WO2020080345A1 - Curable resin composition, cured film, substrate having cured film, and production method therefor - Google Patents

Curable resin composition, cured film, substrate having cured film, and production method therefor Download PDF

Info

Publication number
WO2020080345A1
WO2020080345A1 PCT/JP2019/040418 JP2019040418W WO2020080345A1 WO 2020080345 A1 WO2020080345 A1 WO 2020080345A1 JP 2019040418 W JP2019040418 W JP 2019040418W WO 2020080345 A1 WO2020080345 A1 WO 2020080345A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
film
substrate
cured film
Prior art date
Application number
PCT/JP2019/040418
Other languages
French (fr)
Japanese (ja)
Inventor
雅善 木戸
哲哉 小木曽
友洋 好田
勇志 朝比奈
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2020080345A1 publication Critical patent/WO2020080345A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a curable resin composition having thermosetting property and photocurable property, and a cured film composed of a cured product of the curable resin composition. Furthermore, the present invention relates to a substrate with a cured film provided with a cured film on a substrate such as a printed circuit board and a method for manufacturing the same.
  • An insulating cured film (cover coat) is provided on the surface of the flexible printed circuit board (FPC).
  • cover coat material a photosensitive solder resist or a photosensitive dry film resist which can be finely processed by photolithography is generally used. Since the crosslink density of the photosensitive cover coat material is increased by photo-curing, the cured film has excellent heat resistance and chemical resistance, but has poor flexibility such as flexibility. Therefore, for devices such as foldable devices that require partial flexibility and flexibility, use a photosensitive material that can be patterned by photolithography in the mounting area where fine processing of the cover coat material is required. A thermosetting cover coat material or a cover lay film is used in a portion where flexibility is required.
  • Patent Document 1 proposes to use a resin composition containing two kinds of curable resin components having different curing characteristics and to adopt different curing methods for a mounting portion and a bending portion.
  • the heat resistance of the mounting part may be insufficient and the flexibility of the bending part may be insufficient only by changing the curing method of the mounting part and the bending part.
  • the present invention has an object to provide a curable resin composition capable of achieving both heat resistance and flexibility only by changing the curing method.
  • the curable resin composition of the present invention is a photocurable / thermosetting resin composition having photocurability and thermosetting property.
  • E a photopolymerization initiator.
  • the curable resin composition may further contain an organic filler.
  • the content of the component (A) is preferably 10 to 50 parts by weight based on 100 parts by weight of the total of the components (A), (B), (C) and (D), and the components (B) and (
  • the total content of component C) is preferably 40 to 85 parts by weight, and the content of component (C) is preferably 25 parts by weight or more.
  • the content of the component (D) is preferably 5 to 30 parts by weight.
  • the content of the component (A) in the total solid content of the curable resin composition is preferably 10 to 50% by weight, and the total content of the components (B) and (C) is preferably 40 to 85% by weight, The content of the component (C) is preferably 20 parts by weight or more. The content of the component (D) is preferably 5 to 30% by weight.
  • Epoxy resin is preferable as the component (A), and polyfunctional epoxy resin is particularly preferable.
  • the acidic functional groups of the components (B) and (C) are preferably carboxy groups.
  • the acid value of the components (B) and (C) is, for example, about 5 to 200 mgKOH / g.
  • the weight average molecular weights of the component (B) and the component (C) are preferably 1,000 to 1,000,000.
  • the component (D) preferably does not contain an acidic functional group (for example, a carboxy group) capable of reacting with the component (A).
  • the component (D) may have 4 or more ethylenically unsaturated groups in one molecule, and the functional group equivalent of the ethylenically unsaturated groups may be 300 or less.
  • a substrate with a cured film having a cured film on the substrate can be obtained.
  • the substrate on which the cured film is formed may be a flexible printed circuit board.
  • the curable resin composition described above can be used to produce a substrate with a cured film, which comprises a thermosetting film and a photocurable film on one substrate.
  • a curable resin composition is applied to form a first coating film, and the first coating film is exposed to light to be photocured, and the second region of the substrate is curable.
  • a resin composition is applied to form a second coating film, and the second coating film is heated and thermoset to provide a photocurable film on the first region and a thermosetting film on the second region.
  • a cured film-coated substrate is obtained.
  • a patterned photo-cured film by performing pattern exposure using a mask when exposing the first coating film, developing after the exposure, and removing the coating film in the unexposed portion.
  • thermosetting film After forming a coating film on the second region and heat curing, form a coating film on the first region, perform exposure and, if necessary, develop, and further
  • the photo-curable film may be thermally cured according to the above.
  • a coating film is formed in the first region, and after exposure and development as necessary, a coating film is formed in the second region and heat-cured by heating. Good.
  • the photo-cured film on one region may be heat-cured at the same time as the heat-curing of the coating film on the second region.
  • the photosensitive resin composition of the present invention can be applied to both formation of a thermosetting film having excellent flexibility and formation of a photocuring film having excellent patterning properties. Therefore, it is possible to form a substrate with a cured film including a thermosetting film and a photocurable film on a substrate using one resin composition.
  • FIG. 6 is a plan view of a flexible printed wiring board having a mounting portion and a bent portion. It is a schematic cross section which shows the flow of the formation process of the substrate with a cured film. It is a schematic cross section which shows the flow of the formation process of the substrate with a cured film.
  • the curable resin composition of the present invention comprises (A) a thermosetting resin, (B) a polymer having an acidic functional group and an ethylenically unsaturated group, (C) an acidic functional group and an ethylenically unsaturated group. Which does not contain a polymer, (D) a photocurable compound having an ethylenically unsaturated group, and (E) a photopolymerization initiator. It has (photosensitivity).
  • thermosetting resin is a compound having at least one thermosetting functional group in the molecule.
  • thermosetting resin include epoxy resin, oxetane resin, isocyanate resin, blocked isocyanate resin, bismaleimide resin, bisallylnadiimide resin, polyester resin (for example, unsaturated polyester resin), diallyl phthalate resin, silicon resin, vinyl ester.
  • Resin melamine resin, polybismaleimide triazine resin (BT resin), cyanate resin (for example, cyanate ester resin), urea resin, guanamine resin, sulfamide resin, aniline resin, polyurea resin, thiourethane resin, polyazomethine resin, episulfide resin , Ene-thiol resin, benzoxazine resin and the like.
  • epoxy resins are preferable because they can react with the acidic functional groups of the components (B) and (C) described below to form a thermally crosslinked network.
  • a polyfunctional epoxy resin having two or more epoxy groups in one molecule is preferable because it can impart heat resistance to the cured film and can impart adhesiveness to a conductor such as a metal foil or a circuit board.
  • the polyfunctional epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, biphenyl type epoxy resin, phenoxy type epoxy resin, naphthalene type epoxy resin, phenol novolac Type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, dicyclopentadiene type epoxy resin, amine type epoxy resin and the like.
  • the epoxy resin may be a modified epoxy resin with urethane, rubber, chelate, dimer acid or the like.
  • component (A) a commercially available epoxy resin may be used as it is.
  • the epoxy equivalent of the epoxy resin (mass (g) of the compound containing 1 equivalent of epoxy group) is preferably 2000 or less, and more preferably 1500 or less.
  • the weight average molecular weight of the epoxy resin is preferably about 150 to 2000, more preferably about 200 to 1500.
  • the component (B) and the component (C) are polymers having at least one acidic functional group in the molecule, and these polymers are the main components for forming a coating film with the resin composition.
  • the acidic functional group-containing polymer is soluble in an organic solvent.
  • the organic solvent capable of dissolving the component (B) and the component (C) include sulfoxides, formamides, acetamides, pyrrolidones, phosphoramides, lactones, ethers, acetates and the like.
  • the components (B) and (C) are preferably those which can be dissolved in any of these organic solvents at a concentration of 5% by weight or more.
  • the weight average molecular weight of the acidic functional group-containing polymer in terms of polyethylene glycol is preferably 1,000 to 1,000,000, more preferably 2,000 to 200,000, further preferably 3,000 to 100,000, 000 to 50,000 is particularly preferable.
  • the weight average molecular weight of the acidic functional group-containing compound is within the above range, a cured film having excellent heat resistance and flexibility can be easily obtained.
  • the acidic functional group examples include a carboxy group, a phenolic hydroxyl group, a sulfonic acid group and the like. Particularly, a carboxy group is preferable from the viewpoint of reactivity with (A) thermosetting resin and storage stability.
  • the carboxy groups of the components (B) and (C) may be carboxylic acid anhydrides in which two carboxy groups are dehydrated. Since the resin composition contains the acidic functional group-containing polymer as the component (B) and the component (C), the photosensitive resin composition before curing, which is neither heat-cured nor photocured, is alkali-soluble. On the other hand, since the component (B) and the component (C) react with the component (A) by thermosetting, the thermosetting film becomes insoluble in alkali.
  • the component (B) and component (C) preferably have an acid value of 5 to 200 mgKOH / g, more preferably 10 to 150 mgKOH / g, and even more preferably 15 to 100 mgKOH / g.
  • the acid value of the polymer is within the above range, the resin composition before curing exhibits appropriate alkali solubility. Further, when the acid value is in the above range, the heat resistance, insulation reliability and chemical resistance of the cured film can be improved, and the flexibility tends to be improved.
  • the component (B) is one having an ethylenically unsaturated group in the above-mentioned acidic group-containing polymer.
  • examples of the ethylenically unsaturated group include (meth) acryloyl group and vinyl group.
  • the component (B) participates in heat curing by the reaction with the component (A), and the ethylenically unsaturated group participates in photocuring together with the component (D) described below.
  • a cured film that has undergone both photo-curing and heat-curing has an increased cross-linking density of the cured film and also has high heat resistance and chemical resistance. Tends to improve.
  • an acid-modified epoxy (meth) acrylate obtained by adding a saturated or unsaturated polycarboxylic acid anhydride to an ester obtained by reacting an epoxy resin with an unsaturated monocarboxylic acid;
  • Urethane (meth) acrylate which is a polymer of a diol compound having an ethylenically unsaturated group and / or a carboxy group, and a diisocyanate compound;
  • (meth) acrylic acid having a carboxy group and a polymerizable double bond, and (meth) (Meth) acrylate obtained by reacting a part of the carboxy group of the side chain of a copolymer with an acrylic ester or the like with a (meth) acrylic group such as glycidyl (meth) acrylate and an epoxy group of a compound having an epoxy group (Meth) acrylate etc. are mentioned.
  • Examples of commercially available epoxy (meth) acrylates having a carboxy group include KAYARAD ZFR series, ZAR series, ZCR series, CCR series, PCR series, and UXE series manufactured by Nippon Kayaku.
  • Examples of commercially available urethane (meth) acrylates having a carboxy group include UX series manufactured by Nippon Kayaku.
  • Examples of commercially available (meth) acrylated (meth) acrylates include Cyclomer ACA series manufactured by Daicel Cytec.
  • the component (C) is a polymer having no ethylenically unsaturated group in the above-mentioned acidic group-containing polymer.
  • the component (C) participates in heat curing by the reaction with the component (A), but does not participate in photocuring because it does not have an ethylenically unsaturated group. By including the component (C), the flexibility of the cured film can be secured.
  • component (C) examples include carboxyl group-containing (meth) acrylic polymers, carboxyl group-containing vinyl polymers, acid-modified polyurethanes, acid-modified polyesters, acid-modified polycarbonates, acid-modified polyamides, acid-modified polyimides, acid-modified polyurethanes.
  • Examples thereof include amide and acid-modified polyurethane imide.
  • a carboxyl group-containing (meth) acrylic copolymer, an acid-modified polyurethane, an acid-modified polyamide, and an acid-modified polyimide are preferable.
  • a carboxy group-containing (meth) acrylic polymer is a copolymer containing a (meth) acrylic acid ester and a compound having a carboxy group and a polymerizable double bond in one molecule as a monomer component.
  • Carboxy group-containing monomers include (meth) acrylic acid, crotonic acid, isocrotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid, ⁇ -carboxyl.
  • -Polycaprolactone mono (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate, (meth) acrylic acid dimer, 2- (meth) acryloyloxypropyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl amber Acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, atropic acid, cinnamic acid, linoleic acid, eicosadienoic acid, docosadienoic acid, linolenic acid, pinolenic acid, eleostearic acid, mead acid, dihomo-Y-linolenic acid , Eicosatrienoic acid, steer Donoic acid, arachidonic acid, eicosatetraenoic acid, adrenic acid, boseopentaenoic acid, eicosapentaenoic acid, oz
  • the carboxy group-containing (meth) acrylic polymer is, in addition to the carboxy group-containing monomer and the (meth) acrylic acid ester, as a copolymerization component, (meth) acrylamide such as diacetone (meth) acrylamide, acrylonitrile and vinyl-n-butyl ether. And the like, esters of vinyl alcohol, styrene, vinyltoluene and the like may be contained.
  • the carboxy group-containing (meth) acrylic polymer is obtained, for example, by radical polymerization of the above monomer component.
  • the radical polymerization may be thermal polymerization or photopolymerization.
  • a polymerization initiator may be used for radical polymerization.
  • the carboxy group-containing (meth) acrylic polymer is preferably obtained by solution polymerization using an azo compound, an organic peroxide, a persulfate, hydrogen peroxide or the like as a thermal polymerization initiator.
  • the acid-modified polyurethane can be obtained, for example, by reacting a diisocyanate compound with a diol compound having two hydroxyl groups and one carboxy group.
  • the acid-modified polyester can be obtained, for example, by reacting a dicarboxylic acid with a diol compound containing two hydroxyl groups and one carboxy group.
  • the acid-modified polyamide is a compound having an amic acid structure, and is obtained, for example, by reacting a diamino compound with a tetracarboxylic acid dianhydride.
  • the acid-modified polyimide is obtained, for example, by reacting a diisocyanate compound with a tetracarboxylic acid dianhydride.
  • An imide compound having a carboxylic acid anhydride group at the terminal is obtained by adding tetracarboxylic dianhydride in excess of the equivalent amount of the diisocyanate compound.
  • diol compound having two hydroxyl groups and one carboxy group examples include 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (2-hydroxyethyl) propionic acid and 2,2-bis (3- Hydroxypropyl) propionic acid, 2,3-dihydroxy-2-methylpropionic acid, 2,2-bis (hydroxymethyl) butanoic acid, 2,2-bis (2-hydroxyethyl) butanoic acid, 2,2-bis Aliphatic diols such as (3-hydroxypropyl) butanoic acid, 2,3-dihydroxybutanoic acid, 2,4-dihydroxy-3,3-dimethylbutanoic acid, and 2,3-dihydroxyhexadecanoic acid; 2,3- Dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, 3 4-dihydroxybenzoic acid, aromatic diols such as 3,5-dihydroxybenzoic acid.
  • aromatic diols
  • the diisocyanate compound may be either an alicyclic diisocyanate compound or an aliphatic diisocyanate compound.
  • the diisocyanate compound may be a reaction product of a compound having two or more functional groups capable of reacting with the isocyanate group of the diisocyanate compound, and may be, for example, a urethane compound having an isocyanate group at the terminal.
  • the tetracarboxylic acid dianhydride may be either an aromatic tetracarboxylic acid dianhydride or an aliphatic tetracarboxylic acid dianhydride, and an aromatic tetracarboxylic acid dianhydride in which a carboxylic acid anhydride group is directly bonded to an aromatic ring.
  • Anhydrous is preferred.
  • aromatic tetracarboxylic acid dianhydrides are preferable, and those in which an anhydrous carboxy group is directly bonded to an aromatic ring are preferable.
  • the diamino compound may be either an aromatic diamine or an aliphatic diamine, and the aromatic diamine is preferable.
  • the component (D) is a photocurable compound having at least one ethylenically unsaturated group, and participates in photocuring together with the component (C). It is preferable that the component (D) participates only in photo-curing and not in heat-curing. That is, it is preferable that the component (D) does not contain an acidic functional group such as a carboxy group. When the component (D) does not participate in the thermosetting, the component (D) remains unreacted in the thermosetting film which is not subjected to photocuring but only thermosetting, and acts as a plasticizer. The tendency to improve the sex.
  • the ethylenically unsaturated group examples include a (meth) acryloyl group and a vinyl group.
  • the component (D) is preferably a compound having two or more ethylenically unsaturated groups in one molecule.
  • polyfunctional (meth) acrylate having two or more (meth) acryloyl groups in one molecule ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2-hydroxy-1- (meth) Acryloxy-3- (meth) acryloxypropane, 1,4-butanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acr Rate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth
  • the compound having two or more vinyl groups in one molecule include diallylamine, diallyldimethylsilane, diallyl disulfide, diallyl ether, diallyl cyanurate, diallyl isophthalate, diallyl terephthalate and 1,3-dialyloxy-2-.
  • diallylamine diallyldimethylsilane
  • diallyl disulfide diallyl ether
  • diallyl cyanurate diallyl isophthalate
  • diallyl terephthalate diallyl terephthalate
  • 1,3-dialyloxy-2- Propanol, diallyl sulfide diallyl maleate, triallyl isocyanurate, triallyl 1,3,5-benzenecarboxylate, triallylamine, triallyl citrate, triallyl phosphate and the like can be mentioned.
  • the component (D) may be a polymer (oligomer) such as urethane (meth) acrylate resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin, and acrylic (meth) acrylate resin.
  • oligomer such as urethane (meth) acrylate resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin, and acrylic (meth) acrylate resin.
  • the component (D) is preferably a low molecular weight compound having a molecular weight of less than 1000, and the functional group equivalent of the component (D) (
  • the mass (g) of the compound containing 1 equivalent of an ethylenically unsaturated group is preferably 300 or less, more preferably 250 or less, and further preferably 200 or less.
  • the functional group equivalent of the component (D) may be 180 or less or 150 or less.
  • the functional group equivalent of the component (D) may be 50 or more, or 80 or more.
  • the component (D) preferably has 4 or more ethylenically unsaturated groups in one molecule, and tetrafunctional or higher (meth) acrylate is particularly preferable.
  • a compound having four or more functional groups and a compound having less than four functional groups may be used in combination.
  • the photopolymerization initiator as the component (E) absorbs and activates light energy such as UV (ultraviolet light) and is activated by a photoradical polymerization reaction of the ethylenically unsaturated group of the components (B) and (D). It is a compound (photoradical polymerization initiator) that initiates / promotes the formation of a photocrosslinking network.
