical operation planning devices 30a to 30c has past cloud occupancy information (cloud occupancy rate changes with time), current cloud occupancy information (current cloud occupancy rate). ) Etc. In addition, these provide a cumulative service result that displays the amount of data received from the spacecraft 5 up to the present and the target amount of data, and the accumulated data of the amount of data received for each pass operation in the form of numerical values or an appropriate graph. Have a function.
The cumulative service result is the result of the data transmission service implementation by the optical communication link to each spacecraft that each optical ground station actually performed by the network switching control that realizes cloud avoidance, for example, the entire space-ground optical communication network. It is also used as an adjustment index for the setting change for the evaluation of the operation service utilization rate, and the switching determination process of the section information and the like described above for improving the service utilization rate. Here, as shown in the graph on the right side of the figure, the cumulative value of the received data amount at its own optical ground station and the received data amount at the other two optical ground stations are displayed for each path operation, and the cumulative value thereof is displayed. The effectiveness of the optical operation plan is evaluated by the change over time.
 図17に示すように、光地上局2aでの過去の雲占有情報(雲占有割合)は徐々に増加し、現在(ステップ1304の判断時)の雲占有情報(雲占有割合)は70%となっている。光地上局2bでの過去の雲占有情報(雲占有割合)は徐々に減少し、現在の雲占有情報(雲占有割合)は30%となっている。光地上局2cでの過去の雲占有情報(雲占有割合)は徐々に増加し、現在の雲占有情報(雲占有割合)は50%となっている。 As shown in FIG. 17, the past cloud occupancy information (cloud occupancy rate) at the optical ground station 2a gradually increases, and the current cloud occupancy information (cloud occupancy rate) (at the time of determination in step 1304) is 70%. Has become. The past cloud occupancy information (cloud occupancy rate) at the optical ground station 2b is gradually decreasing, and the current cloud occupancy information (cloud occupancy rate) is 30%. The past cloud occupancy information (cloud occupancy rate) at the optical ground station 2c is gradually increasing, and the current cloud occupancy information (cloud occupancy rate) is 50%.
 ステップ1304における基準割合が例えば一律に70%であるとすると、ステップ1306において例えば光地上局2b又は光地上局2cが選択される。そして、例えば、ステップ1309の処理によって光地上局2bが選択される。従って、図16に示す如く、光地上局2aの第1パス運用の途中(図15のBP期間に相当)からデータを切り取り、それを光地上局2bの第1パス運用の先頭(図15のRP期間に相当)に挿入する計画に変更する。 Assuming that the reference ratio in step 1304 is, for example, 70%, the optical ground station 2b or the optical ground station 2c is selected in step 1306. Then, for example, the optical ground station 2b is selected by the processing of step 1309. Therefore, as shown in FIG. 16, the data is cut off from the middle of the first path operation of the optical ground station 2a (corresponding to the BP period of FIG. 15), and the data is cut off from the beginning of the first path operation of the optical ground station 2b (of FIG. 15). Change to a plan to be inserted during the RP period).
 図18は上記のステップ1302及びステップ1303における各部間のデータのやりとりを示している。また、図19は図13のステップ1309における、具体的には図15及び図16に示した計画変更における各部間のデータのやりとりを示している。なお、図18及び図19の符号2a、2b、2cに示す光地上局が3つのブロック201、202、203から構成されている。左より、ブロック201は光地上局を構成する光地上局本体(制御ブロック)、ブロック202はモデム(送受信装置)、ブロック203は宇宙機と光通信を行う望遠鏡等のハードウェアである。
 各光地上局2a、2b、2cは、光運用計画装置30aが立案した光運用計画(計画1、計画2、計画3)に基づいて、前処理(プリパス処理)、パス(AP)、後処理(ポストパス処理)を実行する。そして、例えば、光地上局2aにおいて雲占有割合が基準割合を超えると判定された場合、光地上局2aのBP期間を光地上局2bのAP期間に設定する光運用計画の変更(修正)が実行される(図19参照)。
FIG. 18 shows the exchange of data between the respective parts in the above step 1302 and step 1303. Further, FIG. 19 shows the exchange of data between the respective parts in step 1309 of FIG. 13, specifically, in the plan change shown in FIGS. 15 and 16. The optical ground station indicated by reference numerals 2a, 2b, and 2c in FIGS. 18 and 19 is composed of three blocks 201, 202, and 203. From the left, a block 201 is a main body of an optical ground station (control block) forming an optical ground station, a block 202 is a modem (transmission / reception device), and a block 203 is hardware such as a telescope for performing optical communication with a spacecraft.
