WO2020080238A1 - Carbon fiber bundle, carbon fiber bundle production method, and sheet molding compound production method - Google Patents

Carbon fiber bundle, carbon fiber bundle production method, and sheet molding compound production method Download PDF

Info

Publication number
WO2020080238A1
WO2020080238A1 PCT/JP2019/039938 JP2019039938W WO2020080238A1 WO 2020080238 A1 WO2020080238 A1 WO 2020080238A1 JP 2019039938 W JP2019039938 W JP 2019039938W WO 2020080238 A1 WO2020080238 A1 WO 2020080238A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber bundle
sub
mass
tows
Prior art date
Application number
PCT/JP2019/039938
Other languages
French (fr)
Japanese (ja)
Inventor
剛 高田
顕治 兼田
巧己 若林
洋之 中尾
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2019558633A priority Critical patent/JP6863478B2/en
Publication of WO2020080238A1 publication Critical patent/WO2020080238A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins

Definitions

  • the present invention relates to a carbon fiber bundle, a method for producing a carbon fiber bundle, and a method for producing a sheet molding compound.
  • the present application claims priority based on Japanese Patent Application No. 2018-197594 filed in Japan on October 19, 2018, the contents of which are incorporated herein by reference.
  • Carbon fiber reinforced composite material obtained by molding a molding material containing carbon fiber is widely used in various fields because of its light weight and high strength.
  • a molding material a sheet molding compound using short fibers (hereinafter, also referred to as "SMC"), a prepreg using continuous fibers, and the like are known. Since SMC has excellent fluidity, it is suitable for forming a complicated shape that is difficult to form with a prepreg.
  • Patent Document 1 proposes that a carbon fiber bundle obtained by winding a plurality of fiber bundles (sub-tows) on a single bobbin without aligning them and chopping them to use in the production of SMC.
  • this carbon fiber bundle since the sub tows are not sufficiently integrated with each other, some sub tows may be separated during the production or processing of the carbon fiber bundle, and winding around a roll or the like may occur. .
  • Patent Document 2 proposes that a sizing agent having a specific component is applied to a carbon fiber bundle to improve high-order processability.
  • the present invention can achieve both excellent chopping properties and splitting properties at the time of chopping, and a carbon fiber bundle that can be particularly preferably used for production of SMC, and excellent chopping properties and splitting properties at the time of chopping,
  • the present invention has the following configurations.
  • a carbon fiber bundle containing a plurality of sub-tows A carbon fiber bundle having an overlap ratio P represented by the following formula (1) of 5 to 80%.
  • Wt represents an average value (mm) of widths of the carbon fiber bundles
  • Wst represents an average value (mm) of widths of the respective sub tows
  • n represents the number of sub tows included in the carbon fiber bundles ( Book).
  • Part Q of splitting property A continuous carbon fiber bundle is chopped (cut) into a length of 1 inch, and 100 chopped carbon fiber bundles that do not include undivided portions of sub tows are randomly picked up with tweezers, and the mass of each is measured. From these 100 mass measurement values, the number of chopped carbon fiber bundles corresponding to the mass of the sub tow is counted, the ratio of the number is calculated, and the ratio Q of the splitting property is defined.
  • A An aqueous dispersion containing a sizing agent is placed in a dipping tank, and a carbon fiber bundle containing a plurality of sub-tows is continuously dipped and passed through the aqueous dispersion while running.
  • B While the carbon fiber bundle pulled up from the aqueous dispersion is brought into contact with the peripheral surface of the roller, air is blown to the carbon fiber bundle to remove the excess aqueous dispersion.
  • C After the step (b), the carbon fiber bundle to which the aqueous dispersion is attached is subjected to a nip treatment, and the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 40 mass.
  • the sizing agent contains the following components (A) and (B), The mass ratio of the content of the component (A) to the content of the component (B) (content of the component (A) / content of the component (B)) is 1 to 20, The method for producing a carbon fiber bundle according to [12], wherein the ratio of the total content of the component (A) and the component (B) with respect to the total amount (100 mass%) of the sizing agent is 80 mass% or more.
  • Component (A) An epoxy resin composition having a viscosity at 30 ° C.
  • a method for producing a sheet molding compound which comprises impregnating a resin with a fiber bundle obtained by cutting the carbon fiber bundle according to any one of [1] to [11] at intervals in a longitudinal direction.
  • the carbon fiber bundle of the present invention can achieve both excellent chopping properties and splitting properties at the time of chopping, and can be particularly preferably used for production of SMC. According to the method for producing a carbon fiber bundle of the present invention, it is possible to obtain both excellent chopping properties and splitting properties at the time of chopping, and it is possible to produce a carbon fiber bundle that can be particularly suitably used for producing SMC.
  • the carbon fiber bundle of the present invention includes a plurality of sub tows.
  • the plurality of sub tows included in the carbon fiber bundle of the present invention may be bound with a sizing agent.
  • Carbon fiber bundle Examples of the carbon fibers forming the carbon fiber bundle include polyacrylonitrile (PAN) -based carbon fibers, rayon-based carbon fibers, pitch-based carbon fibers, and the like.
  • PAN polyacrylonitrile
  • the length of the carbon fiber bundle is not particularly limited and can be appropriately set according to the application.
  • the carbon fiber bundle of the present invention includes a plurality of sub tows.
  • the carbon fiber bundle containing a plurality of sub-tows may be a plurality of sub-tows produced separately may be bundled and combined, or a large tow may be divided into a plurality of sub-tows and bundled.
  • each sub tow may be intermittently divided from the adjacent sub tows, that is, the adjacent sub tows may be intermittently divided from each other.
  • the number of sub-tows contained in the carbon fiber bundle of the present invention is not particularly limited and can be, for example, 2 to 50.
  • the total number of filaments of the carbon fiber bundle of the present invention is preferably about 1000 to 120,000 from the viewpoints of manufacturing cost, handleability and the like. Since it can be preferably used as a carbon fiber bundle for a sheet molding compound, the number of filaments of the sub tow contained in the carbon fiber bundle of the present invention is preferably about 500 to 15,000. Furthermore, if the shape of the sub tow contained in the carbon fiber bundle of the present invention is flat, the cuttability of the carbon fiber bundle and the resin impregnability into the cut carbon fiber bundle during the production of the sheet molding compound become good. It is preferable because it tends to occur.
  • the mass of each sub tow contained in the carbon fiber bundle of the present invention is preferably about 100 to 1000 mg / m.
  • the average cantilever value of each sub tow contained in the carbon fiber bundle of the present invention is 110 to 300 mm, preferably 140 to 250 mm, more preferably 160 to 220 mm. If the average cantilever value of each sub-tow is 110 mm or more, preferably 140 mm or more, and more preferably 160 mm or more, the carbon fiber bundle is not wrapped around the roll at the time of chopping, and continuous chopping is easy (chopping is possible). Excellent). When the average cantilever value of each sub-tow is 300 mm or less, preferably 250 mm or less, more preferably 220 mm or less, the chop separation property of the carbon fiber bundle is excellent.
  • the cantilever value of the sub tows bound with the sizing agent is a measured value of the carbon fiber bundle with the sizing agent attached.
  • the cantilever value of the sub tow can be adjusted by adjusting the composition and the amount of the sizing agent attached to the carbon fiber bundle.
  • test 1 A 40 cm long test sub tow 100 is cut out from the carbon fiber bundle of the present invention.
  • Process 2 As shown in FIG. 1, a test sub-toe of a measuring table 10 having a horizontal plane 12 and a slope 14 inclined downward from one end of the horizontal plane 12 and having an inclination angle of 45 degrees is provided on the horizontal plane 12. Put 100. At this time, the first end 102 in the length direction of the test sub-toe 100 is aligned with the boundary line A between the slope 14 and the horizontal surface 12.
  • the pressing plate 200 is placed on the test sub-toe, and the end portion 202 of the pressing plate 200 is aligned with the boundary line A.
  • Procedure 3 As shown in FIG. 2, when the pressing plate 200 is moved horizontally toward the slope 14 at a speed of 2 cm / sec, and the first end 102 of the test sub-toe 100 comes into contact with the slope 14. The movement of the pressing plate 200 is stopped with.
  • Process 4 The moving distance x (mm) of the pressing plate 200 in Procedure 3 is measured.
  • the pressing plate 200 may have any size as long as it does not hinder the measurement, and may be, for example, a plate having a length of 400 mm ⁇ a width of 200 mm ⁇ a thickness of 5 mm.
  • the weight of the pressing plate 200 may be any weight that does not interfere with the measurement, and can be set to, for example, 1000 g.
  • the average number of times of entanglement of each sub tow contained in the carbon fiber bundle of the present invention is 20 to 50 times / m, and preferably 30 to 40 times / m.
  • the entanglement of each sub-tow is 20 times / m or more, preferably 30 times / m or more, the binding force of the sub-tows becomes strong and the entanglement of the sub-tows does not occur.
  • the entanglement of each sub-tow is 50 times / m or less, preferably 40 times / m or less, it is possible to prevent the impregnation of the resin from being lowered due to the binding force of the sub-tows being too strong.
  • the number of entanglements of the sub toe is measured by the following method.
  • the carbon fiber bundle from which the sizing agent has been removed by heat treatment is passed through a tension applying means, the tow tension is controlled to 1.0 N, and the carbon fiber bundle divided into sub tows is wound at a running speed of 1.2 m / min. .
  • the number of times the sub tow is entangled is defined as the number of times the ceramic pin of the yarn tension meter is penetrated through the sub tow immediately after passing through the tension applying means and the confounding strength of 0.5 cN or more is detected.
  • the overlapping ratio P represented by the following formula (1) is 5 to 80%, preferably 10 to 60%, more preferably 15 to 50%, further preferably 20 to 40%.
  • the overlapping ratio P of the carbon fiber bundle is 5% or more, preferably 10% or more, more preferably 15% or more, still more preferably 20%, the sub tow can be wound without releasing the binding of the bobbin. If the overlapping ratio P of the carbon fiber bundle is 80% or less, preferably 60% or less, more preferably 50% or less, and further preferably 40% or less, a carbon fiber bundle having excellent chop separation property is obtained. .
  • the overlapping ratio is the width of the groove of the guide roller when the grooved guide roller is installed in front of the dipping flat roller in the sizing agent application step, or the number of sub-tows put into one groove, or the sizing agent. It can be adjusted by the tow tension in the coating process.
  • Wt represents the average value (mm) of the widths of the carbon fiber bundles
  • Wst represents the average value (mm) of the widths of the respective sub-tows
  • n represents the number of the sub-tows included in the carbon fiber bundles (pieces). Is shown.
  • the width of the carbon fiber bundle 30 is measured at every 20 cm in the fiber longitudinal direction at five locations, and Is averaged to be Wt. Further, the width of each of the five sub tows 32 is measured, and they are averaged to obtain Wst. Then, the overlap rate P is calculated using the equation (1).
  • a sizing agent When manufacturing the carbon fiber bundle of the present invention, a sizing agent can be appropriately used.
  • the sizing agent used here is not particularly limited, but a sizing agent containing the component (A) and the component (B) is preferable from the viewpoint that the chop separation property is particularly excellent.
  • the component (A) is an epoxy resin composition having a viscosity at 30 ° C. of 500 to 120,000 Pa ⁇ s.
  • the viscosity of the component (A) at 30 ° C. is 500 to 120,000 Pa ⁇ s, preferably 4000 to 100000 Pa ⁇ s.
  • the viscosity of the component (A) at 30 ° C. is 500 Pa ⁇ s or more, preferably 4000 Pa ⁇ s or more, excellent chopability of the carbon fiber bundle is excellent.
  • the viscosity of the component (A) at 30 ° C. is 120,000 Pa ⁇ s or less, preferably 100,000 Pa ⁇ s or less, the chop separation property of the carbon fiber bundle is excellent.
  • the viscosity is measured by the method of measuring viscosity using a cone-plate type rotational viscometer in JIS Z8803 (2011).
  • the viscosity of the component (A) can be adjusted by the type, combination and ratio of the epoxy resin used.
  • the component (A) preferably contains an epoxy resin having a softening point of 50 ° C. or higher from the viewpoint of reducing the friction resistance between carbon fibers.
  • an epoxy resin having a softening point of 50 ° C. or higher is used, an epoxy resin having a viscosity at 30 ° C. of 1 to 100 Pa ⁇ s is mixed to adjust the viscosity of the component (A) within the above range.
  • the softening point of the epoxy resin is a value measured by the ring and ball method in the JIS K 7234 (1986) epoxy resin softening point test method.
  • the component (A) it is preferable to combine an epoxy resin having a softening point of 50 ° C. or higher with an epoxy resin having a viscosity at 30 ° C. of 1 to 100 Pa ⁇ s, and an epoxy resin having a softening point of 50 to 100 ° C. and 30 ° C. It is more preferable to combine an epoxy resin having a viscosity of 1 to 100 Pa ⁇ s.
  • Examples of the epoxy resin having a softening point of 50 ° C. or higher include bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, and dicyclopentadiene type epoxy resin. Among them, bisphenol A novolac type epoxy resin is preferable because it is a polyfunctional type epoxy resin. Examples of the epoxy resin having a viscosity at 30 ° C. of 1 to 100 Pa ⁇ s include bisphenol F type epoxy resin and bisphenol A type epoxy resin. Among them, the bisphenol F type epoxy resin, which has a low viscosity among the aromatic epoxy resins, is preferable.
  • the epoxy resin used as the component (A) may be one type or two or more types.
  • the component (B) is an aliphatic ester compound having a freezing point of 50 ° C. or lower.
  • the freezing point of the aliphatic ester compound is a value measured by the method for measuring the freezing point of chemical products in JIS K0065 (1992).
  • the freezing point of the aliphatic ester compound is 50 ° C. or lower, preferably 30 ° C. or lower, and more preferably 15 ° C. or lower.
  • the freezing point of the aliphatic ester compound is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 20 ° C. or higher, even more preferably ⁇ 10 ° C. or higher.
  • the freezing point of the aliphatic ester compound is preferably ⁇ 30 to 50 ° C., more preferably ⁇ 20 to 30 ° C., and even more preferably ⁇ 10 to 15 ° C.
  • the freezing point of the aliphatic ester compound is 50 ° C. or lower, preferably 30 ° C. or lower, more preferably 15 ° C.
  • the chop separation property of the carbon fiber bundle is excellent.
  • the freezing point of the aliphatic ester compound is ⁇ 30 ° C. or higher, preferably ⁇ 20 ° C. or higher, more preferably ⁇ 10 ° C. or higher, excellent chopability of the carbon fiber bundle is excellent.
  • the component (B) preferably contains an aliphatic ester compound having one or two ester bonds in the molecule. This reduces the frictional resistance between the carbon fibers.
  • the aliphatic ester compound having one ester bond in the molecule include 2-ethylhexyl stearate, methyl stearate, butyl stearate, isopropyl palmitate and the like.
  • Examples of the aliphatic ester compound having two ester bonds in the molecule include isobutyl adipate and 2-ethylhexyl adipate.
  • an aliphatic ester compound having 3 or more ester bonds in the molecule may be used. Examples thereof include 1,2,3-propanetricarboxylic acid ester and 1,3,5-cyclohexanetricarboxylic acid ester.
  • the aliphatic ester compound used as the component (B) is preferably an aliphatic ester compound having one ester bond in the molecule from the viewpoint of reducing the frictional resistance between carbon fibers.
  • the aliphatic ester compound used as the component (B) may be one type or two or more types.
  • the sizing agent may contain a component other than the component (A) and the component (B) in addition to the component (A) and the component (B).
  • examples of other components include a surfactant, a urethane resin, a polyester resin, and a polyamide resin.
  • the other component may be one type or two or more types.
  • the ratio of the total content of the component (A) and the component (B) with respect to the total amount (100% by mass) of the sizing agent is 80% by mass or more, preferably 80 to 95% by mass, more preferably 80 to 90% by mass.
  • the carbon fiber bundle is excellent in chop goodness and chop separation property.
  • the mass ratio of the content of the component (A) to the content of the component (B) in the sizing agent is 1 to 20, and 1.5 to 10 is preferable, and 3 to 5 is more preferable. If the mass ratio of the content of the component (A) to the content of the component (B) in the sizing agent is 1 or more, preferably 1.5 or more, more preferably 3 or more, good chop of the carbon fiber bundle is obtained. Excel. When the mass ratio of the content of the component (A) to the content of the component (B) in the sizing agent is 20 or less, preferably 10 or less, more preferably 5 or less, the chop separation property of the carbon fiber bundle is excellent. .
  • the method for producing the sizing agent is not particularly limited, and examples thereof include a method of mixing the component (A), the component (B), and other components used as necessary by a known method.
  • the amount of the sizing agent attached to the total mass (100% by mass) of the carbon fiber bundle of the present invention is 0.6 to 1. 6% by mass is preferable, 0.8 to 1.4% by mass is more preferable, and 1.0 to 1.2% by mass is further preferable. If the amount of the sizing agent attached to the total mass (100% by mass) of the carbon fiber bundle of the present invention is 0.6% by mass or more, more preferably 0.8% by mass or more, and further preferably 1.0% by mass or more. Excellent in chopping of carbon fiber bundles.
  • adhesion amount of the sizing agent to the total mass (100 mass%) of the carbon fiber bundle of the present invention is 1.6 mass% or less, more preferably 1.4 mass% or less, further preferably 1.2 mass% or less. , Excellent in chop separation of carbon fiber bundles.
  • the carbon fiber bundle of the present invention preferably has a splitting property ratio Q defined below of 20% or more.
  • a continuous carbon fiber bundle is chopped (cut) into a length of 1 inch, and 100 chopped carbon fiber bundles that do not include undivided portions of sub tows are randomly picked up with tweezers, and the mass of each is measured. From these 100 mass measurement values, the number of chopped carbon fiber bundles corresponding to the mass of the sub tow is counted, the ratio of the number is calculated, and the ratio Q of the splitting property is defined.
  • the chopped carbon fiber bundle does not include the undivided portion of the sub-tow, for example, a large tow to chop the carbon fiber bundle intermittently divided into a plurality of sub-tow to obtain a chopped carbon fiber bundle
  • the chopped carbon fiber bundle in which the sub tows are connected to each other due to the undivided portion is excluded from the evaluation target of the ratio Q of the splitting property.
  • the chopped carbon fiber bundle corresponding to the mass of the sub tow is a chopped carbon fiber bundle having a mass of 120% or less of the mass corresponding to the average fineness of the sub tow.
  • splitting ratio Q the splitting ratio of the carbon fiber bundle at the time of chopping is.
  • the splitting ratio Q 20% or more, air blowing onto the chopped carbon fiber bundle, Obtaining a sufficiently separated chopped carbon fiber bundle as a raw material for a fiber-reinforced resin molding material by adding a step of colliding a chopped carbon fiber bundle with a rotating body having a plurality of protrusions on the surface
  • the ratio Q of the splitting property of the carbon fiber bundle is 20% or more, 40% or more is more preferable, 50% or more is further more preferable, and 60% or more of the ratio Q of the splitting property of a carbon fiber bundle is still more preferable. If the ratio Q of the splitting property of the carbon fiber bundle is 20% or more, preferably 40% or more, more preferably 50% or more, and still more preferably 60% or more, it has excellent chopping properties and chop splitting properties. Can be further improved.
  • the splitting ratio Q of the carbon fiber bundle can be set to 20% or more by binding the above sub tow with the above sizing agent.
  • each sub-tow can be in a state of being intermittently divided from the adjacent sub-tows, but in this case, the length of the undivided portion between adjacent sub-tows Is preferably 1 mm or more, more preferably 3 mm or more, still more preferably 5 mm or more.
  • the length of the undivided portion between adjacent sub tows is preferably 50 mm or less, more preferably 35 mm or less, and further preferably 25 mm or less.
  • the length of the undivided portion between adjacent sub tows is preferably 1 to 50 mm, more preferably 3 to 35 mm, and further preferably 5 to 25 mm.
  • the length of the undivided portion between adjacent sub-tows is 1 mm or more, preferably 3 mm or more, more preferably 5 mm or more, the productivity of the carbon fiber bundle and the morphological stability during processing can be further improved, It is easy to suppress process troubles that the fiber bundle is cut and wrapped around the rotating blade or roll. If the length of the undivided portion between adjacent sub-tows is 50 mm or less, preferably 35 mm or less, more preferably 25 mm or less, it is possible to reduce the proportion of the undivided portion contained in the chopped carbon fiber bundle after cutting, The physical properties of a molded product obtained by molding the obtained molding material tend to be improved.
  • adjacent sub-tows can be intermittently divided, but in this case, the intermittently divided state is represented by the following formula ( It is preferable that the condition 1) is satisfied.
  • a is the length of the divided portion between adjacent sub-tows
  • b is the length of the undivided portion between adjacent sub-tows.
  • the presence of the unseparated portion in the continuous carbon fiber bundle suppresses the occurrence of slackness or separation of some sub-tows during the production or processing of the carbon fiber bundle. Therefore, the winding of the carbon fiber bundle around the roll or the like can be reduced.
  • the ratio of chopped fiber bundles in which subtows are connected is It can be reduced.
  • the chopped carbon fiber bundle can be uniformly dispersed on the paste, The resin can be easily impregnated into the carbon fiber, and the quality of the molding material produced can be improved.
  • the value of a / (a + b) is less than 1, the carbon fiber bundle can be stably fed to the cutting machine and chopped.
  • the value of a / (a + b) may be 0.99 or less.
  • the length a of the divided portion between adjacent sub tows is preferably 1 mm or more, more preferably 10 mm or more, and further preferably 100 mm or more.
  • the length a of the divided portion between adjacent sub tows is preferably 5000 mm or less, more preferably 3000 mm or less, and further preferably 1000 mm or less.
  • the length a of the divided portion between adjacent sub tows is preferably 1 to 5000 mm, more preferably 10 to 3000 mm, and further preferably 100 to 1000 mm.
  • the length a of the divided portion between adjacent sub-tows is 1 mm or more, preferably 10 mm or more, more preferably 100 mm or more, the physical properties of the molded product obtained by molding the obtained molding material are further improved.
  • the length a of the divided portion between adjacent sub-tows is 5000 mm or less, preferably 3000 mm or less, and more preferably 1000 mm or less, the process trouble of winding around the rotary blade or the roll due to cutting or loosening of the carbon fiber bundle is prevented. Easy to control.
  • the length b of the undivided portion between adjacent sub tows is preferably more than 0 mm, more preferably 1 mm or more, further preferably 3 mm or more, and further preferably 5 mm or more. Further, the length b of the undivided portion between adjacent sub tows is preferably 50 mm or less, more preferably 35 mm or less, and further preferably 25 mm or less. Specifically, the length b of the undivided portion between adjacent sub-tows is preferably more than 0 mm and 50 mm or less, more preferably 1 to 50 mm, further preferably 3 to 35 mm, particularly preferably 5 to 25 mm.
  • the fiber bundle is cut and wrapped around a rotary blade or roll. Trouble is easy to control. If the length b of the undivided portion between adjacent sub-tows is 50 mm or less, preferably 35 mm or less, and more preferably 25 mm or less, the proportion of the undivided portion contained in the chopped carbon fiber bundle after cutting can be reduced. The physical properties of the molded product obtained by molding the obtained molding material are improved.
  • each sub tow intermittently divided with the adjacent sub tow a method of intermittently piercing a continuous large tow with a plurality of blades arranged in a row at a predetermined interval in the width direction of the large tow, or continuous
  • a method of intermittently spraying a fluid such as air to a plurality of positions in the width direction of the large tow.
  • the carbon fiber bundle of the present invention can be used as a raw material for a fiber-reinforced resin molding material, and is excellent in chopping property and splitting property during chopping, and thus is particularly useful as a carbon fiber bundle for SMC.
  • the carbon fiber bundle of the present invention for SMC, since SMC in which finely divided carbon fiber bundles that have been uniformly separated are obtained, variation in the quality of SMC is reduced and the carbon fiber of the present invention is also reduced.
  • the fiber-reinforced composite material obtained by molding the SMC using the bundle has excellent mechanical properties.
  • the carbon fiber bundle of the present invention may be cut so as to satisfy the condition of the following formula (2). preferable.
  • a is a length of a divided portion between adjacent sub-tows
  • L is an interval at which the continuous carbon fiber bundle is cut.
  • a / L is 1000 or less, preferably 200 or less, more preferably 100 or less, and further preferably 50 or less.
  • a / L is 1000 or less, preferably 200 or less, and more preferably 100 or less, it is easy to suppress process troubles of winding around a rotary blade or roll due to cutting or slackening of the carbon fiber bundle.
  • the carbon fiber bundle of the present invention is cut so as to satisfy the condition of the following formula (3). It is preferable.
  • a is the length of the divided portion between adjacent sub-tows
  • L is the interval at which the continuous carbon fiber bundle is cut.
  • a / L is 1 or more, preferably 2 or more, more preferably 3 or more, still more preferably 5 or more.
  • a / L is 1 or more, preferably 2 or more, more preferably 3 or more, and further preferably 5 or more, the ratio of the undivided portion contained in the chopped carbon fiber bundle after cutting can be reduced. Therefore, the physical properties of the molded product obtained by molding the obtained molding material are improved.
  • the carbon fiber bundle of the present invention is cut so as to satisfy the condition of the following formula (4). It is preferable.
  • b is the length of the undivided portion between adjacent sub-tows
  • L is the interval at which the continuous carbon fiber bundle is cut.
  • b / L is 0 or more and less than 1, preferably 0.03 to 0.8, and more preferably 0.1 to 0.6.
  • the carbon fiber bundle may be cut or loosened to cause a rotary blade, roll, etc. It is easy to suppress the process trouble of wrapping around, and the proportion of the unseparated portion contained in the chopped carbon fiber bundle after cutting can be reduced, so that the physical properties of the molded product obtained by molding the obtained molding material are improved.
  • the carbon fiber bundle of the present invention is particularly useful as a carbon fiber bundle for a sheet molding compound (SMC) because it has excellent chop separation properties.
  • SMC sheet molding compound
  • an SMC in which a fine carbon fiber bundle is dispersed can be obtained. Therefore, the carbon fiber reinforced composite material obtained by molding the SMC using the carbon fiber bundle of the present invention can be used. It has excellent mechanical properties.
  • the method for producing the carbon fiber bundle of the present invention is not particularly limited.
  • a method may be mentioned in which the above sizing agent is added to water, emulsified to form an aqueous dispersion, and the aqueous dispersion is applied to a carbon fiber bundle and dried.
  • a method for producing the carbon fiber bundle of the present invention a method including the following steps (a) to (d) is preferable in that the sub-tows are not bound to each other by a sizing agent as much as possible.
  • aqueous dispersion containing a sizing agent is placed in a dipping tank, and a carbon fiber bundle containing a plurality of sub-tows is continuously dipped and passed through the aqueous dispersion while running.
  • B While the carbon fiber bundle pulled up from the aqueous dispersion is brought into contact with the peripheral surface of the roller, air is blown to the carbon fiber bundle to remove the excess aqueous dispersion.
  • C After the step (b), the carbon fiber bundle to which the aqueous dispersion is attached is subjected to a nip treatment, and the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 40 mass. % Or less.
  • D After the step (c), the carbon fiber bundle is brought into contact with a heating roller whose peripheral surface is heated to 110 to 200 ° C. to be dried.
  • the manufacturing apparatus 300 includes a dipping tank 310, a dipping flat roller 312, a pulling flat roller 314, a feed roller 316, a nip roller 318, an air blowing unit 320, and a plurality of heating rollers 322. ing.
  • the dipping bath 310 can accommodate the aqueous dispersion 50 containing a sizing agent. Both the flat roller 312 and the flat roller 314 are provided so that a part thereof is immersed in the water dispersion liquid 50 contained in the immersion tank 310.
  • the flat roller 314 is provided on the downstream side of the flat roller 312.
  • the carbon fiber bundle 40 is immersed in the water dispersion liquid 50 stored in the dipping tank 110 while traveling by the flat roller 312, and the carbon fiber bundle 40 is pulled up from the water dispersion liquid 50 by the flat roller 314.
  • the feed roller 316 and the nip roller 318 are provided on the downstream side of the immersion tank 310 so as to perform a nip treatment on the carbon fiber bundle 40.
  • the air blowing unit 320 is provided above the flat roller 314.
  • the plurality of heating rollers 322 are provided on the downstream side of the feed roller 316 and the nip roller 318.
  • the aqueous dispersion 50 containing the sizing agent is stored in the dipping tank 310, and the carbon fiber bundle 40 is continuously immersed in the aqueous dispersion 50 by the flat roller 312, and then the flat roller 314 is used. Pull it up and let it pass.
  • the concentration of the sizing agent in the aqueous dispersion is preferably 1 to 10% by mass, more preferably 2 to 6% by mass.
  • concentration of the sizing agent in the aqueous dispersion is 1% by mass or more, more preferably 2% by mass or more, a carbon fiber bundle having excellent chop goodness can be obtained.
  • concentration of the sizing agent in the aqueous dispersion is 10% by mass or less, more preferably 6% by mass or less within the above range, a carbon fiber bundle having excellent chop segmentation properties can be obtained.
  • step (b) while the carbon fiber bundle 40 pulled up from the water dispersion liquid 50 is brought into contact with the peripheral surface of the flat roller 314, air is blown to the carbon fiber bundle 40 by the air blowing means 320 to remove the excess water dispersion liquid 50. Remove.
  • the feed roller 316 and the nip roller 318 perform a nip treatment while running the carbon fiber bundle 40 to which the water dispersion liquid 50 is adhered, so that the water relative to the total mass of the carbon fiber bundle 40 and the water dispersion liquid 50 is added.
  • the mass ratio of the dispersion liquid 50 is 40 mass% or less.
  • the mass ratio of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion after the nip treatment in the step (c) is preferably 40% by mass or less, more preferably 5 to 40% by mass, and 10 to 25% by mass. % Is more preferable.
  • the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 5% by mass or more, and more preferably 10% by mass or more, the sizing agent can be uniformly applied.
  • the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 40% by mass or less, more preferably 25% by mass or less, the splittability between sub tows during chopping is improved.
  • the amount of the sizing agent attached to the carbon fiber bundle can be adjusted by the concentration of the sizing agent in the aqueous dispersion, the degree of squeezing after immersion, and the like.
  • the carbon fiber bundle 40 is brought into contact with the heating roller 322 whose peripheral surface is heated to 110 to 200 ° C. to be dried.
  • the temperature of the peripheral surface of the heating roller 322 when the carbon fiber bundle 40 is dried is preferably 110 to 200 ° C, more preferably 110 to 170 ° C, and further preferably 130 to 150 ° C.
  • the peripheral temperature of the heating roller is 110 ° C. or higher, more preferably 130 ° C. or higher, the aqueous dispersion containing the sizing agent is sufficiently dried.
  • the peripheral temperature of the heating roller is 200 ° C. or lower, more preferably 170 ° C. or lower, further preferably 150 ° C. or lower, the sizing agent can be applied to the carbon fiber bundle 40 without thermal decomposition.
  • the method for producing the carbon fiber bundle of the present invention is not limited to the method of immersing the carbon fiber bundle in the aqueous dispersion containing the sizing agent and applying the sizing agent.
  • the method for manufacturing the carbon fiber bundle of the present invention may be a method using the manufacturing apparatus 300A illustrated in FIG. 5 that are the same as those in FIG. 4 are assigned the same reference numerals and explanations thereof are omitted.
  • the manufacturing apparatus 300A includes an immersion tank 310, a first touch roller 324, a second touch roller 326, a feed roller 316, a nip roller 318, and a plurality of heating rollers 322.
  • the manufacturing apparatus 300A is the same as the manufacturing apparatus 300 except that the first touch roller 324 and the second touch roller 326 are provided instead of the flat rollers 312 and 314, and the air blowing unit 320 is not provided. .
  • the water dispersion liquid 50 containing the sizing agent is stored in the dipping tank 310, and the first touch roller 324 and the second touch roller 326 cause the carbon fiber bundle 40 to travel and the water dispersion liquid. 50 is applied continuously.
  • the feed roller 316 and the nip roller 318 perform a nip treatment while the carbon fiber bundle 40 to which the water dispersion liquid 50 is attached is running, and then the carbon fiber bundle 40 is brought into contact with the heating roller 322 to be dried.
  • the method for manufacturing the carbon fiber bundle of the present invention may be a method using the manufacturing apparatus 300B illustrated in FIG.
  • the manufacturing apparatus 300B is the same as the manufacturing apparatus 300, except that the immersion flat roller 314A is provided instead of the pulling up flat roller 314, and the air blowing unit 320 is not provided.
  • the method using the manufacturing apparatus 300B is the same as the method using the manufacturing apparatus 300, except that after the aqueous dispersion 50 is applied to the carbon fiber bundle 40, air is not blown while making contact with the circumferential surface of the roller.
  • a plurality of sub-tows contained in the carbon fiber bundle are bound by a sizing agent, the average value of the cantilever value of each sub-tow, and the average of the number of confounding control within a specific range. Has been done. Thereby, when the carbon fiber bundle is chopped, excellent chopping property is obtained, and a sufficiently divided chopped carbon fiber bundle is obtained.
  • SMC Sheet molding compound
  • An SMC can be produced by impregnating a resin (matrix resin) with a fiber bundle (chopped fiber bundle) obtained by cutting the carbon fiber bundle of the present invention at intervals in the longitudinal direction.
  • This SMC can adopt a known aspect except that it includes a chopped fiber bundle obtained by chopping the carbon fiber bundle of the present invention.
  • the average fiber length of the chopped fiber bundle is not particularly limited and can be, for example, 1 to 60 mm.
  • the average fiber length of the chopped fiber bundle is the average value of the fiber length of 100 chopped fiber bundles.
  • the bulk density measured by the method (I) is preferably 60 to 400 g / L, more preferably 70 to 350 g / L, further preferably 80 to 320 g / L, and 100 to 280 g / L. Is particularly preferable. If the bulk density of the carbon fiber bundle measured by the method (I) is 60 to 400 g / L, preferably 70 to 350 g / L, more preferably 80 to 320 g / L, further preferably 100 to 280 g / L, Since the chopped carbon fiber bundles are tightly entangled with each other in the SMC, a high-strength fiber-reinforced composite material can be obtained. Further, the rigidity of the chopped fiber bundle and the resin impregnating property can both be achieved, and the mechanical properties can be improved.
  • the bulk density measured by the method (I) when the bulk density measured by the method (I) is 60 g / L or more, preferably 70 g / L or more, more preferably 80 g / L or more, further preferably 100 g / L or more, during SMC production. Since the resin impregnating property is excellent, the mechanical properties of the fiber-reinforced composite material are improved.
  • the bulk density measured by the method (I) is 400 g / L or less, preferably 350 g / L or less, more preferably 320 g / L or less, further preferably 280 g / L or less, in SMC. Since the chopped fiber bundles are strongly intertwined with each other, a high-strength fiber-reinforced composite material can be obtained.
  • thermosetting resin or a thermoplastic resin can be used as a matrix resin when manufacturing an SMC using the carbon fiber bundle of the present invention.
  • the matrix resin only the thermosetting resin may be used, only the thermoplastic resin may be used, or both the thermosetting resin and the thermoplastic resin may be used.
  • thermosetting resin is not particularly limited, epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, phenoxy resin, alkyd resin, urethane resin, urea resin, melamine resin, maleimide resin, cyanate resin, etc. Can be mentioned.
  • thermoplastic resin include polyolefin resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyether ketone resin, polyether sulfone resin, and aromatic polyamide resin.
  • the matrix resins may be used alone or in combination of two or more.
  • Matrix resins include internal mold release agents, defoamers, flame retardants, weather resistance improvers, antioxidants, heat stabilizers, UV absorbers, plasticizers, lubricants, colorants, compatibilizers, thickeners, etc. You may mix
  • the method for producing the SMC of the present invention is not particularly limited. For example, there is a method in which a long carbon fiber bundle of the present invention is chopped to form a chopped fiber bundle, a fiber base material including the chopped fiber bundle is formed, and a matrix resin is impregnated to obtain SMC.
  • a fiber-reinforced composite material can be obtained by placing the SMC obtained in the present invention in a mold and performing heat-press molding.
  • Surfactant (C-1) polycyclic phenol ethylene oxide adduct sulfate ammonium salt (trade name "Hitenol (registered trademark) NF-17", Dai-ichi Kogyo Seiyaku Co., Ltd.).
  • the cantilever value of the sub tow was measured by the following procedures 1 to 4.
  • (Procedure 1) A 40 cm long test subtoe was cut out from a carbon fiber bundle.
  • (Procedure 2) Place a test sub-toe on the horizontal plane of a measuring table having a horizontal plane and a slope having an inclination angle of 45 degrees, and incline downward from one end of the horizontal plane. The end of 1 was aligned with the boundary line between the slope and the horizontal plane.
  • the pressing plate was placed on the test sub-toe, and the end of the pressing plate was aligned with the boundary line.
  • the number of times of subtow confounding was measured by the following method. Before the sizing agent application step, the carbon fiber bundle to which the sizing agent has not been applied is sampled, the carbon fiber bundle is pulled up in the vertical direction, passed through the tension applying means, and the tow tension is controlled to 1.0 N, and the traveling speed is 1. It was wound up at 2 m / min. In the meantime, the number of times the entanglement strength of 0.5 cN or more was detected by penetrating the ceramic pin of the yarn tension meter to the divided sub tow immediately after passing through the tension applying means, did.
  • the amount of the sizing agent attached to the sizing agent-attached carbon fiber bundle obtained in each example was measured by the Soxhlet extraction method using methyl ethyl ketone. The extraction time was 1 hour.
  • a continuous carbon fiber bundle was chopped (cut) into a length of 1 inch, and 100 chopped carbon fiber bundles that did not include undivided portions of the sub tows were carefully picked up randomly with tweezers, and the mass of each was measured. From these 100 mass measurement values, the number of chopped carbon fiber bundles corresponding to the mass of the sub tow was counted, the ratio of the number was calculated, and the dispersibility ratio Q was obtained.
  • a carbon fiber bundle with a sizing agent was chopped (cut) into a length of 1 inch using a rotary cutter, and the chop separation property was evaluated by the dispersibility ratio Q calculated by the above method.
  • the chopped carbon fiber bundle corresponding to the mass of the sub tow is a chopped carbon fiber bundle having 120% or less of the average fineness of the sub tow.
  • the chop separation property was evaluated according to the following criteria.
  • the bulk density of the carbon fiber bundle was measured by the following procedures I-1 and I-2.
  • (Procedure I-1) 100 g of a cut piece obtained by cutting a carbon fiber bundle with a rotary cutter to a fiber length of 25 mm was filled in a 2 L graduated cylinder (cylinder having a diameter of 88 mm and a height of 485 mm).
  • (Procedure I-2) A load of 500 g is uniformly applied from the upper part of the cut pieces in the graduated cylinder, and the total volume (L) of the filled cut pieces when there is no change in volume is measured.
  • the bulk density was calculated by dividing the mass (100 g) by the total volume (L) of the cut pieces.
  • ⁇ Preparation of matrix resin composition 100 parts by mass of a mixture of an epoxy (meth) acrylate resin and an unsaturated polyester resin (manufactured by Nippon Yupica Co., Ltd., product name: Neopol (registered trademark) 8113), 1,1-di (t-butylperoxy) cyclohexane 0.5 parts by mass of a 75 mass% solution (manufactured by NOF CORPORATION, product name: Perhexa (registered trademark) C-75 (EB)), 74 mass% solution of t-butylperoxyisopropyl carbonate (Kayaku Akzo Co., Ltd.
  • the obtained matrix resin composition was applied onto a polyethylene film (carrier film) with a doctor blade so as to have a thickness of 1.0 mm, and chopped carbon fiber bundles each having a fiber length of 25 mm were applied onto the film.
  • the carbon fiber bundle was sprayed so that the basis weight of the bundle was substantially uniform and the direction of the carbon fiber bundle was random.
  • the same matrix resin composition was applied onto another polyethylene carrier film to a thickness of 1.0 mm, and the matrix resin composition sides were laminated and laminated on the scattered carbon fiber bundles.
  • Got the body The laminate was pressed between rolls to impregnate the carbon fiber bundle with the matrix resin composition to obtain an SMC precursor.
  • the obtained SMC precursor was allowed to stand at room temperature (23 ° C.) for 168 hours (7 days). Thereby, the matrix resin composition in the SMC precursor was sufficiently thickened to obtain SMC.
  • the resin impregnation property was confirmed visually and by touch, and evaluated according to the following evaluation criteria.
  • Example 1 ⁇ Preparation of aqueous dispersion of sizing agent> A resin composition obtained by mixing 54 parts by mass of the component (A-1) and 11 parts by mass of the component (A-2) as the component (A), 20 parts by mass of the component (B-1), and the surfactant (C-1 ) 15 parts by mass were mixed to obtain a sizing agent. Ion-exchanged water was added to the obtained sizing agent, and phase inversion emulsification was performed using a homomixer to prepare an aqueous dispersion having a sizing agent concentration of 3.3 mass%.
  • the acrylonitrile-based copolymer was wet-spun to obtain a carbon fiber bundle precursor having 3000 filaments and a total fineness of 3600 tex, and 5 carbon fiber bundle precursors were wound on a bobbin.
  • the bundled carbon fiber bundle precursor was fired to obtain a carbon fiber bundle containing 5 sub-tows (mass: 298 mg / m) and having a total number of filaments of 15,000 and a total fineness of 1000 tex.
  • the carbon fiber bundle was subjected to electrolytic oxidation treatment using ammonium hydrogen carbonate as an electrolytic solution, washed with water, and dried by a roller heated to 150 ° C.
  • the feed roller 316 and the nip roller 318 perform a nip treatment while running the carbon fiber bundle 40 to which the water dispersion liquid 50 is attached, so that the mass of the water dispersion liquid 50 with respect to the total mass of the carbon fiber bundle 40 and the water dispersion liquid 50 is The ratio W was set to 20% by mass.
  • the carbon fiber bundle 40 was brought into contact with the heating roller 322 whose peripheral surface was heated to 140 ° C. for 15 seconds to be dried, and the carbon fiber bundle with the sizing agent was wound on a bobbin.
  • the amount of the sizing agent attached to the obtained carbon fiber bundle with the sizing agent was 1.2% by mass.
  • Examples 2 to 7 and Examples 10 and 11 A carbon fiber bundle with a sizing agent was produced in the same manner as in Example 1 except that the production conditions of the carbon fiber bundle with a sizing agent were changed as shown in Table 1.
  • Example 8 and 9 A resin composition obtained by mixing 42.5 parts by mass of the component (A-3) and 42.5 parts by mass of the component (A-4) as the component (A) and 15 parts by mass of the surfactant (C-1) are mixed. Then, a sizing agent was obtained. Ion-exchanged water was added to the sizing agent, and phase inversion emulsification was performed using a homomixer to prepare an aqueous dispersion having a sizing agent concentration of 3.3 mass%. A carbon fiber bundle with a sizing agent was produced in the same manner as in Example 1 except that the obtained aqueous dispersion was used and the production conditions for the carbon fiber bundle with a sizing agent were changed as shown in Table 1.
  • Example 12 As a continuous fiber bundle, a carbon fiber bundle (trade name "TR50S 15L", manufactured by Mitsubishi Chemical Corporation) was used. The carbon fiber bundle is intermittently divided so that the length a of the divided portion between the adjacent sub-tows is 800 mm and the length b of the undivided portion between the adjacent sub-tows is 25 mm, and 9 sub-tows are included. A carbon fiber bundle having 15,000 filaments and a total fineness of 1000 tex was obtained. Then, a carbon fiber bundle with a sizing agent was manufactured in the same manner as in Example 1.
  • Example 1 A carbon fiber bundle with a sizing agent was produced in the same manner as in Example 1 except that the production conditions of the carbon fiber bundle with a sizing agent were changed as shown in Table 1.
  • a carbon fiber bundle (trade name "TRW40 50L", manufactured by Mitsubishi Chemical Corporation) was used as a continuous fiber bundle.
  • the carbon fiber bundle is intermittently divided so that the length a of the divided portion between the adjacent sub-tows is 800 mm and the length b of the undivided portion between the adjacent sub-tows is 25 mm, and includes 30 sub-tows.
  • a carbon fiber bundle having 50000 filaments and a total fineness of 3750 tex was obtained.
  • a sizing agent-attached carbon fiber bundle was produced in the same manner as in Example 1 except that the production conditions for the sizing agent-attached carbon fiber bundle were changed as shown in Table 1.
  • Table 1 shows the evaluation results of the examples and comparative examples.
  • the sizing agent-added carbon fiber bundles of Examples 1 to 9 were excellent in chop division property during chopping.
  • the chop goodness was inferior, but the level was sufficiently applicable to the production of SMC.
  • the chop separation property was inferior, but the level was sufficiently applicable to the production of SMC.
  • the chop separation property and the chop goodness were inferior, but the level was sufficiently applicable to the production of SMC.
  • Comparative Example 1 in which the overlapping rate P was low, the chop separation property and the chop goodness were good, but troubles such as winding of the separated sub tow around the device frequently occurred during the production of SMC. did. Further, the chopped fiber bundle of Comparative Example 1 had a low resin impregnation property, and was not at a level applicable to the production of SMC. Further, in Comparative Example 2 in which the overlapping ratio P was high, the chop splitting property was relatively good, but the chop goodness and resin impregnation were low, and it was not at a level applicable to the production of SMC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