  • photoradical polymerization initiator examples include self-cleaving photoradical polymerization initiators such as benzoin compounds, acetophenones, aminoketones, oxime esters, acylphosphine oxide compounds, and azo compounds; and benzophenones and benzoins. Hydrogen abstraction type photoradicals of ethers, benzyl ketals, dibenzosuberones, anthraquinones, xanthones, thioxanthones, halogenoacetophenones, dialkoxyacetophenones, hydroxyacetophenones, halogenobisimidazoles, halogenotriazines, etc.
  • a polymerization initiator may be used.
  • the photopolymerization initiator may be used as a mixture of two or more kinds.
  • the curable resin composition may contain a filler, if necessary, in addition to the components (A) to (E).
  • the fillers include inorganic fillers such as silica, mica, talc, barium sulfate, wollastonite and calcium carbonate, and organic polymer fillers.
  • inorganic fillers such as silica, mica, talc, barium sulfate, wollastonite and calcium carbonate
  • organic polymer fillers Among these, spherical beads of organic polymer are preferable as the filler.
  • the organic beads are spherical polymers containing carbon and may have an elliptical shape. The surface of the organic beads may be covered with silica or the like.
  • polymer constituting the organic beads examples include acrylic polymers such as polymethylmethacrylate, crosslinked polymethylmethacrylate, crosslinked polybutylmethacrylate, and crosslinked polyacrylic acid ester, crosslinked styrene, nylon, silicone, crosslinked silicone, crosslinked urethane, etc. Is mentioned. Among them, crosslinked beads containing a urethane bond in the molecule are preferable from the viewpoint of achieving both hardness and flexibility of the cured film.
  • the curable resin composition may contain various additives such as an adhesion aid, a defoaming agent, a leveling agent, a polymerization inhibitor, and a flame retardant, if necessary.
  • the defoaming agent and the leveling agent include silicone compounds and acrylic compounds.
  • the adhesion aid also referred to as an adhesion promoter
  • the polymerization inhibitor include hydroquinone and hydroquinone monomethyl ether.
  • a phosphoric acid ester compound, a halogen-containing compound, a metal hydroxide, an organic phosphorus compound, a silicone compound or the like can be used.
  • the component (A), the component (B) and the component (C) are involved in heat curing, and the component (B) and the component (D) are involved in photocuring.
  • the component (D) remains unreacted and acts as a plasticizer.
  • the photothermosetting film that is thermally cured after photocuring all of the components (A), (B), (C) and (D) are involved in curing.
  • the content of the component (A) is preferably 10 to 50 parts by weight based on 100 parts by weight of the total of the components (A), (B), (C) and (D).
  • the total content is preferably 40 to 85 parts by weight, and the content of the component (C) is preferably 25 parts by weight or more.
  • the content of the component (A) is preferably 10 to 50% by weight, and the total content of the components (B) and (C) is preferably 45 to 85% by weight, based on the total solid content of the curable resin composition.
  • the content of component C) is preferably 20 parts by weight or more.
  • the total solid content means the total amount of solid content of the components (E), the filler, other resin components, additives, etc. in addition to the components (A) to (D).
  • the content of the component (A) based on 100 parts by weight of the total of the components (A) to (D) is more preferably 12 to 40 parts by weight, further preferably 13 to 35 parts by weight.
  • the content of the component (A) based on the total solid content is more preferably 11 to 35% by weight, further preferably 12 to 30% by weight.
  • thermosetting resin composition used as a photosensitive resist material is inferior in heat resistance when a cured film is formed only by thermosetting without photocuring.
  • the content of the thermosetting resin is larger than that of the photocurable / thermosetting resin composition used for a general photosensitive resist. Therefore, it has heat resistance that can be practically used only by thermosetting, and also has excellent durability against repeated bending because the thermosetting film has high flexibility.
  • the total amount is more preferably 55 to 80 parts by weight, still more preferably 60 to 75 parts by weight.
  • the total content of the component (B) and the component (C) with respect to the total solid content is more preferably 50 to 80% by weight, further preferably 60 to 75% by weight.
  • the ratio (B) / (C) of the content of the component (B) and the content of the component (C) is more preferably 0.5 to 2, and 0.7 to 1 0.5 is more preferable.
  • the total content of the component (B) per 100 parts by weight of the total of the components (A) to (D) is preferably 25 to 60 parts by weight, more preferably 30 to 50 parts by weight, and further preferably 33 to 45 parts by weight.
  • the content of the component (B) with respect to the total solid content is preferably 20 to 60% by weight, more preferably 25 to 50% by weight, and further preferably 30 to 40% by weight.
  • the total content of the component (C) per 100 parts by weight of the total of the components (A) to (D) is preferably 25 to 60 parts by weight, more preferably 30 to 50 parts by weight, and further preferably 33 to 45 parts by weight.
  • the content of the component (C) with respect to the total solid content is preferably 20 to 60% by weight, more preferably 25 to 50% by weight, and further preferably 30 to 40% by weight.
  • the total content of the component (D) is preferably 5 to 30 parts by weight, more preferably 10 to 20 parts by weight, based on 100 parts by weight of the total of the components (A) to (D).
  • the content of the component (D) with respect to the total solid content is preferably 5 to 30% by weight, more preferably 10 to 20% by weight.
  • component (E) may be set appropriately. From the viewpoint of increasing the photosensitivity and preventing overexposure, it is preferable to add about 0.1 to 20 parts by weight of the component (E) to 100 parts by weight of the total of the components (B) and (D).
  • a filler When a filler is blended, it is preferably 1 to 80% by weight, more preferably 5 to 50% by weight, even more preferably 10 to 30% by weight, based on the total solid content.
  • the content of the filler When the content of the filler is within the above range, the tack-free property is excellent, and the warp of the cured film tends to be reduced. Further, when the content of the filler is in the above range, the durability against repeated bending of the thermosetting film tends to be improved.
  • a curable resin composition is obtained by mixing the above components and, if necessary, an appropriate solvent.
  • Each of the above components may be subjected to operations such as pulverization / dispersion and defoaming before and / or after mixing, if necessary.
  • the pulverization / dispersion may be carried out, for example, by using a kneading device such as a bead mill, a ball mill, or a triple roll.
  • a cured film is formed by applying the curable resin composition to a substrate, removing the solvent by heating if necessary, and then performing photocuring and / or heat curing.
  • the resin composition (solution) may be applied onto the substrate by screen printing, curtain roll, reverse roll, spray coating, spin coating using a spinner, or the like.
  • the thickness of the coating film may be adjusted so that the thickness after drying is about 5 to 100 ⁇ m, preferably about 10 to 50 ⁇ m.
  • the drying temperature is preferably 120 ° C. or lower, more preferably 40 to 100 ° C., from the viewpoint of suppressing the thermosetting reaction.
  • the component (A), the component (B) and the component (C) may be thermoset by heat treatment of the coating film.
  • the curing temperature (maximum temperature at the time of thermal curing) is preferably 100 to 250 ° C. or less, more preferably 120 to 200 ° C., and 130 from the viewpoint of sufficiently promoting thermal curing and suppressing oxidation of metal wiring due to heat. It is more preferably up to 180 ° C.
  • the coating film When forming a photo-cured film, the coating film may be exposed. At the time of exposure, a negative-type photomask is arranged on the coating film, and active rays such as ultraviolet rays, visible rays, and electron rays are irradiated to selectively cure the exposed portions. Next, by developing with a shower, paddle, dipping or the like, the non-exposed portion is dissolved, so that a pattern cured film is formed.
  • active rays such as ultraviolet rays, visible rays, and electron rays
  • an alkaline aqueous solution is used as the developing solution.
  • the resin composition since the component (B) and the component (C) have acidic functional groups, the unexposed coating film has alkali solubility.
  • an organic alkaline aqueous solution and an inorganic alkaline aqueous solution can be used without particular limitation.
  • the developing solution may contain an organic solvent miscible with water, such as methanol, ethanol, n-propanol, isopropanol, N-methyl-2-pyrrolidone.
  • the alkali concentration of the developer is generally 0.01 to 20% by weight, preferably 0.02 to 10% by weight, and the temperature of the developer is generally 0 to 80 ° C, preferably 10 to 60 ° C.
  • the pattern-cured film after development is preferably rinsed with a rinse liquid such as water or an acidic aqueous solution.
  • thermosetting proceeds by the reaction of the (A) component with the (B) component and the (C) component, so that a photothermoset film is obtained.
  • the heating conditions in the thermal curing after the photo-curing are the same as the heating conditions in forming the thermosetting film.
  • the photo-cured film obtained from the resin composition has a resolution of, for example, about 10 to 1000 ⁇ m, and thus is suitable for use as a surface protective material for printed circuit boards. Further, since the cured film is excellent in flexibility, it is also suitably used as a cured film of a flexible printed board having metal wiring on a flexible film such as a polyimide film.
  • the curable resin composition of the present invention has excellent flexibility and heat resistance when used as a thermosetting film without photocuring, and excellent when used as a photocuring film or a photothermosetting film. It has patterning property and heat resistance.
  • one type of resin composition may be used to form a substrate with a cured film on which a thermosetting film and a photocurable film are provided on one substrate.
  • FIG. 1 is a plan view of a flexible printed circuit board 10 used in a bendable device.
  • the flexible printed circuit board has metal wiring made of copper or the like on one or both sides of a flexible film such as a polyimide film. The wiring is not shown in FIG.
  • the flexible printed circuit board 10 is bent along the line FF when incorporated in a device such as a foldable display. Therefore, the region 12 (bending region) extending along the line FF is required to have high flexibility.
  • the bent region 12 since no element is mounted on the substrate, it is preferable to form a cured film on the entire bent region, and it is not necessary to pattern the cured film. Therefore, the bending region 12 is provided with a thermosetting film having excellent flexibility.
  • areas 11A and 11B mounting areas
  • elements are mounted on the wiring on the board. Since it is necessary to make holes in the cured film in the portion where the element is mounted, the resin composition forming the cured film is required to have photosensitivity in the mounting region. On the other hand, the mounting area is not required to be flexible after being incorporated in the device. Therefore, a photo-curing film or a photo-thermosetting film is provided in the mounting areas 11A and 11B.
  • the resin composition in the mounting area, is used as a photocurable (photosensitive) composition to form a photocurable film or a photothermosetting film, and in the bending area, the resin composition is used as a thermosetting composition.
  • the thermosetting film is formed by using one type of resin composition, a cured film-coated substrate including a photocurable film having patterning properties and a thermosetting film having excellent flexibility can be obtained on the substrate.
  • a photo-cured film is formed by applying a curable resin composition to the mounting areas 11A and 11B of the substrate 10 to form a coating film and performing exposure.
  • a curable resin composition By performing pattern exposure using a mask during exposure and developing with an alkaline aqueous solution or the like, it is possible to form a pattern-cured film having openings for mounting elements and the like.
  • the photothermosetting film can be formed by heating the photocuring film.
  • thermosetting film can be formed by applying a resin composition to the bending region 12 of the substrate 10 to form a coating film, and heating the coating film to thermally cure it. Either the formation of the thermosetting film or the formation of the photocuring film may be performed first, or both may be performed in parallel.
  • FIG. 2 is a schematic cross-sectional view showing the process flow of the embodiment in which the thermosetting film is first formed.
  • a coating film 22 of the curable resin composition is formed on the bending region 12 of the substrate 10 (FIG. 2A), and the coating film is heat-cured by heating, so that the bending region 12 is thermally cured.
  • the film 22T is formed (FIG. 2B).
  • thermosetting film 22T After forming the thermosetting film 22T, a coating film 21 of the resin composition is formed on the mounting areas 11A and 11B (FIG. 2C), and pattern exposure is performed through a photomask. When pattern exposure is performed, the coating film is photo-cured in the exposed region to form the photo-cured film 21P. In the unexposed area, the coating film 21X is uncured. When development is performed using an alkaline aqueous solution or the like, the uncured coating film 21X is dissolved and removed, so that a patterned cured film is obtained (FIG. 2E). At this time, the coating film 22T on the bent region 12 has not been dissolved in the developing solution because it has been thermally cured first.
  • FIG. 3 is a schematic cross-sectional view showing the process flow of the embodiment in which the photo-cured film is formed first.
  • the coating film 21 of the resin composition is formed on the mounting areas 11A and 11B of the substrate 10 (FIG. 3A).
  • the coating film 21X in the unexposed region is dissolved and removed, and a pattern cured film 21P is formed (FIG. 3C).
  • a coating film 22 of the curable resin composition is formed on the bent region 12 of the substrate 10 (FIG. 3D). Then, when the substrate 10 is heated, the photo-cured film 21P on the mounting regions 11A and 11B and the coating film 22 on the bending region 12 are thermo-cured at the same time, and the patterned photo-thermo-cured film is formed on the mounting regions 11A and 11B. 21Q is provided, and the cured film-coated substrate in which the thermosetting film 22T is provided in the bent region 12 is obtained. In this method, the resin composition in both the mounting region and the bending region can be thermoset by heating once, so the process becomes simpler. Before forming the coating film on the bent region 12, the photo-curing film 21P may be thermally cured, if necessary.
  • the curable resin composition of the present invention can be applied to both formation of a thermosetting film having excellent flexibility, and formation of a photocuring film having excellent paneling property and heat resistance. Therefore, one resin composition can be used to form a substrate with a cured film including a thermosetting film and a photocurable film on one substrate, and the process management can be simplified. In addition, it is possible to omit processes such as equipment cleaning accompanying the switching of materials, which can contribute to improvement in productivity.
  • the resin composition was cast / coated on an area of 100 mm ⁇ 100 mm so that the final dry thickness was 20 ⁇ m, and dried at 80 ° C. for 20 minutes on the wiring forming surface of this flexible printed board. After that, heating was performed in an oven at 150 ° C. for 30 minutes to form a thermosetting film.
  • thermosetting film Using a baker type applicator, the resin composition was cast / applied to a 25 ⁇ m thick polyimide film (“Apical 25 NPI” manufactured by Kaneka) in an area of 100 mm ⁇ 100 mm so that the final dry thickness was 20 ⁇ m, and at 80 ° C. After drying for 20 minutes, heating was performed in an oven at 150 ° C. for 30 minutes to form a thermosetting film.
  • a baker type applicator the resin composition was cast / applied to a 25 ⁇ m thick polyimide film (“Apical 25 NPI” manufactured by Kaneka) in an area of 100 mm ⁇ 100 mm so that the final dry thickness was 20 ⁇ m, and at 80 ° C. After drying for 20 minutes, heating was performed in an oven at 150 ° C. for 30 minutes to form a thermosetting film.
  • Apical 25 NPI manufactured by Kaneka
  • This sample was cut into a size of 15 mm ⁇ 100 mm, bent 180 ° so that the cured film was on the outside, and a load of 200 g was placed on the bent portion for 3 seconds. After removing the load, the bent portions were visually observed to evaluate the presence or absence of cracks. This operation was repeated until a crack was formed in the cured film, and the number of times that no crack was generated was defined as the folding endurance number. For example, if a crack occurs in the second test, the folding endurance is 1. If no crack was generated even in the 10th test, the folding endurance was set to 10 or more ( ⁇ 10).
  • a negative type photomask having a line width / space width 100 ⁇ m / 100 ⁇ m was placed, and after exposure by irradiating ultraviolet rays with an integrated exposure amount of 300 mJ / cm 2 using a high pressure mercury lamp, 1.0% by weight A sodium carbonate aqueous solution (30 ° C.) was sprayed at a discharge pressure of 1.0 kgf / mm 2 for 90 seconds for development. After washing with pure water, it was heated and cured in an oven at 150 ° C. for 30 minutes to form a patterned cured film.
  • thermosetting film Similar to the evaluation of heat resistance of the thermosetting film, the resin composition was cast / coated so that the final dry thickness was 20 ⁇ m, and dried at 80 ° C. for 20 minutes. After that, exposure, development and heat curing were carried out in the same manner as in the evaluation of photosensitivity to form a photothermosetting film on the wiring formation surface of the flexible printed board. At the time of exposure, a photomask was not used and the entire surface was irradiated with ultraviolet rays. Using this sample, the heat resistance was evaluated by immersing it in a solder bath at 320 ° C. in the same manner as the heat resistance of the thermosetting film.
  • ⁇ Flexibility of photothermosetting film> Similar to the evaluation of the flexibility of the thermosetting film, the resin composition was cast / coated so that the final dry thickness was 20 ⁇ m, and dried at 80 ° C. for 20 minutes. Then, exposure, development and heat curing were performed in the same manner as in the above-mentioned evaluation of photosensitivity to form a photothermosetting film on the polyimide film. At the time of exposure, a photomask was not used and the entire surface was irradiated with ultraviolet rays. Using this sample, a folding endurance test was carried out to evaluate the flexibility in the same manner as the evaluation of the flexibility of the thermosetting film.
  • Table 1 shows a list of compounding and evaluation results of the resin compositions of Examples and Comparative Examples. Details of each component are as shown below.
  • Comparative Example 1 In Comparative Example 1 in which the amount of the component (A) was small, the cured film had excellent flexibility, but both the thermosetting film and the photothermosetting film were inferior in heat resistance. On the other hand, in Comparative Example 3 in which the amount of the component (A) was large and the amounts of the components (B) and (C) were small, the photothermosetting film exhibited excellent heat resistance, but the flexibility of the thermosetting film was high. Was inferior. In Comparative Example 2 in which the blending amount of the component (C) was small, both the thermosetting film and the photothermosetting film had excellent heat resistance, but the flexibility was insufficient.
  • thermosetting film did not crack even after 10 times of tests, and showed excellent flexibility. Further, both the thermosetting film and the photothermosetting film have excellent heat resistance, and one type of resin composition is used as a thermosetting cover material that requires flexibility and heat resistance, and It was shown to be applicable to both use as a photosensitive cover material that requires heat resistance and fine workability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

This curable resin composition is a photocurable, thermosetting resin composition having photocurability and thermosettability. This curable resin composition contains: (A) a thermosetting resin; (B) a polymer that has an acidic functional group and an ethylenically unsaturated group; (C) a polymer that has an acidic functional group and does not have an ethylenically unsaturated group; (D) a compound that has an ethylenically unsaturated group; and (E) a photoinitiator. With respect to 100 parts by mass of the (A) component, (B) component, (C) component, and (D) component in total, the (A) component content is preferably 10-50 parts by mass, the total (B) component and (C) component content is preferably 40-85 parts by mass, and the (C) component content is preferably 25 parts by mass or more.