Each optical ground station 2a, 2b, 2c performs pre-processing (pre-pass processing), path (AP), and post-processing based on the optical operation plan (plan 1, plan 2, plan 3) prepared by the optical operation plan device 30a. (Post-pass processing) is executed. Then, for example, when it is determined that the cloud occupancy ratio exceeds the reference ratio in the optical ground station 2a, a change (correction) in the optical operation plan for setting the BP period of the optical ground station 2a to the AP period of the optical ground station 2b is performed. It is executed (see FIG. 19).
 以上説明したとおり、現状では、雲を回避できる仕組みが十分に確立されておらず、宇宙-地球間の光通信のように大気中でレーザーを使用する場合は、従来の局分散技術だけでは、実際に雲が進入した場合は運用休止となる。しかし、本実施形態に係る光地上局運用管理システム1により、対象の衛星軌道弧との雲の重なりを判別し、光運用計画装置30により雲回避型光地上局ネットワーク制御を実施することにより、雲の進入に邪魔されず効率的に宇宙機(例えば探査機5)と光地上局2間で条件のよい光地上局2(2a、2b、2c)の選択をする。これにより、データダウンリンクの効率の向上を実現することができる。また、一の光地上局で受信できなかったデータを他の光地上局で受信することができるため、複数の光地上局を用いた相互補完(クロスサポート)による光運用計画を実現することができる。 As explained above, at present, a mechanism for avoiding clouds is not well established, and when using a laser in the atmosphere like optical communication between space and earth, conventional local dispersion technology alone If a cloud actually enters, the operation will be suspended. However, the optical ground station operation management system 1 according to the present embodiment determines cloud overlap with the target satellite orbit arc, and the optical operation planning device 30 performs cloud avoidance type optical ground station network control. The optical ground stations 2 (2a, 2b, 2c) with good conditions are efficiently selected between the spacecraft (for example, the spacecraft 5) and the optical ground station 2 without being obstructed by the intrusion of clouds. This can improve the efficiency of the data downlink. In addition, since data that could not be received by one optical ground station can be received by another optical ground station, it is possible to realize an optical operation plan by mutual complement (cross support) using multiple optical ground stations. it can.
 なお、本発明は、上記の実施形態に限定されず、様々な変形や応用をしての実施が可能である。そして、そのような実施の範囲も本発明の技術的範囲に属する。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications and applications. The scope of such implementation also belongs to the technical scope of the present invention.
 例えば、宇宙機と地上局間で雲の進入により運用が休止する課題を持つミッションは光通信だけでなく、広義の意味での宇宙機といえる対象に対するレーザー測距やデブリ観測、レーザーによる太陽光発電システムなど地球大気を通じて光学的な運用を実施する光地上システムにも本発明を適用することが可能である。 For example, the mission that has a problem that operation is suspended due to cloud intrusion between the spacecraft and the ground station is not only for optical communication, but also for laser ranging and debris observation for objects that can be called a spacecraft in a broad sense, sunlight by laser. The present invention can also be applied to an optical ground system that optically operates through the earth's atmosphere, such as a power generation system.
 また、上記の実施形態において観測される雲は、未来の時間に対する制御処理に用いられるものであるが、本発明では、長期間の切り替え時の雲状態メッセージ(図6及び図10参照)を蓄えて統計処理をすることにより各地上局における雲進入のパターンが把握できる。そこで、切り替えタイミング等の制御に際して、過去の雲状態の傾向を統計データに基づいて切り替えタイミングを判断する知的処理を行うように、光運用計画装置が構成されてもよい。 Further, the cloud observed in the above embodiment is used for the control processing for the future time, but in the present invention, the cloud state message at the time of long-term switching (see FIGS. 6 and 10) is stored. By performing statistical processing based on this, the pattern of cloud entry at each ground station can be understood. Therefore, in controlling the switching timing and the like, the optical operation planning apparatus may be configured to perform an intelligent process of determining the switching timing based on the statistical data of the past cloud state tendency.
