JP2012129610A - Optical space communication device - Google Patents

Optical space communication device Download PDF

Info

Publication number
JP2012129610A
JP2012129610A JP2010276975A JP2010276975A JP2012129610A JP 2012129610 A JP2012129610 A JP 2012129610A JP 2010276975 A JP2010276975 A JP 2010276975A JP 2010276975 A JP2010276975 A JP 2010276975A JP 2012129610 A JP2012129610 A JP 2012129610A
Authority
JP
Japan
Prior art keywords
observation
satellite
communication
data
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010276975A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuzawa
博史 松沢
Jiro Suzuki
二郎 鈴木
Tomohiro Akiyama
智浩 秋山
Toshiyuki Ando
俊行 安藤
Yoshihito Hirano
嘉仁 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010276975A priority Critical patent/JP2012129610A/en
Publication of JP2012129610A publication Critical patent/JP2012129610A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical space communication device that prevents observation data from disappearing and thus can increase transmission speed.SOLUTION: Based on weather information of an atmospheric state monitoring sensor 17 monitoring an atmospheric state between an observation satellite and a terrestrial station, the observation satellite 10, if there is no obstacle C, transmits observation data to the terrestrial station 20, and if there is an obstacle C, transmits the observation data to a stationary satellite 30, and at the time when an observation period ends, if there is no obstacle C, transmits notification indicating the temporarily stored observation data be returned to the stationary satellite 30, and transmits the observation data to the terrestrial station 20 when receiving the observation data from the observation satellite 30. The stationary satellite 30 temporarily stores the observation data from the observation satellite 10 in a communication data storage unit 31, and when receiving notification indicating the observation data be returned, transmits the temporarily stored observation data to the observation satellite 10.

Description

この発明は、観測衛星と地上局間において、光通信を用いて観測データを観測衛星から地上局へ伝送する光空間通信装置に関するものである。   The present invention relates to an optical space communication device for transmitting observation data from an observation satellite to a ground station using optical communication between the observation satellite and the ground station.

典型的な従来の光空間通信装置は、観測衛星と、異なる地点に設置された複数の受信局と、複数の受信局から送出されるデータを受信処理する中央局を備え、受信局は、観測衛星との間の気象情報を取得する手段を有し、中央局は、各々から通知される受信局設置地点の気象情報に従って交信局となる局を択一的に指定制御するよう構成される(例えば、特許文献1参照)。   A typical conventional space optical communication apparatus includes an observation satellite, a plurality of receiving stations installed at different points, and a central station that receives and processes data transmitted from the plurality of receiving stations. The central station has means for acquiring weather information between the satellites, and the central station is configured to alternatively designate and control a station serving as a communication station according to the weather information of the receiving station installation location notified from each ( For example, see Patent Document 1).

特開平10―65620号公報JP-A-10-65620

観測衛星から地上局へ観測データを伝送するための従来の光空間通信装置は、気象情報に従って地上局の切り替えを行う際、観測衛星から地上局へ観測データを伝送できないため、切り替えの間、観測データの消失が発生するという問題点があった。   Conventional optical space communication equipment for transmitting observation data from observation satellites to ground stations cannot transmit observation data from observation satellites to ground stations when switching ground stations according to weather information. There was a problem that data loss occurred.

また、観測データの消失により観測データの再現が不可能になった場合、観測衛星から地上局へ観測データを再送する必要があり、観測衛星の記録媒体が肥大化するという問題点があった。   In addition, when it becomes impossible to reproduce the observation data due to the loss of the observation data, it is necessary to retransmit the observation data from the observation satellite to the ground station, and there is a problem that the recording medium of the observation satellite is enlarged.

さらに、消失による観測データの誤りが、検出不能な範囲に達する場合、誤りのある観測データがそのまま使用される可能性があるという問題点があった。   Furthermore, when the error of the observation data due to the loss reaches an undetectable range, there is a problem that the observation data having an error may be used as it is.

本発明は、前記のような課題を解決するためになされたものであり、観測衛星から地上局へ観測データを伝送する際、観測データの消失を抑えることが可能となるとともに、ひいては伝送速度を向上できる光空間通信装置を得ることを目的とする。   The present invention has been made to solve the above-described problems. When transmitting observation data from an observation satellite to a ground station, it is possible to suppress the loss of the observation data, and to reduce the transmission speed. An object is to obtain an optical space communication device that can be improved.