Description

硬化性樹脂組成物、硬化膜、硬化膜付き基板およびその製造方法Curable resin composition, cured film, substrate with cured film, and method for producing the same
 本発明は熱硬化性および光硬化性を有する硬化性樹脂組成物、および硬化性樹脂組成物の硬化物からなる硬化膜に関する。さらに、本発明は、プリント基板等の基板上に硬化膜を備える硬化膜付き基板およびその製造方法に関する。 The present invention relates to a curable resin composition having thermosetting property and photocurable property, and a cured film composed of a cured product of the curable resin composition. Furthermore, the present invention relates to a substrate with a cured film provided with a cured film on a substrate such as a printed circuit board and a method for manufacturing the same.
 フレキシブルプリント基板(FPC)の表面には、絶縁性の硬化膜(カバーコート)が設けられている。カバーコート材としては、一般に、フォトリソグラフィーによる微細加工が可能な感光性ソルダーレジストや感光性ドライフィルムレジストが用いられている。感光性のカバーコート材は、光硬化により架橋密度が高められるため、硬化膜は、耐熱性、耐薬品性等に優れている反面、屈曲性等の柔軟性が乏しい。そのため、フォルダブルデバイス等の部分的に屈曲性・柔軟性が要求されるデバイスでは、カバーコート材の微細加工が必要な実装部分にはフォトリソグラフィーによるパターニングが可能な感光性カ材料を用い、屈曲部分等の柔軟性が必要な箇所には熱硬化性のカバーコート材やカバーレイフィルムを用いている。 An insulating cured film (cover coat) is provided on the surface of the flexible printed circuit board (FPC). As the cover coat material, a photosensitive solder resist or a photosensitive dry film resist which can be finely processed by photolithography is generally used. Since the crosslink density of the photosensitive cover coat material is increased by photo-curing, the cured film has excellent heat resistance and chemical resistance, but has poor flexibility such as flexibility. Therefore, for devices such as foldable devices that require partial flexibility and flexibility, use a photosensitive material that can be patterned by photolithography in the mounting area where fine processing of the cover coat material is required. A thermosetting cover coat material or a cover lay film is used in a portion where flexibility is required.
 このように種類の異なるカバーコート材を用いる方法は、作業工数がかかる上に、製造コストが高くなる。特許文献1では、硬化特性の異なる2種類の硬化性樹脂成分を含む樹脂組成物を用い、実装部分と屈曲部分で異なる硬化方式を採用することが提案されている。 The method of using different types of cover coat materials requires a lot of man-hours and increases the manufacturing cost. Patent Document 1 proposes to use a resin composition containing two kinds of curable resin components having different curing characteristics and to adopt different curing methods for a mounting portion and a bending portion.
特開2013-21067号公報JP, 2013-21067, A
 従来の硬化性樹脂組成物では、実装部分と屈曲部分の硬化方式を変更するのみでは、実装部分の耐熱性が不十分となることや、屈曲部分の柔軟性が不十分となることがあった。かかる課題に鑑み、本発明は、硬化方式を変更するのみで、耐熱性と柔軟性を両立可能な硬化性樹脂組成物の提供を目的とする。 In the conventional curable resin composition, the heat resistance of the mounting part may be insufficient and the flexibility of the bending part may be insufficient only by changing the curing method of the mounting part and the bending part. . In view of such a problem, the present invention has an object to provide a curable resin composition capable of achieving both heat resistance and flexibility only by changing the curing method.
 本発明の硬化性樹脂組成物は、光硬化性と熱硬化性を有する光硬化性・熱硬化性樹脂組成物であり、(A)熱硬化性樹脂;(B)酸性官能基とエチレン性不飽和基を有するポリマー;(C)酸性官能基を有し、エチレン性不飽和基を有さないポリマー;(D)エチレン性不飽和基を有する化合物;および(E)光重合開始剤、を含有する。硬化性樹脂組成物は、さらに有機フィラーを含んでいてもよい。 The curable resin composition of the present invention is a photocurable / thermosetting resin composition having photocurability and thermosetting property. (A) Thermosetting resin; (B) Acidic functional group and ethylenic Containing a polymer having a saturated group; (C) a polymer having an acidic functional group and not having an ethylenically unsaturated group; (D) a compound having an ethylenically unsaturated group; and (E) a photopolymerization initiator. To do. The curable resin composition may further contain an organic filler.
 (A)成分、(B)成分、(C)成分および(D)成分の合計100重量部に対して、(A)成分の含有量は10~50重量部が好ましく、(B)成分と(C)成分の含有量の合計は40~85重量部が好ましく、(C)成分の含有量は25重量部以上が好ましい。(D)成分の含有量は5~30重量部が好ましい。 The content of the component (A) is preferably 10 to 50 parts by weight based on 100 parts by weight of the total of the components (A), (B), (C) and (D), and the components (B) and ( The total content of component C) is preferably 40 to 85 parts by weight, and the content of component (C) is preferably 25 parts by weight or more. The content of the component (D) is preferably 5 to 30 parts by weight.
 硬化性樹脂組成物の全固形分中の(A)成分の含有量は10~50重量%が好ましく、(B)成分と(C)成分の含有量の合計は40~85重量%が好ましく、(C)成分の含有量は20重量部以上が好ましい。(D)成分の含有量は5~30重量%が好ましい。 The content of the component (A) in the total solid content of the curable resin composition is preferably 10 to 50% by weight, and the total content of the components (B) and (C) is preferably 40 to 85% by weight, The content of the component (C) is preferably 20 parts by weight or more. The content of the component (D) is preferably 5 to 30% by weight.
 (A)成分としてはエポキシ樹脂が好ましく、多官能エポキシ樹脂が特に好ましい。(B)成分および(C)成分の酸性官能基は、好ましくはカルボキシ基である。(B)成分および(C)成分の酸価は、例えば5~200mgKOH/g程度である。(B)成分および(C)成分の重量平均分子量は1,000~1,000,000が好ましい。 Epoxy resin is preferable as the component (A), and polyfunctional epoxy resin is particularly preferable. The acidic functional groups of the components (B) and (C) are preferably carboxy groups. The acid value of the components (B) and (C) is, for example, about 5 to 200 mgKOH / g. The weight average molecular weights of the component (B) and the component (C) are preferably 1,000 to 1,000,000.
 (D)成分は、(A)成分と反応し得る酸性官能基(例えばカルボキシ基)を含まないものが好ましい。(D)成分は、1分子中に4以上のエチレン性不飽和基を有していてもよく、エチレン性不飽和基の官能基当量が300以下であってもよい。 The component (D) preferably does not contain an acidic functional group (for example, a carboxy group) capable of reacting with the component (A). The component (D) may have 4 or more ethylenically unsaturated groups in one molecule, and the functional group equivalent of the ethylenically unsaturated groups may be 300 or less.
 上記の硬化性樹脂組成物を基板上に塗布し、光硬化および/または熱硬化を行うことにより、基板上に硬化膜を備える硬化膜付き基板が得られる。硬化膜を形成する基板は、フレキシブルプリント基板であってもよい。 By applying the above-mentioned curable resin composition onto a substrate and performing light curing and / or heat curing, a substrate with a cured film having a cured film on the substrate can be obtained. The substrate on which the cured film is formed may be a flexible printed circuit board.
 上記の硬化性樹脂組成物を用いて、1つの基板上に、熱硬化膜と光硬化膜を備える硬化膜付き基板を製造することもできる。例えば、基板の第一領域上に、硬化性樹脂組成物を塗布して第一塗膜を形成して、第一塗膜を露光して光硬化し、基板の第二領域上に、硬化性樹脂組成物を塗布して第二塗膜を形成し、第二塗膜を加熱して熱硬化することにより、第一領域上に光硬化膜を備え、第二領域上に熱硬化膜を備える硬化膜付き基板が得られる。 The curable resin composition described above can be used to produce a substrate with a cured film, which comprises a thermosetting film and a photocurable film on one substrate. For example, on the first region of the substrate, a curable resin composition is applied to form a first coating film, and the first coating film is exposed to light to be photocured, and the second region of the substrate is curable. A resin composition is applied to form a second coating film, and the second coating film is heated and thermoset to provide a photocurable film on the first region and a thermosetting film on the second region. A cured film-coated substrate is obtained.
 第一塗膜を露光する際にマスクを用いてパターン露光を行い、露光後に現像を行い、露光されていない部分の塗膜を除去することにより、パターニングされた光硬化膜を形成することもできる。光硬化膜を加熱して熱硬化することにより、光熱硬化膜を形成してもよい。 It is also possible to form a patterned photo-cured film by performing pattern exposure using a mask when exposing the first coating film, developing after the exposure, and removing the coating film in the unexposed portion. . You may form a photothermosetting film by heating a photocuring film and thermosetting.
 基板上への光硬化膜の形成と熱硬化膜の形成は、いずれを先に実施してもよく、両者を並行して実施してもよい。熱硬化膜を先に形成する場合は、第二領域上に塗膜を形成して熱硬化した後、第一領域上に塗膜を形成し、露光および必要に応じて現像を行い、さらに必要に応じて光硬化膜を熱硬化すればよい。光硬化膜を先に形成する場合は、第一領域に塗膜を形成し、露光および必要に応じて現像を行った後、第二領域に塗膜を形成し、加熱により熱硬化を行えばよい。この際、第二領域上の塗膜の熱硬化と同時に、一領域上の光硬化膜を熱硬化してもよい。 Either the formation of the photo-cured film or the formation of the thermo-cured film on the substrate may be performed first, or both may be performed in parallel. When forming a thermosetting film first, after forming a coating film on the second region and heat curing, form a coating film on the first region, perform exposure and, if necessary, develop, and further The photo-curable film may be thermally cured according to the above. When the photo-cured film is formed first, a coating film is formed in the first region, and after exposure and development as necessary, a coating film is formed in the second region and heat-cured by heating. Good. At this time, the photo-cured film on one region may be heat-cured at the same time as the heat-curing of the coating film on the second region.
 本発明の感光性樹脂組成物は、柔軟性に優れる熱硬化膜の形成およびパターニング性に優れる光硬化膜の形成の両方に適用できる。そのため、1つの樹脂組成物を用いて、基板上に熱硬化膜と光硬化膜を備える硬化膜付き基板を形成することも可能である。 The photosensitive resin composition of the present invention can be applied to both formation of a thermosetting film having excellent flexibility and formation of a photocuring film having excellent patterning properties. Therefore, it is possible to form a substrate with a cured film including a thermosetting film and a photocurable film on a substrate using one resin composition.
実装部と屈曲部を有するフレキシブルプリント配線板の平面図である。FIG. 6 is a plan view of a flexible printed wiring board having a mounting portion and a bent portion. 硬化膜付き基板の形成工程のフローを示す模式断面図である。It is a schematic cross section which shows the flow of the formation process of the substrate with a cured film. 硬化膜付き基板の形成工程のフローを示す模式断面図である。It is a schematic cross section which shows the flow of the formation process of the substrate with a cured film.
[硬化性樹脂組成物の構成成分]
 本発明の硬化性樹脂組成物は、(A)熱硬化性樹脂、(B)酸性官能基とエチレン性不飽和基を有するポリマー、(C)酸性官能基を有しエチレン性不飽和基を有さないポリマー、(D)エチレン性不飽和基を有する光硬化性化合物、および(E)光重合開始剤を含み、(A)成分等による熱硬化性と、(D)成分等による光硬化性(感光性)を有する。
[Components of curable resin composition]
The curable resin composition of the present invention comprises (A) a thermosetting resin, (B) a polymer having an acidic functional group and an ethylenically unsaturated group, (C) an acidic functional group and an ethylenically unsaturated group. Which does not contain a polymer, (D) a photocurable compound having an ethylenically unsaturated group, and (E) a photopolymerization initiator. It has (photosensitivity).
<(A)熱硬化性樹脂>
 熱硬化性樹脂は、分子内に少なくとも1つの熱硬化性官能基を有する化合物である。熱硬化性樹脂としては、エポキシ樹脂、オキセタン樹脂、イソシアネート樹脂、ブロックイソシアネート樹脂、ビスマレイミド樹脂、ビスアリルナジイミド樹脂、ポリエステル樹脂(例えば不飽和ポリエステル樹脂等)、ジアリルフタレート樹脂、珪素樹脂、ビニルエステル樹脂、メラミン樹脂、ポリビスマレイミドトリアジン樹脂(BT樹脂)、シアネート樹脂(例えばシアネートエステル樹脂等)、ユリア樹脂、グアナミン樹脂、スルホアミド樹脂、アニリン樹脂、ポリウレア樹脂、チオウレタン樹脂、ポリアゾメチン樹脂、エピスルフィド樹脂、エン-チオール樹脂、ベンゾオキサジン樹脂等が挙げられる。中でも、後述の(B)成分および(C)成分の酸性官能基と反応して熱架橋ネットワークを形成可能であることから、エポキシ樹脂が好ましい。硬化膜に耐熱性を付与できると共に、金属箔等の導体や回路基板に対する接着性を付与できることから、1分子中に2以上のエポキシ基を有する多官能エポキシ樹脂が好ましい。
<(A) Thermosetting resin>
The thermosetting resin is a compound having at least one thermosetting functional group in the molecule. Examples of the thermosetting resin include epoxy resin, oxetane resin, isocyanate resin, blocked isocyanate resin, bismaleimide resin, bisallylnadiimide resin, polyester resin (for example, unsaturated polyester resin), diallyl phthalate resin, silicon resin, vinyl ester. Resin, melamine resin, polybismaleimide triazine resin (BT resin), cyanate resin (for example, cyanate ester resin), urea resin, guanamine resin, sulfamide resin, aniline resin, polyurea resin, thiourethane resin, polyazomethine resin, episulfide resin , Ene-thiol resin, benzoxazine resin and the like. Of these, epoxy resins are preferable because they can react with the acidic functional groups of the components (B) and (C) described below to form a thermally crosslinked network. A polyfunctional epoxy resin having two or more epoxy groups in one molecule is preferable because it can impart heat resistance to the cured film and can impart adhesiveness to a conductor such as a metal foil or a circuit board.
 多官能エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノキシ型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アミン型エポキシ樹脂等が挙げられる。エポキシ樹脂は、ウレタン、ゴム、キレート、ダイマー酸等による変性エポキシ樹脂でもよい。(A)成分として、市販のエポキシ樹脂をそのまま用いてもよい。 As the polyfunctional epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, biphenyl type epoxy resin, phenoxy type epoxy resin, naphthalene type epoxy resin, phenol novolac Type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, dicyclopentadiene type epoxy resin, amine type epoxy resin and the like. The epoxy resin may be a modified epoxy resin with urethane, rubber, chelate, dimer acid or the like. As the component (A), a commercially available epoxy resin may be used as it is.
 硬化膜の耐熱性および耐薬品等の観点から、エポキシ樹脂のエポキシ当量(1当量のエポキシ基を含む化合物の質量(g))は2000以下が好ましく、1500以下がより好ましい。エポキシ樹脂の重量平均分子量は、150~2000程度が好ましく、200~1500程度がより好ましい。 From the viewpoint of heat resistance and chemical resistance of the cured film, the epoxy equivalent of the epoxy resin (mass (g) of the compound containing 1 equivalent of epoxy group) is preferably 2000 or less, and more preferably 1500 or less. The weight average molecular weight of the epoxy resin is preferably about 150 to 2000, more preferably about 200 to 1500.
<酸性官能基含有ポリマー>
 (B)成分および(C)成分は、分子内に少なくとも1つの酸性官能基を有するポリマーであり、これらのポリマーは、樹脂組成物による塗膜を形成するための主成分である。酸性官能基含有ポリマーは、有機溶媒に対して可溶性である。(B)成分および(C)成分を溶解可能な有機溶媒としては、スルホキシド類、ホルムアミド類、アセトアミド類、ピロリドン類、ホスホルアミド類、ラクトン類、エーテル類、アセテート類等が挙げられる。(B)成分および(C)成分は、これらの有機溶媒のいずれかに、5重量%以上の濃度で溶解可能であるものが好ましい。
<Polymer containing acidic functional group>
The component (B) and the component (C) are polymers having at least one acidic functional group in the molecule, and these polymers are the main components for forming a coating film with the resin composition. The acidic functional group-containing polymer is soluble in an organic solvent. Examples of the organic solvent capable of dissolving the component (B) and the component (C) include sulfoxides, formamides, acetamides, pyrrolidones, phosphoramides, lactones, ethers, acetates and the like. The components (B) and (C) are preferably those which can be dissolved in any of these organic solvents at a concentration of 5% by weight or more.
 酸性官能基含有ポリマーのポリエチレングリコール換算の重量平均分子量は1,000~1,000,000が好ましく、2,000~200,000がより好ましく、3,000~100,000がさらに好ましく、4,000~50,000が特に好ましい。酸性官能基含有化合物の重量平均分子量が上記範囲内であれば、耐熱性と柔軟性に優れる硬化膜が得られやすい。 The weight average molecular weight of the acidic functional group-containing polymer in terms of polyethylene glycol is preferably 1,000 to 1,000,000, more preferably 2,000 to 200,000, further preferably 3,000 to 100,000, 000 to 50,000 is particularly preferable. When the weight average molecular weight of the acidic functional group-containing compound is within the above range, a cured film having excellent heat resistance and flexibility can be easily obtained.
 酸性官能基としては、カルボキシ基、フェノール性水酸基、スルホン酸基等が挙げられる。特に、(A)熱硬化性樹脂との反応性や保存安定性の観点からカルボキシ基が好ましい。(B)成分および(C)成分のカルボキシ基は、2つのカルボキシ基が脱水したカルボン酸無水物であってもよい。樹脂組成物が、(B)成分および(C)成分として酸性官能基含有ポリマーを含むため、熱硬化および光硬化のいずれも実施していない硬化前の感光性樹脂組成物はアルカリ可溶性を示す。一方、(B)成分および(C)成分は熱硬化により(A)成分と反応するため、熱硬化膜はアルカリに不溶となる。 Examples of the acidic functional group include a carboxy group, a phenolic hydroxyl group, a sulfonic acid group and the like. Particularly, a carboxy group is preferable from the viewpoint of reactivity with (A) thermosetting resin and storage stability. The carboxy groups of the components (B) and (C) may be carboxylic acid anhydrides in which two carboxy groups are dehydrated. Since the resin composition contains the acidic functional group-containing polymer as the component (B) and the component (C), the photosensitive resin composition before curing, which is neither heat-cured nor photocured, is alkali-soluble. On the other hand, since the component (B) and the component (C) react with the component (A) by thermosetting, the thermosetting film becomes insoluble in alkali.