 なお、上記実施形態において、低層雲監視判別装置15で観測される画像は、図5のように、魚眼レンズを介した観測視野が天空のみからなる全天画像を例示した。しかし、低層雲監視判別装置15で観測される画像が、天空に加えて周辺の建物等の人工構造物、山、岩、樹木等自然物を含む場合には、観測視野からこれら人工構造物、自然物を電子的に除去する処理をさらに含んで低層雲監視判別装置15が構成される。 Note that, in the above embodiment, the image observed by the low-rise cloud monitoring / determining device 15 is an all-sky image in which the observation field of view through the fisheye lens is only the sky as shown in FIG. However, in the case where the image observed by the low-rise cloud monitoring / determining device 15 includes artificial structures such as surrounding buildings, mountains, rocks, trees, and other natural objects in addition to the sky, these artificial structures and natural objects are observed from the observation viewpoint. The low-rise cloud monitoring / determining device 15 is configured to further include a process for electronically removing the.
 更に、宇宙-地上間の大気中におけるレーザー伝送において問題となるのは、大気揺らぎの影響、進入する雲であるが、昨今の地上からのレーザーを発射する事案の増加に対して航空機8が視野内に進入する場合にレーザー発射を自らブロックする必要がある。仮に視野内に長時間、航空機8が進入する場合は、それも宇宙機と光地上局との間の通信を妨げる原因となる。このため、光地上局は、従来、何らかのレーザー発射停止の仕組みとしての保安機能を具備しているが、現在では運用を停止するしか術がない。これに対して、本発明では、この場合に運用時間に対して停止から求められた一定時間が経過した段階で光地上局からメッセージを光運用計画装置30に伝達し、光運用計画装置30が雲回避と同様に切り替え制御を実施することで、この課題による一定時間以上のダウンリンクサービスの停止を回避し、ダウンリンクの効率を向上させることができる。 Furthermore, the problem of laser transmission in the atmosphere between the space and the ground is the influence of atmospheric fluctuations and the clouds that enter, but the aircraft 8 can see the increasing number of cases of laser emission from the ground these days. You must block the laser firing yourself when you enter inside. If the aircraft 8 enters the field of view for a long time, it will also cause a hindrance to communication between the spacecraft and the optical ground station. For this reason, the optical ground station has conventionally been provided with a security function as a mechanism for stopping the laser emission, but at present, there is no alternative but to stop the operation. On the other hand, according to the present invention, in this case, the optical ground station transmits a message to the optical operation planning apparatus 30 at a stage when a fixed time obtained from the stop of the operation time has elapsed, and the optical operation planning apparatus 30 By performing the switching control as in the cloud avoidance, it is possible to avoid the downlink service from being stopped for a certain period of time or more due to this problem, and improve the downlink efficiency.
[他の実施形態]
 気象条件により、光地上局の周辺に霧が発生し、低層雲監視判別システムにおける魚眼レンズの視野内のある範囲、または視野全域が霧で覆われることがある。霧は光線を散乱させるため、雲と同様に通信を遮断する。このため、本発明は、雲による通信の遮断だけでなく、霧による通信の遮断を回避する目的で、上述の実施形態と同様な手法を用いて光運用計画を立案あるいは修正することも可能である。
 その一方で、霧と霧以外の領域との境界は曖昧であり、魚眼レンズ視野における霧占有領域を特定することに困難を伴う。
 そこで、夜間の霧の発生を想定した低層雲監視判別システム10の実施態様として、可視カメラ12の画像出力から、通信しようとする衛星の軌道の近傍にある天体について、その天体の輝度を測定する輝度測定手段(図示せず)をさらに備えてもよい。
[Other Embodiments]
Depending on weather conditions, fog may be generated around the optical ground station, and a certain area within the visual field of the fisheye lens in the low cloud monitoring and discrimination system or the entire visual field may be covered with fog. The fog scatters the rays of light, so it cuts off the communication like a cloud. Therefore, the present invention can make or modify the optical operation plan using the same method as the above-described embodiment for the purpose of avoiding not only the communication interruption due to the cloud but also the communication interruption due to the fog. is there.
On the other hand, the boundary between the fog and the area other than the fog is ambiguous, and it is difficult to specify the fog occupation area in the fisheye lens field of view.
Therefore, as an embodiment of the low-rise cloud monitoring / discrimination system 10 assuming the occurrence of fog at night, the brightness of the celestial body in the vicinity of the orbit of the satellite to communicate is measured from the image output of the visible camera 12. Brightness measuring means (not shown) may be further provided.