本発明に係る光空間通信装置は、地球上空の所定の軌道上を飛行し、地球上の観測領域を観測する観測衛星と、地上の所定の位置に設置された地上局と、地球上空の静止軌道上を飛行する静止衛星とを備える光空間通信装置であって、前記観測衛星は、前記観測衛星と前記地上局間の大気状態を監視して気象情報を出力する大気状態監視センサと、前記気象情報に基づき、前記観測衛星と前記地上局間に遮蔽物が無い場合には、第1の通信光を用いて、所定時間分の観測データを前記地上局へ送信し、前記観測衛星と前記地上局間に遮蔽物が有る場合には、第2の通信光を用いて、所定時間分の観測データを前記静止衛星へ送信するとともに、所定の観測期間が終了した時点で、前記気象情報に基づき、前記観測衛星と前記地上局間に遮蔽物が無い場合には、前記第2の通信光を用いて、前記静止衛星に対して一時保存された観測データを戻す旨の通知を送信し、前記静止衛星から送信された一時保存された観測データを受信すると、前記第1の通信光を用いて、一時保存された観測データを前記地上局へ送信する第1の光通信機器全体制御部とを有し、前記静止衛星は、通信データを格納する通信データ格納部と、前記観測衛星から送信された所定時間分の観測データを前記通信データ格納部に一時保存するとともに、前記観測衛星から送信された観測データを戻す旨の通知を受信すると、第3の通信光を用いて、前記通信データ格納部に一時保存した観測データを前記観測衛星へ送信する第2の光通信機器全体制御部とを有するものである。   An optical space communication device according to the present invention includes an observation satellite that flies in a predetermined orbit over the earth and observes an observation region on the earth, a ground station installed at a predetermined position on the ground, and a stationary over the earth An optical space communication device comprising a geostationary satellite flying in orbit, wherein the observation satellite monitors an atmospheric condition between the observation satellite and the ground station and outputs weather information; and Based on weather information, when there is no shield between the observation satellite and the ground station, the first communication light is used to transmit observation data for a predetermined time to the ground station, and the observation satellite and the ground station When there is an obstacle between the ground stations, the second communication light is used to transmit observation data for a predetermined time to the geostationary satellite, and when the predetermined observation period ends, the weather information is Based on the shielding between the observation satellite and the ground station If there is not, the second communication light is used to send a notification that the observation data temporarily saved is returned to the geostationary satellite, and the temporarily saved observation data sent from the geostationary satellite When received, the first optical communication device overall control unit for transmitting the temporarily stored observation data to the ground station using the first communication light, and the geostationary satellite stores the communication data. When the communication data storage unit and the observation data transmitted from the observation satellite for a predetermined time are temporarily stored in the communication data storage unit and a notification that the observation data transmitted from the observation satellite is returned is received, And a second optical communication device overall control unit that transmits observation data temporarily stored in the communication data storage unit to the observation satellite using the communication light of No. 3.

本発明に係る光空間通信装置によれば、観測データの消失を抑えることができ、ひいては伝送速度を向上することができる。   According to the optical space communication apparatus according to the present invention, it is possible to suppress the disappearance of the observation data, and to improve the transmission speed.

この発明の実施の形態1に係る光空間通信装置の全体構成を示す図である。It is a figure which shows the whole structure of the space optical communication apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光空間通信装置の観測衛星の構成を示すブロック図である。It is a block diagram which shows the structure of the observation satellite of the space optical communication apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光空間通信装置の静止衛星の構成を示す図である。It is a figure which shows the structure of the geostationary satellite of the space optical communication apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光空間通信装置の観測衛星の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the observation satellite of the space optical communication apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光空間通信装置において観測衛星と地上局の間に遮蔽物がある状態を示す図である。It is a figure which shows the state with a shield between an observation satellite and a ground station in the optical space communication apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光空間通信装置において観測衛星と地上局の間にあった遮蔽物が移動した状態を示す図である。It is a figure which shows the state which the shield which existed between the observation satellite and the ground station moved in the optical space communication apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光空間通信装置の静止衛星の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the geostationary satellite of the space optical communication apparatus which concerns on Embodiment 1 of this invention.

以下、本発明の光空間通信装置の好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of an optical space communication device of the present invention will be described with reference to the drawings.

実施の形態1.
この発明の実施の形態1に係る光空間通信装置について図1から図7までを参照しながら説明する。図1は、この発明の実施の形態1に係る光空間通信装置の全体構成を示す図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
An optical space communication apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a diagram showing an overall configuration of an optical space communication apparatus according to Embodiment 1 of the present invention. In the following, in each figure, the same reference numerals indicate the same or corresponding parts.

図1において、この発明の実施の形態1に係る光空間通信装置は、地球上空の所定の軌道上を飛行し、地球上の観測領域を観測する観測衛星10と、地上の所定の位置に設置された地上局20と、地球上空の静止軌道上を飛行する静止衛星30とが設けられている。   In FIG. 1, an optical space communication device according to Embodiment 1 of the present invention is installed in a predetermined position on the ground, and an observation satellite 10 that flies in a predetermined orbit over the earth and observes an observation region on the earth. A ground station 20 and a geostationary satellite 30 flying in a geostationary orbit over the earth are provided.

観測衛星10は、観測領域Dの観測データを取得しながら移動し、地上局20に対して衛星−地上間の通信光LAを用いて観測データを送信する。これと同時に、大気状態監視センサ光LBを用いて、地上局20との通信路の大気情報を取得し、雲等の遮蔽物Cの検知を行う。また、観測衛星10と静止衛星30の間で、光衛星間通信路Pを設け、観測データの送受信が可能な状態を保持する。   The observation satellite 10 moves while acquiring the observation data of the observation region D, and transmits the observation data to the ground station 20 using the communication light LA between the satellite and the ground. At the same time, atmospheric information on the communication path with the ground station 20 is acquired using the atmospheric state monitoring sensor light LB, and the shielding object C such as a cloud is detected. Further, an optical inter-satellite communication path P is provided between the observation satellite 10 and the geostationary satellite 30 to maintain a state in which observation data can be transmitted and received.