Provided is a carbon fiber bundle for which it is possible to establish both excellent chop-ability during chopping and fiber separation and which can be used favorably particularly in production of SMC. This carbon fiber bundle comprises multiple subtows and the overlap rate P calculated by a specified formula is 5-80%.

Description

炭素繊維束、炭素繊維束の製造方法、及びシートモールディングコンパウンドの製造方法Carbon fiber bundle, method for producing carbon fiber bundle, and method for producing sheet molding compound
 本発明は、炭素繊維束、炭素繊維束の製造方法、及びシートモールディングコンパウンドの製造方法に関する。
 本願は、2018年10月19日に、日本に出願された特願2018-197594号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a carbon fiber bundle, a method for producing a carbon fiber bundle, and a method for producing a sheet molding compound.
The present application claims priority based on Japanese Patent Application No. 2018-197594 filed in Japan on October 19, 2018, the contents of which are incorporated herein by reference.
 炭素繊維を含む成形材料を成形した炭素繊維強化複合材料は、軽量かつ高強度であることから様々な分野で広く用いられている。成形材料としては、短繊維を使用するシートモールディングコンパウンド(以下、「SMC」とも言う。)や、連続繊維を使用するプリプレグ等が知られている。SMCは、流動性に優れるため、プリプレグでは成形が困難な複雑形状を形成するのに好適である。 ▽ Carbon fiber reinforced composite material obtained by molding a molding material containing carbon fiber is widely used in various fields because of its light weight and high strength. As a molding material, a sheet molding compound using short fibers (hereinafter, also referred to as "SMC"), a prepreg using continuous fibers, and the like are known. Since SMC has excellent fluidity, it is suitable for forming a complicated shape that is difficult to form with a prepreg.
 短繊維を使用した場合、複合材料の機械特性は、複合材料中の短繊維の分散状態や形態の影響を強く受けることが知られている。炭素繊維は製造コストが比較的高いことから、これを複数本束ねて炭素繊維束とされることがあるが、複合材料中では細かい繊維束が分散している方が、複合材料の機械特性が良好になる。そこで、複数のサブトウを含み、チョップ(裁断)した際に各サブトウが分割されて分散される炭素繊維束をSMCの製造に用いることが知られている。例えば、特許文献1には、複数の繊維束(サブトウ)を引き揃えることなく単一のボビンに巻き取った炭素繊維束を、チョップしてSMCの製造に使用することが提案されている。しかし、この炭素繊維束はサブトウ同士が充分に一体化されていないために、炭素繊維束の製造時や加工時に、一部のサブトウが分離し、ロール等への巻き付き等が発生することがある。 It is known that when short fibers are used, the mechanical properties of the composite material are strongly affected by the dispersion state and morphology of the short fibers in the composite material. Since carbon fiber has a relatively high manufacturing cost, a plurality of carbon fibers may be bundled to form a carbon fiber bundle. However, when the fine fiber bundles are dispersed in the composite material, the mechanical properties of the composite material are improved. Get better Therefore, it is known to use a carbon fiber bundle that includes a plurality of sub-tows and is divided and dispersed when the sub-tows are cut (cut) in the production of SMC. For example, Patent Document 1 proposes that a carbon fiber bundle obtained by winding a plurality of fiber bundles (sub-tows) on a single bobbin without aligning them and chopping them to use in the production of SMC. However, in this carbon fiber bundle, since the sub tows are not sufficiently integrated with each other, some sub tows may be separated during the production or processing of the carbon fiber bundle, and winding around a roll or the like may occur. .
 ところで、サイジング剤を炭素繊維束に付着させることで、耐擦過性やチョップ性といった高次加工性を改善する方法が提案されている。例えば、特許文献2には、特定の成分を有するサイジング剤を炭素繊維束に塗布することで、高次加工性を高めることが提案されている。 By the way, a method has been proposed to improve high-order processability such as scratch resistance and chop property by attaching a sizing agent to the carbon fiber bundle. For example, Patent Document 2 proposes that a sizing agent having a specific component is applied to a carbon fiber bundle to improve high-order processability.
日本国特開2010-163536号公報Japanese Patent Laid-Open No. 2010-163536 日本国特開2008-274520号公報Japanese Patent Laid-Open No. 2008-274520
 複数のサブトウを含む炭素繊維束をサイジング剤で集束する場合、十分な集束性が得られるサイジング剤でサブトウ同士を結着させると、炭素繊維束をチョップした際のチョップド炭素繊維束の分繊性(チョップ分繊性)が悪化し、各サブトウが十分に分割されない傾向がある。一方、チョップ分繊性を確保しようとしてサイジング剤の付着量を減らしたり、集束性の低いサイジング剤を使用したりすると、サブトウ内の炭素繊維の単糸がばらけて他のサブトウに絡み、チョップ分繊性が低下することがある。 When bundling carbon fiber bundles containing multiple sub-tows with a sizing agent, binding the sub-tows to each other with a sizing agent that provides sufficient bundling properties allows the chopped carbon fiber bundles to be separated when the carbon fiber bundles are chopped. (Chop separation property) deteriorates, and each sub tow tends not to be divided sufficiently. On the other hand, if the amount of sizing agent attached is reduced to secure the chop separation property, or if a sizing agent with low bundling property is used, the single fiber of carbon fiber in the sub-tow will be separated and entangled with other sub-tows, resulting in chop Separation properties may decrease.
 本発明は、チョップ時の優れたチョップ性と分繊性を両立でき、特にSMCの製造に好適に用いることができる炭素繊維束、及びチョップ時の優れたチョップ性と分繊性を両立でき、特にSMCの製造に好適に用いることができる炭素繊維束の製造方法を提供することを目的とする。 The present invention can achieve both excellent chopping properties and splitting properties at the time of chopping, and a carbon fiber bundle that can be particularly preferably used for production of SMC, and excellent chopping properties and splitting properties at the time of chopping, In particular, it is an object of the present invention to provide a method for producing a carbon fiber bundle that can be suitably used for producing SMC.
 本発明は、以下の構成を有する。 The present invention has the following configurations.
[1]複数本のサブトウを含む炭素繊維束であって、
 下記式(1)で表される重なり率Pが5~80%である、炭素繊維束。
[1] A carbon fiber bundle containing a plurality of sub-tows,
A carbon fiber bundle having an overlap ratio P represented by the following formula (1) of 5 to 80%.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(式中、Wtは前記炭素繊維束の幅の平均値(mm)を示し、Wstはそれぞれのサブトウの幅の平均値(mm)を示し、nは前記炭素繊維束に含まれるサブトウの本数(本)を示す。)
[2]複数本の前記サブトウ同士がサイジング剤で結着されている、[1]に記載の炭素繊維束。
[3]前記サブトウの質量が100~1000mg/mである、[1]又は[2]に記載の炭素繊維束。
[4]前記サブトウのフィラメント数が500~15000本である、[1]~[3]のいずれかに記載の炭素繊維束。
[5]それぞれの前記サブトウの交絡回数の平均が20~50回/mである、[1]~[4]のいずれかに記載の炭素繊維束。
[6]それぞれの前記サブトウのカンチレバー値の平均値が110~300mmである、[1]~[5]のいずれかに記載の炭素繊維束。
[7]総フィラメント数が1000~120000本である、[1]~[6]のいずれかに記載の炭素繊維束。
[8]それぞれの前記サブトウが隣接するサブトウと断続的に分割された状態となっている、[1]~[7]のいずれかに記載の炭素繊維束。
[9]下記に定義される分繊性の割合Qが20%以上である、[1]~[8]のいずれかに記載の炭素繊維束。
(分繊性の割合Q)
 連続した炭素繊維束を長さ1インチにチョップ(裁断)し、サブトウ同士の未分割部分を含まないチョップド炭素繊維束をピンセットで100個ランダムに拾い上げ、それぞれ質量を測定する。これら100個の質量測定値から、サブトウの質量に相当するチョップド炭素繊維束の個数をカウントし、その個数の割合を計算し、分繊性の割合Qとする。
[10]下記方法(I)で算出される嵩密度が60~400g/L以上である、[1]~[9]のいずれかに記載の炭素繊維束。
(方法(I))
 (手順I-1)炭素繊維束を繊維長が25mmとなるようにロータリーカッターで裁断した試験用チョップド繊維束100gを2Lのメスシリンダー(Φ88mm、高さ485mmの円柱状)に充填する。
 (手順I-2)メスシリンダー内の前記試験用チョップド繊維束の上部から均一に500gの荷重をかけ、体積に変化が無くなったときの充填された前記試験用チョップド炭素繊維束の総体積(L)を測定し、前記試験用チョップド繊維束の総質量(100g)を前記試験用チョップド炭素繊維束の総体積(L)で除して嵩密度を算出する。
[11]シートモールディングコンパウンド用炭素繊維束である、[1]~[10]のいずれかに記載の炭素繊維束。
[12]下記の工程(a)~(d)を含む、[1]~[11]のいずれかに記載の炭素繊維束の製造方法。
 (a)サイジング剤を含む水分散液を浸漬槽に収容し、複数本のサブトウを含む炭素繊維束を走行させつつ前記水分散液に連続的に浸漬して通過させる。
 (b)前記水分散液から引き上げた前記炭素繊維束をローラーの周面に接触させつつ、前記炭素繊維束にエアーを吹き付けて余剰の水分散液を除去する。
 (c)工程(b)の後、前記水分散液が付着した前記炭素繊維束をニップ処理し、前記炭素繊維束と前記水分散液の合計質量に対する前記水分散液の質量の割合を40質量%以下とする。
 (d)工程(c)の後、周面が110~200℃に加熱された加熱ローラーに前記炭素繊維束を接触させて乾燥させる。
[13]前記サイジング剤が、下記の成分(A)及び成分(B)を含有し、
 前記成分(B)の含有量に対する前記成分(A)の含有量の質量比(成分(A)の含有量/成分(B)の含有量)が1~20であり、
 前記サイジング剤の全量(100質量%)に対する前記成分(A)と前記成分(B)の合計含有量の割合が80質量%以上である、[12]に記載の炭素繊維束の製造方法。
 成分(A):30℃における粘度が500~120000Pa・sであるエポキシ樹脂組成物。
 成分(B):凝固点が50℃以下である脂肪族エステル化合物。
[14][1]~[11]のいずれかに記載の炭素繊維束を長手方向に間隔を空けて裁断した繊維束を樹脂に含浸させる、シートモールディングコンパウンドの製造方法。
(In the formula, Wt represents an average value (mm) of widths of the carbon fiber bundles, Wst represents an average value (mm) of widths of the respective sub tows, and n represents the number of sub tows included in the carbon fiber bundles ( Book).)
[2] The carbon fiber bundle according to [1], wherein a plurality of the sub tows are bound with a sizing agent.
[3] The carbon fiber bundle according to [1] or [2], wherein the sub tow has a mass of 100 to 1000 mg / m.
[4] The carbon fiber bundle according to any one of [1] to [3], wherein the number of filaments of the sub tow is 500 to 15,000.
[5] The carbon fiber bundle according to any one of [1] to [4], wherein the average number of times of entanglement of each of the sub tows is 20 to 50 times / m.
[6] The carbon fiber bundle according to any one of [1] to [5], wherein each of the sub tows has an average cantilever value of 110 to 300 mm.
[7] The carbon fiber bundle according to any one of [1] to [6], wherein the total number of filaments is 1000 to 120,000.
[8] The carbon fiber bundle according to any one of [1] to [7], wherein each of the sub tows is intermittently divided from an adjacent sub tow.
[9] The carbon fiber bundle according to any one of [1] to [8], which has a splitting ratio Q defined below of 20% or more.
(Proportion Q of splitting property)
A continuous carbon fiber bundle is chopped (cut) into a length of 1 inch, and 100 chopped carbon fiber bundles that do not include undivided portions of sub tows are randomly picked up with tweezers, and the mass of each is measured. From these 100 mass measurement values, the number of chopped carbon fiber bundles corresponding to the mass of the sub tow is counted, the ratio of the number is calculated, and the ratio Q of the splitting property is defined.
[10] The carbon fiber bundle according to any one of [1] to [9], which has a bulk density calculated by the following method (I) of 60 to 400 g / L or more.
(Method (I))
(Procedure I-1) 100 g of a chopped fiber bundle for test, which is obtained by cutting a carbon fiber bundle with a rotary cutter to have a fiber length of 25 mm, is filled in a 2 L graduated cylinder (cylinder having a diameter of 88 mm and a height of 485 mm).
(Procedure I-2) A load of 500 g is uniformly applied from the upper part of the test chopped fiber bundle in the graduated cylinder, and the total volume (L) of the filled test chopped carbon fiber bundle when there is no change in volume ) Is measured and the total mass (100 g) of the test chopped fiber bundle is divided by the total volume (L) of the test chopped carbon fiber bundle to calculate the bulk density.
[11] The carbon fiber bundle according to any one of [1] to [10], which is a carbon fiber bundle for a sheet molding compound.
[12] The method for producing a carbon fiber bundle according to any one of [1] to [11], which includes the following steps (a) to (d).
(A) An aqueous dispersion containing a sizing agent is placed in a dipping tank, and a carbon fiber bundle containing a plurality of sub-tows is continuously dipped and passed through the aqueous dispersion while running.
(B) While the carbon fiber bundle pulled up from the aqueous dispersion is brought into contact with the peripheral surface of the roller, air is blown to the carbon fiber bundle to remove the excess aqueous dispersion.
(C) After the step (b), the carbon fiber bundle to which the aqueous dispersion is attached is subjected to a nip treatment, and the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 40 mass. % Or less.
(D) After the step (c), the carbon fiber bundle is brought into contact with a heating roller whose peripheral surface is heated to 110 to 200 ° C. to be dried.
[13] The sizing agent contains the following components (A) and (B),
The mass ratio of the content of the component (A) to the content of the component (B) (content of the component (A) / content of the component (B)) is 1 to 20,
The method for producing a carbon fiber bundle according to [12], wherein the ratio of the total content of the component (A) and the component (B) with respect to the total amount (100 mass%) of the sizing agent is 80 mass% or more.
Component (A): An epoxy resin composition having a viscosity at 30 ° C. of 500 to 120,000 Pa · s.
Component (B): an aliphatic ester compound having a freezing point of 50 ° C. or lower.
[14] A method for producing a sheet molding compound, which comprises impregnating a resin with a fiber bundle obtained by cutting the carbon fiber bundle according to any one of [1] to [11] at intervals in a longitudinal direction.
 本発明の炭素繊維束は、チョップ時の優れたチョップ性と分繊性を両立でき、特にSMCの製造に好適に用いることができる。
 本発明の炭素繊維束の製造方法によれば、チョップ時の優れたチョップ性と分繊性を両立でき、特にSMCの製造に好適に用いることができる炭素繊維束を製造できる。
INDUSTRIAL APPLICABILITY The carbon fiber bundle of the present invention can achieve both excellent chopping properties and splitting properties at the time of chopping, and can be particularly preferably used for production of SMC.
According to the method for producing a carbon fiber bundle of the present invention, it is possible to obtain both excellent chopping properties and splitting properties at the time of chopping, and it is possible to produce a carbon fiber bundle that can be particularly suitably used for producing SMC.
サブトウのカンチレバー値の測定方法における手順1、2について説明する模式図である。It is a schematic diagram explaining the steps 1 and 2 in the measuring method of the cantilever value of a sub toe. サブトウのカンチレバー値の測定方法における手順3、4について説明する模式図である。It is a schematic diagram explaining the procedures 3 and 4 in the measuring method of the cantilever value of a sub toe. 本発明の炭素繊維束における炭素繊維束の重なり率Pについて説明する斜視図である。It is a perspective view explaining the overlapping rate P of the carbon fiber bundle in the carbon fiber bundle of the present invention. 本発明の炭素繊維束の製造に用いる製造装置の一例を示した模式図である。It is the schematic diagram which showed an example of the manufacturing apparatus used for manufacture of the carbon fiber bundle of this invention. 本発明の炭素繊維束の製造に用いる製造装置の一例を示した模式図である。It is the schematic diagram which showed an example of the manufacturing apparatus used for manufacture of the carbon fiber bundle of this invention. 本発明の炭素繊維束の製造に用いる製造装置の一例を示した模式図である。It is the schematic diagram which showed an example of the manufacturing apparatus used for manufacture of the carbon fiber bundle of this invention.
[炭素繊維束]
 本発明の炭素繊維束は、複数本のサブトウを含む。本発明の炭素繊維束に含まれる複数本のサブトウ同士は、サイジング剤で結着されていてもよい。
[Carbon fiber bundle]
The carbon fiber bundle of the present invention includes a plurality of sub tows. The plurality of sub tows included in the carbon fiber bundle of the present invention may be bound with a sizing agent.
(炭素繊維束)
 炭素繊維束を構成する炭素繊維としては、例えばポリアクリロニトリル(PAN)系炭素繊維、レーヨン系炭素繊維、ピッチ系炭素繊維等が挙げられる。
 炭素繊維束の長さは、特に限定されず、用途に応じて適宜設定できる。
(Carbon fiber bundle)
Examples of the carbon fibers forming the carbon fiber bundle include polyacrylonitrile (PAN) -based carbon fibers, rayon-based carbon fibers, pitch-based carbon fibers, and the like.
The length of the carbon fiber bundle is not particularly limited and can be appropriately set according to the application.
 本発明の炭素繊維束は、複数本のサブトウを含む。複数本のサブトウを含む炭素繊維束は、別々に製造した複数本のサブトウを束ねて合糸したものであってもよく、ラージトウを複数本のサブトウに分割して束ねたものであってもよい。
 特に、本発明の炭素繊維束においては、それぞれのサブトウが隣接するサブトウと断続的に分割された状態、つまり、隣接するサブトウ同士が断続的に分割された状態とすることもできる。このように隣接するサブトウ間で未分割部分を局所的に有することにより、炭素繊維束の生産性や加工時における形態安定性をさらに向上させることができる。
The carbon fiber bundle of the present invention includes a plurality of sub tows. The carbon fiber bundle containing a plurality of sub-tows may be a plurality of sub-tows produced separately may be bundled and combined, or a large tow may be divided into a plurality of sub-tows and bundled. .
In particular, in the carbon fiber bundle of the present invention, each sub tow may be intermittently divided from the adjacent sub tows, that is, the adjacent sub tows may be intermittently divided from each other. By locally having an undivided portion between adjacent sub tows in this way, the productivity of the carbon fiber bundle and the morphological stability during processing can be further improved.
 本発明の炭素繊維束に含まれるサブトウの数は、特に限定されず、例えば、2~50本とすることができる。
 本発明の炭素繊維束の総フィラメント数は、製造コストや取扱い性等の面から、1000~120000本程度であるのが好ましい。
 シートモールディングコンパウンド用炭素繊維束として好適に使用することができることから、本発明の炭素繊維束に含まれるサブトウのフィラメント数は、500~15000本程度とするのが好ましい。
 さらに、本発明の炭素繊維束に含まれるサブトウの形状が扁平状であれば、シートモールディングコンパウンド製造時における、炭素繊維束の裁断性や裁断された炭素繊維束への樹脂含浸性が良好になる傾向にあるので好ましい。
 また、本発明の炭素繊維束に含まれる、それぞれのサブトウの質量は、100~1000mg/m程度であるのが好ましい。
The number of sub-tows contained in the carbon fiber bundle of the present invention is not particularly limited and can be, for example, 2 to 50.
The total number of filaments of the carbon fiber bundle of the present invention is preferably about 1000 to 120,000 from the viewpoints of manufacturing cost, handleability and the like.
Since it can be preferably used as a carbon fiber bundle for a sheet molding compound, the number of filaments of the sub tow contained in the carbon fiber bundle of the present invention is preferably about 500 to 15,000.
Furthermore, if the shape of the sub tow contained in the carbon fiber bundle of the present invention is flat, the cuttability of the carbon fiber bundle and the resin impregnability into the cut carbon fiber bundle during the production of the sheet molding compound become good. It is preferable because it tends to occur.
The mass of each sub tow contained in the carbon fiber bundle of the present invention is preferably about 100 to 1000 mg / m.
 本発明の炭素繊維束に含まれる、それぞれのサブトウのカンチレバー値の平均値は、110~300mmであり、140~250mmが好ましく、160~220mmがより好ましい。
 それぞれのサブトウのカンチレバー値の平均値が110mm以上、好ましくは140mm以上、より好ましくは160mm以上であれば、炭素繊維束のチョップ時にロールへの巻き付きが生じず、連続的なチョップの容易性(チョップ良好性)に優れる。それぞれのサブトウのカンチレバー値の平均値が300mm以下、好ましくは250mm以下、より好ましくは220mm以下であれば、炭素繊維束のチョップ分繊性に優れる。
 サブトウ同士がサイジング剤で結着されている場合、サイジング剤で結着されているサブトウのカンチレバー値は、サイジング剤が付着した状態の炭素繊維束についての測定値である。なお、サブトウのカンチレバー値は、炭素繊維束に付着させるサイジング剤の組成や付着量等を調節することで調節できる。
The average cantilever value of each sub tow contained in the carbon fiber bundle of the present invention is 110 to 300 mm, preferably 140 to 250 mm, more preferably 160 to 220 mm.
If the average cantilever value of each sub-tow is 110 mm or more, preferably 140 mm or more, and more preferably 160 mm or more, the carbon fiber bundle is not wrapped around the roll at the time of chopping, and continuous chopping is easy (chopping is possible). Excellent). When the average cantilever value of each sub-tow is 300 mm or less, preferably 250 mm or less, more preferably 220 mm or less, the chop separation property of the carbon fiber bundle is excellent.