 この場合、輝度測定手段を併せ持つ低層雲監視判別システム10は、天体の輝度測定手段を用いて、その天体の輝度を測定し、データベース(図示せず)にあらかじめ記録しておいたその天体の輝度閾値と比較する。ここで輝度閾値とは、地上-衛星間通信が可能な大気状態におけるその天体の最小輝度であってもよいし、夜間晴天時のその天体の輝度であってもよい。このように衛星の軌道の近傍にある天体の輝度をデータベースの輝度閾値と比較することによって、通信しようとする衛星の軌道に対して霧など通信障害を起こし得る気象現象の有無を判定し、光運用計画装置30へ出力する。 In this case, the low-level cloud monitoring / discrimination system 10 that also has a luminance measuring means measures the luminance of the celestial body using the luminance measuring means of the celestial body, and the luminance of the celestial body recorded in advance in a database (not shown). Compare with threshold. Here, the brightness threshold may be the minimum brightness of the celestial body in an atmospheric state in which ground-satellite communication is possible, or the brightness of the celestial body in fine weather at night. In this way, by comparing the brightness of the celestial bodies in the vicinity of the orbit of the satellite with the brightness threshold of the database, it is determined whether or not there is a meteorological phenomenon that may cause communication failure such as fog in the orbit of the satellite to be communicated. Output to the operation planning device 30.
 光運用計画装置30は、通信しようとする衛星に対する光運用計画を作成した後、衛星軌道に対する雲占有率のデータのみならず、霧等の気象現象の有無を加味して、作成した運用計画を修正することができる。例えば、通信しようとする衛星軌道に対する雲占有率が小さい場合であっても、天体の輝度測定により通信不可と判定された場合には、その光地上局における通信を中断し、他の光地上局に切り替える。
 なお上記した天体は、輝度測定が可能な輝度を有し、軌道予測可能な天体であれば制限はない。また天体が星のような点光源の場合、可視カメラ12と魚眼レンズにより構成される光学系の解像度が輝度測定に不充分な解像度である場合には、第2の可視カメラを天体追尾するように設け、第2の可視カメラによる輝度測定を実施してもよい。
The optical operation planning device 30 creates an optical operation plan for the satellite to be communicated, and then considers not only cloud occupancy data for the satellite orbit but also the presence or absence of a meteorological phenomenon such as fog. Can be modified. For example, even if the cloud occupancy ratio to the satellite orbit to be communicated is small, if the communication is determined to be impossible by the brightness measurement of the celestial body, the communication at the optical ground station is interrupted and another optical ground station is interrupted. Switch to.
Note that the above-mentioned celestial body has a luminance capable of measuring luminance and is not limited as long as it is a celestial body capable of predicting a trajectory. When the celestial body is a point light source such as a star, if the resolution of the optical system composed of the visible camera 12 and the fisheye lens is insufficient for luminance measurement, the second visible camera is tracked. Alternatively, the brightness measurement may be performed using a second visible camera.
 以上の説明では、霧を可視カメラによる撮影画像から判別する例を説明したが、赤外線カメラによる撮影画像から霧を判別することも可能である。この場合、地上の低層雲監視判別システムにおける赤外線カメラの撮影画像が用いられてもよいし、気象衛星で撮影された赤外線画像が用いられてもよいし、その双方が用いられてもよい。例えば、気象衛星の赤外線画像は、Night microphysics RGB合成と呼ばれる方法で処理される。雲は赤外チャネルの10.4μm対応を見ればよいが、その前後の別の赤外チャネルを使用し、データの減算、合成等を行うことで、霧の判別が可能である。 In the above explanation, an example in which the fog is discriminated from the image captured by the visible camera has been described, but it is also possible to discriminate the fog from the image captured by the infrared camera. In this case, an image captured by an infrared camera in the low-level cloud monitoring and discrimination system on the ground may be used, an infrared image captured by a meteorological satellite may be used, or both of them may be used. For example, infrared images of meteorological satellites are processed by a method called Night microphysics RGB composition. Clouds can be seen by corresponding to 10.4 μm of infrared channel, but it is possible to distinguish fog by using other infrared channels before and after that and performing data subtraction and synthesis.
1             :光地上局運用管理システム
2、2a、2b、2c    :光地上局
4、4a、4b、4c    :気象衛星
8             :航空機
15            :低層雲監視判別装置
22            :高層雲監視判別装置
30、30a、30b、30c:光運用計画装置
1: Optical ground station operation management system 2, 2a, 2b, 2c: Optical ground station 4, 4a, 4b, 4c: Meteorological satellite 8: Aircraft 15: Low level cloud monitoring / determining device 22: High level cloud monitoring / determining device 30, 30a, 30b, 30c: Optical operation planning device