図2は、この発明の実施の形態1に係る光空間通信装置の観測衛星の構成を示すブロック図である。   FIG. 2 is a block diagram showing the configuration of the observation satellite of the optical space communication apparatus according to Embodiment 1 of the present invention.

図2において、観測衛星10は、通信データ発生部11と、光通信機器全体制御部(第1の光通信機器全体制御部)12と、通信経路切替部13と、第1の光トランスポンダ(送受信)14Aと、第2の光トランスポンダ(送信)14Bと、第1の捕捉追尾機構部15Aと、第2の捕捉追尾機構部15Bと、光アンテナ(衛星用)16Aと、光アンテナ(地上用)16Bと、大気状態監視センサ17とが設けられている。   In FIG. 2, an observation satellite 10 includes a communication data generation unit 11, an optical communication device overall control unit (first optical communication device overall control unit) 12, a communication path switching unit 13, and a first optical transponder (transmission / reception). ) 14A, second optical transponder (transmission) 14B, first acquisition and tracking mechanism 15A, second acquisition and tracking mechanism 15B, optical antenna (for satellite) 16A, and optical antenna (for ground) 16B and an atmospheric state monitoring sensor 17 are provided.

観測衛星10は、観測したデータに対して符号化を行う通信データ発生部11により送信観測データを生成する。次に、大気状態監視センサ17による気象情報に従って、光通信機器全体制御部12により、静止衛星30または地上局20の通信路の選択を行い、通信経路切替部13により第1の光トランスポンダ14Aと第2の光トランスポンダ14Bの切り替えを行う。第1の光トランスポンダ14Aまたは第2の光トランスポンダ14Bにより、観測データを光信号に変換し、第1の捕捉追尾機構部15Aまたは第2の捕捉追尾機構部15Bにより光ビームの指向方向を制御し、衛星用の光アンテナ16Aまたは地上用の光アンテナ16Bから観測データが送信される。   The observation satellite 10 generates transmission observation data by a communication data generation unit 11 that encodes the observed data. Next, according to the weather information from the atmospheric condition monitoring sensor 17, the optical communication device overall control unit 12 selects the communication path of the geostationary satellite 30 or the ground station 20, and the communication path switching unit 13 selects the first optical transponder 14A. The second optical transponder 14B is switched. Observation data is converted into an optical signal by the first optical transponder 14A or the second optical transponder 14B, and the directivity direction of the light beam is controlled by the first acquisition tracking mechanism 15A or the second acquisition tracking mechanism 15B. Observation data is transmitted from the satellite optical antenna 16A or the ground optical antenna 16B.

図3は、この発明の実施の形態1に係る光空間通信装置の静止衛星の構成を示す図である。   FIG. 3 is a diagram showing the configuration of the geostationary satellite of the space optical communication apparatus according to Embodiment 1 of the present invention.

図3において、静止衛星30は、通信データ格納部31と、光通信機器全体制御部(第2の光通信機器全体制御部)32と、光トランスポンダ(送受信)33と、捕捉追尾機構部34と、光アンテナ(衛星用)35と、RFトランスポンダ(送信)36と、RFアンテナ37とが設けられている。   In FIG. 3, the geostationary satellite 30 includes a communication data storage unit 31, an optical communication device overall control unit (second optical communication device overall control unit) 32, an optical transponder (transmission / reception) 33, and a capture and tracking mechanism unit 34. An optical antenna (for satellite) 35, an RF transponder (transmission) 36, and an RF antenna 37 are provided.

静止衛星30は、送信、受信により動作が異なる。送信では、通信データ格納部31に一時保存されている観測データを符号化し、送信観測データを生成する。次に、光通信機器全体制御部32により、観測衛星10との光通信が可能であるか確認を行い、可能であると判断した場合、光トランスポンダ33により観測データを光信号に変換し、捕捉追尾機構部34により光ビームの指向方向を制御し、光アンテナ35から観測データが送信される。   The geostationary satellite 30 operates differently depending on transmission and reception. In transmission, the observation data temporarily stored in the communication data storage unit 31 is encoded to generate transmission observation data. Next, the optical communication device overall control unit 32 confirms whether optical communication with the observation satellite 10 is possible. If it is determined that the optical communication is possible, the optical transponder 33 converts the observation data into an optical signal and captures it. The tracking mechanism unit 34 controls the direction of the light beam, and observation data is transmitted from the optical antenna 35.

受信では、観測衛星10から送信される光信号を光アンテナ35で受光し、捕捉追尾機構部34により光ビーム指向誤差を補正する。次に、光トランスポンダ33により、光信号を復号し、光通信機器全体制御部32を通り、通信データ格納部31で一時保存される。   In reception, an optical signal transmitted from the observation satellite 10 is received by the optical antenna 35, and the light tracking error is corrected by the acquisition and tracking mechanism unit 34. Next, the optical signal is decoded by the optical transponder 33, passes through the optical communication device overall control unit 32, and is temporarily stored in the communication data storage unit 31.