When the sub tows are bound with each other by the sizing agent, the cantilever value of the sub tows bound with the sizing agent is a measured value of the carbon fiber bundle with the sizing agent attached. The cantilever value of the sub tow can be adjusted by adjusting the composition and the amount of the sizing agent attached to the carbon fiber bundle.
 以下、サブトウのカンチレバー値の測定方法について、図1及び図2に基づいて説明する。
 (手順1)本発明の炭素繊維束から長さ40cmの試験用サブトウ100を切り出す。
 (手順2)図1に示すように、水平面12と、水平面12の一端から下方に向かって傾斜する、傾斜角度が45度の斜面14とを有する測定台10の、水平面12上に試験用サブトウ100を載せる。このとき、試験用サブトウ100の長さ方向の第1の端部102を斜面14と水平面12との境界線Aに合わせる。試験用サブトウの上に押さえ板200を載せ、押さえ板200の端部202を境界線Aに合わせる。
 (手順3)図2に示すように、押さえ板200を斜面14側に水平方向に2cm/秒の速さで移動させ、試験用サブトウ100の第1の端部102が斜面14と接触した時点で押さえ板200の移動を停止させる。
 (手順4)手順3における押さえ板200の移動距離x(mm)を測定する。
Hereinafter, a method of measuring the cantilever value of the sub toe will be described with reference to FIGS. 1 and 2.
(Procedure 1) A 40 cm long test sub tow 100 is cut out from the carbon fiber bundle of the present invention.
(Procedure 2) As shown in FIG. 1, a test sub-toe of a measuring table 10 having a horizontal plane 12 and a slope 14 inclined downward from one end of the horizontal plane 12 and having an inclination angle of 45 degrees is provided on the horizontal plane 12. Put 100. At this time, the first end 102 in the length direction of the test sub-toe 100 is aligned with the boundary line A between the slope 14 and the horizontal surface 12. The pressing plate 200 is placed on the test sub-toe, and the end portion 202 of the pressing plate 200 is aligned with the boundary line A.
(Procedure 3) As shown in FIG. 2, when the pressing plate 200 is moved horizontally toward the slope 14 at a speed of 2 cm / sec, and the first end 102 of the test sub-toe 100 comes into contact with the slope 14. The movement of the pressing plate 200 is stopped with.
(Procedure 4) The moving distance x (mm) of the pressing plate 200 in Procedure 3 is measured.
 押さえ板200の大きさは、測定に支障がない大きさであればよく、例えば、縦400mm×横200mm×厚み5mmの板とすることができる。
 押さえ板200の重さは、測定に支障がない重さであればよく、例えば、1000gとすることができる。
The pressing plate 200 may have any size as long as it does not hinder the measurement, and may be, for example, a plate having a length of 400 mm × a width of 200 mm × a thickness of 5 mm.
The weight of the pressing plate 200 may be any weight that does not interfere with the measurement, and can be set to, for example, 1000 g.
 本発明の炭素繊維束に含まれる、それぞれのサブトウの交絡回数の平均は、20~50回/mであり、30~40回/mが好ましい。
 それぞれのサブトウの交絡が20回/m以上、好ましくは30回/m以上であれば、サブトウの結束力が強くなり、サブトウ同士の絡まりが生じなくなる。それぞれのサブトウの交絡が50回/m以下、好ましくは40回/m以下であれば、サブトウの結束力が強すぎることによる、樹脂の含侵性の低下を防ぐことができる。
The average number of times of entanglement of each sub tow contained in the carbon fiber bundle of the present invention is 20 to 50 times / m, and preferably 30 to 40 times / m.
When the entanglement of each sub-tow is 20 times / m or more, preferably 30 times / m or more, the binding force of the sub-tows becomes strong and the entanglement of the sub-tows does not occur. When the entanglement of each sub-tow is 50 times / m or less, preferably 40 times / m or less, it is possible to prevent the impregnation of the resin from being lowered due to the binding force of the sub-tows being too strong.
 なお、サブトウの交絡回数は、以下の方法により測定される。
 熱処理によってサイジング剤を取り除いた炭素繊維束を張力付与手段に通し、トウ張力を1.0Nに制御して、サブトウに分割された状態の前記炭素繊維束を走行速度1.2m/分で巻取る。その間に、前記張力付与手段を通過直後の前記サブトウにヤーン・テンションメーターのセラミックピンを貫通させて0.5cN以上の交絡強度が検出された回数をサブトウの交絡回数とする。
The number of entanglements of the sub toe is measured by the following method.
The carbon fiber bundle from which the sizing agent has been removed by heat treatment is passed through a tension applying means, the tow tension is controlled to 1.0 N, and the carbon fiber bundle divided into sub tows is wound at a running speed of 1.2 m / min. . In the meantime, the number of times the sub tow is entangled is defined as the number of times the ceramic pin of the yarn tension meter is penetrated through the sub tow immediately after passing through the tension applying means and the confounding strength of 0.5 cN or more is detected.
 本発明の炭素繊維束では、下記式(1)で表される重なり率Pが5~80%であり、10~60%が好ましく、15~50%がより好ましく、20~40%がさらに好ましい。
 炭素繊維束の重なり率Pが5%以上、好ましくは10%以上、より好ましくは15%以上、さらに好ましくは20%であれば、ボビン巻取り時にサブトウの結着が解除されずに巻き取れる。炭素繊維束の重なり率Pが80%以下、好ましくは60%以下、より好ましくは50%以下、さらにこのましくは40%以下であれば、チョップ分繊性に優れた炭素繊維束が得られる。
 重なり率は、サイジング剤塗布工程において、浸漬用フラットローラーの前に、溝付きガイドローラーを設置した際の、前記ガイドローラーの溝の幅、もしくは1つの溝へのサブトウの投入本数、又はサイジング剤塗布工程でのトウ張力によって調節できる。
In the carbon fiber bundle of the present invention, the overlapping ratio P represented by the following formula (1) is 5 to 80%, preferably 10 to 60%, more preferably 15 to 50%, further preferably 20 to 40%. .
When the overlapping ratio P of the carbon fiber bundle is 5% or more, preferably 10% or more, more preferably 15% or more, still more preferably 20%, the sub tow can be wound without releasing the binding of the bobbin. If the overlapping ratio P of the carbon fiber bundle is 80% or less, preferably 60% or less, more preferably 50% or less, and further preferably 40% or less, a carbon fiber bundle having excellent chop separation property is obtained. .
The overlapping ratio is the width of the groove of the guide roller when the grooved guide roller is installed in front of the dipping flat roller in the sizing agent application step, or the number of sub-tows put into one groove, or the sizing agent. It can be adjusted by the tow tension in the coating process.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
(式中、Wtは炭素繊維束の幅の平均値(mm)を示し、Wstはそれぞれのサブトウの幅の平均値(mm)を示し、nは炭素繊維束に含まれるサブトウの本数(本)を示す。) (In the formula, Wt represents the average value (mm) of the widths of the carbon fiber bundles, Wst represents the average value (mm) of the widths of the respective sub-tows, and n represents the number of the sub-tows included in the carbon fiber bundles (pieces). Is shown.)
 例えば、図3に例示した5本(n=5)の扁平状のサブトウ32を含む炭素繊維束30の場合、炭素繊維束30の幅を繊維長手方向に20cmおきに5箇所において測定し、それらを平均してWtとする。また、5本のサブトウ32の幅をそれぞれ測定し、それらを平均してWstとする。そして、式(1)を用いて重なり率Pを算出する。 For example, in the case of the carbon fiber bundle 30 including the five (n = 5) flat sub-tows 32 illustrated in FIG. 3, the width of the carbon fiber bundle 30 is measured at every 20 cm in the fiber longitudinal direction at five locations, and Is averaged to be Wt. Further, the width of each of the five sub tows 32 is measured, and they are averaged to obtain Wst. Then, the overlap rate P is calculated using the equation (1).
(サイジング剤)
 本発明の炭素繊維束の製造に際しては、サイジング剤を適宜使用することができる。ここで使用されるサイジング剤としては特に限定されるものではないが、チョップ分繊性が特に優れる点から、成分(A)及び成分(B)を含有するサイジング剤が好ましい。
(Sizing agent)
When manufacturing the carbon fiber bundle of the present invention, a sizing agent can be appropriately used. The sizing agent used here is not particularly limited, but a sizing agent containing the component (A) and the component (B) is preferable from the viewpoint that the chop separation property is particularly excellent.
 成分(A)は、30℃における粘度が500~120000Pa・sであるエポキシ樹脂組成物である。
 成分(A)の30℃における粘度は、500~120000Pa・sであり、4000~100000Pa・sが好ましい。
 成分(A)の30℃における粘度が500Pa・s以上、好ましくは4000Pa・s以上であれば、炭素繊維束のチョップ良好性に優れる。成分(A)の30℃における粘度が120000Pa・s以下、好ましくは100000Pa・s以下であれば、炭素繊維束のチョップ分繊性に優れる。
 なお、粘度は、JIS Z8803(2011)における、円すい-板形回転粘度計による粘度測定方法により測定される。
The component (A) is an epoxy resin composition having a viscosity at 30 ° C. of 500 to 120,000 Pa · s.
The viscosity of the component (A) at 30 ° C. is 500 to 120,000 Pa · s, preferably 4000 to 100000 Pa · s.
When the viscosity of the component (A) at 30 ° C. is 500 Pa · s or more, preferably 4000 Pa · s or more, excellent chopability of the carbon fiber bundle is excellent. When the viscosity of the component (A) at 30 ° C. is 120,000 Pa · s or less, preferably 100,000 Pa · s or less, the chop separation property of the carbon fiber bundle is excellent.
The viscosity is measured by the method of measuring viscosity using a cone-plate type rotational viscometer in JIS Z8803 (2011).
 成分(A)の粘度は、使用するエポキシ樹脂の種類や組み合わせ、比率によって調節できる。
 成分(A)は、炭素繊維同士の摩擦抵抗が低減される点から、軟化点が50℃以上のエポキシ樹脂を含有することが好ましい。軟化点が50℃以上のエポキシ樹脂を用いる場合、30℃における粘度が1~100Pa・sであるエポキシ樹脂を混合して成分(A)の粘度が前記範囲内となるように調節する。
 なお、エポキシ樹脂の軟化点は、JIS K 7234(1986)エポキシ樹脂の軟化点試験方法における、環球法により測定される値である。
The viscosity of the component (A) can be adjusted by the type, combination and ratio of the epoxy resin used.
The component (A) preferably contains an epoxy resin having a softening point of 50 ° C. or higher from the viewpoint of reducing the friction resistance between carbon fibers. When an epoxy resin having a softening point of 50 ° C. or higher is used, an epoxy resin having a viscosity at 30 ° C. of 1 to 100 Pa · s is mixed to adjust the viscosity of the component (A) within the above range.
The softening point of the epoxy resin is a value measured by the ring and ball method in the JIS K 7234 (1986) epoxy resin softening point test method.
 成分(A)においては、軟化点が50℃以上のエポキシ樹脂と30℃における粘度が1~100Pa・sであるエポキシ樹脂を組み合わせることが好ましく、軟化点が50~100℃のエポキシ樹脂と30℃における粘度が1~100Pa・sであるエポキシ樹脂を組み合わせることがより好ましい。 In the component (A), it is preferable to combine an epoxy resin having a softening point of 50 ° C. or higher with an epoxy resin having a viscosity at 30 ° C. of 1 to 100 Pa · s, and an epoxy resin having a softening point of 50 to 100 ° C. and 30 ° C. It is more preferable to combine an epoxy resin having a viscosity of 1 to 100 Pa · s.
 軟化点が50℃以上のエポキシ樹脂としては、例えば、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。なかでも、多官能型のエポキシ樹脂である点から、ビスフェノールAノボラック型エポキシ樹脂が好ましい。
 30℃における粘度が1~100Pa・sであるエポキシ樹脂としては、例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂等が挙げられる。なかでも、芳香族エポキシ樹脂の中で低粘度である、ビスフェノールF型エポキシ樹脂が好ましい。
 成分(A)に用いるエポキシ樹脂は、1種であってもよく、2種以上であってもよい。
Examples of the epoxy resin having a softening point of 50 ° C. or higher include bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, and dicyclopentadiene type epoxy resin. Among them, bisphenol A novolac type epoxy resin is preferable because it is a polyfunctional type epoxy resin.
Examples of the epoxy resin having a viscosity at 30 ° C. of 1 to 100 Pa · s include bisphenol F type epoxy resin and bisphenol A type epoxy resin. Among them, the bisphenol F type epoxy resin, which has a low viscosity among the aromatic epoxy resins, is preferable.
The epoxy resin used as the component (A) may be one type or two or more types.
 成分(B)は、凝固点が50℃以下である脂肪族エステル化合物である。
 なお、脂肪族エステル化合物の凝固点は、JIS K0065(1992)における、化学製品の凝固点測定方法により測定される値である。
The component (B) is an aliphatic ester compound having a freezing point of 50 ° C. or lower.
The freezing point of the aliphatic ester compound is a value measured by the method for measuring the freezing point of chemical products in JIS K0065 (1992).
 脂肪族エステル化合物の凝固点は、50℃以下であり、30℃以下が好ましく、15℃以下がより好ましい。また、脂肪族エステル化合物の凝固点は、-30℃以上が好ましく、-20℃以上がより好ましく、-10℃以上がさらに好ましい。具体的には、脂肪族エステル化合物の凝固点は、-30~50℃が好ましく、-20~30℃がより好ましく、-10~15℃がさらに好ましい。
 脂肪族エステル化合物の凝固点が50℃以下、好ましくは30℃以下、より好ましくは15℃以下であれば、炭素繊維束のチョップ分繊性に優れる。脂肪族エステル化合物の凝固点が-30℃以上、好ましくは-20℃以上、より好ましくは-10℃以上であれば、炭素繊維束のチョップ良好性に優れる。
The freezing point of the aliphatic ester compound is 50 ° C. or lower, preferably 30 ° C. or lower, and more preferably 15 ° C. or lower. The freezing point of the aliphatic ester compound is preferably −30 ° C. or higher, more preferably −20 ° C. or higher, even more preferably −10 ° C. or higher. Specifically, the freezing point of the aliphatic ester compound is preferably −30 to 50 ° C., more preferably −20 to 30 ° C., and even more preferably −10 to 15 ° C.
When the freezing point of the aliphatic ester compound is 50 ° C. or lower, preferably 30 ° C. or lower, more preferably 15 ° C. or lower, the chop separation property of the carbon fiber bundle is excellent. When the freezing point of the aliphatic ester compound is −30 ° C. or higher, preferably −20 ° C. or higher, more preferably −10 ° C. or higher, excellent chopability of the carbon fiber bundle is excellent.
 成分(B)としては、分子内にエステル結合を1つ又は2つ有する脂肪族エステル化合物を含むことが好ましい。これにより、炭素繊維同士の摩擦抵抗が低減される。
 分子内にエステル結合を1つ有する脂肪族エステル化合物としては、例えば、ステアリン酸2-エチルヘキシル、ステアリン酸メチル、ステアリン酸ブチル、パルミチン酸イソプロピル等が挙げられる。
 分子内にエステル結合を2つ有する脂肪族エステル化合物としては、例えば、アジピン酸イソブチル、アジピン酸2-エチルヘキシル等が挙げられる。
The component (B) preferably contains an aliphatic ester compound having one or two ester bonds in the molecule. This reduces the frictional resistance between the carbon fibers.
Examples of the aliphatic ester compound having one ester bond in the molecule include 2-ethylhexyl stearate, methyl stearate, butyl stearate, isopropyl palmitate and the like.
Examples of the aliphatic ester compound having two ester bonds in the molecule include isobutyl adipate and 2-ethylhexyl adipate.
 成分(B)としては、分子内にエステル結合を3つ以上有する脂肪族エステル化合物を用いてもよい。例えば、1,2,3-プロパントリカルボン酸エステル、1,3,5-シクロヘキサントリカルボン酸エステル等が挙げられる。
 成分(B)に用いる脂肪族エステル化合物としては、炭素繊維同士の摩擦抵抗を低減させる点から、分子内にエステル結合を1つ有する脂肪族エステル化合物が好ましい。
 成分(B)に用いる脂肪族エステル化合物は、1種であってもよく、2種以上であってもよい。
As the component (B), an aliphatic ester compound having 3 or more ester bonds in the molecule may be used. Examples thereof include 1,2,3-propanetricarboxylic acid ester and 1,3,5-cyclohexanetricarboxylic acid ester.
The aliphatic ester compound used as the component (B) is preferably an aliphatic ester compound having one ester bond in the molecule from the viewpoint of reducing the frictional resistance between carbon fibers.
The aliphatic ester compound used as the component (B) may be one type or two or more types.
 サイジング剤は、成分(A)及び成分(B)に加えて、成分(A)及び成分(B)以外の他の成分を含有していてもよい。
 他の成分としては、例えば、界面活性剤、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等が挙げられる。
 他の成分は、1種であってもよく、2種以上であってもよい。
The sizing agent may contain a component other than the component (A) and the component (B) in addition to the component (A) and the component (B).
Examples of other components include a surfactant, a urethane resin, a polyester resin, and a polyamide resin.
The other component may be one type or two or more types.
 サイジング剤の全量(100質量%)に対する成分(A)と成分(B)の合計含有量の割合は80質量%以上であり、80~95質量%が好ましく、80~90質量%がより好ましい。
 サイジング剤の全量(100質量%)に対する成分(A)と成分(B)の合計含有量の割合が80質量%以上であれば、炭素繊維束のチョップ良好性及びチョップ分繊性に優れる。
The ratio of the total content of the component (A) and the component (B) with respect to the total amount (100% by mass) of the sizing agent is 80% by mass or more, preferably 80 to 95% by mass, more preferably 80 to 90% by mass.
When the ratio of the total content of the component (A) and the component (B) to the total amount (100% by mass) of the sizing agent is 80% by mass or more, the carbon fiber bundle is excellent in chop goodness and chop separation property.
 サイジング剤中の成分(B)の含有量に対する成分(A)の含有量の質量比(成分(A)の含有量/成分(B)の含有量)は1~20であり、1.5~10が好ましく、3~5がより好ましい。
 サイジング剤中の成分(B)の含有量に対する成分(A)の含有量の質量比が1以上、好ましくは1.5以上、より好ましくは3以上であれば、炭素繊維束のチョップ良好性に優れる。サイジング剤中の成分(B)の含有量に対する成分(A)の含有量の質量比が20以下、好ましくは10以下、より好ましくは5以下であれば、炭素繊維束のチョップ分繊性に優れる。
The mass ratio of the content of the component (A) to the content of the component (B) in the sizing agent (content of the component (A) / content of the component (B)) is 1 to 20, and 1.5 to 10 is preferable, and 3 to 5 is more preferable.
If the mass ratio of the content of the component (A) to the content of the component (B) in the sizing agent is 1 or more, preferably 1.5 or more, more preferably 3 or more, good chop of the carbon fiber bundle is obtained. Excel. When the mass ratio of the content of the component (A) to the content of the component (B) in the sizing agent is 20 or less, preferably 10 or less, more preferably 5 or less, the chop separation property of the carbon fiber bundle is excellent. .
 サイジング剤の製造方法は、特に限定されず、例えば、成分(A)、成分(B)、及び必要に応じて用いる他の成分を公知の方法で混合する方法が挙げられる。 The method for producing the sizing agent is not particularly limited, and examples thereof include a method of mixing the component (A), the component (B), and other components used as necessary by a known method.
 本発明の炭素繊維束に含まれるサブトウ同士がサイジング剤で結着されている場合、本発明の炭素繊維束の総質量(100質量%)に対するサイジング剤の付着量は、0.6~1.6質量%が好ましく、0.8~1.4質量%がより好ましく、1.0~1.2質量%がさらに好ましい。
 本発明の炭素繊維束の総質量(100質量%)に対するサイジング剤の付着量が0.6質量%以上、より好ましくは0.8質量%以上、さらに好ましくは1.0質量%以上であれば、炭素繊維束のチョップ良好性に優れる。本発明の炭素繊維束の総質量(100質量%)に対するサイジング剤の付着量が1.6質量%以下、より好ましくは1.4質量%以下、さらに好ましくは1.2質量%以下であれば、炭素繊維束のチョップ分繊性に優れる。
When the sub-tows contained in the carbon fiber bundle of the present invention are bound by the sizing agent, the amount of the sizing agent attached to the total mass (100% by mass) of the carbon fiber bundle of the present invention is 0.6 to 1. 6% by mass is preferable, 0.8 to 1.4% by mass is more preferable, and 1.0 to 1.2% by mass is further preferable.
If the amount of the sizing agent attached to the total mass (100% by mass) of the carbon fiber bundle of the present invention is 0.6% by mass or more, more preferably 0.8% by mass or more, and further preferably 1.0% by mass or more. Excellent in chopping of carbon fiber bundles. If the adhesion amount of the sizing agent to the total mass (100 mass%) of the carbon fiber bundle of the present invention is 1.6 mass% or less, more preferably 1.4 mass% or less, further preferably 1.2 mass% or less. , Excellent in chop separation of carbon fiber bundles.
<分繊性の割合Q>
 また、本発明の炭素繊維束は、以下に定義される分繊性の割合Qが20%以上であることが好ましい。
<Splitting ratio Q>
In addition, the carbon fiber bundle of the present invention preferably has a splitting property ratio Q defined below of 20% or more.
 分繊性の割合Q:
 連続した炭素繊維束を長さ1インチにチョップ(裁断)し、サブトウ同士の未分割部分を含まないチョップド炭素繊維束をピンセットで100個ランダムに拾い上げ、それぞれ質量を測定する。これら100個の質量測定値から、サブトウの質量に相当するチョップド炭素繊維束の個数をカウントし、その個数の割合を計算し、分繊性の割合Qとする。
Separation ratio Q:
A continuous carbon fiber bundle is chopped (cut) into a length of 1 inch, and 100 chopped carbon fiber bundles that do not include undivided portions of sub tows are randomly picked up with tweezers, and the mass of each is measured. From these 100 mass measurement values, the number of chopped carbon fiber bundles corresponding to the mass of the sub tow is counted, the ratio of the number is calculated, and the ratio Q of the splitting property is defined.
 ここで、チョップド炭素繊維束をサブトウ同士の未分割部分を含まないものとするのは、例えば、ラージトウが複数のサブトウに断続的に分割された炭素繊維束をチョップしてチョップド炭素繊維束を得た場合において、未分割部分に由来してサブトウ同士がつながったチョップド炭素繊維束は、分繊性の割合Qの評価対象外とすることを意味する。