 (B)成分および(C)成分の酸価は、5~200mgKOH/gが好ましく、10~150mgKOH/gがより好ましく、15~100mgKOH/gがさらに好ましい。ポリマーの酸価が上記範囲であることにより、硬化前の樹脂組成物が、適度のアルカリ可溶性を示す。また、酸価が上記範囲であることにより、硬化膜の耐熱性、絶縁信頼性および耐薬品性を向上できるとともに、柔軟性が向上する傾向がある。 The component (B) and component (C) preferably have an acid value of 5 to 200 mgKOH / g, more preferably 10 to 150 mgKOH / g, and even more preferably 15 to 100 mgKOH / g. When the acid value of the polymer is within the above range, the resin composition before curing exhibits appropriate alkali solubility. Further, when the acid value is in the above range, the heat resistance, insulation reliability and chemical resistance of the cured film can be improved, and the flexibility tends to be improved.
<(B)酸性官能基とエチレン性不飽和基を有するポリマー>
 (B)成分は、上記の酸性基含有ポリマーの中で、エチレン性不飽和基を有するものである。エチレン性不飽和基としては、(メタ)アクリロイル基およびビニル基が挙げられる。(B)成分は、(A)成分との反応により熱硬化に関与し、かつエチレン性不飽和基が後述の(D)成分とともに光硬化に関与する。すなわち、(B)成分が、光硬化と熱硬化の両方に関与するため、光硬化と熱硬化の両方を行った硬化膜では、硬化膜の架橋密度が高められるとともに、耐熱性や耐薬品性が向上する傾向がある。
<(B) Polymer Having Acidic Functional Group and Ethylenically Unsaturated Group>
The component (B) is one having an ethylenically unsaturated group in the above-mentioned acidic group-containing polymer. Examples of the ethylenically unsaturated group include (meth) acryloyl group and vinyl group. The component (B) participates in heat curing by the reaction with the component (A), and the ethylenically unsaturated group participates in photocuring together with the component (D) described below. That is, since the component (B) participates in both photo-curing and heat-curing, a cured film that has undergone both photo-curing and heat-curing has an increased cross-linking density of the cured film and also has high heat resistance and chemical resistance. Tends to improve.
 (B)成分としては、エポキシ樹脂と不飽和モノカルボン酸とを反応させて得られるエステルに、飽和または不飽和の多価カルボン酸無水物を付加して得られる酸変性エポキシ(メタ)アクリレート;エチレン性不飽和基および/またはカルボキシ基を有するジオール化合物と、ジイソシアネート化合物との重合物であるウレタン(メタ)アクリレート;カルボキシ基および重合可能な二重結合を有する(メタ)アクリル酸と(メタ)アクリルエステル等との共重合体の側鎖のカルボキシ基の一部をグリシジル(メタ)アクリレート等の(メタ)アクリル基とエポキシ基を有する化合物のエポキシ基と反応させて得られる(メタ)アクリル化(メタ)アクリレート等が挙げられる。 As the component (B), an acid-modified epoxy (meth) acrylate obtained by adding a saturated or unsaturated polycarboxylic acid anhydride to an ester obtained by reacting an epoxy resin with an unsaturated monocarboxylic acid; Urethane (meth) acrylate, which is a polymer of a diol compound having an ethylenically unsaturated group and / or a carboxy group, and a diisocyanate compound; (meth) acrylic acid having a carboxy group and a polymerizable double bond, and (meth) (Meth) acrylate obtained by reacting a part of the carboxy group of the side chain of a copolymer with an acrylic ester or the like with a (meth) acrylic group such as glycidyl (meth) acrylate and an epoxy group of a compound having an epoxy group (Meth) acrylate etc. are mentioned.
 カルボキシ基を有するエポキシ(メタ)アクリレートの市販品としては、日本化薬製のKAYARAD ZFRシリーズ、ZARシリーズ、ZCRシリーズ、CCRシリーズ、PCRシリーズ、UXEシリーズ等が挙げられる。カルボキシ基を有するウレタン(メタ)アクリレートの市販品としては、日本化薬製のUXシリーズ等が挙げられる。(メタ)アクリル化(メタ)アクリレートの市販品としては、ダイセル・サイテック製のサイクロマーACAシリーズ等が挙げられる。 Examples of commercially available epoxy (meth) acrylates having a carboxy group include KAYARAD ZFR series, ZAR series, ZCR series, CCR series, PCR series, and UXE series manufactured by Nippon Kayaku. Examples of commercially available urethane (meth) acrylates having a carboxy group include UX series manufactured by Nippon Kayaku. Examples of commercially available (meth) acrylated (meth) acrylates include Cyclomer ACA series manufactured by Daicel Cytec.
<(C)酸性官能基を有しエチレン性不飽和基を有さないポリマー>
 (C)成分は、上記の酸性基含有ポリマーの中で、エチレン性不飽和基を有さないものである。(C)成分は、(A)成分との反応により熱硬化に関与するが、エチレン性不飽和基を有さないため光硬化には関与しない。(C)成分を含むことにより、硬化膜の柔軟性を確保できる。
<(C) Polymer Having Acidic Functional Group and No Ethylenically Unsaturated Group>
The component (C) is a polymer having no ethylenically unsaturated group in the above-mentioned acidic group-containing polymer. The component (C) participates in heat curing by the reaction with the component (A), but does not participate in photocuring because it does not have an ethylenically unsaturated group. By including the component (C), the flexibility of the cured film can be secured.
 (C)成分の具体例としては、カルボキシル基含有(メタ)アクリル系ポリマー、カルボキシル基含有ビニル系ポリマー、酸変性ポリウレタン、酸変性ポリエステル、酸変性ポリカーボネート、酸変性ポリアミド、酸変性ポリイミド、酸変性ポリウレタンアミド、酸変性ポリウレタンイミド等が挙げられる。硬化膜の柔軟性および耐薬品性等の観点から、カルボキシル基含有(メタ)アクリル系共重合体、酸変性ポリウレタン、酸変性ポリアミド、酸変性ポリイミドが好ましい。 Specific examples of the component (C) include carboxyl group-containing (meth) acrylic polymers, carboxyl group-containing vinyl polymers, acid-modified polyurethanes, acid-modified polyesters, acid-modified polycarbonates, acid-modified polyamides, acid-modified polyimides, acid-modified polyurethanes. Examples thereof include amide and acid-modified polyurethane imide. From the viewpoint of flexibility and chemical resistance of the cured film, a carboxyl group-containing (meth) acrylic copolymer, an acid-modified polyurethane, an acid-modified polyamide, and an acid-modified polyimide are preferable.
 カルボキシ基含有(メタ)アクリル系ポリマーは、(メタ)アクリル酸エステル、ならびに1分子中にカルボキシ基および重合可能な二重結合を有する化合物を、モノマー成分として含む共重合体である。カルボキシ基含有モノマーとしては、(メタ)アクリル酸、クロトン酸、イソクロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸ダイマー、2-(メタ)アクリロイオキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイオキシエチルコハク酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、アトロパ酸、けい皮酸、リノール酸、エイコサジエン酸、ドコサジエン酸、リノレン酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ-Y-リノレン酸、エイコサトリエン酸、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸、ボセオペンタエン酸、エイコサペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸、ドコサヘキサエン酸、ニシン酸、2,2,2-トリス(メタ)アクリロイロキシメチルコハク酸、2-トリス(メタ)アクリロイロキシメチルエチルフタル酸等が挙げられる。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸アルキルエステルが好ましい。 A carboxy group-containing (meth) acrylic polymer is a copolymer containing a (meth) acrylic acid ester and a compound having a carboxy group and a polymerizable double bond in one molecule as a monomer component. Carboxy group-containing monomers include (meth) acrylic acid, crotonic acid, isocrotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid, ω-carboxyl. -Polycaprolactone mono (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate, (meth) acrylic acid dimer, 2- (meth) acryloyloxypropyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl amber Acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, atropic acid, cinnamic acid, linoleic acid, eicosadienoic acid, docosadienoic acid, linolenic acid, pinolenic acid, eleostearic acid, mead acid, dihomo-Y-linolenic acid , Eicosatrienoic acid, steer Donoic acid, arachidonic acid, eicosatetraenoic acid, adrenic acid, boseopentaenoic acid, eicosapentaenoic acid, ozbondic acid, sardonic acid, tetracosapentaenoic acid, docosahexaenoic acid, nisinic acid, 2,2,2-tris (meth) Examples thereof include acryloyloxymethylsuccinic acid and 2-tris (meth) acryloyloxymethylethylphthalic acid. As the (meth) acrylic acid ester, a (meth) acrylic acid alkyl ester is preferable.
 カルボキシ基含有(メタ)アクリル系ポリマーは、カルボキシ基含有モノマーおよび(メタ)アクリル酸エステルに加えて、共重合成分として、ジアセトン(メタ)アクリルアミド等の(メタ)アクリルアミド、アクリロニトリルおよびビニル-n-ブチルエーテル等のビニルアルコールのエステル類、スチレン、ビニルトルエン等を含んでいてもよい。カルボキシ基含有(メタ)アクリル系ポリマーは、例えば上記のモノマー成分のラジカル重合により得られる。ラジカル重合は熱重合でも光重合でもよい。ラジカル重合には、重合開始剤を用いてもよい。カルボキシ基含有(メタ)アクリル系ポリマーは、好ましくは、熱重合開始剤として、アゾ系化合物、有機過酸化物、過硫酸塩、過酸化水素等を用いた溶液重合により得られる。 The carboxy group-containing (meth) acrylic polymer is, in addition to the carboxy group-containing monomer and the (meth) acrylic acid ester, as a copolymerization component, (meth) acrylamide such as diacetone (meth) acrylamide, acrylonitrile and vinyl-n-butyl ether. And the like, esters of vinyl alcohol, styrene, vinyltoluene and the like may be contained. The carboxy group-containing (meth) acrylic polymer is obtained, for example, by radical polymerization of the above monomer component. The radical polymerization may be thermal polymerization or photopolymerization. A polymerization initiator may be used for radical polymerization. The carboxy group-containing (meth) acrylic polymer is preferably obtained by solution polymerization using an azo compound, an organic peroxide, a persulfate, hydrogen peroxide or the like as a thermal polymerization initiator.
 酸変性ポリウレタンは、例えば、2つの水酸基および1つのカルボキシ基を含有するジオール化合物と、ジイソシアネート化合物を反応させることにより得られる。 The acid-modified polyurethane can be obtained, for example, by reacting a diisocyanate compound with a diol compound having two hydroxyl groups and one carboxy group.
 酸変性ポリエステルは、例えば、2つの水酸基および1つのカルボキシ基を含有するジオール化合物と、ジカルボン酸を反応させることにより得られる。 The acid-modified polyester can be obtained, for example, by reacting a dicarboxylic acid with a diol compound containing two hydroxyl groups and one carboxy group.
 酸変性ポリアミドは、アミド酸構造を有する化合物であり、例えば、ジアミノ化合物とテトラカルボン酸二無水物との反応により得られる。 The acid-modified polyamide is a compound having an amic acid structure, and is obtained, for example, by reacting a diamino compound with a tetracarboxylic acid dianhydride.
 酸変性ポリイミドは、例えば、ジイソシアネート化合物とテトラカルボン酸二無水物との反応により得られる。テトラカルボン酸二無水物をジイソシアネート化合物の当量よりも過剰に加えることにより、末端にカルボン酸無水物基を有するイミド化合物が得られる。末端にカルボン酸無水物基を有するイミド化合物に、水および/またはメタノール、エタノール、プロパノール、ブタノール等の第一級アルコールを反応させることにより、末端にカルボキシ基を有するイミド化合物が得られる。 The acid-modified polyimide is obtained, for example, by reacting a diisocyanate compound with a tetracarboxylic acid dianhydride. An imide compound having a carboxylic acid anhydride group at the terminal is obtained by adding tetracarboxylic dianhydride in excess of the equivalent amount of the diisocyanate compound. By reacting an imide compound having a carboxylic acid anhydride group at a terminal with water and / or a primary alcohol such as methanol, ethanol, propanol, butanol, an imide compound having a carboxy group at a terminal can be obtained.
 2つの水酸基および1つのカルボキシ基を含有するジオール化合物としては、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(2-ヒドロキシエチル)プロピオン酸、2,2-ビス(3-ヒドロキシメプロピル)プロピオン酸、2,3-ジヒドロキシ-2-メチルプロピオン酸、2,2-ビス(ヒドロキシメチル)ブタン酸、2,2-ビス(2-ヒドロキシエチル)ブタン酸、2,2-ビス(3-ヒドロキシプロピル)ブタン酸、2,3-ジヒドロキシブタン酸、2,4-ジヒドロキシ-3,3-ジメチルブタン酸、および2,3-ジヒドロキシヘキサデカン酸等の脂肪族系ジオール;2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸等の芳香族系ジオールが挙げられる。特に、脂肪族系ジオールを用いた場合に、樹脂組成物が感光性に優れる傾向がある。 Examples of the diol compound having two hydroxyl groups and one carboxy group include 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (2-hydroxyethyl) propionic acid and 2,2-bis (3- Hydroxypropyl) propionic acid, 2,3-dihydroxy-2-methylpropionic acid, 2,2-bis (hydroxymethyl) butanoic acid, 2,2-bis (2-hydroxyethyl) butanoic acid, 2,2-bis Aliphatic diols such as (3-hydroxypropyl) butanoic acid, 2,3-dihydroxybutanoic acid, 2,4-dihydroxy-3,3-dimethylbutanoic acid, and 2,3-dihydroxyhexadecanoic acid; 2,3- Dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, 3 4-dihydroxybenzoic acid, aromatic diols such as 3,5-dihydroxybenzoic acid. In particular, when an aliphatic diol is used, the resin composition tends to have excellent photosensitivity.
 ジイソシアネート化合物は、脂環族ジイソシアネート化合物および脂肪族ジイソシアネート化合物のいずれでもよい。ジイソシアネート化合物は、ジイソシアネート化合物のイソシアネート基と反応可能な官能基を二つ以上有する化合物との反応物であってもよく、例えば、末端にイソシアネート基を有するウレタン化合物でもよい。 The diisocyanate compound may be either an alicyclic diisocyanate compound or an aliphatic diisocyanate compound. The diisocyanate compound may be a reaction product of a compound having two or more functional groups capable of reacting with the isocyanate group of the diisocyanate compound, and may be, for example, a urethane compound having an isocyanate group at the terminal.
 テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物および脂肪族テトラカルボン酸二無水物のいずれでもよく、芳香環にカルボン酸無水物基が直接結合している芳香族テトラカルボン酸二無水物が好ましい。中でも芳香族テトラカルボン酸二無水物が好ましく、無水カルボキシ基が芳香環に直接結合しているものが好ましい。ジアミノ化合物は、芳香族ジアミンおよび脂肪族ジアミンのいずれでもよく、芳香族ジアミンが好ましい。 The tetracarboxylic acid dianhydride may be either an aromatic tetracarboxylic acid dianhydride or an aliphatic tetracarboxylic acid dianhydride, and an aromatic tetracarboxylic acid dianhydride in which a carboxylic acid anhydride group is directly bonded to an aromatic ring. Anhydrous is preferred. Of these, aromatic tetracarboxylic acid dianhydrides are preferable, and those in which an anhydrous carboxy group is directly bonded to an aromatic ring are preferable. The diamino compound may be either an aromatic diamine or an aliphatic diamine, and the aromatic diamine is preferable.
<(D)光硬化性化合物>
 (D)成分は、少なくとも1つのエチレン性不飽和基を有する光硬化性化合物であり、上記の(C)成分とともに、光硬化に関与する。(D)成分は光硬化のみに関与し、熱硬化には関与しないものが好ましい。すなわち、(D)成分は、カルボキシ基等の酸性官能基を含まないものが好ましい。(D)成分が熱硬化に関与しない場合、光硬化を行わず熱硬化のみを行った熱硬化膜では、(D)成分が未反応で残存しており、可塑剤的に作用するため、柔軟性が向上する傾向がある。
<(D) Photocurable compound>
The component (D) is a photocurable compound having at least one ethylenically unsaturated group, and participates in photocuring together with the component (C). It is preferable that the component (D) participates only in photo-curing and not in heat-curing. That is, it is preferable that the component (D) does not contain an acidic functional group such as a carboxy group. When the component (D) does not participate in the thermosetting, the component (D) remains unreacted in the thermosetting film which is not subjected to photocuring but only thermosetting, and acts as a plasticizer. The tendency to improve the sex.
 エチレン性不飽和基としては、(メタ)アクリロイル基およびビニル基が挙げられる。光硬化膜の硬化密度を高める観点から、(D)成分は、1分子中に2個以上のエチレン性不飽和基を有する化合物が好ましい。 (Examples of the ethylenically unsaturated group include a (meth) acryloyl group and a vinyl group. From the viewpoint of increasing the curing density of the photocured film, the component (D) is preferably a compound having two or more ethylenically unsaturated groups in one molecule.
 1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1-(メタ)アクリロキシ-3-(メタ)アクリロキシプロパン、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、4,4’-イソプロピリデンジフェノールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシ・ポリエトキシ)フェニル]プロパン、2,2-水添ビス[4-((メタ)アクリロキシ・ポリエトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシ・ポリプロポキシ)フェニル]プロパン、ビスフェノールF EO変性(n=2~50)ジ(メタ)アクリレート、ビスフェノールA EO変性(n=2~50)ジ(メタ)アクリレート、ビスフェノールS EO変性(n=2~50)ジ(メタ)アクリレート、等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化トチメチロールプロパントリ(メタ)アクリレート、プロポキシ化トチメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸トリ(エタン(メタ)アクリレート)、1,3,5-トリ(メタ)アクリロイルヘキサヒドロ-s-トリアジン等の3官能(メタ)アクリレート;テトラメチロールメタンテトラ(メタ)アクリレート、ペンタスリトールテトラ(メタ)アクリレート、エトキシ化ペンタスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート等の4官能以上の(メタ)アクリレートが挙げられる。 As the polyfunctional (meth) acrylate having two or more (meth) acryloyl groups in one molecule, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2-hydroxy-1- (meth) Acryloxy-3- (meth) acryloxypropane, 1,4-butanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acr Rate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 2,4-diethyl-1,5-pentanediol di (meth) acrylate, 2- Hydroxy-1,3-di (meth) acryloxypropane, 3-methyl-1,5-pentanediol di (meth) acrylate, 2,4-diethyl-1,5-pentanediol di (meth) acrylate, 1, 4-cyclohexanedimethanol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 4,4'-isopropylidene diphenol di (meth) acrylate, 2,2-bis [4-((meth) acrylate] Acryloxyethoxy) phenyl] propane, 2,2-bis [4-((meth) a) Riloxy / diethoxy) phenyl] propane, 2,2-bis [4-((meth) acryloxy / polyethoxy) phenyl] propane, 2,2-hydrogenated bis [4-((meth) acryloxy / polyethoxy) phenyl] propane, 2,2-bis [4-((meth) acryloxy / polypropoxy) phenyl] propane, bisphenol F EO modified (n = 2 to 50) di (meth) acrylate, bisphenol A EO modified (n = 2 to 50) di Bifunctional (meth) acrylates such as (meth) acrylate, bisphenol S EO-modified (n = 2 to 50) di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated Totimethylolpropane tri (meth) acrylate, propoxy Trifunctional (meth) acrylates such as oxytotimethylolpropane tri (meth) acrylate, isocyanuric acid tri (ethane (meth) acrylate), and 1,3,5-tri (meth) acryloylhexahydro-s-triazine; tetramethylol Methane tetra (meth) acrylate, pentathritol tetra (meth) acrylate, ethoxylated pentathritol tetra (meth) acrylate, propoxylated pentathritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, dipentaerythritol poly (meth) acrylate, and other tetrafunctional or higher functional (meth) acrylates may be mentioned.