なお、別の実施の形態では、受信では、観測衛星10から送信される光信号を光アンテナ35で受光し、捕捉追尾機構部34により光ビーム指向誤差を補正する。次に、光トランスポンダ33により、光信号を復号し、その一部はRFトランスポンダ36によりRF信号として再度変調され、RFアンテナ37から地上局20へ向けて電磁波のRF通信波Eが送信される。また、光トランスポンダ33の残りの信号は、光通信機器全体制御部32を通り、通信データ格納部31で一時保存される。   In another embodiment, in reception, an optical signal transmitted from the observation satellite 10 is received by the optical antenna 35, and the light tracking error is corrected by the acquisition and tracking mechanism unit 34. Next, the optical signal is decoded by the optical transponder 33, a part thereof is modulated again as an RF signal by the RF transponder 36, and an RF communication wave E of electromagnetic waves is transmitted from the RF antenna 37 to the ground station 20. Further, the remaining signals of the optical transponder 33 are temporarily stored in the communication data storage unit 31 through the optical communication device overall control unit 32.

地上局20は、衛星−地上間の通信光LAを受信するための光アンテナ(図示せず)と、静止衛星30から送信されるRF通信波Eを受信するためのRFアンテナ(図示せず)とが少なくとも設けられている。   The ground station 20 includes an optical antenna (not shown) for receiving the satellite-ground communication light LA and an RF antenna (not shown) for receiving the RF communication wave E transmitted from the geostationary satellite 30. Are provided at least.

つぎに、この実施の形態1に係る光空間通信装置の動作について図面を参照しながら説明する。   Next, the operation of the space optical communication apparatus according to the first embodiment will be described with reference to the drawings.

最初に、観測衛星10の動作を説明する。   First, the operation of the observation satellite 10 will be described.

図4は、この発明の実施の形態1に係る光空間通信装置の観測衛星の動作を示すフローチャートである。   FIG. 4 is a flowchart showing the operation of the observation satellite of the space optical communication apparatus according to Embodiment 1 of the present invention.

図4のステップ101−102において、観測衛星10は、観測衛星10全体を制御する光通信機器全体制御部12により、観測衛星10−地上局20間と観測衛星10−静止衛星30間に対して、各々独立に第1及び第2の捕捉追尾機構部15A、15Bを動作させ、通信路を確保する。   In step 101-102 of FIG. 4, the observation satellite 10 is controlled between the observation satellite 10 and the ground station 20 and between the observation satellite 10 and the geostationary satellite 30 by the optical communication device overall controller 12 that controls the entire observation satellite 10. The first and second acquisition and tracking mechanisms 15A and 15B are independently operated to secure a communication path.

次に、ステップ103において、観測衛星10は、光通信機器全体制御部12により、観測衛星10−地上局20間、観測衛星10−静止衛星30間の捕捉追尾の完了を確認した後、大気状態監視センサ17により観測衛星10−地上局20間の気象情報を取得する。   Next, in step 103, the observation satellite 10 confirms the completion of acquisition and tracking between the observation satellite 10 and the ground station 20 and between the observation satellite 10 and the geostationary satellite 30 by the optical communication device overall control unit 12, and then the atmospheric state Weather information between the observation satellite 10 and the ground station 20 is acquired by the monitoring sensor 17.

次に、ステップ104において、観測衛星10は、光通信機器全体制御部12により、大気状態監視センサ17からの気象情報により、雲等の遮蔽物Cの有無を判定し、雲等の遮蔽物Cが無い場合には、次のステップ105へ進み、雲等の遮蔽物Cが有る場合には、ステップ111へ移行する。   Next, in step 104, the observation satellite 10 determines the presence or absence of the shielding object C such as a cloud from the atmospheric information monitoring sensor 17 by the optical communication device overall control unit 12, and the shielding object C such as a cloud. If there is no object, the process proceeds to the next step 105, and if there is an obstacle C such as a cloud, the process proceeds to step 111.

次に、ステップ105−106において、観測衛星10は、光通信機器全体制御部12の制御に基づく通信経路切替部13により、地上局20への通信路の切り替えが完了すると、予め定めておいた時間分の観測データを地上局20に送信し、データ送信の完了を確認する。観測衛星10から地上局20へ送信する観測データが残っている場合、再び、ステップ103へ戻り、ステップ103−106の繰り返し処理を行う。観測データの送信が完了した場合、観測衛星10の通信を終了する。   Next, in steps 105-106, the observation satellite 10 has previously determined that the communication path switching unit 13 based on the control of the optical communication device overall control unit 12 completes switching of the communication path to the ground station 20. The observation data for the time is transmitted to the ground station 20, and the completion of the data transmission is confirmed. If observation data to be transmitted from the observation satellite 10 to the ground station 20 remains, the process returns to step 103 again, and repeats steps 103-106. When the transmission of the observation data is completed, the communication of the observation satellite 10 is terminated.

ステップ111−112において、観測衛星10は、光通信機器全体制御部12により、静止衛星30に対して観測データの送信を行うため、通信路の切り替えを行うことを通知し、通信路を衛星側に切り替える。   In steps 111-112, the observation satellite 10 notifies the geostationary satellite 30 to switch the communication path so that the observation data is transmitted to the geostationary satellite 30 by the optical communication equipment overall control unit 12, and the communication path is set to the satellite side. Switch to.