 また、サブトウの質量に相当するチョップド炭素繊維束とは、サブトウの平均繊度に相当する質量の120%以下の質量のチョップド炭素繊維束である。
Here, the chopped carbon fiber bundle does not include the undivided portion of the sub-tow, for example, a large tow to chop the carbon fiber bundle intermittently divided into a plurality of sub-tow to obtain a chopped carbon fiber bundle In this case, it means that the chopped carbon fiber bundle in which the sub tows are connected to each other due to the undivided portion is excluded from the evaluation target of the ratio Q of the splitting property.
The chopped carbon fiber bundle corresponding to the mass of the sub tow is a chopped carbon fiber bundle having a mass of 120% or less of the mass corresponding to the average fineness of the sub tow.
 分繊性の割合Qが高いほど、炭素繊維束のチョップ時の分繊性に優れるが、分繊性の割合Qが20%以上であれば、チョップした炭素繊維束へのエアー吹付けや、表面に複数の突起部が設けられた回転体にチョップした炭素繊維束を衝突させる等の工程を追加することによって、繊維強化樹脂成形材料の原料として充分に分繊したチョップド炭素繊維束を得ることができる。 The higher the splitting ratio Q is, the more excellent the splitting property of the carbon fiber bundle at the time of chopping is. However, if the splitting ratio Q is 20% or more, air blowing onto the chopped carbon fiber bundle, Obtaining a sufficiently separated chopped carbon fiber bundle as a raw material for a fiber-reinforced resin molding material by adding a step of colliding a chopped carbon fiber bundle with a rotating body having a plurality of protrusions on the surface You can
 炭素繊維束の分繊性の割合Qは、20%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましく、60%以上がいっそう好ましい。炭素繊維束の分繊性の割合Qが20%以上、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは60%以上であれば、優れたチョップ性を有し、チョップ分繊性をより向上させることができる。
 炭素繊維束の分繊性の割合Qは、上述のサブトウを上述のサイジング剤で結着させることによって、20%以上とすることができる。
20% or more is preferable, 40% or more is more preferable, 50% or more is further more preferable, and 60% or more of the ratio Q of the splitting property of a carbon fiber bundle is still more preferable. If the ratio Q of the splitting property of the carbon fiber bundle is 20% or more, preferably 40% or more, more preferably 50% or more, and still more preferably 60% or more, it has excellent chopping properties and chop splitting properties. Can be further improved.
The splitting ratio Q of the carbon fiber bundle can be set to 20% or more by binding the above sub tow with the above sizing agent.
 上述のように、本発明の炭素繊維束においては、それぞれのサブトウが隣接するサブトウと断続的に分割された状態とすることができるが、この場合、隣接するサブトウ同士の未分割部分の長さは、1mm以上が好ましく、3mm以上がより好ましく、5mm以上がさらに好ましい。また、隣接するサブトウ同士の未分割部分の長さは、50mm以下が好ましく、35mm以下がより好ましく、25mm以下がより好ましい。具体的には、隣接するサブトウ同士の未分割部分の長さは、1~50mmが好ましく、3~35mmがより好ましく、5~25mmがさらに好ましい。
 隣接するサブトウ同士の未分割部分の長さが1mm以上、好ましくは3mm以上、より好ましくは5mm以上であれば、炭素繊維束の生産性や加工時における形態安定性をさらに向上させることができ、繊維束が切れて回転刃やロール等に巻付く工程トラブルを抑制しやすい。隣接するサブトウ同士の未分割部分の長さが50mm以下、好ましくは35mm以下、より好ましくは25mm以下であれば、裁断後のチョップド炭素繊維束に含まれる未分繊部分の割合を小さくできるため、得られた成形材料を成形した成形品の物性が向上する傾向にある。
As described above, in the carbon fiber bundle of the present invention, each sub-tow can be in a state of being intermittently divided from the adjacent sub-tows, but in this case, the length of the undivided portion between adjacent sub-tows Is preferably 1 mm or more, more preferably 3 mm or more, still more preferably 5 mm or more. The length of the undivided portion between adjacent sub tows is preferably 50 mm or less, more preferably 35 mm or less, and further preferably 25 mm or less. Specifically, the length of the undivided portion between adjacent sub tows is preferably 1 to 50 mm, more preferably 3 to 35 mm, and further preferably 5 to 25 mm.
If the length of the undivided portion between adjacent sub-tows is 1 mm or more, preferably 3 mm or more, more preferably 5 mm or more, the productivity of the carbon fiber bundle and the morphological stability during processing can be further improved, It is easy to suppress process troubles that the fiber bundle is cut and wrapped around the rotating blade or roll. If the length of the undivided portion between adjacent sub-tows is 50 mm or less, preferably 35 mm or less, more preferably 25 mm or less, it is possible to reduce the proportion of the undivided portion contained in the chopped carbon fiber bundle after cutting, The physical properties of a molded product obtained by molding the obtained molding material tend to be improved.
<式(1)>
 また、上述のように、本発明の炭素繊維束においては、隣接するサブトウ同士が断続的に分割された状態とすることができるが、この場合、断続的に分割された状態が、下式(1)の条件を満たすことが好ましい。
<Formula (1)>
Further, as described above, in the carbon fiber bundle of the present invention, adjacent sub-tows can be intermittently divided, but in this case, the intermittently divided state is represented by the following formula ( It is preferable that the condition 1) is satisfied.
 0.7≦a/(a+b)<1 ・・・(1)
 式(1)中、aは隣接するサブトウ同士の分割部分の長さであり、bは隣接するサブトウ同士の未分割部分の長さである。
0.7 ≦ a / (a + b) <1 (1)
In the formula (1), a is the length of the divided portion between adjacent sub-tows, and b is the length of the undivided portion between adjacent sub-tows.
 このように、連続した炭素繊維束に未分繊部分が存在する(すなわち、b>0)ことによって、炭素繊維束の製造時や加工時における、一部のサブトウのたるみや分離の発生が抑制され、炭素繊維束のロール等への巻き付き等を低減させることができる。 As described above, the presence of the unseparated portion in the continuous carbon fiber bundle (that is, b> 0) suppresses the occurrence of slackness or separation of some sub-tows during the production or processing of the carbon fiber bundle. Therefore, the winding of the carbon fiber bundle around the roll or the like can be reduced.
 a/(a+b)の値が0.7以上、好ましくは0.8以上、さらに好ましくは0.9以上、いっそう好ましくは0.92以上であると、サブトウ同士がつながったチョップド繊維束の比率を低減できる。これにより、例えば、シートモールディングコンパウンドのような繊維強化樹脂成形材料の製造時におけるチョップド炭素繊維束の樹脂ペースト上への散布時に、チョップド炭素繊維束をペースト上に均一に分散させることができるとともに、炭素繊維への樹脂の含浸性が良好となり、製造される成形材料の品質が良好となる。
 また、a/(a+b)の値が1未満であれば、炭素繊維束を安定した状態で裁断機まで供給しチョップできる。a/(a+b)の値は0.99以下であってもよい。
When the value of a / (a + b) is 0.7 or more, preferably 0.8 or more, more preferably 0.9 or more, and even more preferably 0.92 or more, the ratio of chopped fiber bundles in which subtows are connected is It can be reduced. Thereby, for example, at the time of spraying onto the resin paste of the chopped carbon fiber bundle during the production of a fiber-reinforced resin molding material such as a sheet molding compound, the chopped carbon fiber bundle can be uniformly dispersed on the paste, The resin can be easily impregnated into the carbon fiber, and the quality of the molding material produced can be improved.
If the value of a / (a + b) is less than 1, the carbon fiber bundle can be stably fed to the cutting machine and chopped. The value of a / (a + b) may be 0.99 or less.
 隣接するサブトウ同士の分割部分の長さaは、1mm以上が好ましく、10mm以上がより好ましく、100mm以上がさらに好ましい。また、隣接するサブトウ同士の分割部分の長さaは、5000mm以下が好ましく、3000mm以下がより好ましく、1000mm以下がさらに好ましい。具体的には、隣接するサブトウ同士の分割部分の長さaは、1~5000mmが好ましく、10~3000mmがより好ましく、100~1000mmがさらに好ましい。
 隣接するサブトウ同士の分割部分の長さaが1mm以上、好ましくは10mm以上、より好ましくは100mm以上であれば、得られた成形材料を成形した成形品の物性がより向上する。隣接するサブトウ同士の分割部分の長さaが5000mm以下、好ましくは3000mm以下、より好ましくは1000mm以下であれば、炭素繊維束が切れたり弛んだりすることによって回転刃又はロールに巻き付く工程トラブルを抑制しやすい。
The length a of the divided portion between adjacent sub tows is preferably 1 mm or more, more preferably 10 mm or more, and further preferably 100 mm or more. The length a of the divided portion between adjacent sub tows is preferably 5000 mm or less, more preferably 3000 mm or less, and further preferably 1000 mm or less. Specifically, the length a of the divided portion between adjacent sub tows is preferably 1 to 5000 mm, more preferably 10 to 3000 mm, and further preferably 100 to 1000 mm.
When the length a of the divided portion between adjacent sub-tows is 1 mm or more, preferably 10 mm or more, more preferably 100 mm or more, the physical properties of the molded product obtained by molding the obtained molding material are further improved. If the length a of the divided portion between adjacent sub-tows is 5000 mm or less, preferably 3000 mm or less, and more preferably 1000 mm or less, the process trouble of winding around the rotary blade or the roll due to cutting or loosening of the carbon fiber bundle is prevented. Easy to control.
 隣接するサブトウ同士の未分割部分の長さbは、0mm超が好ましく、1mm以上がより好ましく、3mm以上がさらに好ましく、5mm以上がいっそう好ましい。また、隣接するサブトウ同士の未分割部分の長さbは、50mm以下が好ましく、35mm以下がより好ましく、25mm以下がさらに好ましい。具体的には、隣接するサブトウ同士の未分割部分の長さbは、0mm超50mm以下が好ましく、1~50mmがより好ましく、3~35mmがさらに好ましく、5~25mmが特に好ましい。
 隣接するサブトウ同士の未分割部分の長さbが0mm超、好ましくは1mm以上、より好ましくは3mm以上、さらに好ましくは5mm以上であれば、繊維束が切れて回転刃やロール等に巻付く工程トラブルを抑制しやすい。隣接するサブトウ同士の未分割部分の長さbが50mm以下、好ましくは35mm以下、さらに好ましくは25mm以下であれば、裁断後のチョップド炭素繊維束に含まれる未分繊部分の割合を小さくできるため、得られた成形材料を成形した成形品の物性が向上する。
The length b of the undivided portion between adjacent sub tows is preferably more than 0 mm, more preferably 1 mm or more, further preferably 3 mm or more, and further preferably 5 mm or more. Further, the length b of the undivided portion between adjacent sub tows is preferably 50 mm or less, more preferably 35 mm or less, and further preferably 25 mm or less. Specifically, the length b of the undivided portion between adjacent sub-tows is preferably more than 0 mm and 50 mm or less, more preferably 1 to 50 mm, further preferably 3 to 35 mm, particularly preferably 5 to 25 mm.
If the length b of the undivided portion between adjacent sub-tows is more than 0 mm, preferably 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more, the fiber bundle is cut and wrapped around a rotary blade or roll. Trouble is easy to control. If the length b of the undivided portion between adjacent sub-tows is 50 mm or less, preferably 35 mm or less, and more preferably 25 mm or less, the proportion of the undivided portion contained in the chopped carbon fiber bundle after cutting can be reduced. The physical properties of the molded product obtained by molding the obtained molding material are improved.
 それぞれのサブトウが隣接するサブトウと断続的に分割された状態とする方法としては、ラージトウの幅方向に所定の間隔で並ぶ連なった複数の刃物を、連続するラージトウに間欠的に突き刺す方法や、連続するラージトウの幅方向の複数箇所に空気等の流体を間欠的に吹き付ける方法等を挙げることができる。 As a method of making each sub tow intermittently divided with the adjacent sub tow, a method of intermittently piercing a continuous large tow with a plurality of blades arranged in a row at a predetermined interval in the width direction of the large tow, or continuous There may be mentioned a method of intermittently spraying a fluid such as air to a plurality of positions in the width direction of the large tow.
<式(2)、式(3)、式(4)>
 本発明の炭素繊維束は、繊維強化樹脂成形材料の原料として使用することができ、チョップ時のチョップ性及び分繊性に優れることから、SMC用炭素繊維束として特に有用である。
<Formula (2), Formula (3), Formula (4)>
INDUSTRIAL APPLICABILITY The carbon fiber bundle of the present invention can be used as a raw material for a fiber-reinforced resin molding material, and is excellent in chopping property and splitting property during chopping, and thus is particularly useful as a carbon fiber bundle for SMC.
 本発明の炭素繊維束をSMCに使用することで、均一に分繊された細かい炭素繊維束が分散されたSMCが得られるため、SMCの品質のバラツキが低減されるとともに、本発明の炭素繊維束を使用したSMCを成形して得た繊維強化複合材料は機械特性に優れたものとなる。 By using the carbon fiber bundle of the present invention for SMC, since SMC in which finely divided carbon fiber bundles that have been uniformly separated are obtained, variation in the quality of SMC is reduced and the carbon fiber of the present invention is also reduced. The fiber-reinforced composite material obtained by molding the SMC using the bundle has excellent mechanical properties.
 繊維強化樹脂成形材料の製造に際し、本発明の炭素繊維束を裁断したチョップド炭素繊維束を使用する場合は、本発明の炭素繊維束を下式(2)の条件を満たすように裁断することが好ましい。 When a chopped carbon fiber bundle obtained by cutting the carbon fiber bundle of the present invention is used in the production of the fiber-reinforced resin molding material, the carbon fiber bundle of the present invention may be cut so as to satisfy the condition of the following formula (2). preferable.
 a/L≦1000 ・・・(2)
 式(2)中、aは隣接するサブトウ同士の分割部分の長さであり、Lは前記連続した炭素繊維束が裁断される間隔である。
a / L ≦ 1000 (2)
In the formula (2), a is a length of a divided portion between adjacent sub-tows, and L is an interval at which the continuous carbon fiber bundle is cut.
 a/Lは、1000以下であり、200以下が好ましく、100以下がより好ましく、50以下がさらに好ましい。
 a/Lが1000以下、好ましくは200以下であり、より好ましくは100以下であれば、炭素繊維束が切れたり、弛んだりすることで回転刃やロール等に巻付く工程トラブルを抑制しやすい。
a / L is 1000 or less, preferably 200 or less, more preferably 100 or less, and further preferably 50 or less.
When a / L is 1000 or less, preferably 200 or less, and more preferably 100 or less, it is easy to suppress process troubles of winding around a rotary blade or roll due to cutting or slackening of the carbon fiber bundle.
 また、繊維強化樹脂成形材料の製造に際し、本発明の炭素繊維束を裁断したチョップド炭素繊維束を使用する場合は、本発明の炭素繊維束を下式(3)の条件を満たすように裁断することが好ましい。 When a chopped carbon fiber bundle obtained by cutting the carbon fiber bundle of the present invention is used in the production of the fiber-reinforced resin molding material, the carbon fiber bundle of the present invention is cut so as to satisfy the condition of the following formula (3). It is preferable.
 1≦a/L ・・・(3)
 式(3)中、aは隣接するサブトウ同士の分割部分の長さであり、Lは前記連続した炭素繊維束が裁断される間隔である。
1 ≦ a / L (3)
In the formula (3), a is the length of the divided portion between adjacent sub-tows, and L is the interval at which the continuous carbon fiber bundle is cut.
 a/Lは、1以上であり、2以上が好ましく、3以上がより好ましく、5以上がさらに好ましい。
 a/Lが1以上、好ましくは2以上であり、より好ましくは3以上であり、さらに好ましくは5以上であれば、裁断後のチョップド炭素繊維束に含まれる未分繊部分の割合を小さくできるため、得られた成形材料を成形した成形品の物性が向上する。
a / L is 1 or more, preferably 2 or more, more preferably 3 or more, still more preferably 5 or more.
When a / L is 1 or more, preferably 2 or more, more preferably 3 or more, and further preferably 5 or more, the ratio of the undivided portion contained in the chopped carbon fiber bundle after cutting can be reduced. Therefore, the physical properties of the molded product obtained by molding the obtained molding material are improved.
 さらに、繊維強化樹脂成形材料の製造に際し、本発明の炭素繊維束を裁断したチョップド炭素繊維束を使用する場合は、本発明の炭素繊維束を下式(4)の条件を満たすように裁断することが好ましい。 Further, when a chopped carbon fiber bundle obtained by cutting the carbon fiber bundle of the present invention is used in the production of the fiber-reinforced resin molding material, the carbon fiber bundle of the present invention is cut so as to satisfy the condition of the following formula (4). It is preferable.
 0≦b/L<1 ・・・(4)
 式(4)中、bは隣接するサブトウ同士の未分割部分の長さであり、Lは前記連続した炭素繊維束が裁断される間隔である。
0 ≦ b / L <1 (4)
In the formula (4), b is the length of the undivided portion between adjacent sub-tows, and L is the interval at which the continuous carbon fiber bundle is cut.
 b/Lは、0以上1未満であり、0.03~0.8が好ましく、0.1~0.6がより好ましい。
 b/Lが0以上1未満、好ましくは0.03~0.8、より好ましくは0.1~0.6であれば、炭素繊維束が切れたり、弛んだりすることで回転刃やロール等に巻付く工程トラブルを抑制しやすく、裁断後のチョップド炭素繊維束に含まれる未分繊部分の割合を小さくできるため、得られた成形材料を成形した成形品の物性が向上する。
b / L is 0 or more and less than 1, preferably 0.03 to 0.8, and more preferably 0.1 to 0.6.
When b / L is 0 or more and less than 1, preferably 0.03 to 0.8, more preferably 0.1 to 0.6, the carbon fiber bundle may be cut or loosened to cause a rotary blade, roll, etc. It is easy to suppress the process trouble of wrapping around, and the proportion of the unseparated portion contained in the chopped carbon fiber bundle after cutting can be reduced, so that the physical properties of the molded product obtained by molding the obtained molding material are improved.
 本発明の炭素繊維束は、チョップ分繊性に優れることから、シートモールディングコンパウンド(SMC)用炭素繊維束として特に有用である。本発明の炭素繊維束をSMCに使用することで、細かい炭素繊維束が分散されたSMCが得られるため、本発明の炭素繊維束を使用したSMCを成形して得た炭素繊維強化複合材料の機械特性が優れたものとなる。 The carbon fiber bundle of the present invention is particularly useful as a carbon fiber bundle for a sheet molding compound (SMC) because it has excellent chop separation properties. By using the carbon fiber bundle of the present invention for SMC, an SMC in which a fine carbon fiber bundle is dispersed can be obtained. Therefore, the carbon fiber reinforced composite material obtained by molding the SMC using the carbon fiber bundle of the present invention can be used. It has excellent mechanical properties.
[炭素繊維束の製造方法]
 本発明の炭素繊維束の製造方法は、特に限定されない。例えば、上記のサイジング剤を水に加え、乳化して水分散液とし、前記水分散液を炭素繊維束に塗布して乾燥させる方法が挙げられる。
 また、本発明の炭素繊維束の製造方法としては、サイジング剤でサブトウ同士をなるべく結着させないという点から、下記の工程(a)~(d)を含む方法が好ましい。
 (a)サイジング剤を含む水分散液を浸漬槽に収容し、複数本のサブトウを含む炭素繊維束を走行させつつ前記水分散液に連続的に浸漬して通過させる。
 (b)前記水分散液から引き上げた前記炭素繊維束をローラーの周面に接触させつつ、前記炭素繊維束にエアーを吹き付けて余剰の水分散液を除去する。
 (c)工程(b)の後、前記水分散液が付着した前記炭素繊維束をニップ処理し、前記炭素繊維束と前記水分散液の合計質量に対する前記水分散液の質量の割合を40質量%以下とする。
 (d)工程(c)の後、周面が110~200℃に加熱された加熱ローラーに前記炭素繊維束を接触させて乾燥させる。
[Method for producing carbon fiber bundle]
The method for producing the carbon fiber bundle of the present invention is not particularly limited. For example, a method may be mentioned in which the above sizing agent is added to water, emulsified to form an aqueous dispersion, and the aqueous dispersion is applied to a carbon fiber bundle and dried.
Further, as a method for producing the carbon fiber bundle of the present invention, a method including the following steps (a) to (d) is preferable in that the sub-tows are not bound to each other by a sizing agent as much as possible.
(A) An aqueous dispersion containing a sizing agent is placed in a dipping tank, and a carbon fiber bundle containing a plurality of sub-tows is continuously dipped and passed through the aqueous dispersion while running.
(B) While the carbon fiber bundle pulled up from the aqueous dispersion is brought into contact with the peripheral surface of the roller, air is blown to the carbon fiber bundle to remove the excess aqueous dispersion.
(C) After the step (b), the carbon fiber bundle to which the aqueous dispersion is attached is subjected to a nip treatment, and the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 40 mass. % Or less.
(D) After the step (c), the carbon fiber bundle is brought into contact with a heating roller whose peripheral surface is heated to 110 to 200 ° C. to be dried.
 具体的には、図4に例示した製造装置300を用いる方法が挙げられる。
 製造装置300は、浸漬槽310と、浸漬用のフラットローラー312と、引き上げ用のフラットローラー314と、フィードローラー316と、ニップローラー318と、エアー吹き付け手段320と、複数の加熱ローラー322とを備えている。
Specifically, a method using the manufacturing apparatus 300 illustrated in FIG. 4 can be used.
The manufacturing apparatus 300 includes a dipping tank 310, a dipping flat roller 312, a pulling flat roller 314, a feed roller 316, a nip roller 318, an air blowing unit 320, and a plurality of heating rollers 322. ing.