 1分子中に2個以上のビニル基を有する化合物の具体例としては、ジアリルアミン、ジアリルジメチルシラン、ジアリルジスルフィド、ジアリルエーテル、ジアリルシアヌレート、ジアリルイソフタレート、ジアリルテレフタレート、1,3-ジアリロキシ-2-プロパノール、ジアリルスルフィドジアリルマレエート、イソシアヌル酸トリアリル、トリアリル1,3,5-ベンゼンカルボキシレート、トリアリルアミン、トリアリルシトレート、トリアリルホスフェート等が挙げられる。 Specific examples of the compound having two or more vinyl groups in one molecule include diallylamine, diallyldimethylsilane, diallyl disulfide, diallyl ether, diallyl cyanurate, diallyl isophthalate, diallyl terephthalate and 1,3-dialyloxy-2-. Propanol, diallyl sulfide diallyl maleate, triallyl isocyanurate, triallyl 1,3,5-benzenecarboxylate, triallylamine, triallyl citrate, triallyl phosphate and the like can be mentioned.
 (D)成分は、ウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、アクリル(メタ)アクリレート樹脂等のポリマー(オリゴマー)であってもよい。 The component (D) may be a polymer (oligomer) such as urethane (meth) acrylate resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin, and acrylic (meth) acrylate resin.
 光硬化膜の架橋密度を高めて、耐熱性および耐薬品性を向上する観点から、(D)成分は分子量が1000未満の低分子量化合物であることが好ましく、(D)成分の官能基当量(1当量のエチレン性不飽和基を含む化合物の質量(g))は、300以下が好ましく、250以下がより好ましく、200以下がさらに好ましい。(D)成分の官能基当量は、180以下または150以下であってもよい。(D)成分の官能基当量は50以上、または80以上であってもよい。(D)成分は1分子中に4個以上のエチレン性不飽和基を有するものが好ましく、特に4官能以上の(メタ)アクリレートが好ましい。(D)成分として、4官能以上の化合物と4官能未満の化合物を併用してもよい。 From the viewpoint of increasing the crosslink density of the photo-cured film and improving heat resistance and chemical resistance, the component (D) is preferably a low molecular weight compound having a molecular weight of less than 1000, and the functional group equivalent of the component (D) ( The mass (g) of the compound containing 1 equivalent of an ethylenically unsaturated group is preferably 300 or less, more preferably 250 or less, and further preferably 200 or less. The functional group equivalent of the component (D) may be 180 or less or 150 or less. The functional group equivalent of the component (D) may be 50 or more, or 80 or more. The component (D) preferably has 4 or more ethylenically unsaturated groups in one molecule, and tetrafunctional or higher (meth) acrylate is particularly preferable. As the component (D), a compound having four or more functional groups and a compound having less than four functional groups may be used in combination.
<(E)光重合開始剤>
 (E)成分としての光重合開始剤は、UV(紫外光)等の光エネルギーを吸収して活性化し、上記(B)成分および(D)成分のエチレン性不飽和基の光ラジカル重合反応による光架橋ネットワークの形成を、開始・促進させる化合物(光ラジカル重合開始剤)である。
<(E) Photopolymerization initiator>
The photopolymerization initiator as the component (E) absorbs and activates light energy such as UV (ultraviolet light) and is activated by a photoradical polymerization reaction of the ethylenically unsaturated group of the components (B) and (D). It is a compound (photoradical polymerization initiator) that initiates / promotes the formation of a photocrosslinking network.
 光ラジカル重合開始剤の例としては、ベンゾイン系化合物、アセトフェノン類、アミノケトン類、オキシムエステル類、アシルホスフィンオキサイド系化合物、アゾ系化合物等の自己開裂型の光ラジカル重合開始剤;およびベンゾフェノン類、ベンゾインエーテル類、ベンジルケタール類、ジベンゾスベロン類、アントラキノン類、キサントン類、チオキサントン類、ハロゲノアセトフェノン類、ジアルコキシアセトフェノン類、ヒドロキシアセトフェノン類、ハロゲノビスイミダゾール類、ハロゲノトリアジン類等の水素引抜型の光ラジカル重合開始剤が挙げられる。光重合開始剤は2種以上を混合して用いてもよい。 Examples of the photoradical polymerization initiator include self-cleaving photoradical polymerization initiators such as benzoin compounds, acetophenones, aminoketones, oxime esters, acylphosphine oxide compounds, and azo compounds; and benzophenones and benzoins. Hydrogen abstraction type photoradicals of ethers, benzyl ketals, dibenzosuberones, anthraquinones, xanthones, thioxanthones, halogenoacetophenones, dialkoxyacetophenones, hydroxyacetophenones, halogenobisimidazoles, halogenotriazines, etc. A polymerization initiator may be used. The photopolymerization initiator may be used as a mixture of two or more kinds.
<(F)フィラー>
 硬化性樹脂組成物は、上記(A)~(E)成分に加えて、必要に応じて、フィラーを含んでいてもよい。フィラーとしては、シリカ、マイカ、タルク、硫酸バリウム、ワラストナイト、炭酸カルシウム等の無機フィラー、および有機ポリマーフィラーが挙げられる。これらの中でも、充填剤としては、有機ポリマーの球状ビーズが好ましい。有機ビーズは、炭素を含む球状ポリマーであり、楕円状であってもよい。有機ビーズは、表面がシリカ等により被覆されていてもよい。
<(F) Filler>
The curable resin composition may contain a filler, if necessary, in addition to the components (A) to (E). Examples of the fillers include inorganic fillers such as silica, mica, talc, barium sulfate, wollastonite and calcium carbonate, and organic polymer fillers. Among these, spherical beads of organic polymer are preferable as the filler. The organic beads are spherical polymers containing carbon and may have an elliptical shape. The surface of the organic beads may be covered with silica or the like.
 有機ビーズを構成するポリマーとしては、ポリメタクリル酸メチル、架橋ポリメタクリル酸メチル、架橋ポリメタクリル酸ブチル、架橋ポリアクリル酸エステル等のアクリル系ポリマー、架橋スチレン、ナイロン、シリコーン、架橋シリコーン、架橋ウレタン等が挙げられる。中でも、硬化膜の硬度と柔軟性とを両立する観点から、分子内にウレタン結合を含有する架橋ビーズが好ましい。 Examples of the polymer constituting the organic beads include acrylic polymers such as polymethylmethacrylate, crosslinked polymethylmethacrylate, crosslinked polybutylmethacrylate, and crosslinked polyacrylic acid ester, crosslinked styrene, nylon, silicone, crosslinked silicone, crosslinked urethane, etc. Is mentioned. Among them, crosslinked beads containing a urethane bond in the molecule are preferable from the viewpoint of achieving both hardness and flexibility of the cured film.
<その他の成分>
 硬化性樹脂組成物は、必要に応じて、接着助剤、消泡剤、レベリング剤、重合禁止剤、難燃剤等の各種添加剤を含んでいてもよい。消泡剤およびレベリング剤としては、シリコーン系化合物、アクリル系化合物等が挙げられる。接着助剤(密着性付与剤ともいう)としては、シランカップリング剤、トリアゾール系化合物、テトラゾール系化合物、トリアジン系化合物等が挙げられる。重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル等が挙げられる。難燃剤としては、リン酸エステル系化合物、含ハロゲン系化合物、金属水酸化物、有機リン系化合物、シリコーン系化合物等を用いることができる。
<Other ingredients>
The curable resin composition may contain various additives such as an adhesion aid, a defoaming agent, a leveling agent, a polymerization inhibitor, and a flame retardant, if necessary. Examples of the defoaming agent and the leveling agent include silicone compounds and acrylic compounds. Examples of the adhesion aid (also referred to as an adhesion promoter) include silane coupling agents, triazole compounds, tetrazole compounds, triazine compounds and the like. Examples of the polymerization inhibitor include hydroquinone and hydroquinone monomethyl ether. As the flame retardant, a phosphoric acid ester compound, a halogen-containing compound, a metal hydroxide, an organic phosphorus compound, a silicone compound or the like can be used.
[各成分の含有量]
 上記のように、(A)成分、(B)成分および(C)成分は熱硬化に関与し、(B)成分および(D)成分は光硬化に関与する。熱硬化のみを行い光硬化を行わない熱硬化膜では、(D)成分は未反応で残存しており、可塑剤的に作用する。光硬化後に熱硬化を行った光熱硬化膜では、(A)成分、(B)成分、(C)成分および(D)成分の全てが硬化に関与する。
[Content of each component]
As described above, the component (A), the component (B) and the component (C) are involved in heat curing, and the component (B) and the component (D) are involved in photocuring. In the thermosetting film which is only thermoset but not photocured, the component (D) remains unreacted and acts as a plasticizer. In the photothermosetting film that is thermally cured after photocuring, all of the components (A), (B), (C) and (D) are involved in curing.
 (A)成分、(B)成分(C)成分および(D)成分の合計100重量部に対する(A)成分の含有量は10~50重量部が好ましく、(B)成分と(C)成分の含有量の合計は40~85重量部が好ましく、(C)成分の含有量は25重量部以上が好ましい。硬化性樹脂組成物の全固形分に対する(A)成分の含有量は10~50重量%が好ましく、(B)成分と(C)成分の含有量の合計は45~85重量%が好ましく、(C)成分の含有量は20重量部以上が好ましい。全固形分とは、(A)~(D)成分に加えて、(E)成分、フィラー、その他の樹脂成分、添加剤等の固形分の全量を意味する。各成分の含有量を上記範囲とすることにより、硬化膜の耐熱性および耐薬品性を向上できる。 The content of the component (A) is preferably 10 to 50 parts by weight based on 100 parts by weight of the total of the components (A), (B), (C) and (D). The total content is preferably 40 to 85 parts by weight, and the content of the component (C) is preferably 25 parts by weight or more. The content of the component (A) is preferably 10 to 50% by weight, and the total content of the components (B) and (C) is preferably 45 to 85% by weight, based on the total solid content of the curable resin composition. The content of component C) is preferably 20 parts by weight or more. The total solid content means the total amount of solid content of the components (E), the filler, other resin components, additives, etc. in addition to the components (A) to (D). By setting the content of each component within the above range, the heat resistance and chemical resistance of the cured film can be improved.
 (A)成分の含有量が小さい場合は、硬化膜の耐熱性が低下する傾向がある。一方、(A)成分の含有量が過度に大きいと、光硬化による架橋密度が低いため、光熱硬化膜が脆くなり柔軟性が低下する場合がある。(A)~(D)成分の合計100重量部に対する(A)成分の含有量は、12~40重量部がより好ましく、13~35重量部がさらに好ましい。全固形分に対する(A)成分の含有量は、11~35重量%がより好ましく、12~30重量%がさらに好ましい。 When the content of component (A) is small, the heat resistance of the cured film tends to decrease. On the other hand, when the content of the component (A) is excessively large, the photothermosetting film may be brittle and the flexibility may be lowered because the crosslinking density due to photocuring is low. The content of the component (A) based on 100 parts by weight of the total of the components (A) to (D) is more preferably 12 to 40 parts by weight, further preferably 13 to 35 parts by weight. The content of the component (A) based on the total solid content is more preferably 11 to 35% by weight, further preferably 12 to 30% by weight.
 感光性レジスト材料として用いられている従来の光硬化性・熱硬化性樹脂組成物は、光硬化を行わずに熱硬化のみで硬化膜を形成した場合は、耐熱性に劣る。本発明の硬化性樹脂組成物では、一般的な感光性レジストに用いられる光硬化性・熱硬化性樹脂組成物に比べて、熱硬化性樹脂の含有量が大きい。そのため、熱硬化のみでも実用に耐えうる耐熱性を有するとともに、熱硬化膜の柔軟性が高いため、繰り返し屈曲に対しても優れた耐久性を有する。 The conventional photocurable / thermosetting resin composition used as a photosensitive resist material is inferior in heat resistance when a cured film is formed only by thermosetting without photocuring. In the curable resin composition of the present invention, the content of the thermosetting resin is larger than that of the photocurable / thermosetting resin composition used for a general photosensitive resist. Therefore, it has heat resistance that can be practically used only by thermosetting, and also has excellent durability against repeated bending because the thermosetting film has high flexibility.
 (B)成分および(C)成分は、(A)成分とともに熱硬化に関与するため、(B)成分と(C)成分の合計量が多いほど、熱硬化膜および光熱硬化膜の耐熱性が向上する傾向がある。熱硬化膜と光熱硬化膜の両方の耐熱性および柔軟性のバランスを制御するためには、(A)~(D)成分の合計100重量部に対する(B)成分と(C)成分の含有量の合計は、55~80重量部がより好ましく、60~75重量部がさらに好ましい。全固形分に対する(B)成分と(C)成分の含有量の合計は、50~80重量%がより好ましく、60~75重量%がさらに好ましい。硬化膜の特性バランスを高める観点から、(B)成分の含有量と(C)成分の含有量の比(B)/(C)は、0.5~2がより好ましく、0.7~1.5がさらに好ましい。 Since the component (B) and the component (C) participate in the thermosetting together with the component (A), the larger the total amount of the component (B) and the component (C), the higher the heat resistance of the thermosetting film and the photothermosetting film. Tends to improve. In order to control the balance of heat resistance and flexibility of both the thermosetting film and the photothermosetting film, the content of the component (B) and the component (C) with respect to 100 parts by weight of the total of the components (A) to (D). The total amount is more preferably 55 to 80 parts by weight, still more preferably 60 to 75 parts by weight. The total content of the component (B) and the component (C) with respect to the total solid content is more preferably 50 to 80% by weight, further preferably 60 to 75% by weight. From the viewpoint of enhancing the property balance of the cured film, the ratio (B) / (C) of the content of the component (B) and the content of the component (C) is more preferably 0.5 to 2, and 0.7 to 1 0.5 is more preferable.
 (B)成分は、光硬化と熱硬化の両方に関与するため、(B)成分の含有量が大きいほど、光熱硬化膜の耐熱性が向上する傾向がある。一方、(B)成分の含有量が過度に大きい場合は、光熱硬化膜の柔軟性が低下する傾向がある。(A)~(D)成分の合計100重量部に対する(B)成分の含有量の合計は、25~60重量部が好ましく、30~50重量部がより好ましく、33~45重量部がさらに好ましい。全固形分に対する(B)成分の含有量は、20~60重量%が好ましく、25~50重量%がより好ましく、30~40重量%がさらに好ましい。 Since the component (B) is involved in both photo-curing and heat-curing, the higher the content of the component (B), the more the heat resistance of the photo-thermosetting film tends to improve. On the other hand, when the content of the component (B) is excessively large, the flexibility of the photothermosetting film tends to decrease. The total content of the component (B) per 100 parts by weight of the total of the components (A) to (D) is preferably 25 to 60 parts by weight, more preferably 30 to 50 parts by weight, and further preferably 33 to 45 parts by weight. . The content of the component (B) with respect to the total solid content is preferably 20 to 60% by weight, more preferably 25 to 50% by weight, and further preferably 30 to 40% by weight.
 (C)成分は熱硬化のみに関与し、光硬化には関与しないため、(C)成分の含有量が大きいほど、光熱硬化膜の柔軟性が向上する傾向がある。一方、(C)成分の含有量が過度に大きい場合は、光熱硬化膜の耐熱性が低下する傾向がある。(A)~(D)成分の合計100重量部に対する(C)成分の含有量の合計は、25~60重量部が好ましく、30~50重量部がより好ましく、33~45重量部がさらに好ましい。全固形分に対する(C)成分の含有量は、20~60重量%が好ましく、25~50重量%がより好ましく、30~40重量%がさらに好ましい。 Since the component (C) is involved only in thermosetting and not in photocuring, the flexibility of the photothermosetting film tends to be improved as the content of the component (C) is increased. On the other hand, when the content of the component (C) is excessively large, the heat resistance of the photothermosetting film tends to decrease. The total content of the component (C) per 100 parts by weight of the total of the components (A) to (D) is preferably 25 to 60 parts by weight, more preferably 30 to 50 parts by weight, and further preferably 33 to 45 parts by weight. . The content of the component (C) with respect to the total solid content is preferably 20 to 60% by weight, more preferably 25 to 50% by weight, and further preferably 30 to 40% by weight.
 (D)成分は光硬化のみに関与し、熱硬化には関与しないため、(D)成分の含有量が大きいほど、熱硬化膜の柔軟性が向上する傾向がある。一方、(D)成分の含有量が過度に大きい場合は、熱硬化膜の耐熱性の低下や、光硬化膜の柔軟性の低下が懸念される。(A)~(D)成分の合計100重量部に対する(D)成分の含有量の合計は、5~30重量部が好ましく、10~20重量部がより好ましい。全固形分に対する(D)成分の含有量は、5~30重量%が好ましく、10~20重量%がより好ましい。 Since the component (D) is involved only in photo-curing and not in heat curing, the larger the content of the component (D), the more the flexibility of the thermosetting film tends to improve. On the other hand, when the content of the component (D) is excessively large, there is concern that the heat resistance of the thermosetting film may decrease and the flexibility of the photocuring film may decrease. The total content of the component (D) is preferably 5 to 30 parts by weight, more preferably 10 to 20 parts by weight, based on 100 parts by weight of the total of the components (A) to (D). The content of the component (D) with respect to the total solid content is preferably 5 to 30% by weight, more preferably 10 to 20% by weight.