次に、ステップ113−114において、観測衛星10は、光通信機器全体制御部12により、静止衛星30に対して予め定めておいた時間分の観測データを送信し、データ送信の完了を確認すると次のステップ115へ進む。   Next, in steps 113 to 114, the observation satellite 10 transmits observation data for a predetermined time to the geostationary satellite 30 by the optical communication device overall control unit 12 and confirms the completion of the data transmission. Proceed to the next step 115.

次に、ステップ115において、観測衛星10は、光通信機器全体制御部12により、データ送信の完了を確認した後、大気状態監視センサ17により観測衛星10−地上局20間の気象情報を再度取得する。   Next, in step 115, the observation satellite 10 confirms the completion of data transmission by the optical communication device overall control unit 12, and then obtains weather information between the observation satellite 10 and the ground station 20 again by the atmospheric state monitoring sensor 17. To do.

次に、ステップ116において、観測衛星10は、光通信機器全体制御部12により、大気状態監視センサ17からの気象情報により、雲等の遮蔽物Cの有無を判定し、雲等の遮蔽物Cが無い場合には、次のステップ117へ進み、雲等の遮蔽物Cが有る場合には、ステップ113へ戻り、再びステップ113−116の処理を繰り返し行う。   Next, in step 116, the observation satellite 10 determines the presence or absence of the shielding object C such as a cloud by the optical communication device overall control unit 12 based on the weather information from the atmospheric state monitoring sensor 17, and the shielding object C such as a cloud. If there is no object, the process proceeds to the next step 117. If there is a cloud or other shielding object C, the process returns to step 113 and the processes of steps 113 to 116 are repeated again.

次に、ステップ117−118において、観測衛星10は、光通信機器全体制御部12により、静止衛星30に対する観測データの送信を停止し、通信路を地上局20に切り替え、静止衛星30に対して通信路の切り替えを通知する。   Next, in steps 117 to 118, the observation satellite 10 stops transmission of observation data to the geostationary satellite 30 by the optical communication device overall control unit 12, switches the communication path to the ground station 20, and Notifies switching of communication path.

この後、ステップ105において、観測衛星10は、光通信機器全体制御部12により、地上局20への通信路の切り替えが完了すると、予め定めておいた時間分の観測データを地上局20に送信する。この後、上述した通りである。   Thereafter, in step 105, when the switching of the communication path to the ground station 20 is completed by the optical communication device overall control unit 12, the observation satellite 10 transmits observation data for a predetermined time to the ground station 20. To do. Thereafter, as described above.

図5は、この発明の実施の形態1に係る光空間通信装置において観測衛星と地上局の間に遮蔽物がある状態を示す図である。   FIG. 5 is a diagram showing a state in which there is a shield between the observation satellite and the ground station in the space optical communication apparatus according to Embodiment 1 of the present invention.

この図5は、大気状態監視センサ光LBが雲等の遮蔽物Cを検知し、衛星−地上間の通信光LAが雲等の遮蔽物Cに遮断された場合の状態を示す。図5において、衛星−地上間の通信光LAが遮断された場合、光衛星間通信路Pを用いて、観測衛星10から静止衛星30に対して光衛星間通信光LCにより観測データを送信する。   FIG. 5 shows a state in which the atmospheric state monitoring sensor light LB detects the shielding object C such as a cloud, and the communication light LA between the satellite and the ground is blocked by the shielding object C such as a cloud. In FIG. 5, when the communication light LA between the satellite and the ground is interrupted, the observation data is transmitted from the observation satellite 10 to the stationary satellite 30 by the optical inter-satellite communication light LC using the optical inter-satellite communication path P. .

図6は、この発明の実施の形態1に係る光空間通信装置において観測衛星と地上局の間にあった遮蔽物が移動した状態を示す図である。   FIG. 6 is a diagram showing a state in which the shielding object between the observation satellite and the ground station has moved in the space optical communication apparatus according to Embodiment 1 of the present invention.

この図6は、図5における、雲等の遮蔽物Cが移動し、再び観測衛星10と地上局20の間で衛星−地上間の通信光LAを用いて観測データの送信を行う場合の状態を示す。   FIG. 6 shows a state in which the shielding object C such as a cloud in FIG. 5 moves and the observation data is transmitted between the observation satellite 10 and the ground station 20 again using the satellite-ground communication light LA. Indicates.

続いて、静止衛星30の動作を説明する。   Next, the operation of the geostationary satellite 30 will be described.

図7は、この発明の実施の形態1に係る光空間通信装置の静止衛星の動作を示すフローチャートである。   FIG. 7 is a flowchart showing the operation of the geostationary satellite of the space optical communication apparatus according to Embodiment 1 of the present invention.

図7のステップ301において、静止衛星30は、静止衛星30全体を制御する光通信機器全体制御部32により、観測衛星10−静止衛星30間の捕捉追尾機構部34を動作させ、通信路を確保する。   In step 301 of FIG. 7, the geostationary satellite 30 secures a communication path by operating the acquisition and tracking mechanism 34 between the observation satellite 10 and the geostationary satellite 30 by the optical communication device overall controller 32 that controls the entire geostationary satellite 30. To do.

次に、ステップ302において、静止衛星30は、光通信機器全体制御部32により、観測衛星10−静止衛星30間の捕捉追尾の完了を確認し、観測衛星10から観測衛星10−地上局20間の気象情報に基づく通信路情報を取得する。   Next, in step 302, the geostationary satellite 30 confirms the completion of acquisition and tracking between the observation satellite 10 and the geostationary satellite 30 by the optical communication device overall control unit 32, and between the observation satellite 10 and the observation satellite 10 and the ground station 20 Get channel information based on weather information.

次に、ステップ303において、静止衛星30は、光通信機器全体制御部32により、通信路が観測衛星10−地上局20間から観測衛星10−静止衛星30間への切り替えの有無を確認する。   Next, in step 303, the geostationary satellite 30 confirms whether or not the communication path is switched from the observation satellite 10 to the ground station 20 to the observation satellite 10 to the geostationary satellite 30 by the optical communication device overall control unit 32.

次に、ステップ304において、静止衛星30は、光通信機器全体制御部32により、通信路の切り替えが生じた場合、確保した通信路Pを用いて、観測衛星10から観測データを通信光LCにより受信する。   Next, in Step 304, when the communication path is switched by the optical communication device overall control unit 32, the geostationary satellite 30 uses the communication path P to secure the observation data from the observation satellite 10 using the communication light LC. Receive.

次に、ステップ305において、静止衛星30は、光通信機器全体制御部32により、受信した観測データを通信データ格納部31に一時保存する。   Next, in step 305, the geostationary satellite 30 temporarily stores the received observation data in the communication data storage unit 31 by the optical communication device overall control unit 32.

なお、別の実施の形態得として、観測衛星10から送信された所定時間分の観測データのうちの一部を、雲等の遮蔽物Cの影響を受けないRF通信波Eを用いて、地上局20へ送信しても良い。   As another embodiment, a part of the observation data for a predetermined time transmitted from the observation satellite 10 is obtained by using an RF communication wave E that is not affected by the shielding object C such as a cloud. It may be transmitted to the station 20.

そして、ステップ306において、静止衛星30は、光通信機器全体制御部32により、観測衛星10からデータ送信完了の通知があるまでステップ304−306の処理を繰り返し、データ送信が完了した場合、通信を終了する。   In step 306, the geostationary satellite 30 repeats the processing of steps 304 to 306 until the optical communication device overall control unit 32 notifies the observation satellite 10 of the completion of data transmission. When the data transmission is completed, the geostationary satellite 30 performs communication. finish.

観測衛星10は、数分から数時間の観測期間が終了した時点で、図6に示すように、大気状態監視センサ17の気象情報に基づき、地上局20との間に、雲等の遮蔽物Cが無い場合に、通信光LCを用いて、静止衛星30に対して一時保存された観測データを戻す旨の通知を送信する。   As shown in FIG. 6, when the observation satellite 10 ends the observation period of several minutes to several hours, the observation satellite 10 and the ground station 20 are shielded by a cloud C or the like, as shown in FIG. When there is no data, the communication light LC is used to transmit a notification to the effect that the observation data temporarily stored is returned to the geostationary satellite 30.

静止衛星30は、観測衛星10から一時保存した観測データを戻す旨の通知を受信すると、通信光LDを用いて、通信データ格納部31に一時保存されている観測データを観測衛星10へ送信する。   When the geostationary satellite 30 receives a notification to return the observation data temporarily stored from the observation satellite 10, the geostationary satellite 30 transmits the observation data temporarily stored in the communication data storage unit 31 to the observation satellite 10 using the communication light LD. .

観測衛星10は、静止衛星30から送信された一時保存された観測データを受信すると、通信光LAを用いて、一時保存された観測データを地上局20へ送信する。   When the observation satellite 10 receives the temporarily stored observation data transmitted from the geostationary satellite 30, the observation satellite 10 transmits the temporarily stored observation data to the ground station 20 using the communication light LA.

また、別の実施の形態として、観測衛星10は、数分から数時間の観測期間が終了した時点で、図5に示すように、大気状態監視センサ17の気象情報に基づき、地上局20との間に、雲等の遮蔽物Cが有る場合に、通信光LCを用いて、静止衛星30に対して一時保存された観測データを地上局20へ送信する旨の通知を送信する。   As another embodiment, the observation satellite 10 is connected to the ground station 20 based on the weather information of the atmospheric state monitoring sensor 17 as shown in FIG. 5 when the observation period of several minutes to several hours is completed. When there is a shielding object C such as a cloud, a notification that the observation data temporarily stored to the geostationary satellite 30 is transmitted to the ground station 20 is transmitted using the communication light LC.

静止衛星30は、観測衛星10から一時保存した観測データを地上局20へ送信する旨の通知を受信すると、通信データ格納部31に一時保存されている観測データを、雲等の遮蔽物Cの影響を受けないRF通信波Eを用いて、通信データ格納部31に一時保存した観測データを地上局20へ送信する。   When the geostationary satellite 30 receives a notification from the observation satellite 10 that the observation data temporarily stored is transmitted to the ground station 20, the observation data temporarily stored in the communication data storage unit 31 is transferred to the shielding object C such as a cloud. The observation data temporarily stored in the communication data storage unit 31 is transmitted to the ground station 20 using the RF communication wave E that is not affected.

以上のように、本発明の実施の形態1に係る光空間通信装置において、観測衛星10が取得した観測データを地上局20に伝送する際、衛星−地上間の通信路に雲等の遮蔽物Cが存在する場合、通信路Pに切り替え、静止衛星30に一時的に観測データを保存する。雲等の遮蔽物Cの状態を大気状態監視センサ光LBにより確認し、再び衛星−地上間の通信路による伝送が可能と判定された場合、地上局20に対する観測データの送信を再開する。また、静止衛星30に一時保存した観測データを観測衛星10に再送することにより、観測データの消失がない通信の実現が可能となる。   As described above, in the optical space communication apparatus according to Embodiment 1 of the present invention, when the observation data acquired by the observation satellite 10 is transmitted to the ground station 20, a shield such as a cloud is placed on the communication path between the satellite and the ground. When C exists, the channel is switched to the communication path P and the observation data is temporarily stored in the geostationary satellite 30. The state of the shielding object C such as a cloud is confirmed by the atmospheric state monitoring sensor light LB, and when it is determined that transmission via the satellite-ground communication path is possible again, transmission of observation data to the ground station 20 is resumed. In addition, by retransmitting the observation data temporarily stored in the geostationary satellite 30 to the observation satellite 10, it is possible to realize communication without loss of the observation data.

10 観測衛星、11 通信データ発生部、12 光通信機器全体制御部、13 通信経路切替部、14A 第1の光トランスポンダ、14B 第2の光トランスポンダ、15A 第1の捕捉追尾機構部、15B 第2の捕捉追尾機構部、16A 光アンテナ、16B 光アンテナ、17 大気状態監視センサ、20 地上局、30 静止衛星、31 通信データ格納部、32 光通信機器全体制御部、33 光トランスポンダ、34 捕捉追尾機構部、35 光アンテナ、36 RFトランスポンダ、37 RFアンテナ。   DESCRIPTION OF SYMBOLS 10 Observation satellite, 11 Communication data generation part, 12 Optical communication apparatus whole control part, 13 Communication path switching part, 14A 1st optical transponder, 14B 2nd optical transponder, 15A 1st acquisition tracking mechanism part, 15B 2nd Capture and tracking mechanism section, 16A optical antenna, 16B optical antenna, 17 atmospheric condition monitoring sensor, 20 ground station, 30 geostationary satellite, 31 communication data storage section, 32 optical communication equipment overall control section, 33 optical transponder, 34 capture tracking mechanism Part, 35 optical antenna, 36 RF transponder, 37 RF antenna.

Claims (3)

地球上空の所定の軌道上を飛行し、地球上の観測領域を観測する観測衛星と、
地上の所定の位置に設置された地上局と、
地球上空の静止軌道上を飛行する静止衛星とを備える光空間通信装置であって、
前記観測衛星は、
前記観測衛星と前記地上局間の大気状態を監視して気象情報を出力する大気状態監視センサと、
前記気象情報に基づき、前記観測衛星と前記地上局間に遮蔽物が無い場合には、第1の通信光を用いて、所定時間分の観測データを前記地上局へ送信し、前記観測衛星と前記地上局間に遮蔽物が有る場合には、第2の通信光を用いて、所定時間分の観測データを前記静止衛星へ送信するとともに、
所定の観測期間が終了した時点で、前記気象情報に基づき、前記観測衛星と前記地上局間に遮蔽物が無い場合には、前記第2の通信光を用いて、前記静止衛星に対して一時保存された観測データを戻す旨の通知を送信し、前記静止衛星から送信された一時保存された観測データを受信すると、前記第1の通信光を用いて、一時保存された観測データを前記地上局へ送信する第1の光通信機器全体制御部とを有し、
前記静止衛星は、
通信データを格納する通信データ格納部と、
前記観測衛星から送信された所定時間分の観測データを前記通信データ格納部に一時保存するとともに、前記観測衛星から送信された観測データを戻す旨の通知を受信すると、第3の通信光を用いて、前記通信データ格納部に一時保存した観測データを前記観測衛星へ送信する第2の光通信機器全体制御部とを有する
ことを特徴とする光空間通信装置。
An observation satellite that flies in a predetermined orbit over the earth and observes the observation area on the earth;
A ground station installed at a predetermined position on the ground;
An optical space communication device comprising a geostationary satellite flying in a geosynchronous orbit over the earth,
The observation satellite is
An atmospheric condition monitoring sensor for monitoring atmospheric conditions between the observation satellite and the ground station and outputting weather information;
Based on the weather information, when there is no shield between the observation satellite and the ground station, the first communication light is used to transmit observation data for a predetermined time to the ground station, When there is a shield between the ground stations, the second communication light is used to transmit observation data for a predetermined time to the geostationary satellite,
At the end of a predetermined observation period, based on the weather information, if there is no obstruction between the observation satellite and the ground station, the second communication light is used to temporarily When the notification of returning the stored observation data is transmitted and the temporarily stored observation data transmitted from the geostationary satellite is received, the temporarily stored observation data is transmitted to the ground using the first communication light. A first optical communication device overall control unit for transmitting to the station,
The geostationary satellite is
A communication data storage unit for storing communication data;
When the observation data transmitted from the observation satellite is temporarily stored in the communication data storage unit and a notification that the observation data transmitted from the observation satellite is returned is received, the third communication light is used. And a second optical communication equipment overall control unit for transmitting observation data temporarily stored in the communication data storage unit to the observation satellite.
前記第2の光通信機器全体制御部は、
前記観測衛星から送信された所定時間分の観測データのうちの一部を、RF通信波を用いて、前記地上局へ送信する
ことを特徴とする請求項1記載の光空間通信装置。
The second optical communication device overall controller is
The optical space communication apparatus according to claim 1, wherein a part of observation data for a predetermined time transmitted from the observation satellite is transmitted to the ground station using an RF communication wave.
前記第1の光通信機器全体制御部は、
所定の観測期間が終了した時点で、前記気象情報に基づき、前記観測衛星と前記地上局間に遮蔽物が有る場合には、前記第2の通信光を用いて、前記静止衛星に対して一時保存された観測データを地上局へ送信する旨の通知を送信し、
前記第2の光通信機器全体制御部は、
前記観測衛星から送信された観測データを地上局へ送信する旨の通知を受信すると、前記RF通信波を用いて、前記通信データ格納部に一時保存した観測データを前記地上局へ送信する
ことを特徴とする請求項1又は2記載の光空間通信装置。
The first optical communication device overall controller is
At the end of a predetermined observation period, based on the weather information, if there is a shield between the observation satellite and the ground station, the second communication light is used to temporarily store the stationary satellite. Send a notification to send the stored observation data to the ground station,
The second optical communication device overall controller is
When receiving notification that the observation data transmitted from the observation satellite is to be transmitted to the ground station, the observation data temporarily stored in the communication data storage unit is transmitted to the ground station using the RF communication wave. The optical space communication apparatus according to claim 1 or 2, characterized in that:
JP2010276975A 2010-12-13 2010-12-13 Optical space communication device Withdrawn JP2012129610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276975A JP2012129610A (en) 2010-12-13 2010-12-13 Optical space communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276975A JP2012129610A (en) 2010-12-13 2010-12-13 Optical space communication device

Publications (1)

Publication Number Publication Date
JP2012129610A true JP2012129610A (en) 2012-07-05

Family

ID=46646226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276975A Withdrawn JP2012129610A (en) 2010-12-13 2010-12-13 Optical space communication device

Country Status (1)

Country Link
JP (1) JP2012129610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080373A1 (en) * 2018-10-15 2020-04-23 国立研究開発法人宇宙航空研究開発機構 Optical ground station operational management system, optical operation planning device, and optical ground station operational management method and program
WO2021156990A1 (en) * 2020-02-06 2021-08-12 三菱電機株式会社 Orientation direction control device, optical communication terminal, optical communication system, and orientation direction control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080373A1 (en) * 2018-10-15 2020-04-23 国立研究開発法人宇宙航空研究開発機構 Optical ground station operational management system, optical operation planning device, and optical ground station operational management method and program
WO2021156990A1 (en) * 2020-02-06 2021-08-12 三菱電機株式会社 Orientation direction control device, optical communication terminal, optical communication system, and orientation direction control method
JPWO2021156990A1 (en) * 2020-02-06 2021-08-12
JP7080415B2 (en) 2020-02-06 2022-06-03 三菱電機株式会社 Directional control device, optical communication terminal, optical communication system, and directional control method

Similar Documents

Publication Publication Date Title
US11422219B2 (en) Satellite antenna with sensor for line-of-sight detection
EP2974072B1 (en) Adaptive coded modulation in low earth orbit satellite communication system
US9680565B2 (en) Free-space optical network with agile beam-based protection switching
JP6370476B2 (en) Satellite communication system and satellite communication ground device
US6169522B1 (en) Combined mechanical scanning and digital beamforming antenna
EP2532103B1 (en) Scalable high speed mimo-satellite communication system
CN108141276B (en) Method and apparatus for HARQ process at inter-beam handover
RU2528166C2 (en) System for satellite communication in tunnels
NO20052700D0 (en) The system and method for dividing up the bandwidth between satellites in common orbital winds.
US6356247B1 (en) Antenna system for tracking moving satellites
US20230327746A1 (en) Wireless communication method and wireless communication apparatus
US6839520B1 (en) Method and arrangement for an interruption-proof optical satellite linkage
JP2012129610A (en) Optical space communication device
US20150200701A1 (en) Assembly comprising two antennas controllable to output or not output signals
US7567778B2 (en) Apparatus and method for controlling switch of satellite transponder for multibeam communication
WO2018042252A4 (en) Satellite telephone monitoring
WO2018142539A1 (en) Control station, satellite station, earth station, data transmission system, and data transmission method
Munemasa et al. Advanced demonstration plans of high-speed laser communication
JP6987420B1 (en) Communication control device, communication control method, communication control program, communication control system, relay satellite, and satellite system
RU2673060C1 (en) Satellite transmitter
AU707672B2 (en) High speed data link
JP2007088955A (en) Frequency control system
JPH08288866A (en) Signal transmission system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304