 浸漬槽310は、サイジング剤を含む水分散液50を収容できるようになっている。
 フラットローラー312とフラットローラー314はいずれも、浸漬槽310に収容された水分散液50に一部が浸漬するように設けられている。フラットローラー314は、フラットローラー312の下流側に設けられている。フラットローラー312により、浸漬槽110に収容された水分散液50に炭素繊維束40を走行させつつ浸漬させ、フラットローラー314により、炭素繊維束40を水分散液50から引き上げるようになっている。
 フィードローラー316とニップローラー318は、浸漬槽310の下流側において、炭素繊維束40をニップ処理するように設けられている。
 エアー吹き付け手段320は、フラットローラー314の上方に設けられている。
 複数の加熱ローラー322は、フィードローラー316とニップローラー318の下流側に設けられている。
The dipping bath 310 can accommodate the aqueous dispersion 50 containing a sizing agent.
Both the flat roller 312 and the flat roller 314 are provided so that a part thereof is immersed in the water dispersion liquid 50 contained in the immersion tank 310. The flat roller 314 is provided on the downstream side of the flat roller 312. The carbon fiber bundle 40 is immersed in the water dispersion liquid 50 stored in the dipping tank 110 while traveling by the flat roller 312, and the carbon fiber bundle 40 is pulled up from the water dispersion liquid 50 by the flat roller 314.
The feed roller 316 and the nip roller 318 are provided on the downstream side of the immersion tank 310 so as to perform a nip treatment on the carbon fiber bundle 40.
The air blowing unit 320 is provided above the flat roller 314.
The plurality of heating rollers 322 are provided on the downstream side of the feed roller 316 and the nip roller 318.
 工程(a)では、サイジング剤を含む水分散液50を浸漬槽310に収容し、フラットローラー312によって、炭素繊維束40を走行させつつ水分散液50に連続的に浸漬し、フラットローラー314によって引き上げて通過させる。 In the step (a), the aqueous dispersion 50 containing the sizing agent is stored in the dipping tank 310, and the carbon fiber bundle 40 is continuously immersed in the aqueous dispersion 50 by the flat roller 312, and then the flat roller 314 is used. Pull it up and let it pass.
 水分散液中のサイジング剤の濃度は、1~10質量%が好ましく、2~6質量%がより好ましい。
 水分散液中のサイジング剤の濃度が1質量%以上、より好ましくは2質量%以上であれば、チョップ良好性に優れる炭素繊維束が得られる。水分散液中のサイジング剤の濃度が前記範囲の10質量%以下、より好ましくは6質量%以下であれば、チョップ分繊性に優れた炭素繊維束が得られる。
The concentration of the sizing agent in the aqueous dispersion is preferably 1 to 10% by mass, more preferably 2 to 6% by mass.
When the concentration of the sizing agent in the aqueous dispersion is 1% by mass or more, more preferably 2% by mass or more, a carbon fiber bundle having excellent chop goodness can be obtained. When the concentration of the sizing agent in the aqueous dispersion is 10% by mass or less, more preferably 6% by mass or less within the above range, a carbon fiber bundle having excellent chop segmentation properties can be obtained.
 工程(b)では、水分散液50から引き上げた炭素繊維束40をフラットローラー314の周面に接触させつつ、エアー吹き付け手段320によって炭素繊維束40にエアーを吹き付けて余剰の水分散液50を除去する。 In the step (b), while the carbon fiber bundle 40 pulled up from the water dispersion liquid 50 is brought into contact with the peripheral surface of the flat roller 314, air is blown to the carbon fiber bundle 40 by the air blowing means 320 to remove the excess water dispersion liquid 50. Remove.
 次いで、工程(c)において、フィードローラー316とニップローラー318により、水分散液50が付着した炭素繊維束40を走行させつつニップ処理し、炭素繊維束40と水分散液50の合計質量に対する水分散液50の質量の割合を40質量%以下とする。 Next, in the step (c), the feed roller 316 and the nip roller 318 perform a nip treatment while running the carbon fiber bundle 40 to which the water dispersion liquid 50 is adhered, so that the water relative to the total mass of the carbon fiber bundle 40 and the water dispersion liquid 50 is added. The mass ratio of the dispersion liquid 50 is 40 mass% or less.
 工程(c)でのニップ処理後の炭素繊維束と水分散液の合計質量に対する水分散液の質量の割合は、40質量%以下が好ましく、5~40質量%がより好ましく、10~25質量%がさらに好ましい。
 炭素繊維束と水分散液の合計質量に対する水分散液の質量の割合が5質量%以上、さらに好ましくは10質量%以上であれば、サイジング剤が均一に付与できる。炭素繊維束と水分散液の合計質量に対する水分散液の質量の割合が40質量%以下、さらに好ましくは25質量%以下であれば、チョップ時のサブトウ同士の分割性が向上する。
 炭素繊維束へのサイジング剤の付着量は、水分散液中のサイジング剤の濃度や、浸漬後の搾りの程度等によって調節できる。
The mass ratio of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion after the nip treatment in the step (c) is preferably 40% by mass or less, more preferably 5 to 40% by mass, and 10 to 25% by mass. % Is more preferable.
When the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 5% by mass or more, and more preferably 10% by mass or more, the sizing agent can be uniformly applied. When the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 40% by mass or less, more preferably 25% by mass or less, the splittability between sub tows during chopping is improved.
The amount of the sizing agent attached to the carbon fiber bundle can be adjusted by the concentration of the sizing agent in the aqueous dispersion, the degree of squeezing after immersion, and the like.
 工程(d)では、周面が110~200℃に加熱された加熱ローラー322に炭素繊維束40を接触させて乾燥させる。
 炭素繊維束40を乾燥させる際の加熱ローラー322の周面の温度は、110~200℃が好ましく、110~170℃がより好ましく、130~150℃がさらに好ましい。
 加熱ローラーの周面温度が110℃以上、さらに好ましくは130℃以上であれば、サイジング剤を含む水分散液が十分に乾燥される。加熱ローラーの周面温度が200℃以下、より好ましくは170℃以下、さらに好ましくは150℃以下であれば、サイジング剤を熱分解させずに炭素繊維束40に付与できる。
In the step (d), the carbon fiber bundle 40 is brought into contact with the heating roller 322 whose peripheral surface is heated to 110 to 200 ° C. to be dried.
The temperature of the peripheral surface of the heating roller 322 when the carbon fiber bundle 40 is dried is preferably 110 to 200 ° C, more preferably 110 to 170 ° C, and further preferably 130 to 150 ° C.
When the peripheral temperature of the heating roller is 110 ° C. or higher, more preferably 130 ° C. or higher, the aqueous dispersion containing the sizing agent is sufficiently dried. When the peripheral temperature of the heating roller is 200 ° C. or lower, more preferably 170 ° C. or lower, further preferably 150 ° C. or lower, the sizing agent can be applied to the carbon fiber bundle 40 without thermal decomposition.
 なお、本発明の炭素繊維束の製造方法は、サイジング剤を含む水分散液に炭素繊維束を浸漬してサイジング剤を塗布する方法には限定されない。 The method for producing the carbon fiber bundle of the present invention is not limited to the method of immersing the carbon fiber bundle in the aqueous dispersion containing the sizing agent and applying the sizing agent.
 浸漬法以外のサイジング剤の塗布方法としては、例えば、タッチロール法を採用してもよい。
 具体的には、本発明の炭素繊維束の製造方法としては、図5に例示した製造装置300Aを用いる方法であってもよい。図5における図4と同じ部分は、同符号を付して説明を省略する。
As a method of applying the sizing agent other than the dipping method, for example, a touch roll method may be adopted.
Specifically, the method for manufacturing the carbon fiber bundle of the present invention may be a method using the manufacturing apparatus 300A illustrated in FIG. 5 that are the same as those in FIG. 4 are assigned the same reference numerals and explanations thereof are omitted.
 製造装置300Aは、浸漬槽310と、第1のタッチローラー324と、第2のタッチローラー326と、フィードローラー316と、ニップローラー318と、複数の加熱ローラー322とを備えている。製造装置300Aは、フラットローラー312、314の代わりに第1のタッチローラー324と第2のタッチローラー326が設けられ、エアー吹き付け手段320が設けられないこと以外は、製造装置300と同じ態様である。 The manufacturing apparatus 300A includes an immersion tank 310, a first touch roller 324, a second touch roller 326, a feed roller 316, a nip roller 318, and a plurality of heating rollers 322. The manufacturing apparatus 300A is the same as the manufacturing apparatus 300 except that the first touch roller 324 and the second touch roller 326 are provided instead of the flat rollers 312 and 314, and the air blowing unit 320 is not provided. .
 製造装置300Aを用いる方法では、サイジング剤を含む水分散液50を浸漬槽310に収容し、第1のタッチローラー324と第2のタッチローラー326により、炭素繊維束40を走行させつつ水分散液50に連続的に塗布する。次いで、フィードローラー316とニップローラー318により、水分散液50が付着した炭素繊維束40を走行させつつニップ処理した後、炭素繊維束40を加熱ローラー322に接触させて乾燥させる。 In the method using the manufacturing apparatus 300A, the water dispersion liquid 50 containing the sizing agent is stored in the dipping tank 310, and the first touch roller 324 and the second touch roller 326 cause the carbon fiber bundle 40 to travel and the water dispersion liquid. 50 is applied continuously. Next, the feed roller 316 and the nip roller 318 perform a nip treatment while the carbon fiber bundle 40 to which the water dispersion liquid 50 is attached is running, and then the carbon fiber bundle 40 is brought into contact with the heating roller 322 to be dried.
 また、本発明の炭素繊維束の製造方法としては、図6に例示した製造装置300Bを用いる方法であってもよい。図6における図4と同じ部分は、同符号を付して説明を省略する。
 製造装置300Bは、引き上げ用のフラットローラー314の代わりに浸漬用のフラットローラー314Aが設けられ、エアー吹き付け手段320が設けられないこと以外は、製造装置300と同じ態様である。
Further, the method for manufacturing the carbon fiber bundle of the present invention may be a method using the manufacturing apparatus 300B illustrated in FIG. The same parts in FIG. 6 as those in FIG.
The manufacturing apparatus 300B is the same as the manufacturing apparatus 300, except that the immersion flat roller 314A is provided instead of the pulling up flat roller 314, and the air blowing unit 320 is not provided.
 製造装置300Bを用いる方法は、炭素繊維束40に水分散液50を塗布した後、ローラーの周面に接触させつつエアーを吹き付けない以外は、製造装置300を用いる方法と同様である。 The method using the manufacturing apparatus 300B is the same as the method using the manufacturing apparatus 300, except that after the aqueous dispersion 50 is applied to the carbon fiber bundle 40, air is not blown while making contact with the circumferential surface of the roller.
 以上説明したように、本発明においては、炭素繊維束に含まれる複数本のサブトウ同士がサイジング剤で結着され、各サブトウのカンチレバー値の平均値、及び交絡回数の平均が特定の範囲に制御されている。これにより、炭素繊維束のチョップ時には優れたチョップ分繊性が得られ、十分に分割されたチョップド炭素繊維束が得られる。 As described above, in the present invention, a plurality of sub-tows contained in the carbon fiber bundle are bound by a sizing agent, the average value of the cantilever value of each sub-tow, and the average of the number of confounding control within a specific range. Has been done. Thereby, when the carbon fiber bundle is chopped, excellent chopping property is obtained, and a sufficiently divided chopped carbon fiber bundle is obtained.
[シートモールディングコンパウンド(SMC)]
 本発明の炭素繊維束を長手方向に間隔を空けて裁断した繊維束(チョップド繊維束)を樹脂(マトリックス樹脂)に含浸させることによって、SMCを製造することができる。
[Sheet molding compound (SMC)]
An SMC can be produced by impregnating a resin (matrix resin) with a fiber bundle (chopped fiber bundle) obtained by cutting the carbon fiber bundle of the present invention at intervals in the longitudinal direction.
 このSMCは、本発明の炭素繊維束がチョップされたチョップド繊維束を含む以外は、公知の態様を採用できる。 This SMC can adopt a known aspect except that it includes a chopped fiber bundle obtained by chopping the carbon fiber bundle of the present invention.
 チョップド繊維束の平均繊維長は、特に限定されず、例えば、1~60mmとすることができる。なお、チョップド繊維束の平均繊維長とは、100個のチョップド繊維束の繊維長の平均値である。 The average fiber length of the chopped fiber bundle is not particularly limited and can be, for example, 1 to 60 mm. The average fiber length of the chopped fiber bundle is the average value of the fiber length of 100 chopped fiber bundles.
 特に、下記方法(I)で算出される嵩密度を60~400g/Lの範囲とすることによって、SMC製造時の樹脂含侵性等が良好となり、SMCを加熱加圧成形して得られる繊維強化複合材料の機械的特性をより向上させることができる。
(方法(I))
 (手順I-1)炭素繊維束を繊維長が25mmとなるようにロータリーカッターで裁断した試験用チョップド繊維束100gを2Lのメスシリンダー(Φ88mm、高さ485mmの円柱状)に充填する。
 (手順I-2)メスシリンダー内の試験用チョップド繊維束の上部から均一に500gの荷重をかけ、体積に変化が無くなったときの充填された前記試験用チョップド炭素繊維束の総体積(L)を測定し、前記試験用チョップド繊維束の総質量(100g)を前記試験用チョップド炭素繊維束の総体積(L)で除して嵩密度を算出する。
In particular, when the bulk density calculated by the following method (I) is in the range of 60 to 400 g / L, the resin impregnation property at the time of SMC production becomes good, and the fiber obtained by heating and pressing SMC is obtained. The mechanical properties of the reinforced composite material can be further improved.
(Method (I))
(Procedure I-1) 100 g of a chopped fiber bundle for test, which is obtained by cutting a carbon fiber bundle with a rotary cutter to have a fiber length of 25 mm, is filled in a 2 L graduated cylinder (cylinder having a diameter of 88 mm and a height of 485 mm).
(Procedure I-2) The total volume (L) of the filled chopped carbon fiber bundle for test when a load of 500 g is uniformly applied from the upper part of the chopped fiber bundle for test in the graduated cylinder and there is no change in volume. Is measured, and the total mass (100 g) of the test chopped fiber bundle is divided by the total volume (L) of the test chopped carbon fiber bundle to calculate the bulk density.
 本発明の炭素繊維束において、方法(I)で測定される嵩密度は60~400g/Lが好ましく、70~350g/Lがより好ましく、80~320g/Lがさらに好ましく、100~280g/Lが特に好ましい。
 方法(I)で測定される炭素繊維束の嵩密度が60~400g/L、好ましくは70~350g/L、より好ましくは80~320g/L、さらに好ましくは100~280g/Lであれば、SMC中でチョップド炭素繊維束同士が強固に絡み合うため、高強度の繊維強化複合材料を得ることができる。また、チョップド繊維束の剛直さと樹脂含浸性を両立することが可能となり、機械的特性の向上が可能となる。
In the carbon fiber bundle of the present invention, the bulk density measured by the method (I) is preferably 60 to 400 g / L, more preferably 70 to 350 g / L, further preferably 80 to 320 g / L, and 100 to 280 g / L. Is particularly preferable.
If the bulk density of the carbon fiber bundle measured by the method (I) is 60 to 400 g / L, preferably 70 to 350 g / L, more preferably 80 to 320 g / L, further preferably 100 to 280 g / L, Since the chopped carbon fiber bundles are tightly entangled with each other in the SMC, a high-strength fiber-reinforced composite material can be obtained. Further, the rigidity of the chopped fiber bundle and the resin impregnating property can both be achieved, and the mechanical properties can be improved.
 炭素繊維束において、方法(I)で測定される嵩密度が60g/L以上、好ましくは70g/L以上、より好ましくは80g/L以上、さらに好ましくは100g/L以上であれば、SMC製造時の樹脂含浸性に優れるため、繊維強化複合材料の機械的特性が向上する。炭素繊維束において、方法(I)で測定される嵩密度が400g/L以下、好ましくは350g/L以下、より好ましくは320g/L以下、さらに好ましくは280g/L以下であれば、SMC中でチョップド繊維束同士が強固に絡み合うため、高強度の繊維強化複合材料を得ることができる。 In the carbon fiber bundle, when the bulk density measured by the method (I) is 60 g / L or more, preferably 70 g / L or more, more preferably 80 g / L or more, further preferably 100 g / L or more, during SMC production. Since the resin impregnating property is excellent, the mechanical properties of the fiber-reinforced composite material are improved. In the carbon fiber bundle, if the bulk density measured by the method (I) is 400 g / L or less, preferably 350 g / L or less, more preferably 320 g / L or less, further preferably 280 g / L or less, in SMC. Since the chopped fiber bundles are strongly intertwined with each other, a high-strength fiber-reinforced composite material can be obtained.
 本発明の炭素繊維束を使用したSMCを製造する際のマトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂を用いることができる。マトリックス樹脂としては、熱硬化性樹脂のみを用いてもよく、熱可塑性樹脂のみを用いてもよく、熱硬化性樹脂と熱可塑性樹脂の両方を用いてもよい。 A thermosetting resin or a thermoplastic resin can be used as a matrix resin when manufacturing an SMC using the carbon fiber bundle of the present invention. As the matrix resin, only the thermosetting resin may be used, only the thermoplastic resin may be used, or both the thermosetting resin and the thermoplastic resin may be used.
 熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、尿素性樹脂、メラミン樹脂、マレイミド樹脂、シアネート樹脂等が挙げられる。
 熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂、ポリエーテルスルフォン樹脂、芳香族ポリアミド樹脂等が挙げられる。
 マトリックス樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
The thermosetting resin is not particularly limited, epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, phenoxy resin, alkyd resin, urethane resin, urea resin, melamine resin, maleimide resin, cyanate resin, etc. Can be mentioned.
Examples of the thermoplastic resin include polyolefin resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyether ketone resin, polyether sulfone resin, and aromatic polyamide resin.
The matrix resins may be used alone or in combination of two or more.
 マトリックス樹脂には、内部離型剤、脱泡剤、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、増粘剤等の添加剤を配合してもよい。 Matrix resins include internal mold release agents, defoamers, flame retardants, weather resistance improvers, antioxidants, heat stabilizers, UV absorbers, plasticizers, lubricants, colorants, compatibilizers, thickeners, etc. You may mix | blend the additive of.
 本発明のSMCの製造方法は、特に限定されない。例えば、長尺の本発明の炭素繊維束をチョップしてチョップド繊維束とし、チョップド繊維束を含む繊維基材を形成し、マトリックス樹脂を含浸してSMCを得る方法が挙げられる。 The method for producing the SMC of the present invention is not particularly limited. For example, there is a method in which a long carbon fiber bundle of the present invention is chopped to form a chopped fiber bundle, a fiber base material including the chopped fiber bundle is formed, and a matrix resin is impregnated to obtain SMC.
[繊維強化複合材料]
 本発明で得られるSMCを金型内に配置し、加熱加圧成形することによって、繊維強化複合材料を得ることができる。
[Fiber reinforced composite material]
A fiber-reinforced composite material can be obtained by placing the SMC obtained in the present invention in a mold and performing heat-press molding.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by the following description.
[原料]
 本実施例で使用した原料を以下に示す。
[material]
The raw materials used in this example are shown below.
 <成分(A)>
 成分(A-1):ビスフェノールAノボラック型エポキシ樹脂(商品名「E157S70」、三菱ケミカル株式会社、軟化点:70℃)。
 成分(A-2):ビスフェノールF型エポキシ樹脂(商品名「jER(登録商標。以下同様。)807」、三菱ケミカル株式会社、30℃における粘度:2Pa・s)。
 成分(A-3):ビスフェノールA型エポキシ樹脂(商品名「jER1001」、三菱ケミカル株式会社、軟化点:64℃)。
 成分(A-4):ビスフェノールA型エポキシ樹脂(商品名「jER828」、三菱ケミカル株式会社、30℃における粘度:10~15Pa・s)。
<Component (A)>
Component (A-1): Bisphenol A novolac type epoxy resin (trade name “E157S70”, Mitsubishi Chemical Corporation, softening point: 70 ° C.).
Component (A-2): Bisphenol F type epoxy resin (trade name “jER (registered trademark, the same applies hereinafter) 807”, Mitsubishi Chemical Corporation, viscosity at 30 ° C .: 2 Pa · s).
Component (A-3): Bisphenol A type epoxy resin (trade name “jER1001”, Mitsubishi Chemical Corporation, softening point: 64 ° C.).
Component (A-4): Bisphenol A type epoxy resin (trade name “jER828”, Mitsubishi Chemical Corporation, viscosity at 30 ° C .: 10 to 15 Pa · s).
 <成分(B)>
 成分(B-1):ステアリン酸2-エチルヘキシル(商品名「エキセパール(登録商標) EH-S」、花王株式会社、凝固点:10℃)。
<Component (B)>
Ingredient (B-1): 2-ethylhexyl stearate (trade name “Exepearl (registered trademark) EH-S”, Kao Corporation, freezing point: 10 ° C.).
 <他の成分>
 界面活性剤(C-1):多環フェノールエチレンオキサイド付加物硫酸エステルアンモニウム塩(商品名「ハイテノール(登録商標)NF-17」、第一工業製薬株式会社)。
<Other ingredients>
Surfactant (C-1): polycyclic phenol ethylene oxide adduct sulfate ammonium salt (trade name "Hitenol (registered trademark) NF-17", Dai-ichi Kogyo Seiyaku Co., Ltd.).
[カンチレバー値]
 サブトウのカンチレバー値の測定は、以下の手順1~4により行った。
 (手順1)炭素繊維束から長さ40cmの試験用サブトウを切り出した。
 (手順2)水平面と、水平面の一端から下方に向かって傾斜する、傾斜角度が45度の斜面とを有する測定台の、水平面上に試験用サブトウを載せ、試験用サブトウの長さ方向の第1の端部を斜面と水平面との境界線に合わせた。試験用サブトウの上に押さえ板を載せ、押さえ板の端部を境界線に合わせた。
 (手順3)押さえ板を斜面側に水平方向に2cm/秒の速さで移動させ、試験用サブトウの第1の端部が斜面と接触した時点で押さえ板の移動を停止させた。
 (手順4)手順3における押さえ板の移動距離x(mm)を測定した。
[Cantilever value]
The cantilever value of the sub tow was measured by the following procedures 1 to 4.
(Procedure 1) A 40 cm long test subtoe was cut out from a carbon fiber bundle.
(Procedure 2) Place a test sub-toe on the horizontal plane of a measuring table having a horizontal plane and a slope having an inclination angle of 45 degrees, and incline downward from one end of the horizontal plane. The end of 1 was aligned with the boundary line between the slope and the horizontal plane. The pressing plate was placed on the test sub-toe, and the end of the pressing plate was aligned with the boundary line.
(Procedure 3) The pressing plate was moved horizontally to the slope at a speed of 2 cm / sec, and the movement of the pressing plate was stopped when the first end of the test sub-toe contacted the slope.
(Procedure 4) The moving distance x (mm) of the pressing plate in Procedure 3 was measured.
[交絡回数]
 サブトウの交絡回数は、以下の方法で測定した。
 サイジング剤付与工程の前のサイジング剤が付与されていない炭素繊維束を採取し、炭素繊維束を鉛直方向に引き上げ、張力付与手段に通し、トウ張力を1.0Nに制御して走行速度1.2m/分で巻取った。その間に、張力付与手段を通過直後の分割されたサブトウに対して、ヤーン・テンションメーターのセラミックピンを貫通させて0.5cN以上の交絡強度が検出された回数を計測し、サブトウの交絡回数とした。
[Number of entanglements]
The number of times of subtow confounding was measured by the following method.
Before the sizing agent application step, the carbon fiber bundle to which the sizing agent has not been applied is sampled, the carbon fiber bundle is pulled up in the vertical direction, passed through the tension applying means, and the tow tension is controlled to 1.0 N, and the traveling speed is 1. It was wound up at 2 m / min. In the meantime, the number of times the entanglement strength of 0.5 cN or more was detected by penetrating the ceramic pin of the yarn tension meter to the divided sub tow immediately after passing through the tension applying means, did.
[サイジング剤の付着量]
 各例で得たサイジング剤付き炭素繊維束のサイジング剤の付着量は、メチルエチルケトンによるソックスレー抽出法により測定した。抽出時間は1時間とした。
[Amount of sizing agent]
The amount of the sizing agent attached to the sizing agent-attached carbon fiber bundle obtained in each example was measured by the Soxhlet extraction method using methyl ethyl ketone. The extraction time was 1 hour.
[チョップ分繊性の評価]
 連続した炭素繊維束を長さ1インチにチョップ(裁断)し、サブトウ同士の未分割部分を含まないチョップド炭素繊維束をピンセットで丁寧に100個ランダムに拾い上げ、それぞれ質量を測定した。これら100個の質量測定値から、サブトウの質量に相当するチョップド炭素繊維束の個数をカウントし、その個数の割合を計算し、分散性の割合Qとした。
 具体的には、ロータリーカッターを用いて、サイジング剤付き炭素繊維束を長さ1インチにチョップ(裁断)し、チョップ分繊性を上記の方法で計算した分散性の割合Qで評価した。
 ここで、サブトウの質量に相当するチョップド炭素繊維束とは、サブトウの平均繊度の120%以下のチョップド炭素繊維束である。
[Evaluation of chop separation property]
A continuous carbon fiber bundle was chopped (cut) into a length of 1 inch, and 100 chopped carbon fiber bundles that did not include undivided portions of the sub tows were carefully picked up randomly with tweezers, and the mass of each was measured. From these 100 mass measurement values, the number of chopped carbon fiber bundles corresponding to the mass of the sub tow was counted, the ratio of the number was calculated, and the dispersibility ratio Q was obtained.
Specifically, a carbon fiber bundle with a sizing agent was chopped (cut) into a length of 1 inch using a rotary cutter, and the chop separation property was evaluated by the dispersibility ratio Q calculated by the above method.
Here, the chopped carbon fiber bundle corresponding to the mass of the sub tow is a chopped carbon fiber bundle having 120% or less of the average fineness of the sub tow.
 以下の基準でチョップ分繊性を評価した。
 A:分散性の割合Qが80%以上。
 B:分散性の割合Qが60%以上80%未満。
 C:分散性の割合Qが40%以上60%未満。
 D:分散性の割合Qが20%以上40%未満。
 E:分散性の割合Qが20%未満。
The chop separation property was evaluated according to the following criteria.
A: The dispersibility ratio Q is 80% or more.
B: The dispersibility ratio Q is 60% or more and less than 80%.
C: The dispersibility ratio Q is 40% or more and less than 60%.
D: The dispersibility ratio Q is 20% or more and less than 40%.
E: Dispersibility ratio Q is less than 20%.
[チョップ良好性の評価]
 ロータリーカッターのゴムロールへのチョップド炭素繊維束の貼り付き状態を目視にて確認し、以下の基準に従ってチョップ良好性を評価した。
 A:ゴムロールへのチョップド炭素繊維束の貼り付きがほとんど見られず、連続的にチョップできた。
 B:ゴムロールへのチョップド炭素繊維束の貼り付きが多少見られたが、連続的にチョップできた。
 C:ゴムロールへのチョップド炭素繊維束の貼り付きが多く、チョップ不良が発生し、連続的なチョップが困難であった。
[Evaluation of good chop]
The adhered state of the chopped carbon fiber bundle to the rubber roll of the rotary cutter was visually confirmed, and the chop goodness was evaluated according to the following criteria.
A: Almost no sticking of the chopped carbon fiber bundle to the rubber roll was observed, and chopping could be performed continuously.
B: Some sticking of the chopped carbon fiber bundle to the rubber roll was observed, but chopping could be performed continuously.
C: The chopped carbon fiber bundles were often stuck to the rubber roll, and a chop defect occurred, which made continuous chopping difficult.
[嵩密度]
 炭素繊維束の嵩密度の測定は、以下の手順I-1~I-2により行った。
 (手順I-1)炭素繊維束を繊維長が25mmとなるようにロータリーカッターで裁断した切断片100gを2Lのメスシリンダー(Φ88mm、高さ485mmの円柱状)に充填した。
 (手順I-2)メスシリンダー内の切断片の上部から均一に500gの荷重をかけ、体積に変化が無くなったときの充填された切断片の総体積(L)を測定し、切断片の総質量(100g)を切断片の総体積(L)で除して嵩密度を算出した。
[The bulk density]
The bulk density of the carbon fiber bundle was measured by the following procedures I-1 and I-2.
(Procedure I-1) 100 g of a cut piece obtained by cutting a carbon fiber bundle with a rotary cutter to a fiber length of 25 mm was filled in a 2 L graduated cylinder (cylinder having a diameter of 88 mm and a height of 485 mm).
(Procedure I-2) A load of 500 g is uniformly applied from the upper part of the cut pieces in the graduated cylinder, and the total volume (L) of the filled cut pieces when there is no change in volume is measured. The bulk density was calculated by dividing the mass (100 g) by the total volume (L) of the cut pieces.
[SMCの樹脂含浸性の評価]
 <マトリックス樹脂組成物の調製>
 エポキシ(メタ)アクリレート樹脂と不飽和ポリエステル樹脂との混合物(日本ユピカ株式会社製、製品名:ネオポール(登録商標)8113)の100質量部、1,1-ジ(t-ブチルパーオキシ)シクロヘキサンの75質量%溶液(日油株式会社製、製品名:パーヘキサ(登録商標)C-75(EB))の0.5質量部、t-ブチルパーオキシイソプロピルカーボネートの74質量%溶液(化薬アクゾ株式会社製、製品名:カヤカルボン(登録商標)BIC-75)の0.5質量部、内部離型剤(リン酸エステル系誘導体組成物)(アクセルプラスチックリサーチラボラトリー社製、製品名:MOLD WIZ INT-EQ-6)の0.35質量部、変性ジフェニルメタンジイソシアネート(三井化学株式会社製、製品名:コスモネート(登録商標)LL)の22.0質量部、1,4-ベンゾキノン(精工化学株式会社製)の0.04質量部を、万能撹拌機を用いて充分に混合撹拌し、マトリックス樹脂組成物を得た。
[Evaluation of SMC resin impregnation]
<Preparation of matrix resin composition>
100 parts by mass of a mixture of an epoxy (meth) acrylate resin and an unsaturated polyester resin (manufactured by Nippon Yupica Co., Ltd., product name: Neopol (registered trademark) 8113), 1,1-di (t-butylperoxy) cyclohexane 0.5 parts by mass of a 75 mass% solution (manufactured by NOF CORPORATION, product name: Perhexa (registered trademark) C-75 (EB)), 74 mass% solution of t-butylperoxyisopropyl carbonate (Kayaku Akzo Co., Ltd. Made by the company, product name: Kayacarboxylic (registered trademark) BIC-75) 0.5 parts by mass, internal mold release agent (phosphate ester derivative composition) (made by Accel Plastic Research Laboratory, product name: MOLD WIZ INT- 0.35 parts by mass of EQ-6), modified diphenylmethane diisocyanate (manufactured by Mitsui Chemicals, Inc., product name: Cosmonate 22.0 parts by mass of registered trademark) LL) and 0.04 parts by mass of 1,4-benzoquinone (manufactured by Seiko Chemical Co., Ltd.) are sufficiently mixed and stirred using a universal stirrer to obtain a matrix resin composition. It was
 <SMCの製造>
 得られたマトリックス樹脂組成物を、ドクターブレードを用いてポリエチレン製フィルム(キャリアフィルム)上に厚さ1.0mmになるように塗布し、その上に繊維長25mmのチョップド炭素繊維束を、炭素繊維束の目付が略均一になるように、かつ炭素繊維束の方向がランダムになるように散布した。別のポリエチレン製のキャリアフィルム上に、同じマトリックス樹脂組成物を厚さ1.0mmになるように塗布し、前記の散布した炭素繊維束上に、マトリックス樹脂組成物側が対向するように重ね、積層体を得た。この積層体を、ロールの間に通して押圧して、マトリックス樹脂組成物を炭素繊維束に含浸させてSMC前駆体を得た。
 得られたSMC前駆体を室温(23℃)にて168時間(7日間)静置した。これにより、SMC前駆体中のマトリックス樹脂組成物を充分に増粘させてSMCを得た。
<Manufacture of SMC>
The obtained matrix resin composition was applied onto a polyethylene film (carrier film) with a doctor blade so as to have a thickness of 1.0 mm, and chopped carbon fiber bundles each having a fiber length of 25 mm were applied onto the film. The carbon fiber bundle was sprayed so that the basis weight of the bundle was substantially uniform and the direction of the carbon fiber bundle was random. The same matrix resin composition was applied onto another polyethylene carrier film to a thickness of 1.0 mm, and the matrix resin composition sides were laminated and laminated on the scattered carbon fiber bundles. Got the body The laminate was pressed between rolls to impregnate the carbon fiber bundle with the matrix resin composition to obtain an SMC precursor.
The obtained SMC precursor was allowed to stand at room temperature (23 ° C.) for 168 hours (7 days). Thereby, the matrix resin composition in the SMC precursor was sufficiently thickened to obtain SMC.
 上記のSMC前駆体を得た際に、樹脂含浸性を目視と触感で確認し、以下の評価基準で評価した。
 A:マトリックス樹脂組成物が、チョップド炭素繊維束に充分に含浸している。
 B:マトリックス樹脂組成物が、チョップド炭素繊維束に含浸していない部分が若干確認される。
 C:マトリックス樹脂組成物が、チョップド炭素繊維束に含浸していない部分が数多く確認される。
When the above SMC precursor was obtained, the resin impregnation property was confirmed visually and by touch, and evaluated according to the following evaluation criteria.
A: The chopped carbon fiber bundle is sufficiently impregnated with the matrix resin composition.
B: A portion where the matrix resin composition is not impregnated in the chopped carbon fiber bundle is slightly confirmed.
C: Many parts in which the matrix resin composition is not impregnated in the chopped carbon fiber bundle are confirmed.
[実施例1]
 <サイジング剤の水分散液の調製>
 成分(A)として成分(A-1)54質量部及び成分(A-2)11質量部を混合した樹脂組成物と、成分(B-1)20質量部と、界面活性剤(C-1)15質量部とを混合してサイジング剤を得た。得られたサイジング剤にイオン交換水を加え、ホモミキサーを用いた転相乳化によって、サイジング剤の濃度が3.3質量%の水分散液を調製した。
[Example 1]
<Preparation of aqueous dispersion of sizing agent>
A resin composition obtained by mixing 54 parts by mass of the component (A-1) and 11 parts by mass of the component (A-2) as the component (A), 20 parts by mass of the component (B-1), and the surfactant (C-1 ) 15 parts by mass were mixed to obtain a sizing agent. Ion-exchanged water was added to the obtained sizing agent, and phase inversion emulsification was performed using a homomixer to prepare an aqueous dispersion having a sizing agent concentration of 3.3 mass%.
 <サイジング剤付き炭素繊維束の製造>
 アクリルニトリル系共重合体を湿式紡糸し、フィラメント数3000本、総繊度3600テックスの炭素繊維束前駆体を得て、これらを5本束ねてボビンに巻き取った。束ねた炭素繊維束前駆体を焼成し、5本のサブトウ(質量:298mg/m)を含む、総フィラメント数15000本、総繊度1000テックスの炭素繊維束を得た。次いで、炭素繊維束を、炭酸水素アンモニウムを電解液として電解酸化処理し、水洗して、150℃に加熱されたローラーにより乾燥した。
<Production of carbon fiber bundle with sizing agent>
The acrylonitrile-based copolymer was wet-spun to obtain a carbon fiber bundle precursor having 3000 filaments and a total fineness of 3600 tex, and 5 carbon fiber bundle precursors were wound on a bobbin. The bundled carbon fiber bundle precursor was fired to obtain a carbon fiber bundle containing 5 sub-tows (mass: 298 mg / m) and having a total number of filaments of 15,000 and a total fineness of 1000 tex. Next, the carbon fiber bundle was subjected to electrolytic oxidation treatment using ammonium hydrogen carbonate as an electrolytic solution, washed with water, and dried by a roller heated to 150 ° C.
 次いで、図4に例示した製造装置300を用い、フラットローラー312、314により、表面処理が施された炭素繊維束(炭素繊維束40)を、浸漬槽310に満たしたサイジング剤の水分散液(水分散液50)に浸漬して通過させた。水分散液50から引き上げた炭素繊維束40をフラットローラー314の周面に接触させつつ、エアー吹き付け手段320によって炭素繊維束40にエアーを吹き付けて余剰の水分散液50を除去した。次いで、フィードローラー316とニップローラー318により、水分散液50が付着した炭素繊維束40を走行させつつニップ処理し、炭素繊維束40と水分散液50の合計質量に対する水分散液50の質量の割合Wを20質量%とした。次いで、周面が140℃に加熱された加熱ローラー322に炭素繊維束40を15秒間接触させて乾燥させ、サイジング剤付き炭素繊維束をボビンに巻き取った。得られたサイジング剤付き炭素繊維束におけるサイジング剤の付着量は1.2質量%であった。 Next, using the manufacturing apparatus 300 illustrated in FIG. 4, an aqueous dispersion of a sizing agent in which the carbon fiber bundles (carbon fiber bundles 40) that have been surface-treated by the flat rollers 312 and 314 are filled in the dipping tank 310 ( It was immersed in an aqueous dispersion 50) and passed through. While the carbon fiber bundle 40 pulled up from the water dispersion liquid 50 was brought into contact with the peripheral surface of the flat roller 314, air was blown to the carbon fiber bundle 40 by the air blowing means 320 to remove the excess water dispersion liquid 50. Next, the feed roller 316 and the nip roller 318 perform a nip treatment while running the carbon fiber bundle 40 to which the water dispersion liquid 50 is attached, so that the mass of the water dispersion liquid 50 with respect to the total mass of the carbon fiber bundle 40 and the water dispersion liquid 50 is The ratio W was set to 20% by mass. Next, the carbon fiber bundle 40 was brought into contact with the heating roller 322 whose peripheral surface was heated to 140 ° C. for 15 seconds to be dried, and the carbon fiber bundle with the sizing agent was wound on a bobbin. The amount of the sizing agent attached to the obtained carbon fiber bundle with the sizing agent was 1.2% by mass.
[実施例2~7及び実施例10、11]
 サイジング剤付き炭素繊維束の製造条件を表1に示すように変更した以外は、実施例1と同様にしてサイジング剤付き炭素繊維束を製造した。
[Examples 2 to 7 and Examples 10 and 11]
A carbon fiber bundle with a sizing agent was produced in the same manner as in Example 1 except that the production conditions of the carbon fiber bundle with a sizing agent were changed as shown in Table 1.
[実施例8、9]
 成分(A)として成分(A-3)42.5質量部及び成分(A-4)42.5質量部を混合した樹脂組成物と、界面活性剤(C-1)15質量部とを混合してサイジング剤を得た。前記サイジング剤にイオン交換水を加え、ホモミキサーを用いた転相乳化によって、サイジング剤の濃度が3.3質量%の水分散液を調製した。得られた水分散液を用い、サイジング剤付き炭素繊維束の製造条件を表1に示すように変更した以外は、実施例1と同様にしてサイジング剤付き炭素繊維束を製造した。
[Examples 8 and 9]
A resin composition obtained by mixing 42.5 parts by mass of the component (A-3) and 42.5 parts by mass of the component (A-4) as the component (A) and 15 parts by mass of the surfactant (C-1) are mixed. Then, a sizing agent was obtained. Ion-exchanged water was added to the sizing agent, and phase inversion emulsification was performed using a homomixer to prepare an aqueous dispersion having a sizing agent concentration of 3.3 mass%. A carbon fiber bundle with a sizing agent was produced in the same manner as in Example 1 except that the obtained aqueous dispersion was used and the production conditions for the carbon fiber bundle with a sizing agent were changed as shown in Table 1.
[実施例12]
 連続する繊維束として炭素繊維束(商品名「TR50S 15L」、三菱ケミカル社製)を使用した。隣接するサブトウ同士の分割部分の長さaを800mm、隣接するサブトウ同士の未分割部分の長さbを25mmとなるように炭素繊維束を断続的に分割し、9本のサブトウを含む、総フィラメント数15000本、総繊度1000テックスの炭素繊維束を得た。次いで、実施例1と同様にしてサイジング剤付き炭素繊維束を製造した。
[Example 12]
As a continuous fiber bundle, a carbon fiber bundle (trade name "TR50S 15L", manufactured by Mitsubishi Chemical Corporation) was used. The carbon fiber bundle is intermittently divided so that the length a of the divided portion between the adjacent sub-tows is 800 mm and the length b of the undivided portion between the adjacent sub-tows is 25 mm, and 9 sub-tows are included. A carbon fiber bundle having 15,000 filaments and a total fineness of 1000 tex was obtained. Then, a carbon fiber bundle with a sizing agent was manufactured in the same manner as in Example 1.
[比較例1]
 サイジング剤付き炭素繊維束の製造条件を表1に示すように変更した以外は、実施例1と同様にしてサイジング剤付き炭素繊維束を製造した。
[Comparative Example 1]
A carbon fiber bundle with a sizing agent was produced in the same manner as in Example 1 except that the production conditions of the carbon fiber bundle with a sizing agent were changed as shown in Table 1.
[比較例2]
 連続する繊維束として炭素繊維束(商品名「TRW40 50L」、三菱ケミカル社製)を使用した。隣接するサブトウ同士の分割部分の長さaを800mm、隣接するサブトウ同士の未分割部分の長さbを25mmとなるように炭素繊維束を断続的に分割し、30本のサブトウを含む、総フィラメント数50000本、総繊度3750テックスの炭素繊維束を得た。次いで、サイジング剤付き炭素繊維束の製造条件を表1に示すように変更した以外は、実施例1と同様にしてサイジング剤付き炭素繊維束を製造した。
[Comparative Example 2]
A carbon fiber bundle (trade name "TRW40 50L", manufactured by Mitsubishi Chemical Corporation) was used as a continuous fiber bundle. The carbon fiber bundle is intermittently divided so that the length a of the divided portion between the adjacent sub-tows is 800 mm and the length b of the undivided portion between the adjacent sub-tows is 25 mm, and includes 30 sub-tows. A carbon fiber bundle having 50000 filaments and a total fineness of 3750 tex was obtained. Then, a sizing agent-attached carbon fiber bundle was produced in the same manner as in Example 1 except that the production conditions for the sizing agent-attached carbon fiber bundle were changed as shown in Table 1.
 実施例及び比較例における評価結果を表1に示す。 Table 1 shows the evaluation results of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、実施例1~9のサイジング剤付き炭素繊維束は、チョップ時におけるチョップ分繊性が優れていた。カンチレバー値の低い実施例8、9、12では、チョップ良好性に劣っていたが、SMCの製造には充分適用できるレベルであった。
 また、重なり率Pが高めである実施例10では、チョップ分繊性に劣っていたが、SMCの製造に充分適用できるレベルであった。交絡回数の少ない実施例11ではチョップ分繊性及びチョップ良好性が劣っていたが、SMCの製造に充分適用できるレベルであった。
 一方、重なり率Pが低い比較例1は、チョップ分繊性やチョップ良好性は良好であったが、SMCの製造時において、分離したサブトウの装置への巻きつき等のトラブルが高頻度で発生した。また、比較例1のチョップド繊維束は、樹脂含侵性が低く、SMCの製造に適用できるレベルではなかった。
 さらに、重なり率Pが高い比較例2は、チョップ分繊性は比較的良好であったが、チョップ良好性及び樹脂含侵性が低く、SMCの製造に適用できるレベルではなかった。
As shown in Table 1, the sizing agent-added carbon fiber bundles of Examples 1 to 9 were excellent in chop division property during chopping. In Examples 8, 9 and 12 having a low cantilever value, the chop goodness was inferior, but the level was sufficiently applicable to the production of SMC.
Further, in Example 10 in which the overlapping ratio P was high, the chop separation property was inferior, but the level was sufficiently applicable to the production of SMC. In Example 11 in which the number of entanglements was small, the chop separation property and the chop goodness were inferior, but the level was sufficiently applicable to the production of SMC.
On the other hand, in Comparative Example 1 in which the overlapping rate P was low, the chop separation property and the chop goodness were good, but troubles such as winding of the separated sub tow around the device frequently occurred during the production of SMC. did. Further, the chopped fiber bundle of Comparative Example 1 had a low resin impregnation property, and was not at a level applicable to the production of SMC.
Further, in Comparative Example 2 in which the overlapping ratio P was high, the chop splitting property was relatively good, but the chop goodness and resin impregnation were low, and it was not at a level applicable to the production of SMC.