 (E)成分の含有量は、適宜設定すればよい。感光性を高めるとともに過露光を防止する観点から、(B)成分と(D)成分の合計100重量部対して、0.1~20重量部程度の(E)成分を配合することが好ましい。 The content of component (E) may be set appropriately. From the viewpoint of increasing the photosensitivity and preventing overexposure, it is preferable to add about 0.1 to 20 parts by weight of the component (E) to 100 parts by weight of the total of the components (B) and (D).
 フィラーを配合する場合、全固形分に対して、1~80重量%が好ましく、5~50重量%がより好ましく、10~30重量%がさらに好ましい。フィラーの含有量を上記範囲内とすることにより、タックフリー性に優れるとともに、硬化膜の反りが低減される傾向がある。また、フィラーの含有量が上記範囲であれば、熱硬化膜の繰り返し屈曲に対する耐久性が向上する傾向がある。 When a filler is blended, it is preferably 1 to 80% by weight, more preferably 5 to 50% by weight, even more preferably 10 to 30% by weight, based on the total solid content. When the content of the filler is within the above range, the tack-free property is excellent, and the warp of the cured film tends to be reduced. Further, when the content of the filler is in the above range, the durability against repeated bending of the thermosetting film tends to be improved.
[硬化性樹脂組成物の調製]
 上記の各成分、および必要に応じて適宜の溶媒を混合することにより、硬化性樹脂組成物が得られる。上記の各成分は、混合前および/または混合後に、必要に応じて、粉砕・分散や、脱泡等の操作を行ってもよい。粉砕・分散は、例えば、ビーズミル、ボールミル、3本ロール等の混練装置を用いて実施すればよい。
[Preparation of curable resin composition]
A curable resin composition is obtained by mixing the above components and, if necessary, an appropriate solvent. Each of the above components may be subjected to operations such as pulverization / dispersion and defoaming before and / or after mixing, if necessary. The pulverization / dispersion may be carried out, for example, by using a kneading device such as a bead mill, a ball mill, or a triple roll.
[硬化膜の形成]
 硬化性樹脂組成物を基板に塗布し、必要に応じて加熱により溶媒を除去した後、光硬化および/または熱硬化を行うことにより、硬化膜が形成される。
[Cured film formation]
A cured film is formed by applying the curable resin composition to a substrate, removing the solvent by heating if necessary, and then performing photocuring and / or heat curing.
 基板上への樹脂組成物(溶液)の塗布は、スクリ-ン印刷、カーテンロール、リバースロール、スプレーコーティング、スピンナーを利用した回転塗布等により行えばよい。塗膜の厚みは、乾燥後の厚みが5~100μm程度、好ましくは10~50μm程度となるように調整すればよい。加熱により乾燥を行う場合、熱硬化反応を抑制する観点から、乾燥温度は120℃以下が好ましく、40~100℃がより好ましい。 The resin composition (solution) may be applied onto the substrate by screen printing, curtain roll, reverse roll, spray coating, spin coating using a spinner, or the like. The thickness of the coating film may be adjusted so that the thickness after drying is about 5 to 100 μm, preferably about 10 to 50 μm. When drying by heating, the drying temperature is preferably 120 ° C. or lower, more preferably 40 to 100 ° C., from the viewpoint of suppressing the thermosetting reaction.
 熱硬化膜を形成する場合は、塗膜の加熱処理により、(A)成分、(B)成分および(C)成分を熱硬化させればよい。熱硬化を十分に進行させるとともに、熱による金属配線の酸化を抑制する観点から、硬化温度(熱硬化時の最高温度)は、100~250℃以下が好ましく、120~200℃がより好ましく、130~180℃がさらに好ましい。 When forming a thermosetting film, the component (A), the component (B) and the component (C) may be thermoset by heat treatment of the coating film. The curing temperature (maximum temperature at the time of thermal curing) is preferably 100 to 250 ° C. or less, more preferably 120 to 200 ° C., and 130 from the viewpoint of sufficiently promoting thermal curing and suppressing oxidation of metal wiring due to heat. It is more preferably up to 180 ° C.
 光硬化膜を形成する場合は、塗膜を露光すればよい。露光の際に、塗膜上にネガ型のフォトマスクを配置して、紫外線、可視光線、電子線等の活性光線を照射することにより、露光部分が選択的に硬化される。次いで、シャワー、パドル、浸漬等により現像を実施することにより、非露光部分が溶解するため、パターン硬化膜が形成される。 When forming a photo-cured film, the coating film may be exposed. At the time of exposure, a negative-type photomask is arranged on the coating film, and active rays such as ultraviolet rays, visible rays, and electron rays are irradiated to selectively cure the exposed portions. Next, by developing with a shower, paddle, dipping or the like, the non-exposed portion is dissolved, so that a pattern cured film is formed.
 現像液としては、一般にアルカリ水溶液が用いられる。樹脂組成物は、(B)成分および(C)成分が酸性官能基を有するため、未露光の塗膜はアルカリ可溶性を有する。アルカリ水溶液としては、有機アルカリ水溶液および無機アルカリ水溶液を特に制限なく用いることができる。現像液は、メタノ-ル、エタノ-ル、n-プロパノ-ル、イソプロパノ-ル、N-メチル-2-ピロリドン等の水と混和性を有する有機溶媒を含んでいてもよい。現像液のアルカリ濃度は、一般に0.01~20重量%、好ましくは、0.02~10重量%であり、現像液の温度は一般に0~80℃、好ましくは10~60℃である。現像後のパターン硬化膜は、水、酸性水溶液等のリンス液によりリンスすることが好ましい。 Generally, an alkaline aqueous solution is used as the developing solution. In the resin composition, since the component (B) and the component (C) have acidic functional groups, the unexposed coating film has alkali solubility. As the alkaline aqueous solution, an organic alkaline aqueous solution and an inorganic alkaline aqueous solution can be used without particular limitation. The developing solution may contain an organic solvent miscible with water, such as methanol, ethanol, n-propanol, isopropanol, N-methyl-2-pyrrolidone. The alkali concentration of the developer is generally 0.01 to 20% by weight, preferably 0.02 to 10% by weight, and the temperature of the developer is generally 0 to 80 ° C, preferably 10 to 60 ° C. The pattern-cured film after development is preferably rinsed with a rinse liquid such as water or an acidic aqueous solution.
 光硬化膜を加熱することにより、(A)成分と(B)成分および(C)成分との反応による熱硬化が進行するため、光熱硬化膜が得られる。光硬化後の熱硬化における加熱条件は、上記の熱硬化膜の形成時の加熱条件と同様である。 By heating the photocured film, the thermosetting proceeds by the reaction of the (A) component with the (B) component and the (C) component, so that a photothermoset film is obtained. The heating conditions in the thermal curing after the photo-curing are the same as the heating conditions in forming the thermosetting film.
 樹脂組成物から得られる光硬化膜は、例えば、10~1000μm程度の解像力を有するため、プリント基板の表面保護材として好適に用いられる。また、硬化膜が柔軟性に優れるため、ポリイミドフィルム等の可撓性フィルム上に金属配線を備えるフレキシブルプリント基板の硬化膜としても好適に用いられる。 The photo-cured film obtained from the resin composition has a resolution of, for example, about 10 to 1000 μm, and thus is suitable for use as a surface protective material for printed circuit boards. Further, since the cured film is excellent in flexibility, it is also suitably used as a cured film of a flexible printed board having metal wiring on a flexible film such as a polyimide film.
[硬化膜付き基板の作製]
 本発明の硬化性樹脂組成物は、光硬化を行わずに熱硬化膜として用いた場合は、優れた柔軟性と耐熱性を有し、光硬化膜または光熱硬化膜として用いた場合は、優れたパターニング性と耐熱性を有する。この樹脂組成物を用いることにより、1種類の樹脂組成物を用いて、1つの基板上に、熱硬化膜および光硬化膜が設けられた硬化膜付き基板を形成してもよい。
[Preparation of substrate with cured film]
The curable resin composition of the present invention has excellent flexibility and heat resistance when used as a thermosetting film without photocuring, and excellent when used as a photocuring film or a photothermosetting film. It has patterning property and heat resistance. By using this resin composition, one type of resin composition may be used to form a substrate with a cured film on which a thermosetting film and a photocurable film are provided on one substrate.
 図1は、折り曲げ可能なデバイスに用いられるフレキシブルプリント基板10の平面図である。フレキシブルプリント基板は、ポリイミドフィルム等の可撓性フィルムの片面または両面に、銅等からなる金属配線を備える。なお、図1では配線の図示は省略している。 FIG. 1 is a plan view of a flexible printed circuit board 10 used in a bendable device. The flexible printed circuit board has metal wiring made of copper or the like on one or both sides of a flexible film such as a polyimide film. The wiring is not shown in FIG.
 フレキシブルプリント基板10は、フォルダブルディスプレイ等のデバイスに組み込んだ際、F-F線に沿って折り曲げられる。そのため、F-F線に沿って延在する領域12(屈曲領域)は、高い柔軟性が要求される。一方、屈曲領域12では、基板上に素子は実装されないため、屈曲領域の全体に硬化膜が形成されることが好ましく、硬化膜をパターニングする必要はない。そのため、屈曲領域12には、柔軟性に優れる熱硬化膜が設けられる。 The flexible printed circuit board 10 is bent along the line FF when incorporated in a device such as a foldable display. Therefore, the region 12 (bending region) extending along the line FF is required to have high flexibility. On the other hand, in the bent region 12, since no element is mounted on the substrate, it is preferable to form a cured film on the entire bent region, and it is not necessary to pattern the cured film. Therefore, the bending region 12 is provided with a thermosetting film having excellent flexibility.
 領域11A,11B(実装領域)では、基板上の配線に素子が実装される。素子を実装する部分では、硬化膜に穴あけを行う必要があるため、実装領域では硬化膜を形成する樹脂組成物には感光性が要求される。一方、実装領域は、デバイスに組み込んだ後には柔軟性は要求されない。そのため、実装領域11A,11Bには、光硬化膜または光熱硬化膜が設けられる。 In areas 11A and 11B (mounting areas), elements are mounted on the wiring on the board. Since it is necessary to make holes in the cured film in the portion where the element is mounted, the resin composition forming the cured film is required to have photosensitivity in the mounting region. On the other hand, the mounting area is not required to be flexible after being incorporated in the device. Therefore, a photo-curing film or a photo-thermosetting film is provided in the mounting areas 11A and 11B.
 このように、実装領域では、樹脂組成物を光硬化性(感光性)組成物として用いて光硬化膜または光熱硬化膜を形成し、屈曲領域では、樹脂組成物を熱硬化性組成物として用いて熱硬化膜を形成すれば、1種類の樹脂組成物を用いて、基板上に、パターニング性を有する光硬化膜と柔軟性に優れる熱硬化膜とを備える硬化膜付き基板が得られる。 Thus, in the mounting area, the resin composition is used as a photocurable (photosensitive) composition to form a photocurable film or a photothermosetting film, and in the bending area, the resin composition is used as a thermosetting composition. When the thermosetting film is formed by using one type of resin composition, a cured film-coated substrate including a photocurable film having patterning properties and a thermosetting film having excellent flexibility can be obtained on the substrate.
 基板10の実装領域11A,11Bに硬化性樹脂組成物を塗布して塗膜を形成し、露光を行うことにより、光硬化膜が形成される。露光の際にマスクを用いてパターン露光を行い、アルカリ水溶液等による現像を行えば、素子の実装等のための開口を有するパターン硬化膜を形成できる。光硬化膜を加熱することにより、光熱硬化膜を形成できる。 A photo-cured film is formed by applying a curable resin composition to the mounting areas 11A and 11B of the substrate 10 to form a coating film and performing exposure. By performing pattern exposure using a mask during exposure and developing with an alkaline aqueous solution or the like, it is possible to form a pattern-cured film having openings for mounting elements and the like. The photothermosetting film can be formed by heating the photocuring film.
 基板10の屈曲領域12に樹脂組成物を塗布して塗膜を形成し、塗膜を加熱して熱硬化することにより、熱硬化膜を形成できる。熱硬化膜の形成と光硬化膜の形成は、どちらを先に実施してもよく、両者を並行して実施してもよい。 A thermosetting film can be formed by applying a resin composition to the bending region 12 of the substrate 10 to form a coating film, and heating the coating film to thermally cure it. Either the formation of the thermosetting film or the formation of the photocuring film may be performed first, or both may be performed in parallel.
 図2は、熱硬化膜を先に形成する実施形態の工程フローを示す模式断面図である。この実施形態では、まず、基板10の屈曲領域12上に硬化性樹脂組成物の塗膜22を形成し(図2A)、加熱により塗膜を熱硬化することにより、屈曲領域12上に熱硬化膜22Tが形成される(図2B)。 FIG. 2 is a schematic cross-sectional view showing the process flow of the embodiment in which the thermosetting film is first formed. In this embodiment, first, a coating film 22 of the curable resin composition is formed on the bending region 12 of the substrate 10 (FIG. 2A), and the coating film is heat-cured by heating, so that the bending region 12 is thermally cured. The film 22T is formed (FIG. 2B).
 熱硬化膜22Tを形成後、実装領域11A,11Bに樹脂組成物の塗膜21を形成し(図2C)、フォトマスクを介してパターン露光を行う。パターン露光を行うと、露光された領域では塗膜が光硬化して光硬化膜21Pが形成される。露光されていない領域では、塗膜21Xは未硬化である。アルカリ水溶液等を用いて現像を行うと、未硬化の塗膜21Xが溶解除去されるため、パターン硬化膜が得られる(図2E)。この際、屈曲領域12上の塗膜22Tは先に熱硬化されているため、現像液には溶解しない。 After forming the thermosetting film 22T, a coating film 21 of the resin composition is formed on the mounting areas 11A and 11B (FIG. 2C), and pattern exposure is performed through a photomask. When pattern exposure is performed, the coating film is photo-cured in the exposed region to form the photo-cured film 21P. In the unexposed area, the coating film 21X is uncured. When development is performed using an alkaline aqueous solution or the like, the uncured coating film 21X is dissolved and removed, so that a patterned cured film is obtained (FIG. 2E). At this time, the coating film 22T on the bent region 12 has not been dissolved in the developing solution because it has been thermally cured first.
 パターニングされた光硬化膜を加熱することにより、熱硬化が進行し、実装領域11A,11Bには、パターニングされた光熱硬化膜21Qが形成される。 By heating the patterned photo-cured film, heat curing proceeds, and the patterned photo-cured film 21Q is formed in the mounting regions 11A and 11B.
 図3は、光硬化膜を先に形成する実施形態の工程フローを示す模式断面図である。この実施形態では、まず、基板10の実装領域11A,11B上に樹脂組成物の塗膜21を形成する(図3A)。フォトマスクを介してパターン露光を行い(図3B)、現像を行うことにより、未露光領域の塗膜21Xが溶解除去され、パターン硬化膜21Pが形成される(図3C)。 FIG. 3 is a schematic cross-sectional view showing the process flow of the embodiment in which the photo-cured film is formed first. In this embodiment, first, the coating film 21 of the resin composition is formed on the mounting areas 11A and 11B of the substrate 10 (FIG. 3A). By performing pattern exposure through a photomask (FIG. 3B) and developing, the coating film 21X in the unexposed region is dissolved and removed, and a pattern cured film 21P is formed (FIG. 3C).
 次に、基板10の屈曲領域12上に硬化性樹脂組成物の塗膜22を形成する(図3D)。その後、基板10を加熱すれば、実装領域11A,11B上の光硬化膜21Pと、屈曲領域12上の塗膜22が同時に熱硬化され、実装領域11A,11Bには、パターニングされた光熱硬化膜21Qが設けられ、屈曲領域12には熱硬膜22Tが設けられた硬化膜付き基板が得られる。この方法では、1回の加熱で、実装領域および屈曲領域の両方の樹脂組成物を熱硬化できるため、工程がよりシンプルとなる。なお、屈曲領域12上に塗膜を形成する前に、必要に応じて、光硬化膜21Pを熱硬化してもよい。 Next, a coating film 22 of the curable resin composition is formed on the bent region 12 of the substrate 10 (FIG. 3D). Then, when the substrate 10 is heated, the photo-cured film 21P on the mounting regions 11A and 11B and the coating film 22 on the bending region 12 are thermo-cured at the same time, and the patterned photo-thermo-cured film is formed on the mounting regions 11A and 11B. 21Q is provided, and the cured film-coated substrate in which the thermosetting film 22T is provided in the bent region 12 is obtained. In this method, the resin composition in both the mounting region and the bending region can be thermoset by heating once, so the process becomes simpler. Before forming the coating film on the bent region 12, the photo-curing film 21P may be thermally cured, if necessary.
 上記のように、本発明の硬化性樹脂組成物は、柔軟性に優れる熱硬化膜の形成、ならびにパラーニング性および耐熱性に優れる光硬化膜の形成の両方に適用可能である。そのため、1つの樹脂組成物を用いて、1つの基板上に熱硬化膜と光硬化膜を備える硬化膜付き基板を形成可能であり、工程の管理を簡素化できる。また、材料の切り替えに伴う設備の洗浄等のプロセスを省略できるため、生産性の向上にも寄与し得る。 As described above, the curable resin composition of the present invention can be applied to both formation of a thermosetting film having excellent flexibility, and formation of a photocuring film having excellent paneling property and heat resistance. Therefore, one resin composition can be used to form a substrate with a cured film including a thermosetting film and a photocurable film on one substrate, and the process management can be simplified. In addition, it is possible to omit processes such as equipment cleaning accompanying the switching of materials, which can contribute to improvement in productivity.
 以下に実施例を示して本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[合成例]
 以下の合成例では、酸性官能基としてカルボキシ基を有し、エチレン性不飽和基を有さないポリマーを重合した。合成例1~3で得られた溶液およびポリマー(C-1),(C-2),(C-3)の特性は、以下の方法により評価した。
[Synthesis example]
In the following synthesis examples, a polymer having a carboxy group as an acidic functional group and having no ethylenically unsaturated group was polymerized. The properties of the solutions and polymers (C-1), (C-2) and (C-3) obtained in Synthesis Examples 1 to 3 were evaluated by the following methods.
<固形分濃度>
  JIS K 5601-1-2に従って測定を行った。乾燥条件は170℃×1時間とした。
<Solid content concentration>
The measurement was performed according to JIS K 5601-1-2. The drying condition was 170 ° C. × 1 hour.
<重量平均分子量>
 ゲルパーミエーションクロマトグラフィー(GPC)により、下記条件で測定を行った。
  使用装置:東ソー HLC-8220GPC相当品
  カラム:東ソー TSK gel Super AWM-H(6.0mm I.D.×15cm)×2本
  ガードカラム:東ソー TSK guard column Super AW-H