Claims (13)

  1.  視野内の雲画像データを取り込み、光地上局との間で光リンクを結ぶ宇宙機の前記視野内での予想軌道弧を描き、前記視野内の雲画像データに前記視野内の予想軌道弧を重ね合わせて前記視野内の予想軌道弧の雲占有割合を判別する低層雲監視判別装置と、
     広域の雲画像データを取り込み、前記宇宙機の前記広域での予想軌道弧を描き、前記広域の雲画像データに前記広域の予想軌道弧を重ね合わせて前記広域の予想軌道弧の雲占有割合を判別する高層雲監視判別装置と、
     前記低層雲監視判別装置により判別された結果及び前記高層雲監視判別装置により判別された結果に基づき、前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判別し、前記判別した結果に基づき前記光地上局の運用計画を管理する光運用計画装置と
     を具備する光地上局運用管理システム。
    Taking in cloud image data in the field of view, drawing the expected orbit arc in the field of view of the spacecraft that connects the optical link with the optical ground station, the cloud image data in the field of view the expected orbit arc in the field of view A low-layer cloud monitoring and discriminating device that superimposes and discriminates the cloud occupancy ratio of the expected orbit arc in the field of view,
    Taking in cloud image data in a wide area, drawing an expected orbit arc of the spacecraft in the wide area, superimposing the wide area expected orbit arc on the wide area cloud image data to obtain a cloud occupancy ratio of the wide area expected orbit arc. A high-level cloud monitoring / discriminating device for discriminating,
    Based on the result determined by the low-layer cloud monitoring determination device and the result determined by the high-layer cloud monitoring determination device, to determine the cloud occupancy ratio of the low-rise cloud and high-rise cloud of the expected orbit arc of the spacecraft, An optical ground station operation management system, comprising: an optical operation planning device that manages an operation plan of the optical ground station based on the result of the discrimination.
  2.  請求項1に記載の光地上局管理システムであって、
     前記低層雲監視判別装置は、前記視野内の予想軌道弧を2以上の区間に分け、前記区間ごとに予想軌道弧の雲占有割合を判別し、前記区間ごとの予想軌道弧の雲占有割合及び各前記区間の合計の予想軌道弧の雲占有割合を、当該低層雲監視判別装置により判別した結果として前記光運用計画装置に出力し、
     前記高層雲監視判別装置は、前記広域の予想軌道弧を2以上の区間に分け、前記区間ごとに予想軌道弧の雲占有割合を判別し、前記区間ごとの予想軌道弧の雲占有割合及び各前記区間の合計の予想軌道弧の雲占有割合を、当該高層雲監視判別装置により判別した結果として前記光運用計画装置に出力する
     光地上局運用管理システム。
    The optical ground station management system according to claim 1,
    The low-rise cloud monitoring / determining device divides the predicted orbit arc in the field of view into two or more sections, determines the cloud occupancy rate of the predicted orbit arc for each section, and determines the cloud occupancy rate of the predicted orbit arc for each section. The total expected orbit arc cloud occupancy ratio of each of the sections is output to the optical operation planning device as a result of the determination by the low-level cloud monitoring determination device,
    The high-rise cloud monitoring / discriminating apparatus divides the predicted orbit arc of the wide area into two or more sections, judges the cloud occupancy rate of the predicted orbit arc for each section, and determines the cloud occupancy rate of the predicted orbit arc for each section and each. An optical ground station operation management system that outputs the cloud occupancy ratio of the total expected orbit arc of the section to the optical operation planning device as a result of the determination by the high-rise cloud monitoring and determination device.
  3.  請求項1又は2に記載の光地上局運用管理システムであって、
     前記高層雲監視判別装置は、前記広域の雲画像データに基づき、前記広域の予想軌道弧に近接する雲の当該予想軌道弧への第1の到達予報情報を作成し、前記第1の到達予報情報を前記光運用計画装置に出力し、
     前記光運用計画装置は、前記第1の到達予報情報も加味して前記光地上局の運用計画を管理する
     光地上局運用管理システム。
    The optical ground station operation management system according to claim 1 or 2,
    The high-rise cloud monitoring / discrimination device creates first arrival forecast information of a cloud that is close to the wide-area expected orbit arc to the expected orbit arc based on the wide-area cloud image data, and the first arrival forecast. Output information to the optical operation planning device,
    An optical ground station operation management system in which the optical operation planning device manages an operation plan of the optical ground station in consideration of the first arrival forecast information.
  4.  請求項1~3のいずれか1つに記載の光地上局運用管理システムであって、
     前記低層雲監視判別装置は、前記視野内の雲画像データに基づき、前記視野内の予想軌道弧に近接する雲の当該予想軌道弧への第2の到達予報情報を作成し、前記第2の到達予報情報を前記光運用計画装置に出力し、
     前記光運用計画装置は、前記第2の到達予報情報も加味して前記光地上局の運用計画を管理する
     光地上局運用管理システム。
    The optical ground station operation management system according to any one of claims 1 to 3,
    The low-level cloud monitor / discrimination device creates second arrival forecast information of a cloud close to an expected orbit arc in the field of view to the expected orbit arc based on the cloud image data in the field of view, and Output arrival forecast information to the optical operation planning device,
    The optical operation planning apparatus manages the operation plan of the optical ground station by also taking the second arrival forecast information into consideration.
  5.  請求項1~4のいずれか1つに記載の光地上局運用管理システムであって、
     前記光運用計画装置は、いずれかの前記雲占有割合を蓄積し、前記蓄積した雲占有割合も加味して前記光地上局の運用計画を管理する
     光地上局運用管理システム。
    The optical ground station operation management system according to any one of claims 1 to 4,
    The optical ground station operation management system, wherein the optical operation planning device accumulates any one of the cloud occupancy rates, and manages the operation plan of the optical ground station in consideration of the accumulated cloud occupancy rate.
  6.  請求項1~5のいずれか1つに記載の光地上局運用管理システムであって、
     前記光地上局に設けられ、当該光地上局の視野内の航空機の位置情報を取得し、前記位置情報に基づき運用停止メッセージを前記光運用計画装置に伝達する運用停止メッセージ伝達部を更に具備し、
     前記光運用計画装置は、前記運用停止メッセージ伝達部から伝達された運用停止メッセージも加味して前記光地上局の運用計画を管理する
     光地上局運用管理システム。
    The optical ground station operation management system according to any one of claims 1 to 5,
    The optical ground station further includes an operation stop message transmission unit that is provided in the optical ground station, acquires position information of the aircraft within the field of view of the optical ground station, and transmits an operation stop message to the optical operation planning apparatus based on the position information. ,
    The optical ground station operation management system, wherein the optical operation planning device manages the operation plan of the optical ground station in consideration of the operation stop message transmitted from the operation stop message transmission unit.
  7.  請求項1~6のいずれか1つに記載の光地上局運用管理システムであって、
     前記低層雲監視判別装置、前記高層雲監視判別装置及び前記光運用計画装置は、異なる地域に配置された複数の前記光地上局ごとに対して設置され、
     前記光運用計画装置は、前記光地上局ごとに、前記宇宙機の予想軌道弧の低層雲と高層雲を重畳した雲占有割合を判別し、前記判別した宇宙機の軌道弧との重なり状態の結果に基づき複数の前記光地上局から条件の良い局を順次選択して運用する運用計画を管理する
     光地上局運用管理システム。
    The optical ground station operation management system according to any one of claims 1 to 6,
    The low-level cloud monitoring discriminating device, the high-level cloud monitoring discriminating device and the optical operation planning device is installed for each of the plurality of optical ground stations arranged in different areas,
    The optical operation planning device, for each of the optical ground station, determines the cloud occupancy ratio of the low-rise clouds and high-rise clouds of the expected orbit arc of the spacecraft, and determines the overlapping state of the determined spacecraft orbit arc. An optical ground station operation management system that manages an operation plan for sequentially selecting and operating a station in good condition from a plurality of the optical ground stations based on the result.
  8.  請求項7に記載の光地上局運用管理システムであって、
     前記光運用計画装置は、
     前記宇宙機の軌道予報値を取り込み、前記軌道予報値に基づき前記複数の光地上局を順次運用する初期運用計画を作成して各前記光地上局に転送し、
     前記複数の光地上局のうち少なくとも1つが前記宇宙機の予想軌道弧の低層雲と高層雲を重畳した雲占有割合が所定の閾値を超えた場合、前記初期運用計画を変更する処理を実行し、変更後の運用計画を各前記光地上局に転送する
     光地上局運用管理システム。
    The optical ground station operation management system according to claim 7,
    The optical operation planning device,
    Taking in the orbit forecast value of the spacecraft, creating an initial operation plan for sequentially operating the plurality of optical ground stations based on the orbit forecast value and transferring to each optical ground station,
    At least one of the plurality of optical ground stations executes a process of changing the initial operation plan when the cloud occupancy ratio of the low-rise clouds and the high-rise clouds of the expected orbit arc of the spacecraft exceeds a predetermined threshold value. An optical ground station operation management system that transfers the changed operation plan to each of the optical ground stations.
  9.  請求項1~8のいずれか1つに記載の光地上局運用管理システムであって、
     少なくとも前記低層雲監視判別装置と前記光運用計画装置との間のデータのやりとり及び前記高層雲監視判別装置と前記光運用計画装置との間のデータのやりとりは、メッセージの形式で行う
     光地上局運用管理システム。
    The optical ground station operation management system according to any one of claims 1 to 8,
    At least the exchange of data between the low-level cloud monitoring / discriminating apparatus and the optical operation planning apparatus and the exchange of data between the high-level cloud monitoring / determining apparatus and the optical operation planning apparatus are performed in the form of a message. Operation management system.
  10.  請求項1~9のいずれか1つに記載の光地上局運用管理システムであって、
     前記宇宙機は、前記光地上局に光通信によりデータをダウンリンクする
     光地上局運用管理システム。
    The optical ground station operation management system according to any one of claims 1 to 9,
    The spacecraft is an optical ground station operation management system for downlinking data to the optical ground station by optical communication.
  11.  低層雲監視判別装置による雲占有情報及び高層雲監視判別装置による雲占有情報に基づき、宇宙機の予想軌道弧に対する低層雲及び高層雲の雲占有割合を判別し、前記判別した結果に基づき光地上局の運用計画を管理する制御部
     を具備する光運用計画装置。
    Based on the cloud occupancy information from the low altitude cloud monitoring and discrimination device and the cloud occupancy information from the high altitude cloud monitoring and discriminating device, the cloud occupancy ratios of the low altitude clouds and the high altitude clouds to the predicted orbit arc of the spacecraft are determined, and the optical ground based on the results of the determination. An optical operation planning device equipped with a control unit that manages the operation plan of the station.
  12.  光地上局の近くの視野内の雲画像データを取り込み、前記光地上局との間で光リンクを結ぶ宇宙機の前記視野内での予想軌道弧を描き、前記視野内の雲画像データに前記視野内の予想軌道弧を重ね合わせて前記視野内の予想軌道弧の雲占有割合を判別し、
     広域の雲画像データを取り込み、前記宇宙機の前記広域での予想軌道弧を描き、前記広域の雲画像データに前記広域の予想軌道弧を重ね合わせて前記広域の予想軌道弧の雲占有割合を判別し、
     判別された前記視野内の予想軌道弧の雲占有割合及び前記広域の予想軌道弧の雲占有割合に基づき、前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判別し、前記判別した結果に基づき前記光地上局の運用計画を管理する
     光地上局運用管理方法。
    The cloud image data in the field of view near the optical ground station is taken in, and the expected orbit arc in the field of view of the spacecraft connecting the optical link with the optical ground station is drawn, and the cloud image data in the field of view is described above. Determine the cloud occupancy of the expected orbit arc in the field of view by superimposing the expected orbit arc in the field of view,
    Taking in cloud image data in a wide area, drawing an expected orbit arc of the spacecraft in the wide area, superimposing the wide area expected orbit arc on the wide area cloud image data to obtain a cloud occupancy ratio of the wide area expected orbit arc. Discriminate,
    Based on the determined cloud occupancy ratio of the predicted orbit arc in the field of view and the cloud occupancy ratio of the predicted orbit arc of the wide area, the cloud occupancy ratio of the low altitude cloud and the high altitude cloud of the predicted orbit arc of the spacecraft is determined. Then, the optical ground station operation management method for managing the operation plan of the optical ground station based on the determined result.
  13.  光地上局の近くの視野内の雲画像データを取り込み、前記光地上局との間で光リンクを結ぶ宇宙機の前記視野内での予想軌道弧を描き、前記視野内の雲画像データに前記視野内の予想軌道弧を重ね合わせて前記視野内の予想軌道弧の雲占有割合を判別した結果を入力するステップと、
     広域の雲画像データを取り込み、前記宇宙機の前記広域での予想軌道弧を描き、前記広域の雲画像データに前記広域の予想軌道弧を重ね合わせて前記広域の予想軌道弧の雲占有割合を判別した結果を入力するステップと、
     前記入力した前記視野内の予想軌道弧の雲占有割合及び前記広域の予想軌道弧の雲占有割合に基づき、前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判別するステップと、
     前記宇宙機の予想軌道弧の低層雲と高層雲とを重畳した雲占有割合を判別した結果に基づき前記光地上局の運用計画を管理するステップと
     をコンピュータに実行させるプログラム。
    The cloud image data in the field of view near the optical ground station is taken in, and an expected orbit arc in the field of view of the spacecraft connecting the optical link with the optical ground station is drawn, and the cloud image data in the field of view is described above. Inputting the result of determining the cloud occupancy ratio of the expected orbit arc in the field of view by superimposing the expected orbit arc in the field of view,
    Taking in cloud image data in a wide area, drawing an expected orbit arc of the spacecraft in the wide area, superimposing the wide area expected orbit arc on the wide area cloud image data to obtain a cloud occupancy ratio of the wide area expected orbit arc. The step of inputting the determined result,
    Based on the input cloud occupancy ratio of the predicted orbital arc in the field of view and the cloud occupancy ratio of the predicted orbital arc of the wide area, the cloud occupancy ratio of the low altitude cloud and the high altitude cloud in the predicted orbital arc of the spacecraft is determined. Steps to
    A program for causing a computer to execute a step of managing an operation plan of the optical ground station based on a result of determining a cloud occupancy rate in which a low cloud and a high cloud of an expected orbit arc of the spacecraft are superimposed.
PCT/JP2019/040530 2018-10-15 2019-10-15 Optical ground station operational management system, optical operation planning device, and optical ground station operational management method and program WO2020080373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019363341A AU2019363341B2 (en) 2018-10-15 2019-10-15 Optical ground station operational management system, optical operation planning device, and optical ground station operational management method and program
JP2020528355A JP6762643B1 (en) 2018-10-15 2019-10-15 Optical ground station operation management system, optical operation planning device, optical ground station operation management method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018194529 2018-10-15
JP2018-194529 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080373A1 true WO2020080373A1 (en) 2020-04-23

Family

ID=70284296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040530 WO2020080373A1 (en) 2018-10-15 2019-10-15 Optical ground station operational management system, optical operation planning device, and optical ground station operational management method and program

Country Status (3)

Country Link
JP (2) JP6762643B1 (en)
AU (1) AU2019363341B2 (en)
WO (1) WO2020080373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034764A1 (en) * 2020-08-12 2022-02-17 古野電気株式会社 Cloud observation system, cloud observation method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276032A1 (en) * 2021-06-30 2023-01-05 Space Entertainment株式会社 Satellite control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271647A (en) * 1995-03-29 1996-10-18 Mitsubishi Electric Corp Ground observation apparatus
JP2012129610A (en) * 2010-12-13 2012-07-05 Mitsubishi Electric Corp Optical space communication device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181643A (en) * 1994-12-21 1996-07-12 Kokusai Denshin Denwa Co Ltd <Kdd> Communication enable time notice system for satellite communication
US6169881B1 (en) * 1998-05-04 2001-01-02 Motorola, Inc. Method and apparatus for predicting impending service outages for ground-to-satellite terminal in a satellite communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271647A (en) * 1995-03-29 1996-10-18 Mitsubishi Electric Corp Ground observation apparatus
JP2012129610A (en) * 2010-12-13 2012-07-05 Mitsubishi Electric Corp Optical space communication device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARAKI, TOMOHIRO ET AL.: "Present status, Future and Technical issues of Space Optical Communications", IEICE TECHNICAL REPORT, vol. 118, no. 201, 23 August 2018 (2018-08-23), pages 15 - 23 *
HOSOKAWA, MANA ET AL.: "Site diversity system with cloud monitor to realize effective satellite-to- ground optical communication", IEEE INTERNATIONAL CONFERENCE ON SPACE OPTICAL SYSTEMS AND APPLICATIONS (ICSOS, vol. 2017, 2017, pages 290 - 293, XP033339280, DOI: 10.1109/ICSOS.2017.8357428 *
SUZUKI, KENJI ET AL.: "Environmental-data Collection System for Satellite-to-Ground Optical Communications", TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN, vol. 16, no. 1, January 2018 (2018-01-01), pages 35 - 39, XP055703523 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034764A1 (en) * 2020-08-12 2022-02-17 古野電気株式会社 Cloud observation system, cloud observation method, and program

Also Published As

Publication number Publication date
JPWO2020080373A1 (en) 2021-02-15
JP6762643B1 (en) 2020-09-30
JP6887185B2 (en) 2021-06-16
JP2021001897A (en) 2021-01-07
AU2019363341B2 (en) 2022-09-29
AU2019363341A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
CN111656424B (en) Automatic flying unmanned aerial vehicle system based on big data and automatic flying method thereof
US9824593B1 (en) System and method for holistic flight and route management
JP6887185B2 (en) Cloud monitoring and discrimination device
US20210173414A1 (en) Cooperative unmanned autonomous aerial vehicles for power grid inspection and management
US20120261144A1 (en) Fire Management System
JP7497727B2 (en) Imaging method and transmitting device for satellite system
EP3520248B1 (en) Method and system for dealing with antenna blockage in a low earth orbit constellation
JP2013518246A (en) Autonomous decision system for observation satellite to select target
CN105389921A (en) Airport runway foreign body monitoring system and method
CN106210675A (en) A kind of transmission line forest fire monitoring method, device and system
JP7452541B2 (en) Artificial satellite and its control method
JP2014172555A (en) Satellite observation system
US20020113826A1 (en) System and method for simultaneously displaying weather data and monitored device data
KR102182671B1 (en) Safety flight path creation system and method for big data based drone
Alby et al. Status of CNES optical observations of space debris in geostationary orbit
Stoll et al. Collision Probability Assessment for the Rapideye Satellite Constellation
RU2635832C1 (en) Safety control complex at stationary object, method of safety control complex operation at stationary object, system for managing safety control complexes at stationary objects and method of safety control in system consisting of pularity of safety control complexes
CN118043261A (en) Earth monitoring system and satellite constellation management method
WO2020250708A1 (en) Image management method and metadata data structure
Mukai et al. Research and development approach to realize flexible optical ground network operations for effective data downlink from space to ground
CN117097405B (en) Quantum secret communication satellite ground station system capable of being remotely attended and control method
Cros et al. Day time cloud forecasting for space-to-ground optical communication optimization
Ong et al. Autonomous operations for the swift mission
WO2020250706A1 (en) Image processing method and metadata data structure
CN114567407B (en) Multiplexing light application control method adapting to multiple satellite functional modules

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020528355

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019363341

Country of ref document: AU

Date of ref document: 20191015

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19873482

Country of ref document: EP

Kind code of ref document: A1