Claims (14)

  1.  複数本のサブトウを含む炭素繊維束であって、
     下記式(1)で表される重なり率Pが5~80%である、炭素繊維束。
    Figure JPOXMLDOC01-appb-M000001
    (式中、Wtは前記炭素繊維束の幅の平均値(mm)を示し、Wstはそれぞれのサブトウの幅の平均値(mm)を示し、nは前記炭素繊維束に含まれるサブトウの本数(本)を示す。)
    A carbon fiber bundle containing a plurality of sub tows,
    A carbon fiber bundle having an overlap ratio P represented by the following formula (1) of 5 to 80%.
    Figure JPOXMLDOC01-appb-M000001
    (In the formula, Wt represents an average value (mm) of widths of the carbon fiber bundles, Wst represents an average value (mm) of widths of the respective sub tows, and n represents the number of sub tows included in the carbon fiber bundles ( Book).)
  2.  複数本の前記サブトウ同士がサイジング剤で結着されている、請求項1に記載の炭素繊維束。 The carbon fiber bundle according to claim 1, wherein a plurality of the sub tows are bound with a sizing agent.
  3.  前記サブトウの質量が100~1000mg/mである、請求項1又は2に記載の炭素繊維束。 The carbon fiber bundle according to claim 1 or 2, wherein the mass of the sub-tow is 100 to 1000 mg / m.
  4.  前記サブトウのフィラメント数が500~15000本である、請求項1~3のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 3, wherein the number of filaments of the sub tow is 500 to 15,000.
  5.  それぞれの前記サブトウの交絡回数の平均が20~50回/mである、請求項1~4のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 4, wherein the average number of times of entanglement of each of the sub tows is 20 to 50 times / m.
  6.  それぞれの前記サブトウのカンチレバー値の平均値が110~300mmである、請求項1~5のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 5, wherein the average cantilever value of each of the sub tows is 110 to 300 mm.
  7.  総フィラメント数が1000~120000本である、請求項1~6のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 6, wherein the total number of filaments is 1000 to 120,000.
  8.  それぞれの前記サブトウが隣接するサブトウと断続的に分割された状態となっている、請求項1~7のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 7, wherein each of the sub tows is intermittently divided from an adjacent sub tow.
  9.  下記に定義される分繊性の割合Qが20%以上である、請求項1~8のいずれか一項に記載の炭素繊維束。
    (分繊性の割合Q)
     連続した炭素繊維束を長さ1インチにチョップ(裁断)し、サブトウ同士の未分割部分を含まないチョップド炭素繊維束をピンセットで100個ランダムに拾い上げ、それぞれ質量を測定する。これら100個の質量測定値から、サブトウの質量に相当するチョップド炭素繊維束の個数をカウントし、その個数の割合を計算し、分繊性の割合Qとする。
    The carbon fiber bundle according to any one of claims 1 to 8, wherein the splitting property ratio Q defined below is 20% or more.
    (Proportion Q of splitting property)
    A continuous carbon fiber bundle is chopped (cut) into a length of 1 inch, and 100 chopped carbon fiber bundles that do not include undivided portions of sub tows are randomly picked up with tweezers, and the mass of each is measured. From these 100 mass measurement values, the number of chopped carbon fiber bundles corresponding to the mass of the sub tow is counted, the ratio of the number is calculated, and the ratio Q of the splitting property is defined.
  10.  下記方法(I)で算出される嵩密度が60~400g/L以上である、請求項1~9のいずれか一項に記載の炭素繊維束。
    (方法(I))
     (手順I-1)炭素繊維束を繊維長が25mmとなるようにロータリーカッターで裁断した試験用チョップド繊維束100gを2Lのメスシリンダー(Φ88mm、高さ485mmの円柱状)に充填する。
     (手順I-2)メスシリンダー内の前記試験用チョップド繊維束の上部から均一に500gの荷重をかけ、体積に変化が無くなったときの充填された前記試験用チョップド炭素繊維束の総体積(L)を測定し、前記試験用チョップド繊維束の総質量(100g)を前記試験用チョップド炭素繊維束の総体積(L)で除して嵩密度を算出する。
    The carbon fiber bundle according to any one of claims 1 to 9, which has a bulk density calculated by the following method (I) of 60 to 400 g / L or more.
    (Method (I))
    (Procedure I-1) 100 g of a chopped fiber bundle for test, which is obtained by cutting a carbon fiber bundle with a rotary cutter to have a fiber length of 25 mm, is filled in a 2 L graduated cylinder (cylinder having a diameter of 88 mm and a height of 485 mm).
    (Procedure I-2) A load of 500 g is uniformly applied from the upper part of the test chopped fiber bundle in the graduated cylinder, and the total volume (L) of the filled test chopped carbon fiber bundle when there is no change in volume ) Is measured and the total mass (100 g) of the test chopped fiber bundle is divided by the total volume (L) of the test chopped carbon fiber bundle to calculate the bulk density.
  11.  シートモールディングコンパウンド用炭素繊維束である、請求項1~10のいずれか一項に記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 10, which is a carbon fiber bundle for a sheet molding compound.
  12.  下記の工程(a)~(d)を含む、請求項1~11のいずれか一項に記載の炭素繊維束の製造方法。
     (a)サイジング剤を含む水分散液を浸漬槽に収容し、複数本のサブトウを含む炭素繊維束を走行させつつ前記水分散液に連続的に浸漬して通過させる。
     (b)前記水分散液から引き上げた前記炭素繊維束をローラーの周面に接触させつつ、前記炭素繊維束にエアーを吹き付けて余剰の水分散液を除去する。
     (c)工程(b)の後、前記水分散液が付着した前記炭素繊維束をニップ処理し、前記炭素繊維束と前記水分散液の合計質量に対する前記水分散液の質量の割合を40質量%以下とする。
     (d)工程(c)の後、周面が110~200℃に加熱された加熱ローラーに前記炭素繊維束を接触させて乾燥させる。
    The method for producing a carbon fiber bundle according to any one of claims 1 to 11, which includes the following steps (a) to (d).
    (A) An aqueous dispersion containing a sizing agent is placed in a dipping tank, and a carbon fiber bundle containing a plurality of sub-tows is continuously dipped and passed through the aqueous dispersion while running.
    (B) While the carbon fiber bundle pulled up from the aqueous dispersion is brought into contact with the peripheral surface of the roller, air is blown to the carbon fiber bundle to remove the excess aqueous dispersion.
    (C) After the step (b), the carbon fiber bundle to which the aqueous dispersion is attached is subjected to a nip treatment, and the ratio of the mass of the aqueous dispersion to the total mass of the carbon fiber bundle and the aqueous dispersion is 40 mass. % Or less.
    (D) After the step (c), the carbon fiber bundle is brought into contact with a heating roller whose peripheral surface is heated to 110 to 200 ° C. to be dried.
  13.  前記サイジング剤が、下記の成分(A)及び成分(B)を含有し、
     前記成分(B)の含有量に対する前記成分(A)の含有量の質量比(成分(A)の含有量/成分(B)の含有量)が1~20であり、
     前記サイジング剤の全量(100質量%)に対する前記成分(A)と前記成分(B)の合計含有量の割合が80質量%以上である、請求項12に記載の炭素繊維束の製造方法。
     成分(A):30℃における粘度が500~120000Pa・sであるエポキシ樹脂組成物。
     成分(B):凝固点が50℃以下である脂肪族エステル化合物。
    The sizing agent contains the following components (A) and (B),
    The mass ratio of the content of the component (A) to the content of the component (B) (content of the component (A) / content of the component (B)) is 1 to 20,
    The method for producing a carbon fiber bundle according to claim 12, wherein the ratio of the total content of the component (A) and the component (B) with respect to the total amount (100 mass%) of the sizing agent is 80 mass% or more.
    Component (A): An epoxy resin composition having a viscosity at 30 ° C. of 500 to 120,000 Pa · s.
    Component (B): an aliphatic ester compound having a freezing point of 50 ° C. or lower.
  14.  請求項1~11のいずれか一項に記載の炭素繊維束を長手方向に間隔を空けて裁断した繊維束を樹脂に含浸させる、シートモールディングコンパウンドの製造方法。 A method for producing a sheet molding compound, which comprises impregnating a resin with a fiber bundle obtained by cutting the carbon fiber bundle according to any one of claims 1 to 11 at intervals in a longitudinal direction.
PCT/JP2019/039938 2018-10-19 2019-10-10 Carbon fiber bundle, carbon fiber bundle production method, and sheet molding compound production method WO2020080238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558633A JP6863478B2 (en) 2018-10-19 2019-10-10 Carbon fiber bundle, carbon fiber bundle manufacturing method, and sheet molding compound manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-197594 2018-10-19
JP2018197594 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080238A1 true WO2020080238A1 (en) 2020-04-23

Family

ID=70283948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039938 WO2020080238A1 (en) 2018-10-19 2019-10-10 Carbon fiber bundle, carbon fiber bundle production method, and sheet molding compound production method

Country Status (2)

Country Link
JP (1) JP6863478B2 (en)
WO (1) WO2020080238A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187346A1 (en) * 2020-03-18 2021-09-23 三菱ケミカル株式会社 Smc manufacturing method
WO2021251205A1 (en) * 2020-06-09 2021-12-16 三菱ケミカル株式会社 Method for producing carbon fiber bundle with slit, carbon fiber package, and method for producing carbon fiber package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499103B1 (en) * 2021-10-20 2023-02-10 김덕영 Number Calculating method of roving for fiber reinforeced bar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197381A (en) * 1993-12-28 1995-08-01 Toho Rayon Co Ltd Sizing agent for carbon fiber strand, carbon fiber strand treated with the sizing agent and prepreg reinforced with the carbon fiber strand
JPH10121325A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JP2004060131A (en) * 2002-07-25 2004-02-26 Polymer Processing Res Inst Method for producing widened fiber bundle and laminated nonwoven fabric made of the widened fiber bundle
JP2007092218A (en) * 2005-09-28 2007-04-12 Mitsubishi Rayon Co Ltd Fiber bundle of carbon fiber precursor and method for producing the same
JP2011148146A (en) * 2010-01-20 2011-08-04 Mitsubishi Plastics Inc Device and method of manufacturing prepreg

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197381A (en) * 1993-12-28 1995-08-01 Toho Rayon Co Ltd Sizing agent for carbon fiber strand, carbon fiber strand treated with the sizing agent and prepreg reinforced with the carbon fiber strand
JPH10121325A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JP2004060131A (en) * 2002-07-25 2004-02-26 Polymer Processing Res Inst Method for producing widened fiber bundle and laminated nonwoven fabric made of the widened fiber bundle
JP2007092218A (en) * 2005-09-28 2007-04-12 Mitsubishi Rayon Co Ltd Fiber bundle of carbon fiber precursor and method for producing the same
JP2011148146A (en) * 2010-01-20 2011-08-04 Mitsubishi Plastics Inc Device and method of manufacturing prepreg

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187346A1 (en) * 2020-03-18 2021-09-23 三菱ケミカル株式会社 Smc manufacturing method
WO2021251205A1 (en) * 2020-06-09 2021-12-16 三菱ケミカル株式会社 Method for producing carbon fiber bundle with slit, carbon fiber package, and method for producing carbon fiber package

Also Published As

Publication number Publication date
JP6863478B2 (en) 2021-04-21
JPWO2020080238A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
WO2020080238A1 (en) Carbon fiber bundle, carbon fiber bundle production method, and sheet molding compound production method
DE69733387T2 (en) COMPOSITE AND FIBER-REINFORCED COMPOSITE MATERIALS MANUFACTURED THEREFROM
US9803066B2 (en) Chopped carbon fiber bundles and method for producing chopped carbon fiber bundles
EP2736691B1 (en) Flexible reinforcement fiber yarn pre-impregnated with resin
JP6958541B2 (en) Fiber reinforced plastic molding material
JP6083377B2 (en) Carbon fiber composite material
DE69818344T2 (en) Cut carbon fibers and process for their manufacture
EP2948499B1 (en) Impregnated reinforcing spun yarn and use of same for producing composite materials
WO2016057734A1 (en) Hybrid long fiber thermoplastic composites
JPH0346415B2 (en)
WO2007060833A1 (en) Carbon fiber bundle, prepreg, and carbon fiber reinforced composite material
DE102013227142B4 (en) Long-term stable prepregs, their use, processes for their production and fiber composite material
CN112292488B (en) Sizing agent, reinforcing fiber bundle, fiber-reinforced resin molding material, and fiber-reinforced composite material
EP3744768A1 (en) Reinforcing fiber mat, and fiber-reinforced resin molding material and method for producing same
KR102253926B1 (en) Method for producing partial fiber bundles, partial fiber bundles, and fiber-reinforced resin molding materials using partially branched fiber bundles, and method for producing the same
JPH0723583B2 (en) Surface treated metallic filament
WO2015049567A1 (en) Sizing agent for carbon fiber, carbon fiber, carbon fiber-reinforced composite material, and method of producing carbon fiber-reinforced composite material
JP5059579B2 (en) Sizing agent and sizing treated carbon fiber bundle
JP2006336131A (en) Carbon fiber strand for reinforcing thermoplastic resin
JP2022029523A (en) Cf-smc and method for manufacturing cf-smc
JP2006523269A (en) Sizing formulation for phenolic resin pultrusion and method for forming the same
US9815224B2 (en) Carbon fiber reinforcements for sheet molding composites
JPS6256267B2 (en)
EP3744884A1 (en) Reinforcing fiber bundle
JP6944802B2 (en) Carbon fiber bundle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019558633

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872526

Country of ref document: EP

Kind code of ref document: A1