  溶離液:30mM LiBr + 20mM H3PO4 in DMF
  流速:0.6mL/min
  カラム温度:40℃
  検出条件:RI:ポラリティ(+)、レスポンス(0.5sec)
  試料濃度:約5mg/mL
  分子量標準品:PEG(ポリエチレングリコール)
<Weight average molecular weight>
The measurement was carried out by gel permeation chromatography (GPC) under the following conditions.
Equipment used: Tosoh HLC-8220GPC equivalent Column: Tosoh TSK gel Super AWM-H (6.0mm ID x 15cm) x 2 Guard column: Tosoh TSK guard column Super AW-H
Eluent: 30mM LiBr + 20mM H 3 PO 4 in DMF
Flow rate: 0.6 mL / min
Column temperature: 40 ° C
Detection conditions: RI: Polarity (+), Response (0.5 sec)
Sample concentration: Approximately 5 mg / mL
Molecular weight standard: PEG (polyethylene glycol)
<酸価>
 JIS K 5601-2-1に従って測定を行った。
<Acid value>
The measurement was performed according to JIS K 5601-2-1.
(合成例1)
 攪拌機、温度計、滴下漏斗、および窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム(1,2-ビス(2-メトキシエトキシ)エタン)100.0gを仕込み、窒素気流下で攪拌しながら80℃に昇温した。これに、室温で予め混合しておいた、メタクリル酸12.0g(0.14モル)、メタクリル酸ベンジル28.0g(0.16モル)、メタクリル酸ブチル60.0g(0.42モル)、およびラジカル重合開始剤としてアゾビスイソブチロニトリル0.5gを、80℃に保温した状態で3時間かけて滴下漏斗から滴下した。滴下終了後、反応溶液を攪拌しながら90℃に昇温し、反応溶液の温度を90℃に保ちながらさらに2時間攪拌を行い、分子内にカルボキシ基を含有するアクリル系ポリマー(C-1)の溶液を得た。溶液の固形分濃度は50%、ポリマーの重量平均分子量は48,000、酸価は78mgKOH/gであった。
(Synthesis example 1)
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a nitrogen inlet tube, 100.0 g of methyltriglyme (1,2-bis (2-methoxyethoxy) ethane) was charged as a polymerization solvent, and the mixture was put under a nitrogen stream. The temperature was raised to 80 ° C. with stirring. 12.0 g (0.14 mol) of methacrylic acid, 28.0 g (0.16 mol) of benzyl methacrylate, 60.0 g (0.42 mol) of butyl methacrylate, which had been mixed in advance with this at room temperature. And 0.5 g of azobisisobutyronitrile as a radical polymerization initiator was added dropwise from the dropping funnel over a period of 3 hours while keeping the temperature at 80 ° C. After the completion of the dropping, the reaction solution was heated to 90 ° C. with stirring, and further stirred for 2 hours while maintaining the temperature of the reaction solution at 90 ° C. to obtain an acrylic polymer (C-1) containing a carboxy group in the molecule. A solution of The solid content concentration of the solution was 50%, the weight average molecular weight of the polymer was 48,000, and the acid value was 78 mgKOH / g.
(合成例2)
 攪拌機、温度計、滴下漏斗、および窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム30.00gおよびノルボルネンジイソシアネート10.31g(0.050モル)を仕込み、窒素気流下で攪拌しながら80℃に加温して溶解させた。この溶液に、ポリカーボネートジオール(旭化成製「PCDL T5652」、重量平均分子量2000)50.00g(0.025モル)および2,2-ビス(ヒドロキシメチル)ブタン酸3.70g(0.025モル)をメチルトリグライム30.00gに溶解した溶液を1時間かけて滴下した。この溶液を80℃で5時間加熱攪拌して、分子内にカルボキシ基を含有するウレタンポリマー(C-2)の溶液を得た。溶液の固形分濃度は52%、ポリマーの重量平均分子量は5,600、酸価は22mgKOH/gであった。
(Synthesis example 2)
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a nitrogen introducing tube was charged with 30.00 g of methyltriglyme and 10.31 g (0.050 mol) of norbornene diisocyanate as a solvent for polymerization, and stirred under a nitrogen stream. While heating to 80 ° C., it was dissolved. To this solution, 50.00 g (0.025 mol) of polycarbonate diol (“PCDL T5652” manufactured by Asahi Kasei, weight average molecular weight 2000) and 3.70 g (0.025 mol) of 2,2-bis (hydroxymethyl) butanoic acid were added. A solution dissolved in 30.00 g of methyl triglyme was added dropwise over 1 hour. This solution was heated and stirred at 80 ° C. for 5 hours to obtain a solution of urethane polymer (C-2) containing a carboxy group in the molecule. The solid content concentration of the solution was 52%, the weight average molecular weight of the polymer was 5,600, and the acid value was 22 mgKOH / g.
(合成例3)
 攪拌機、温度計、滴下漏斗、および窒素導入管を備えた反応容器に、重合用溶媒としてメチルトリグライム35.00gおよびノルボルネンジイソシアネート10.31g(0.050モル)を仕込み、窒素気流下で攪拌しながら80℃に加温して溶解させた。この溶液に、ポリカーボネートジオール50.00g(0.025モル)をメチルトリグライム35.00gに溶解した溶液を1時間かけて滴下漏斗から滴下し、80℃で2時間加熱攪拌した後、3,3’,4,4’-オキシジフタル酸二無水物15.51g(0.050モル)を添加し、190℃に昇温して1時間加熱撹拌した。その後、80℃に冷却して、純水3.60g(0.200モル)を添加し、110℃に昇温して5時間加熱還流し、分子内にカルボキシ基を含有するウレタンイミドポリマー(C-3)の溶液を得た。溶液の固形分濃度は53%、ポリマーの重量平均分子量は9,200、酸価は86mgKOH/gであった。
(Synthesis example 3)
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a nitrogen introduction tube was charged with 35.00 g of methyl triglyme and 10.31 g (0.050 mol) of norbornene diisocyanate as a polymerization solvent, and stirred under a nitrogen stream. While heating to 80 ° C., it was dissolved. To this solution, a solution prepared by dissolving 50.00 g (0.025 mol) of polycarbonate diol in 35.00 g of methyl triglyme was added dropwise from a dropping funnel over 1 hour, and the mixture was heated and stirred at 80 ° C. for 2 hours, and then 3,3. 15.51 g (0.050 mol) of ', 4,4'-oxydiphthalic acid dianhydride was added, the temperature was raised to 190 ° C., and the mixture was heated and stirred for 1 hour. Then, the mixture was cooled to 80 ° C., 3.60 g (0.200 mol) of pure water was added, the temperature was raised to 110 ° C., and the mixture was heated under reflux for 5 hours to give a urethane imide polymer (C containing a carboxy group in the molecule). A solution of -3) was obtained. The solid content concentration of the solution was 53%, the weight average molecular weight of the polymer was 9,200, and the acid value was 86 mgKOH / g.
[実施例および比較例の樹脂組成物の調製]
 表1に示す配合の組成物をメチルトリグライムに溶解させ、攪拌装置により撹拌した後、3本ロールミルで2回パスした。その後、脱泡装置で脱泡を行い、均一な溶液を調製した。表1における各成分の量は固形分であり、溶媒としてのメチルトリグライムの量は、30重量部とした。各樹脂組成物には、表1に示す成分の他に、1重量部のブタジエン系消泡剤(共栄社化学製「フローレン AC-2000」)を添加した。
[Preparation of Resin Compositions of Examples and Comparative Examples]
The composition having the composition shown in Table 1 was dissolved in methyl triglyme, stirred with a stirrer, and then passed twice with a three-roll mill. Then, defoaming was performed with a defoaming device to prepare a uniform solution. The amount of each component in Table 1 is a solid content, and the amount of methyl triglyme as a solvent was 30 parts by weight. In addition to the components shown in Table 1, 1 part by weight of a butadiene-based defoaming agent (“Floren AC-2000” manufactured by Kyoeisha Chemical Co., Ltd.) was added to each resin composition.
[硬化膜の形成および評価]
<熱硬化膜の耐熱性>
 厚み25μmのポリイミドフィルム(カネカ製「アピカル25NPI」)と厚み12μmの電解銅箔とをポリイミド系接着剤により張り合わせたフレキシブル銅張積層板の銅箔を、ライン幅/スペース幅=100μm/100μmのストライプ状パターンにエッチングし、10容量%の硫酸水溶液中に1分間浸漬して銅箔の表面処理を行った後、純水で洗浄してフレキシブルプリント基板を作製した。このフレキシブルプリント基板の配線形成面に、ベーカー式アプリケーターを用いて、樹脂組成物を、最終乾燥厚みが20μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥した後、150℃のオーブン中で30分加熱を行い、熱硬化膜を形成した。
[Cured film formation and evaluation]
<Heat resistance of thermosetting film>
A copper foil of a flexible copper-clad laminate obtained by laminating a polyimide film of 25 μm thickness (“Apical 25 NPI” manufactured by Kaneka) and an electrolytic copper foil of 12 μm thickness with a polyimide-based adhesive is a stripe of line width / space width = 100 μm / 100 μm. The pattern was etched, immersed in a 10% by volume sulfuric acid aqueous solution for 1 minute to surface-treat the copper foil, and then washed with pure water to prepare a flexible printed circuit board. Using a Baker type applicator, the resin composition was cast / coated on an area of 100 mm × 100 mm so that the final dry thickness was 20 μm, and dried at 80 ° C. for 20 minutes on the wiring forming surface of this flexible printed board. After that, heating was performed in an oven at 150 ° C. for 30 minutes to form a thermosetting film.
 この試料を320℃の半田浴に浸漬して10秒後に引き上げ、外観観察およびテープ剥離試験を行い、下記の基準により評価した。
 ○:試験前後で外観変化なく、テープ剥離試験で硬化膜が剥離しなかったもの
 △:外観変化はないが、テープ剥離試験で硬化膜が剥離したもの
 ×:試験後に、硬化膜の膨れや剥がれる等の外観変化がみられたもの
This sample was immersed in a solder bath at 320 ° C., and after 10 seconds, pulled up, an external appearance was observed and a tape peeling test was performed, and the following criteria were evaluated.
◯: No change in appearance before and after the test, the cured film did not peel in the tape peeling test Δ: No change in appearance, but the cured film peeled in the tape peeling test ×: Swelling or peeling of the cured film after the test The appearance changes such as
<熱硬化膜の柔軟性>
 樹脂組成物を、ベーカー式アプリケーターを用いて、厚み25μmのポリイミドフィルム(カネカ製「アピカル25NPI」)に最終乾燥厚みが20μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥した後、150℃のオーブン中で30分加熱を行い、熱硬化膜を形成した。
<Flexibility of thermosetting film>
Using a baker type applicator, the resin composition was cast / applied to a 25 μm thick polyimide film (“Apical 25 NPI” manufactured by Kaneka) in an area of 100 mm × 100 mm so that the final dry thickness was 20 μm, and at 80 ° C. After drying for 20 minutes, heating was performed in an oven at 150 ° C. for 30 minutes to form a thermosetting film.
 この試料を、15mm×100mmのサイズにカットし、硬化膜が外側になるように180°折り曲げ、折り曲げ箇所に200gの荷重を3秒間乗せた。荷重を除去後、折り曲げ箇所を目視にて観察し、亀裂の有無を評価した。この作業を硬化膜に亀裂が入るまで実施し、亀裂が生じなかった回数を耐折回数とした。例えば、2回目の試験で亀裂が生じた場合、耐折回数は1である。10回目の試験でも亀裂が生じなかったものは、耐折回数を10以上(≧10)とした。 This sample was cut into a size of 15 mm × 100 mm, bent 180 ° so that the cured film was on the outside, and a load of 200 g was placed on the bent portion for 3 seconds. After removing the load, the bent portions were visually observed to evaluate the presence or absence of cracks. This operation was repeated until a crack was formed in the cured film, and the number of times that no crack was generated was defined as the folding endurance number. For example, if a crack occurs in the second test, the folding endurance is 1. If no crack was generated even in the 10th test, the folding endurance was set to 10 or more (≧ 10).
<感光性>
 厚み25μmのポリイミドフィルム(カネカ製「アピカル25NPI」)上に、樹脂組成物を、ベーカー式アプリケーターを用いて最終乾燥厚みが20μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥した。ライン幅/スペース幅=100μm/100μmのネガ型フォトマスクを載置して、高圧水銀ランプを用いて300mJ/cmの積算露光量の紫外線を照射して露光した後、1.0重量%の炭酸ナトリウム水溶液(30℃)を、1.0kgf/mmの吐出圧で90秒スプレーして、現像を行った。純水で洗浄した後、150℃のオーブン中で30分加熱硬化させ、パターン硬化膜を作製した。
<Photosensitivity>
On a polyimide film (“Apical 25 NPI” manufactured by Kaneka) having a thickness of 25 μm, the resin composition is cast / applied to an area of 100 mm × 100 mm using a Baker type applicator so that the final dry thickness is 20 μm, and the temperature is 80 ° C. And dried for 20 minutes. A negative type photomask having a line width / space width = 100 μm / 100 μm was placed, and after exposure by irradiating ultraviolet rays with an integrated exposure amount of 300 mJ / cm 2 using a high pressure mercury lamp, 1.0% by weight A sodium carbonate aqueous solution (30 ° C.) was sprayed at a discharge pressure of 1.0 kgf / mm 2 for 90 seconds for development. After washing with pure water, it was heated and cured in an oven at 150 ° C. for 30 minutes to form a patterned cured film.
 実施例、および比較例の各組成物を用いて形成したレリーフパターンを、光学顕微鏡にて観察したところ、いずれの組成物を用いた場合も、パターンの顕著な線太りや現像残渣はみられず、ライン幅/スペース幅=100/100μmの感光パターンが描けていた。 Relief patterns formed using the compositions of Examples and Comparative Examples were observed with an optical microscope, and no significant line thickening or development residue of the pattern was observed with any composition. , A line width / space width = 100/100 μm photosensitive pattern could be drawn.
<光熱硬化膜の耐熱性>
 熱硬化膜の耐熱性の評価と同様に、最終乾燥厚みが20μmになるように樹脂組成物を流延・塗布し、80℃で20分乾燥した。その後、上記の感光性の評価と同様の方法で、露光、現像および加熱硬化を行い、フレキシブルプリント基板の配線形成面に、光熱硬化膜を形成した。なお、露光の際にはフォトマスクを用いず、全面に紫外線を照射した。この試料を用いて、熱硬化膜の耐熱性の評価と同様に、320℃の半田浴に浸漬して耐熱性を評価した。
<Heat resistance of photothermosetting film>
Similar to the evaluation of heat resistance of the thermosetting film, the resin composition was cast / coated so that the final dry thickness was 20 μm, and dried at 80 ° C. for 20 minutes. After that, exposure, development and heat curing were carried out in the same manner as in the evaluation of photosensitivity to form a photothermosetting film on the wiring formation surface of the flexible printed board. At the time of exposure, a photomask was not used and the entire surface was irradiated with ultraviolet rays. Using this sample, the heat resistance was evaluated by immersing it in a solder bath at 320 ° C. in the same manner as the heat resistance of the thermosetting film.
<光熱硬化膜の柔軟性>
 熱硬化膜の柔軟性の評価と同様に、最終乾燥厚みが20μmになるように樹脂組成物を流延・塗布し、80℃で20分乾燥した。その後、上記の感光性の評価と同様の方法で、露光、現像および加熱硬化を行い、ポリイミドフィルム上に光熱硬化膜を形成した。なお、露光の際にはフォトマスクを用いず、全面に紫外線を照射した。この試料を用いて、熱硬化膜の柔軟性の評価と同様に、耐折試験を実施して柔軟性を評価した。
<Flexibility of photothermosetting film>
Similar to the evaluation of the flexibility of the thermosetting film, the resin composition was cast / coated so that the final dry thickness was 20 μm, and dried at 80 ° C. for 20 minutes. Then, exposure, development and heat curing were performed in the same manner as in the above-mentioned evaluation of photosensitivity to form a photothermosetting film on the polyimide film. At the time of exposure, a photomask was not used and the entire surface was irradiated with ultraviolet rays. Using this sample, a folding endurance test was carried out to evaluate the flexibility in the same manner as the evaluation of the flexibility of the thermosetting film.
 実施例および比較例の樹脂組成物の配合および評価結果を、表1に一覧で示す。各成分の詳細は以下に示す通りである。 Table 1 shows a list of compounding and evaluation results of the resin compositions of Examples and Comparative Examples. Details of each component are as shown below.
 (1)三菱化学製「jER828」;ビスフェノールA型エポキシ樹脂(平均分子量370、エポキシ当量190)
 (2)日本化薬製「KAYARAD UXE-3000」;ウレタン骨格を有する酸変性エポキシアクリレートのカルビトールアセテート希釈液(重量平均分子量10,000、酸価98mgKOH/g)
 (3)日本化薬製「KAYARAD DPHA」;ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物
 (4)BASF製「イルガキュア OXE02」;エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)
 (5)根上工業製「アートパールTK-800T」;平均粒子径6μmのポリカーボネート系架橋ウレタンビーズ
(1) "jER828" manufactured by Mitsubishi Chemical; bisphenol A type epoxy resin (average molecular weight 370, epoxy equivalent 190)
(2) Nippon Kayaku "KAYARAD UXE-3000"; carbitol acetate diluted solution of acid-modified epoxy acrylate having urethane skeleton (weight average molecular weight 10,000, acid value 98 mgKOH / g)
(3) Nippon Kayaku "KAYARAD DPHA"; a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (4) BASF "Irgacure OXE02"; ethanone, 1- [9-ethyl-6- (2-methyl Benzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime)
(5) Negami Kogyo's "Art Pearl TK-800T"; Polycarbonate cross-linked urethane beads with an average particle size of 6 μm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (A)成分の配合量が少ない比較例1は、硬化膜が優れた柔軟性を有していたが、熱硬化膜および光熱硬化膜のいずれも耐熱性が劣っていた。一方、(A)成分の配合量が多く、(B)成分および(C)成分の配合量が少ない比較例3では、光熱硬化膜は優れた耐熱性を示したが、熱硬化膜の柔軟性が劣っていた。(C)成分の配合量が少ない比較例2では、熱硬化膜および光熱硬化膜がいずれも優れた耐熱性を有していたが、柔軟性が不充分であった。 In Comparative Example 1 in which the amount of the component (A) was small, the cured film had excellent flexibility, but both the thermosetting film and the photothermosetting film were inferior in heat resistance. On the other hand, in Comparative Example 3 in which the amount of the component (A) was large and the amounts of the components (B) and (C) were small, the photothermosetting film exhibited excellent heat resistance, but the flexibility of the thermosetting film was high. Was inferior. In Comparative Example 2 in which the blending amount of the component (C) was small, both the thermosetting film and the photothermosetting film had excellent heat resistance, but the flexibility was insufficient.
 実施例1~4では、熱硬化膜の耐折試験において、10回の試験でも硬化膜に亀裂が生じておらず、優れた柔軟性を示した。また、熱硬化膜および光熱硬化膜は、いずれも優れた耐熱性を有しており、1種類の樹脂組成物を、柔軟性および耐熱性が要求される熱硬化性カバー材としての使用、および耐熱性と微細加工性が要求される感光性カバー材としての使用の両方に適用可能であることが示された。

 
In Examples 1 to 4, in the folding endurance test of the thermosetting film, the cured film did not crack even after 10 times of tests, and showed excellent flexibility. Further, both the thermosetting film and the photothermosetting film have excellent heat resistance, and one type of resin composition is used as a thermosetting cover material that requires flexibility and heat resistance, and It was shown to be applicable to both use as a photosensitive cover material that requires heat resistance and fine workability.

Claims (18)

  1.  光硬化性と熱硬化性を有する硬化性樹脂組成物であって、
     (A)熱硬化性樹脂;(B)酸性官能基とエチレン性不飽和基を有するポリマー;(C)酸性官能基を有し、エチレン性不飽和基を有さないポリマー;(D)エチレン性不飽和基を有する化合物;および(E)光重合開始剤、を含有し、
     前記(A)成分、(B)成分、(C)成分および(D)成分の合計100重量部に対して、前記(A)成分の含有量が10~50重量部、前記(B)成分と(C)成分の含有量の合計が40~85重量部、前記(C)成分の含有量が25重量部以上である、硬化性樹脂組成物。
    A curable resin composition having photocurability and thermosetting property,
    (A) Thermosetting resin; (B) Polymer having acidic functional group and ethylenically unsaturated group; (C) Polymer having acidic functional group and not having ethylenically unsaturated group; (D) Ethylenic A compound having an unsaturated group; and (E) a photopolymerization initiator,
    The component (A), the component (B), the component (C) and the component (D) are contained in an amount of 10 to 50 parts by weight based on 100 parts by weight in total, and the component (B) is added. A curable resin composition in which the total content of the component (C) is 40 to 85 parts by weight and the content of the component (C) is 25 parts by weight or more.
  2.  前記(A)成分、(B)成分、(C)成分および(D)成分の合計100重量部に対して、前記(D)成分の含有量が5~30重量部である、請求項1に記載の硬化性樹脂組成物。 The content of the component (D) is 5 to 30 parts by weight based on 100 parts by weight of the total of the components (A), (B), (C) and (D). The curable resin composition described.
  3.  熱硬化性と光硬化性を有する硬化性樹脂組成物であって、
     (A)熱硬化性樹脂;(B)酸性官能基とエチレン性不飽和基を有するポリマー;(C)酸性官能基を有し、エチレン性不飽和基を有さないポリマー;(D)エチレン性不飽和基を有し、前記(A)熱硬化性樹脂との反応性を有さない化合物;および(E)光重合開始剤、を含有し、
     全固形分中の前記(A)成分の含有量が10~50重量%、(B)成分と(C)成分の含有量の合計が45~85重量%、(C)成分の含有量が20重量部以上である、硬化性樹脂組成物。
    A curable resin composition having thermosetting and photocuring properties,
    (A) Thermosetting resin; (B) Polymer having acidic functional group and ethylenically unsaturated group; (C) Polymer having acidic functional group and not having ethylenically unsaturated group; (D) Ethylenic A compound having an unsaturated group and having no reactivity with the thermosetting resin (A); and (E) a photopolymerization initiator,
    The content of the component (A) in the total solid content is 10 to 50% by weight, the total content of the components (B) and (C) is 45 to 85% by weight, and the content of the component (C) is 20. Curable resin composition which is more than weight part.
  4.  全固形分中の前記(D)成分の含有量が5~30重量%である、請求項3に記載の硬化性樹脂組成物。 The curable resin composition according to claim 3, wherein the content of the component (D) in the total solid content is 5 to 30% by weight.
  5.  前記(A)成分がエポキシ樹脂であり、前記(B)成分および(C)成分の酸性官能基がカルボキシ基である、請求項1~4のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein the component (A) is an epoxy resin, and the acidic functional groups of the components (B) and (C) are carboxy groups.
  6.  前記(B)および前記(C)は、それぞれ、酸価が5~200mgKOH/gであり、重量平均分子量が1,000~1,000,000である、請求項1~5のいずれか1項に記載の硬化性樹脂組成物。 6. The (B) and the (C) each have an acid value of 5 to 200 mgKOH / g and a weight average molecular weight of 1,000 to 1,000,000. The curable resin composition according to.
  7.  前記(D)成分として、1分子中に4以上のエチレン性不飽和基を有する化合物を含む、請求項1~6のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, which comprises, as the component (D), a compound having 4 or more ethylenically unsaturated groups in one molecule.
  8.  前記(D)成分として、エチレン性不飽和基の官能基当量が300以下の化合物を含む、請求項1~7のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 7, wherein the component (D) contains a compound having an ethylenically unsaturated group functional group equivalent of 300 or less.
  9.  さらに、有機フィラーを含有する、請求項1~8いずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 8, which further contains an organic filler.
  10.  請求項1~9のいずれか1項に記載の硬化性樹脂組成物の硬化物からなる硬化膜。 A cured film comprising a cured product of the curable resin composition according to any one of claims 1 to 9.
  11.  基板上に請求項1~10のいずれか1項に記載の硬化性樹脂組成物の硬化物からなる硬化膜を備える硬化膜付き基板。 A substrate with a cured film, which comprises a cured film made of a cured product of the curable resin composition according to any one of claims 1 to 10 on the substrate.
  12.  前記基板がフレキシブルプリント基板である、請求項11に記載の硬化膜付き基板。 The substrate with a cured film according to claim 11, wherein the substrate is a flexible printed circuit board.
  13.  第一領域と第二領域を有する基板上に硬化膜を備える硬化膜付き基板を製造する方法であって、
     前記基板の第一領域上に、請求項1~9のいずれか1項に記載の硬化性樹脂組成物を塗布して第一塗膜を形成する工程;
     前記基板の第二領域上に、請求項1~9のいずれか1項に記載の硬化性樹脂組成物を塗布して第二塗膜を形成する工程;
     前記第一領域上の前記第一塗膜を露光して光硬化する工程;および
     前記第二領域上の前記第二塗膜を加熱して熱硬化する工程、
     を有する、硬化膜付き基板の製造方法。
    A method of manufacturing a substrate with a cured film comprising a cured film on a substrate having a first region and a second region,
    A step of applying the curable resin composition according to any one of claims 1 to 9 on the first region of the substrate to form a first coating film;
    A step of applying the curable resin composition according to any one of claims 1 to 9 on the second region of the substrate to form a second coating film;
    Exposing the first coating film on the first region to photo-curing; and heating the second coating film on the second region to thermally cure.
    A method for producing a substrate with a cured film, comprising:
  14.  前記第一塗膜を露光する際にマスクを用いてパターン露光を行い、露光後に現像を行い、前記第一領域上の露光されていない部分の塗膜を除去することにより、前記第一領域上にパターニングされた光硬化膜を形成する、請求項13に記載の硬化膜付き基板の製造方法。 When the first coating film is exposed, pattern exposure is performed using a mask, development is performed after the exposure, and the coating film in the unexposed portion on the first region is removed to form the first region on the first region. The method for producing a substrate with a cured film according to claim 13, wherein the patterned photo-cured film is formed.
  15.  前記第一塗膜を露光した後、さらに加熱により熱硬化を行う、請求項13または14に記載の硬化膜付き基板の製造方法。 The method for producing a substrate with a cured film according to claim 13 or 14, wherein after the first coating film is exposed, heat curing is further performed by heating.
  16.  前記第二塗膜を熱硬化した後、前記第一領域上への第一塗膜の形成、および前記第一塗膜の光硬化を行う、請求項13~15のいずれか1項に記載の硬化膜付き基板の製造方法。 The heat treatment of the second coating film is followed by the formation of the first coating film on the first region and the photo-curing of the first coating film, according to any one of claims 13 to 15. Manufacturing method of substrate with cured film.
  17.  前記第一塗膜を光硬化した後、前記第二領域上への第二塗膜の形成を行い、
     前記第一領域上の光硬化膜および前記第一領域上の第二塗膜を同時に加熱して熱硬化を行う、請求項13~15のいずれか1項に記載の硬化膜付き基板の製造方法。
    After photo-curing the first coating film, forming a second coating film on the second region,
    The method for manufacturing a substrate with a cured film according to any one of claims 13 to 15, wherein the photo-cured film on the first region and the second coating film on the first region are heated at the same time to perform thermal curing. .
  18.  前記基板がフレキシブルプリント基板である、請求項13~17のいずれか1項に記載の硬化膜付き基板の製造方法。

     
    The method for manufacturing a substrate with a cured film according to claim 13, wherein the substrate is a flexible printed board.

PCT/JP2019/040418 2018-10-17 2019-10-15 Curable resin composition, cured film, substrate having cured film, and production method therefor WO2020080345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195979 2018-10-17
JP2018195979A JP2022017603A (en) 2018-10-17 2018-10-17 Thermosetting photosensitive resin composition

Publications (1)

Publication Number Publication Date
WO2020080345A1 true WO2020080345A1 (en) 2020-04-23

Family

ID=70282897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040418 WO2020080345A1 (en) 2018-10-17 2019-10-15 Curable resin composition, cured film, substrate having cured film, and production method therefor

Country Status (3)

Country Link
JP (1) JP2022017603A (en)
TW (1) TW202024256A (en)
WO (1) WO2020080345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085301A (en) * 2020-11-27 2022-06-08 株式会社タムラ製作所 Photosensitive composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058977A1 (en) * 2000-02-14 2001-08-16 Taiyo Ink Manufacturing Co., Ltd. Photocurable/thermosetting composition for forming matte film
JP2012168473A (en) * 2011-02-16 2012-09-06 Kaneka Corp Novel white photosensitive resin composition and utilization thereof
JP2013101185A (en) * 2011-11-07 2013-05-23 Kaneka Corp Novel flexible printed wiring board and production method thereof
JP2016149388A (en) * 2015-02-10 2016-08-18 東洋インキScホールディングス株式会社 Circuit board with electromagnetic wave shield film, and production method of the same
JP2018077490A (en) * 2014-09-24 2018-05-17 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, production method of resin pattern, production method of cured film and method for manufacturing display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058977A1 (en) * 2000-02-14 2001-08-16 Taiyo Ink Manufacturing Co., Ltd. Photocurable/thermosetting composition for forming matte film
JP2012168473A (en) * 2011-02-16 2012-09-06 Kaneka Corp Novel white photosensitive resin composition and utilization thereof
JP2013101185A (en) * 2011-11-07 2013-05-23 Kaneka Corp Novel flexible printed wiring board and production method thereof
JP2018077490A (en) * 2014-09-24 2018-05-17 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, production method of resin pattern, production method of cured film and method for manufacturing display device
JP2016149388A (en) * 2015-02-10 2016-08-18 東洋インキScホールディングス株式会社 Circuit board with electromagnetic wave shield film, and production method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085301A (en) * 2020-11-27 2022-06-08 株式会社タムラ製作所 Photosensitive composition
JP7258004B2 (en) 2020-11-27 2023-04-14 株式会社タムラ製作所 photosensitive composition

Also Published As

Publication number Publication date
TW202024256A (en) 2020-07-01
JP2022017603A (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP5789612B2 (en) Novel photosensitive resin composition preparation kit and use thereof
JP6764680B2 (en) A novel photosensitive resin composition and its manufacturing method, and a flexible printed wiring board using it and its manufacturing method
JP6764874B2 (en) Flexible printed wiring board using black resin composition, polyimide with black resin cured film and its manufacturing method, and black resin cured film
JP6010484B2 (en) Photosensitive resin composition preparation kit and use thereof
JP5887106B2 (en) Novel photosensitive resin composition preparation kit and use thereof
JP5858740B2 (en) Novel photosensitive resin composition preparation kit and use thereof
JP5789455B2 (en) Novel photosensitive resin composition preparation kit and use thereof
WO2020080345A1 (en) Curable resin composition, cured film, substrate having cured film, and production method therefor
JP5858739B2 (en) Novel photosensitive resin composition preparation kit and use thereof
WO2019160126A1 (en) Photo-sensitive resin composition, cured film, printed-wiring board and manufacturing method therefor, and photo-sensitive resin composition preparation kit
JP2006330235A (en) Flame-retardant solder resist resin composition and insulating protective coat
JP2014167509A (en) Kit for preparing photosensitive resin composition and use of the same
JP7187227B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP7113644B2 (en) Dry films, cured products and printed wiring boards
JP5877690B2 (en) Novel photosensitive resin composition preparation kit and use thereof
JP5764371B2 (en) Novel photosensitive resin composition and use thereof
JP5858747B2 (en) Novel photosensitive resin composition preparation kit and use thereof
JP5764368B2 (en) Novel photosensitive resin composition and use thereof
JP5858746B2 (en) Novel photosensitive resin composition preparation kit and use thereof
JP7292261B2 (en) Photosensitive resin composition, dry film, cured film, printed wiring board and manufacturing method thereof
JP2017058618A (en) Insulation film for circuit board and method for producing the same
JP2022135152A (en) Curable resin composition, dry film, cured product and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP