WO2020080201A1 - 電気化学セルおよびセルスタック - Google Patents
電気化学セルおよびセルスタック Download PDFInfo
- Publication number
- WO2020080201A1 WO2020080201A1 PCT/JP2019/039692 JP2019039692W WO2020080201A1 WO 2020080201 A1 WO2020080201 A1 WO 2020080201A1 JP 2019039692 W JP2019039692 W JP 2019039692W WO 2020080201 A1 WO2020080201 A1 WO 2020080201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- unit
- fitting
- electrochemical cell
- fluid passage
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an electrochemical cell and a cell stack.
- the hydrogen storage system uses surplus power to electrolyze water in a water electrolysis cell to store energy in the form of hydrogen, and when the power is insufficient, the stored hydrogen is generated by a fuel cell to supplement the power shortage.
- an object of the present invention is to provide an electrochemical cell and a cell stack capable of an efficient and stable reaction.
- the electrochemical cell according to the present invention has the following configuration. That is, one aspect of the present invention includes a first unit including a first electrode, a second unit including a second electrode, a catalyst-supporting electrode, and an electrolyte membrane, and the first electrode and the second electrode An electrochemical cell in which the catalyst-supporting electrode and the electrolyte membrane are sandwiched therebetween.
- the first unit includes a fitting recess and a first recess provided on a bottom surface of the fitting recess, the first electrode is provided in the first recess, and the first electrode is provided in the second recess.
- the unit includes a fitting convex portion that fits in the fitting concave portion, and a second concave portion provided on an upper surface of the fitting convex portion, and the second electrode is provided in the second concave portion.
- the fitting concave portion and the fitting convex portion are fitted together.
- the electrochemical cell according to this embodiment can realize an efficient and stable reaction. Further, since the spigot structure is adopted, there is also an advantage that the assembly is easy.
- the bottom surface of the fitting concave portion and the top surface of the fitting convex portion may be in contact with each other directly or via an insulating sheet.
- the contact between the bottom surface of the fitting concave portion and the top surface of the fitting convex portion defines the contact between the first electrode / electrolyte membrane and the catalyst-carrying electrode / second electrode, so that uneven contact can be suppressed.
- the distance between the surface of the first electrode and the surface of the second electrode is preferably smaller than the thickness of the electrolyte membrane and the catalyst-supporting electrode in the unloaded state.
- the electrolyte membrane and the catalyst-supporting electrode are sandwiched by the first electrode and the second electrode and uniformly contact with the first electrode and the second electrode.
- one of the first unit and the second unit is provided with two fluid passages that communicate the electrolyte membrane and the catalyst-supporting electrode with the outside, and one fluid passage is provided with the other fluid passage.
- the diameter may be larger than that of the fluid passage.
- the fluid passage for discharging water and oxygen has a larger diameter than the fluid passage for supplying water. Since the flow velocity becomes slower as the diameter of the fluid passage becomes larger, the generated oxygen gas can be discharged more reliably.
- grooves or holes may be provided on the surfaces of the first electrode and the second electrode.
- the groove can be, for example, a serpentine groove, a straight groove, an orthogonal groove, or a combination thereof. This enables efficient supply and discharge of water and gas.
- the surfaces of the first electrode and the second electrode may be roughened.
- the roughened surface increases the contact area between the electrode and the catalyst-supporting electrode, so that the resistance can be reduced.
- the first unit has a first external electrode electrically connected to the first electrode and extending from a surface opposite to a surface on which the fitting recess is provided to a side surface.
- the unit may have a second external electrode that is electrically connected to the second electrode and extends from the surface opposite to the surface on which the fitting protrusion is provided to the side surface. Since the external electrode extends to the side surface of the unit in this way, wiring for power supply becomes easy.
- the first unit and the second unit each have a fluid passage on a side surface for supplying or discharging a fluid
- the first external electrode and the second external electrode have It may be provided on a side surface different from the provided side surface.
- a second aspect of the present invention is a cell stack having a plurality of electrochemical cells of the above aspect, and a plurality of electrochemical cells electrically connected in series or in parallel.
- the cell stack according to this aspect is an aggregate of single cells, it is easy to identify a cell that has failed or deteriorated, and it is also possible to replace only the cell that has failed or deteriorated.
- the shape of the stack can be freely determined, and it is possible to provide a cell stack having an appropriate shape according to the usage situation.
- the flow rate and power generation can be made constant.
- FIG. 1 is an explanatory diagram of the structure of a water electrolysis cell stack.
- 2A is an exploded view of the water electrolysis cell
- FIG. 2B is an assembly view of the water electrolysis cell.
- 3A is a perspective view of the front surface side of the anode unit
- FIG. 3B is a perspective view of the back surface side of the anode unit.
- 4A to 4C are a side view, a front view, and a sectional view of the anode unit, respectively.
- 5A is a front perspective view of the cathode unit
- FIG. 5B is a rear perspective view of the cathode unit.
- 6A to 6C are a side view, a front view, and a sectional view of the cathode unit, respectively.
- FIG. 1 is an explanatory diagram of the structure of a water electrolysis cell stack.
- 2A is an exploded view of the water electrolysis cell
- FIG. 2B is an assembly view of the water electrolysis cell
- FIG. 7 is a diagram illustrating fitting of the anode unit and the cathode unit.
- FIG. 8 is a diagram showing evaluation results of water electrolysis performance in the case where the metal electrode surface is not processed, the surface is roughened, and the cross groove is provided.
- FIG. 9 is a diagram showing the results of two evaluations performed using a metal electrode that has not been processed in order to evaluate the influence of the measurement order.
- the present embodiment is a water electrolysis cell stack that electrolyzes water using electric power.
- electric power based on renewable energy such as sunlight, wind power, hydraulic power, and geothermal heat.
- this embodiment may use electric power based on fossil fuel, nuclear power, or the like.
- FIG. 1 is a configuration explanatory view of a water electrolysis cell stack 1 (hereinafter, also simply referred to as stack 1) according to the present embodiment.
- the stack 1 is an assembly in which a plurality of water electrolysis cells 2 (single cells) are stacked.
- each water electrolysis cell 2 has an independent structure as described later, the stack 1 does not necessarily need to stack the water electrolysis cells 2, and the stack shape can be freely determined.
- FIG. 1 shows the cell stack 1 including three water electrolysis cells 2, the number of the water electrolysis cells 2 may be arbitrary.
- the water electrolysis cell 2 includes an anode unit 10 and a cathode unit 20. Electric power is supplied to the anode unit 10 and the cathode unit 20 from a DC power supply (not shown), and the electrode of the anode unit 10 is set to the anode (oxygen generating electrode) and the electrode of the cathode unit 20 is set to the cathode (hydrogen generating electrode). .
- Water is supplied to the anode unit 10 of each water electrolysis cell 2 by a manifold branched from a common supply pipe 3, and oxygen generated at the anode is taken out from the oxygen extraction pipe 4 together with water. Further, hydrogen generated at the cathode of the cathode unit is taken out from the hydrogen take-out pipe 5 and guided to a hydrogen storage section (not shown).
- FIG. 2A is an exploded view of the water electrolysis cell 2
- FIG. 2B is an assembly view of the water electrolysis cell 2.
- 3A is a perspective view of the surface of the anode unit 10 (inside during assembly)
- FIG. 3B is a perspective view of the back surface of the anode unit 10 (outside during assembly).
- 4A to 4C are a side view, a front view, and a sectional view of the anode unit 10.
- 5A is a perspective view of the front surface (inside of the assembly) of the cathode unit 20
- FIG. 5B is a perspective view of the back surface (outside of the assembly) of the cathode unit 20.
- 6A to 6C are a side view, a front view, and a sectional view of the cathode unit 20.
- the water electrolysis cell 2 includes an insulating sheet 40a, a metal mesh 50a, a membrane electrode structure (MEA) 30, a metal mesh 50b, and an insulating sheet 40b between the anode unit 10 and the cathode unit 20.
- MEA membrane electrode structure
- the anode unit 10 and the cathode unit 20 are fixed by bolts 63 and nuts 61 and 62.
- the main body 101 of the anode unit 10 is made of acrylic resin, for example, and has a square plate shape.
- the material of the main body 101 is not particularly limited, and may be an insulating material other than acrylic resin, a conductive material, or an insulating material sandwiched between it and another conductive member.
- the shape of the main body 101 is not limited to a square, and may be any shape.
- a circular fitting recess 102 is provided on the surface of the main body 101, and a square recess 103 (first recess) is further provided on the bottom surface 102a of the fitting recess 102.
- the fitting recess 102 may have a shape other than a circular shape as long as it is a shape corresponding to the fitting projection 202.
- the recess 103 is provided with a metal electrode 104 for supplying electric power to the MEA 30.
- the material of the metal electrode 104 is not particularly limited as long as it has conductivity and corrosion resistance, and for example, titanium, nickel, SUS (stainless steel) or the like can be used.
- the electrodes are not necessarily made of metal, and carbon (graphite) electrodes such as graphene, graphite, and carbon nanotubes or other semiconductor electrodes can be used as long as they have conductivity and corrosion resistance.
- the surface of the metal electrode 104 may be roughened, or may be provided with at least one of a meandering groove, an orthogonal groove, a linear groove and a hole.
- the base portion 104a of the metal electrode 104 is in contact with the external electrode 105, and is fixed to the main body 101 together with the external electrode 105 from the back surface side of the main body 101 by the screw 106.
- the base 104a of the metal electrode 104 is provided with an O-ring 104b and is sealed.
- the external electrode 105 is an electrode extending from the back surface of the main body 101 to the side surface.
- the external electrode 105 is connected to a DC power source.
- a joint 107 connected to the water supply pipe 3 is provided on a side surface of the main body 101 different from the surface on which the external electrode 105 is provided. Water supplied via the joint 107 flows into the recess 103 through the fluid passage 108 and the opening 109.
- a joint 110 is provided on the side surface opposite to the joint 107. Oxygen (and water) generated at the anode during water electrolysis is discharged from the joint 110 to the oxygen extraction pipe 4 through the opening 112 and the fluid passage 111. In this way, the space of the recess 103 communicates with the outside through the opening 109, the fluid passage 108, the joint 107, the opening 112, the fluid passage 111, and the joint 110.
- the diameters of the water passage 108 and the opening 109 for supplying water are set smaller than the diameters of the fluid passage 111 and the opening 112 for discharging water and oxygen.
- the smaller the diameter of the fluid passage the faster the flow velocity of the fluid, so that the oxygen generated during the electrolysis of water can flow more reliably toward the opening 112.
- the main body 201 of the cathode unit 20 is made of acrylic resin, for example, and has a square plate shape.
- the material of the main body 201 is not particularly limited, and may be an insulating material other than acrylic resin, a conductive material, or an insulating material sandwiched between the conductive material and another conductive member.
- the shape of the main body 201 is not limited to a square, and may be any shape.
- On the surface of the main body 201 a circular fitting protrusion 202 that fits into the fitting recess 102 of the anode unit 10 is provided.
- a square concave portion 203 (second concave portion) is provided on the upper surface 202a of the fitting convex portion 202.
- the fitting convex portion 202 may have a shape other than a circular shape as long as it is a shape corresponding to the fitting concave portion 102.
- the recess 203 is provided with a metal electrode 204 for supplying electric power to the MEA 30.
- the material of the metal electrode 204 is not particularly limited as long as it has conductivity and corrosion resistance, and for example, titanium, nickel, SUS (stainless steel) or the like can be used.
- the electrodes are not necessarily made of metal, and carbon (graphite) electrodes such as graphene, graphite, and carbon nanotubes or other semiconductor electrodes can be used as long as they have conductivity and corrosion resistance.
- the surface of the metal electrode 204 may be roughened, or at least one of a meandering groove, an orthogonal groove, a linear groove and a hole may be provided.
- the base portion 204a of the metal electrode 204 is in contact with the external electrode 205, and is fixed to the main body 201 by screws 206 together with the external electrode 205 from the back surface side of the main body 201.
- the base 204a of the metal electrode 204 is provided with an O-ring 204b and is sealed.
- the external electrode 205 is an electrode extending from the back surface of the main body 201 to the side surface.
- the external electrode 205 is connected to a DC power source.
- a joint 207 for taking out hydrogen generated during water electrolysis is provided on a side surface of the main body 201 different from the surface on which the external electrode 205 is provided. Hydrogen is discharged from the joint 207 to the outside through the opening 209 and the fluid passage 208. As described above, the space of the recess 203 communicates with the outside through the opening 209, the fluid passage 208, and the joint 207. It should be noted that, together with hydrogen, a part of water is discharged to the outside through the ion exchange membrane between the MEAs 30 and the openings 209, the fluid passages 208, and the joints 207.
- a groove or a roughened surface may be formed on either or both of the surfaces of the metal electrode 104 of the anode unit 10 and the metal electrode 204 of the cathode unit.
- the grooves can be, for example, meandering grooves, orthogonal grooves, or stripe-shaped grooves.
- the roughening may be performed by sandblasting, for example.
- both electrodes may be processed the same or differently.
- the MEA 30 has a structure in which an electrolyte layer (electrolyte membrane) is sandwiched by catalyst-supporting electrodes.
- the electrolyte layer is ion-permeable, and is specifically composed of an ion exchange membrane.
- a known ion exchange membrane used in water electrolysis may be used.
- Specific examples of the ion exchange membrane include solid polymer electrolyte membranes such as perfluorocarbon resins having an ion exchange group introduced therein.
- the catalyst-supporting electrode is an electrode containing a water electrolysis catalyst on at least the surface portion on the side that contacts the electrolyte layer. Any known electrolysis catalyst may be used, and examples thereof include platinum, ruthenium, iridium, rhodium, and alloys and oxides of these metals.
- the insulating sheets 40a and 40b are made of an insulating and flexible material (for example, silicone) and have substantially the same shape as the bottom surface 102a of the fitting recess 102 and the top surface 202a of the fitting projection 202, that is, the metal electrode 104, A circular sheet having openings corresponding to 204.
- the insulating sheets 40a and 40b function as a sealing material that seals the electrolytic reaction portion (the space formed by the recess 103 and the recess 203).
- the thickness of the insulating sheets 40a and 40b is, for example, 0.1 mm to 0.3 mm. If the housing is insulative, the insulating sheets 40a and 40b may be omitted.
- the metal meshes 50a and 50b are sandwiched between the metal electrodes 104 and 204 and the catalyst supporting electrode.
- the metal meshes 50a and 50b are, for example, 20-100 mesh made of SUS.
- the metal meshes 50a and 50b may be omitted if the conductivity between the metal electrodes 104 and 204 and the catalyst supporting electrode can be secured.
- the fitting concave portion 102 of the anode unit 10 and the fitting convex portion 202 of the cathode unit 20 are fitted to each other, and the bottom surface 102a of the fitting concave portion 102 and the upper surface 202a of the fitting convex portion 202 are interposed via the insulating sheets 40a and 40b. Contact. Therefore, it is desirable that the height (T2 ') of the fitting convex portion 202 be equal to or greater than the depth (T2) of the fitting concave portion 102.
- the surfaces of the fitting concave portion 102 and the fitting convex portion 202 define the contact between the anode unit 10 and the cathode unit 20 and the positions of the metal electrode 104 and the metal electrode 204.
- the pressing pressure of the MEA 30 can be made constant, and contact unevenness can be suppressed.
- the thickness of the surface of the metal electrodes 104 and 204 is smaller than the depth of the recesses 103 and 203. Therefore, in the assembled state of the anode unit 10 and the cathode unit 20, there is a space T1 between the surfaces of the metal electrode 104 and the metal electrode 204.
- This interval T1 is set to be smaller than the total thickness of the catalyst-supporting electrode of the MEA 30 and the metal meshes 50a and 50b (the thickness here is that when there is no load). Therefore, the metal electrodes 104 and 204 come into contact with the catalyst supporting electrode of the MEA 30 at a uniform pressure during assembly.
- the thickness of the surface portions of the metal electrodes 104 and 204 is 2 mm
- the depths of the recesses 103 and 203 are 2.4 mm
- the thickness of the catalyst supporting electrode of the MEA 30 (when no load is applied) is 0.8.
- the thickness of each metal mesh 50a, 50b is 0.1 mm.
- the distance T3 between the bottom surface 102a of the fitting recess 102 and the top surface 202a of the fitting projection 202 during assembly is equal to the thickness of the insulating sheets 40a and 40b. When the insulating sheets 40a and 40b are omitted, the interval T3 is zero.
- the height (T2 ′) of the fitting convex portion 202 is equal to or greater than the depth (T2) of the fitting concave portion 102, so that the upper end portion of the fitting concave portion 102 and the fitting convex portion 202 at the time of assembly.
- the interval T4 between the lower end portions satisfies the relationship of T4 ⁇ T3 ( ⁇ 0).
- the external electrode 105 of the anode unit 10 and the external electrode 205 of the cathode unit 20 are assembled so as to be located on the same side surface. Then, the joints 107, 110, 207 are located on the side surfaces in the direction different from that of the external electrodes 105, 205. Therefore, it becomes easy to connect wiring and piping.
- the anode unit 10 and the cathode unit 20 do not necessarily have to be assembled in such an orientation, and may be assembled in any orientation as needed.
- the water electrolysis cell 2 having the above-described configuration was prepared and the water electrolysis performance was evaluated. The result is shown in FIG.
- the evaluation was performed for each of the case where the electrodes 104 and 204 were not surface-treated, the case where the electrodes were roughened, and the case where the cross groove was provided.
- the roughening is performed by sandblasting with a count of 100.
- the cross groove has a groove width of 2 mm, a groove depth of 0.2 mm, and a groove interval of 4 mm.
- a 5-layer MEA of PtC / IrOx is used, and the same MEA is used for each evaluation.
- FIG. 8 a graph 81 shows voltage-current characteristics in the case of no processing, a graph 82 shows rough surface processing, and a graph 83 shows voltage-current characteristics in the case of a cross groove. Further, FIG. 8 also shows a state in which water droplets are dropped on each electrode.
- FIG. 9 shows the evaluation results when the first and second unprocessed electrodes were used.
- the graph 81 is the first measurement
- the graph 84 is the second measurement.
- a large increase in current is not observed in the second measurement, and it can be seen that the influence of the measurement order is small. That is, it can be seen that the increase in current shown in FIG. 8 is due to the surface processing of the electrode.
- the fitting recess 102 of the anode unit 10 and the fitting protrusion 202 of the cathode unit 20 define a spigot structure for contacting these units. Therefore, the holding pressure between the metal electrodes 104 and 204 and the catalyst supporting electrode and the holding pressure between the catalyst supporting electrode and the electrolyte layer can be made constant. By suppressing uneven contact, power concentration (high voltage application) can be avoided, and effects such as efficient hydrogen generation and suppression of electrode deterioration can be obtained.
- the spigot structure is adopted, for example, by mounting the MEA 30, the insulating sheets 40a, 40b, etc., with the surface of the anode unit 10 facing upward, and by further fitting the cathode unit 20.
- the water electrolysis cell 2 is assembled.
- the water electrolysis cell 2 according to the present embodiment has an advantage that it is easy to assemble.
- the diameter of the fluid passage 108 for supplying water and the diameter of the opening 109 are smaller than the diameter of the fluid passage 111 for discharging oxygen and water and the diameter of the opening 112. (And oxygen) flow rate faster. Therefore, the oxygen generated by the water electrolysis is more reliably discharged, and it is possible to suppress the oxygen from remaining on the electrodes.
- the water electrolysis cell stack 1 in which the water electrolysis cells 2 according to the present embodiment are stacked has the following advantages. First, since the individual water electrolysis cells 2 are independent, the operation can be monitored individually and the failed or deteriorated cell can be specified. Also, the cells can be replaced in units of cells. Secondly, since the water electrolysis cells 2 are independent, it is not necessary to stack the water electrolysis cells 2 and the stack shape can be freely changed according to the usage of the water electrolysis cell stack 1.
- the anode unit 10 is provided with the fitting concave portion 102 and the cathode unit 20 is provided with the fitting convex portion 202.
- the anode unit 10 is provided with the fitting convex portion.
- a fitting recess may be provided in the cathode unit 20. The same effect can be obtained with such a configuration.
- the shape of the water electrolysis cell 2 is a quadrangle, but it may be a round shape or another polygonal shape, and its shape is not particularly limited.
- the above embodiment is a water electrolysis cell (stack), but the fuel cell (stack) may have a similar structure. That is, the present invention is applicable to both a water electrolysis cell (stack) and a fuel cell (stack).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
第1電極を含む第1ユニットと、第2電極を含む第2ユニットと、電解質膜および触媒担持電極とを含み、前記第1電極と前記第2電極の間に前記電解質膜および前記触媒担持電極が挟まれた電気化学セルであって、前記第1ユニットは、嵌合凹部と、前記嵌合凹部の底面に設けられた第1凹部とを含み、前記第1電極は前記第1凹部に設けられており、前記第2ユニットは、前記嵌合凹部と嵌合する嵌合凸部と、前記嵌合凸部の上面に設けられた第2凹部とを含み、前記第2電極は前記第2に凹部に設けられており、前記嵌合凹部と前記嵌合凸部が嵌合されている、ことを特徴とする。
Description
本発明は、電気化学セルおよびセルスタックに関する。
再生可能エネルギーを水素燃料として貯蔵する水素貯蔵システムの需要がますます高まっている。水素貯蔵システムは、余剰電力を用いて水電解セルで水の電気分解を行って水素の形でエネルギーを貯蔵し、電力不足時には貯蔵水素を燃料電池セルで発電して不足電力を補う。
電気化学セル(水電解セルおよび燃料電池セル)には、効率的かつ安定な水素分解および発電が求められる。しかしながら、特に水電解セルでは、金属電極と触媒担持電極あるいは触媒担持電極と固体電解質に接触ムラがあると、電力集中(高電圧印加)につながり電極が劣化してしまう。
従来の電気化学セルでは、アノードユニットとカソードユニットの締め付けは4~6箇所程度のネジ締めによって行われている。ネジ締めによって抑え付け圧を均一化することは容易ではなく、上述したような電極劣化が生じてしまう。
上述したような従来技術の課題を考慮し、本発明は、効率的かつ安定な反応が可能な電気化学セルおよびセルスタックを提供することを目的とする。
上記課題を解決するために、本発明に係る電気化学セルは以下の構成を有する。すなわち、本発明の一態様は、第1電極を含む第1ユニットと、第2電極を含む第2ユニットと、触媒担持電極と、電解質膜とを含み、前記第1電極と前記第2電極の間に前記触媒担持電極および前記電解質膜が挟まれた電気化学セルである。本態様において、前記第1ユニットは、嵌合凹部と、前記嵌合凹部の底面に設けられた第1凹部とを含み、前記第1電極は前記第1凹部に設けられており、前記第2ユニットは、前記嵌合凹部と嵌合する嵌合凸部と、前記嵌合凸部の上面に設けられた第2凹部とを含み、前記第2電極は前記第2に凹部に設けられており、前記嵌合凹部と前記嵌合凸部が嵌合されている。
このようにインロー構造を採用することで、電極と前記電解質膜および前記触媒担持電極の接触ムラを抑制できる。これにより、本態様に係る電気化学セルは、効率的かつ安定な反応を実現できる。また、インロー構造を採用しているので、組み立てが容易であるという利点もある。
本態様において、前記嵌合凹部の底面と前記嵌合凸部の上面は、直接または絶縁シートを介して接触していてもよい。これのように、嵌合凹部の底面と嵌合凸部の上面の接触により、第1電極・電解質膜および前記触媒担持電極・第2電極の接触が規定されるので、接触ムラを抑制できる。
本態様において、前記第1電極の表面と前記第2電極の表面の間隔は、無荷重状態の前記電解質膜および前記触媒担持電極の厚さよりも、小さいことが好ましい。電解質膜および触媒担持電極は第1電極および第2電極により挟まれて第1電極および第2電極と均一に接触する。
本態様において、前記第1ユニットおよび前記第2ユニットのいずれかには、前記電解質膜および前記触媒担持電極と外部とを連通する2つの流体通路が設けられており、一方の流体通路が、他方の流体通路よりも径が大きくてもよい。例えば、水および酸素を排出する流体通路が、水を供給する流体通路よりも径が大きいことが好ましい。流体通路の径が大きいほど流速は遅くなるので、発生した酸素ガスをより確実に排出することができる。
本態様において、前記第1電極と前記第2電極の表面には、溝または穴が設けられていてもよい。この溝は、例えば、蛇行した溝、直線の溝、直交した溝、もしくはこれらの組み合わせとすることができる。これにより、水やガスの効率的な供給および排出が可能となる。
本態様において、前記第1電極と前記第2電極の表面には、粗面加工が施されていてもよい。粗面加工により電極と触媒担持電極の接触面積が増加するので、抵抗を下げることができる。
本態様において、前記第1ユニットは、前記第1電極と電気的に接続し、前記嵌合凹部が設けられた面と反対側の面から側面まで延びる第1外部電極を有し、前記第2ユニットは、前記第2電極と電気的に接続し、前記嵌合凸部が設けられた面と反対側の面から側面まで延びる第2外部電極を有してもよい。このように外部電極がユニットの側面まで延びていることで、電源供給のための配線が容易となる。
本態様において、前記第1ユニットおよび前記第2ユニットは、流体を供給または排出するための流体通路を側面に有しており、前記第1外部電極および前記第2外部電極は、前記流体通路が設けられた側面とは異なる側面に設けられていてもよい。このように流体通路と外部電極が異なる側面に設けられることで、配線や配管が容易となる。
本発明の第2の態様は、上記態様の電気化学セルを複数有し、複数の電気化学セルが電気的に直列または並列に接続されているセルスタックである。
本態様に係るセルスタックは、単セルの集合体であるため、故障や劣化したセルの特定が容易であるとともに、故障や劣化したセルのみを交換することも可能である。また、独立した単セルの集合体であるためスタックの形状を自由に決定でき、使用状況に応じた適切な形状のセルスタックを提供可能である。
また、水を供給する配給管から分岐して電気化学セルに水を供給することにより、流量や発電量を一定にすることもできる。
本発明によれば、効率的かつ安定な反応が可能な電気化学セルおよびセルスタックを提供可能である。
以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲をそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。
(全体構成)
本実施形態は、電力を使用して水を電気分解する水電解セルスタックである。本実施形態では、例えば、太陽光・風力・水力・地熱等の再生可能エネルギーに基づく電力を使用して水を電気分解することを想定している。しかしながら、本実施形態は、化石燃料や原子力等に基づく電力を使用してもよい。
本実施形態は、電力を使用して水を電気分解する水電解セルスタックである。本実施形態では、例えば、太陽光・風力・水力・地熱等の再生可能エネルギーに基づく電力を使用して水を電気分解することを想定している。しかしながら、本実施形態は、化石燃料や原子力等に基づく電力を使用してもよい。
図1は、本実施形態に係る水電解セルスタック1(以下、単にスタック1ともいう)の構成説明図である。スタック1は、複数の水電解セル2(単セル)が積層された集合体である。ただし、後述するように個々の水電解セル2は独立した構造を有するので、スタック1は必ずしも水電解セル2を積層する必要はなく、スタック形状は自由に決定できる。また、図1では3個の水電解セル2を含むセルスタック1を示しているが、水電解セル2の数は任意であってよい。
水電解セル2は、アノードユニット10とカソードユニッド20を含んで構成される。アノードユニット10とカソードユニット20には直流電源(不図示)から電力が供給され、アノードユニット10の電極が陽極(酸素発生極)、カソードユニット20の電極が陰極(水素発生極)に設定される。
それぞれの水電解セル2のアノードユニット10には共通の供給管3から分岐した多岐管により水が供給され、陽極で発生した酸素は水とともに酸素取出管4から取り出される。また、カソードユニットの陰極で発生した水素は水素取出管5から取り出されて、水素貯蔵部(不図示)に導かれる。
水電解セル2の構造についてより詳細に説明する。図2Aは水電解セル2の分解図であり、図2Bは水電解セル2の組立図である。図3Aはアノードユニット10の表面(組み立て時の内側)の斜視図であり、図3Bはアノードユニット10の裏面(組み立て時の外側)の斜視図である。図4A~4Cはアノードユニット10の側面図、正面図、断面図である。図5Aはカソードユニット20の表面(組み立て時の内側)の斜視図であり、図5Bはカソードユニット20の裏面(組み立て時の外側)の斜視図である。図6A~6Cはカソードユニット20の側面図、正面図、断面図である。
図2A,2Bに示すように、水電解セル2は、アノードユニット10とカソードユニット20の間に、絶縁シート40a、金属メッシュ50a、膜電極構造体(MEA)30、金属メッシュ50b、絶縁シート40bが挟まれた構造を有する。アノードユニット10とカソードユニット20は、ボルト63とナット61,62により固定される。
(アノードユニット)
アノードユニット10の本体101は、例えば、アクリル樹脂製であり、正方形板状である。本体101の材料は特に限定されず、アクリル樹脂以外の絶縁材料であってもよく、導電性材料であっても他の導電性部材との間に絶縁材を挟めばよい。また、本体101の形状は正方形に限定されず、任意の形状であって構わない。本体101の表面には、円形状の嵌合凹部102が設けられ、嵌合凹部102の底面102aにはさらに、正方形状の凹部103(第1凹部)が設けられている。なお、嵌合凹部102の形状は嵌合凸部202と対応した形状であれば、円形状以外であってもよい。
アノードユニット10の本体101は、例えば、アクリル樹脂製であり、正方形板状である。本体101の材料は特に限定されず、アクリル樹脂以外の絶縁材料であってもよく、導電性材料であっても他の導電性部材との間に絶縁材を挟めばよい。また、本体101の形状は正方形に限定されず、任意の形状であって構わない。本体101の表面には、円形状の嵌合凹部102が設けられ、嵌合凹部102の底面102aにはさらに、正方形状の凹部103(第1凹部)が設けられている。なお、嵌合凹部102の形状は嵌合凸部202と対応した形状であれば、円形状以外であってもよい。
凹部103には、MEA30に電力を供給するための金属電極104が設けられている。金属電極104の材料は、導電性や耐腐食性を有すれば特に制限はなく、例えば、チタン、ニッケル、SUS(ステンレス鋼)等を使用できる。なお、電極は必ずしも金属製である必要はなく、導電性および耐腐食性があれば、グラフェン、グラファイト、カーボンナノチューブなどのカーボン(黒鉛)電極あるいはその他の半導体電極を採用することもできる。金属電極104の表面には粗面加工が施されたり、蛇行した溝や直交した溝や直線の溝や穴などの少なくともいずれかが設けられたりしてもよい。金属電極104の基部104aは、外部電極105と接触しており、本体101の裏面側から外部電極105とともにネジ106によって本体101に固定されている。金属電極104の基部104aには、Oリング104bが設けられてシーリングが施されている。外部電極105は、本体101の裏面から側面に延びる電極である。外部電極105は直流電源に接続される。
本体101の側面のうち、外部電極105が設けられる面とは異なる側面に、水の供給管3と接続する継ぎ手107が設けられる。継ぎ手107を介して供給される水は、流体通路108および開口109を通って凹部103に流入する。また、継ぎ手107と反対側の側面には継ぎ手110が設けられる。水電解の際に陽極で発生した酸素(および水)は、開口112および流体通路111を介して、継ぎ手110から酸素取出管4に排出される。このように凹部103の空間は、開口109・流体通路108・継ぎ手107と開口112・流体通路111・継ぎ手110を介して外部に連通する。
ここで、水供給用の流体通路108および開口109の径は、水および酸素排出用の流体通路111および開口112の径よりも小さく設定される。流体通路の径が小さいほど流体の流速が早くなるので、水電解の際に発生した酸素がより確実に、開口112の方に流れるようにできる。
(カソードユニット)
カソードユニット20の本体201は、例えば、アクリル樹脂製であり、正方形板状である。本体201の材料は特に限定されず、アクリル樹脂以外の絶縁材料であってもよく、導電性材料であっても他の導電性部材との間に絶縁材を挟めばよい。また、本体201の形状は正方形に限定されず、任意の形状であって構わない。本体201の表面には、アノードユニット10の嵌合凹部102と嵌合する円形状の嵌合凸部202が設けられる。嵌合凸部202の上面202aには、正方形状の凹部203(第2凹部)が設けられている。なお、嵌合凸部202の形状は嵌合凹部102と対応した形状であれば、円形状以外であってもよい。
カソードユニット20の本体201は、例えば、アクリル樹脂製であり、正方形板状である。本体201の材料は特に限定されず、アクリル樹脂以外の絶縁材料であってもよく、導電性材料であっても他の導電性部材との間に絶縁材を挟めばよい。また、本体201の形状は正方形に限定されず、任意の形状であって構わない。本体201の表面には、アノードユニット10の嵌合凹部102と嵌合する円形状の嵌合凸部202が設けられる。嵌合凸部202の上面202aには、正方形状の凹部203(第2凹部)が設けられている。なお、嵌合凸部202の形状は嵌合凹部102と対応した形状であれば、円形状以外であってもよい。
凹部203には、MEA30に電力を供給するための金属電極204が設けられている。金属電極204の材料は、導電性や耐腐食性を有すれば特に制限はなく、例えば、チタン、ニッケル、SUS(ステンレス鋼)等を使用できる。なお、電極は必ずしも金属製である必要はなく、導電性および耐腐食性があれば、グラフェン、グラファイト、カーボンナノチューブなどのカーボン(黒鉛)電極あるいはその他の半導体電極を採用することもできる。金属電極204の表面には粗面加工が施されたり、蛇行した溝や直交した溝や直線の溝や穴などの少なくともいずれかが設けられたりしてもよい。金属電極204の基部204aは、外部電極205と接触しており、本体201の裏面側から外部電極205とともにネジ206によって本体201に固定されている。金属電極204の基部204aには、Oリング204bが設けられてシーリングが施されている。外部電極205は、本体201の裏面から側面に延びる電極である。外部電極205は直流電源に接続される。
本体201の側面のうち、外部電極205が設けられる面とは異なる側面に、水電解の際に発生する水素を取り出すための継ぎ手207が設けられる。水素は、開口209および流体通路208を介して、継ぎ手207から外部に排出される。このように凹部203の空間は、開口209・流体通路208・継ぎ手207を介して外部に連通する。なお、水素とともに水の一部も、MEA30の間のイオン交換膜を通って、開口209・流体通路208・継ぎ手207を介して外部に排出される。
(電極の表面加工)
アノードユニット10の金属電極104およびカソードユニットの金属電極204の表面のいずれか一方または両方に、溝を設けたり粗面(砂面)加工を施したりしてもよい。溝は、例えば、蛇行した溝、直交した溝、ストライプ状の溝とすることができる。粗面加工は、例えば、サンドブラスト加工により設ければよい。金属電極104と金属電極204の両方に加工を施す場合、両方の電極に同じ加工を施してもよいし、異なる加工を施してもよい。金属電極104,204に表面加工を施すことで、電極にて発生した気体を効率的に排出することができ、電極での反応を阻害しない。これにより、セルの水電解性能が向上する。
アノードユニット10の金属電極104およびカソードユニットの金属電極204の表面のいずれか一方または両方に、溝を設けたり粗面(砂面)加工を施したりしてもよい。溝は、例えば、蛇行した溝、直交した溝、ストライプ状の溝とすることができる。粗面加工は、例えば、サンドブラスト加工により設ければよい。金属電極104と金属電極204の両方に加工を施す場合、両方の電極に同じ加工を施してもよいし、異なる加工を施してもよい。金属電極104,204に表面加工を施すことで、電極にて発生した気体を効率的に排出することができ、電極での反応を阻害しない。これにより、セルの水電解性能が向上する。
(MEA:膜電極構造体)
MEA30は、電解質層(電解質膜)を触媒担持電極で挟んだ構造を有する。電解質層は、イオン透過性であり、具体的にはイオン交換膜で構成される。本実施形態では、水電解で使用される公知のイオン交換膜を使用すればよい。イオン交換膜の具体例として、例えば、イオン交換基を導入したパーフルオロカーボン樹脂等の固体高分子電解質膜が挙げられる。触媒担持電極は、電解質層と接触する側の少なくとも表面部に水電解触媒を含む電極である。水電解触媒は任意の公知のものを使用すればよく、その一例として、白金、ルテニウム、イリジウム、ロジウム、およびこれら金属の合金や酸化物等が挙げられる。
MEA30は、電解質層(電解質膜)を触媒担持電極で挟んだ構造を有する。電解質層は、イオン透過性であり、具体的にはイオン交換膜で構成される。本実施形態では、水電解で使用される公知のイオン交換膜を使用すればよい。イオン交換膜の具体例として、例えば、イオン交換基を導入したパーフルオロカーボン樹脂等の固体高分子電解質膜が挙げられる。触媒担持電極は、電解質層と接触する側の少なくとも表面部に水電解触媒を含む電極である。水電解触媒は任意の公知のものを使用すればよく、その一例として、白金、ルテニウム、イリジウム、ロジウム、およびこれら金属の合金や酸化物等が挙げられる。
(絶縁シート)
絶縁シート40a,40bは絶縁性および柔軟性がある材料(たとえば、シリコーン)であり、それぞれ嵌合凹部102の底面102aおよび嵌合凸部202の上面202aと略同一の形状、すなわち金属電極104,204に対応する開口を有する円形状のシートである。絶縁シート40a,40bは、電解反応部(凹部103と凹部203によって形成される空間)をシールするシール材として機能する。絶縁シート40a、40bの厚さは例えば、0.1mm~0.3mmである。なお、筐体が絶縁性の場合、絶縁シート40a,40bは省略してもよい。
絶縁シート40a,40bは絶縁性および柔軟性がある材料(たとえば、シリコーン)であり、それぞれ嵌合凹部102の底面102aおよび嵌合凸部202の上面202aと略同一の形状、すなわち金属電極104,204に対応する開口を有する円形状のシートである。絶縁シート40a,40bは、電解反応部(凹部103と凹部203によって形成される空間)をシールするシール材として機能する。絶縁シート40a、40bの厚さは例えば、0.1mm~0.3mmである。なお、筐体が絶縁性の場合、絶縁シート40a,40bは省略してもよい。
(金属メッシュ)
金属メッシュ50a,50bは、金属電極104,204と触媒担持電極に挟まれる。金属メッシュ50a,50bは、例えば、SUS製の20~100メッシュである。金属電極104,204と触媒担持電極の間の導電性が確保できる場合は、金属メッシュ50a,50bは省略してもよい。
金属メッシュ50a,50bは、金属電極104,204と触媒担持電極に挟まれる。金属メッシュ50a,50bは、例えば、SUS製の20~100メッシュである。金属電極104,204と触媒担持電極の間の導電性が確保できる場合は、金属メッシュ50a,50bは省略してもよい。
(アノードユニットとカソードユニットの嵌合)
次に、図7を参照して、アノードユニット10とカソードユニット20の嵌合、および金属電極104と金属電極204によるMEA30の挟持について説明する。
次に、図7を参照して、アノードユニット10とカソードユニット20の嵌合、および金属電極104と金属電極204によるMEA30の挟持について説明する。
アノードユニット10の嵌合凹部102とカソードユニット20の嵌合凸部202は嵌合して、嵌合凹部102の底面102aと嵌合凸部202の上面202aは、絶縁シート40a,40bを介して接触する。そのため、嵌合凸部202の高さ(T2’)は嵌合凹部102の深さ(T2)以上であることが望ましい。このように、嵌合凹部102と嵌合凸部202の面によりアノードユニット10とカソードユニット20の接触、さらには金属電極104と金属電極204の位置が規定されるため、金属電極104,204とMEA30の抑え付け圧を一定にでき、接触ムラを抑制できる。
金属電極104,204の表面部の厚さは、凹部103,203の深さよりも小さい。したがって、アノードユニット10とカソードユニット20を組み立てた状態で、金属電極104と金属電極204の表面には間隔T1がある。この間隔T1は、MEA30の触媒担持電極と金属メッシュ50a,50bの厚さの合計(ここでの厚さは無荷重時のもの)よりも小さくなるようにする。したがって、組み立て時にMEA30の触媒担持電極に対して金属電極104,204が均一な圧力で接触する。本実施形態において、例えば、金属電極104,204の表面部の厚さが2mm、凹部103,203の深さが2.4mm、MEA30の触媒担持電極の厚さ(無荷重時)が0.8~1.0mm、金属メッシュ50a,50bの厚さが各々0.1mmである。
組み立て時における嵌合凹部102の底面102aと嵌合凸部202の上面202aの間の間隔T3は、絶縁シート40a,40bの厚さと等しい。絶縁シート40a,40bを省略する場合には、間隔T3はゼロである。本実施形態では、嵌合凸部202の高さ(T2’)は嵌合凹部102の深さ(T2)以上であるため、組み立て時における嵌合凹部102の上端部と嵌合凸部202の下端部の間の間隔T4は、T4≧T3(≧0)という関係を満たす。
本実施形態において、アノードユニット10の外部電極105とカソードユニット20の外部電極205は、同じ向きの側面に位置するように組み立てられる。そして、継ぎ手107,110,207は、外部電極105,205とは異なる向きの側面に位置する。したがって、配線や配管の接続が容易となる。なお、アノードユニット10とカソードユニット20は、必ずしもこのような向きに組み立てられる必要はなく、必要に応じて任意の向きに組み立てられてもよい。
(性能評価)
上述した構成の水電解セル2を作成して水電解性能の評価を行った。その結果を図8に示す。ここでは、電極104,204に表面加工をしない場合、粗面加工を施した場合、十字溝を設けた場合のそれぞれについて評価を行った。粗面加工は、番手100のサンドブラストにより設けている。また、十字溝は、溝の幅2mm、溝の深さ0.2mm、溝の間隔4mmとしている。この評価ではPtC/IrOxの5層のMEAを利用しており、それぞれの評価には同じMEAを使用している。
上述した構成の水電解セル2を作成して水電解性能の評価を行った。その結果を図8に示す。ここでは、電極104,204に表面加工をしない場合、粗面加工を施した場合、十字溝を設けた場合のそれぞれについて評価を行った。粗面加工は、番手100のサンドブラストにより設けている。また、十字溝は、溝の幅2mm、溝の深さ0.2mm、溝の間隔4mmとしている。この評価ではPtC/IrOxの5層のMEAを利用しており、それぞれの評価には同じMEAを使用している。
図8のうち、グラフ81は加工無しの場合、グラフ82は粗面加工の場合、グラフ83は十字溝の場合の電圧電流特性を示す。また、図8には、それぞれの電極に水滴を垂らしたときの様子も示している。
図に示すように、電極表面に加工を施さない場合も十分に大きな電流が得られているが、粗面加工や十字溝を設けることで、大きな電流増加が達成できている。このように、電極表面の親水・疎水などが水電解性能に影響することが分かる。
なお、図8の実験は同じMEAを用いて、加工無し、粗面加工、十字溝の順番で測定を行っている。ここで、実験の順序による影響を考慮して、最後に再度加工無しの場合の測定を行った。図9は、1回目と2回目の加工無しの電極を用いた場合の評価結果を示す。グラフ81が1回目の測定であり、グラフ84が2回目の測定である。このように、2回目の測定においてそれほど大きな電流増加は見られず、測定順序による影響は少ないことが分かる。すなわち、図8に示す電流増加は、電極の表面加工によるものであることが分かる。
(本実施形態の有利な効果)
本実施形態に係る水電解セル2は、アノードユニット10の嵌合凹部102とカソードユニット20の嵌合凸部202によるインロー構造により、これらのユニットの接触を規定している。したがって、金属電極104,204と触媒担持電極の間の抑え付け圧や、触媒担持電極と電解質層の間の抑え付け圧を一定とすることができる。接触ムラを抑制することで電力集中(高電圧印加)を回避でき、効率的な水素発生や電極の劣化抑制といった効果が得られる。
本実施形態に係る水電解セル2は、アノードユニット10の嵌合凹部102とカソードユニット20の嵌合凸部202によるインロー構造により、これらのユニットの接触を規定している。したがって、金属電極104,204と触媒担持電極の間の抑え付け圧や、触媒担持電極と電解質層の間の抑え付け圧を一定とすることができる。接触ムラを抑制することで電力集中(高電圧印加)を回避でき、効率的な水素発生や電極の劣化抑制といった効果が得られる。
また、インロー構造を採用しているので、例えば、アノードユニット10の表面側を上にして載置した状態で、MEA30や絶縁シート40a,40b等を載せ、さらにカソードユニット20を嵌合させることにより、水電解セル2が組み立てられる。このように、本実施形態に係る水電解セル2は組み立てが容易であるという利点がある。
また、アノードユニット10において、水を供給する流体通路108や開口109の径が、酸素および水を排出する流体通路111や開口112の径よりも小さいため、流入する水の流速が、流出する水(および酸素)の流速よりも早くなる。したがって、水電解によって発生した酸素がより確実に排出され、電極に酸素が残留することを抑制できる。
また、本実施形態に係る水電解セル2をスタックした水電解セルスタック1には次のような利点がある。第1に、個々の水電解セル2が独立しているので、個別に動作をモニタリングでき、故障や劣化したセルを特定ができる。また、セル単位で交換することもできる。第2に、水電解セル2が独立しているので、水電解セル2を必ずしも積層させる必要はなく、水電解セルスタック1の利用用途にあわせてスタック形状を自由に変えることができる。
(変形例)
上記の実施形態では、アノードユニット10に嵌合凹部102が設けられカソードユニット20に嵌合凸部202が設けられているが、これとは逆に、アノードユニット10に嵌合凸部が設けられ、カソードユニット20に嵌合凹部が設けられてもよい。このような構成でも同様の効果が得られる。
上記の実施形態では、アノードユニット10に嵌合凹部102が設けられカソードユニット20に嵌合凸部202が設けられているが、これとは逆に、アノードユニット10に嵌合凸部が設けられ、カソードユニット20に嵌合凹部が設けられてもよい。このような構成でも同様の効果が得られる。
水電解セル2の形状は四角形であるが、これは丸形やその他の多角形形状であってもよく、その形状は特に限定されない。
上記の実施形態は水電解セル(スタック)であるが、燃料電池セル(スタック)を同様の構造としてもよい。すなわち、本発明は、水電解セル(スタック)と燃料電池セル(スタック)のどちらにも適用可能である。
1:水電解セルスタック 2:水電解セル
3:水供給管 4:酸素取出管 5:水素取出管
10:アノードユニット 20:カソードユニット
101:アノードユニット本体 102:嵌合凹部 103:凹部
104:金属電極 105:外部電極 106:ネジ
107:継ぎ手 108:流体通路 109:開口
110:継ぎ手 111:流体通路 112:開口
201:カソードユニット本体 202:嵌合凸部 203:凹部
204:金属電極 205:外部電極 206:ネジ
207:継ぎ手 208:流体通路 209:開口
3:水供給管 4:酸素取出管 5:水素取出管
10:アノードユニット 20:カソードユニット
101:アノードユニット本体 102:嵌合凹部 103:凹部
104:金属電極 105:外部電極 106:ネジ
107:継ぎ手 108:流体通路 109:開口
110:継ぎ手 111:流体通路 112:開口
201:カソードユニット本体 202:嵌合凸部 203:凹部
204:金属電極 205:外部電極 206:ネジ
207:継ぎ手 208:流体通路 209:開口
Claims (10)
- 第1電極を含む第1ユニットと、第2電極を含む第2ユニットと、電解質膜および触媒担持電極とを含み、前記第1電極と前記第2電極の間に前記電解質膜および前記触媒担持電極が挟まれた電気化学セルであって、
前記第1ユニットは、嵌合凹部と、前記嵌合凹部の底面に設けられた第1凹部とを含み、前記第1電極は前記第1凹部に設けられており、
前記第2ユニットは、前記嵌合凹部と嵌合する嵌合凸部と、前記嵌合凸部の上面に設けられた第2凹部とを含み、前記第2電極は前記第2に凹部に設けられており、
前記嵌合凹部と前記嵌合凸部が嵌合されている、
ことを特徴とする電気化学セル。 - 前記嵌合凹部の底面と前記嵌合凸部の上面は、直接または絶縁シートを介して接触している、
請求項1に記載の電気化学セル。 - 前記第1電極の表面と前記第2電極の表面の間隔は、無荷重状態の前記電解質膜および前記触媒担持電極の厚さよりも、小さい、
請求項1または2に記載の電気化学セル。 - 前記第1ユニットおよび前記第2ユニットのいずれかには、前記電解質膜および前記触媒担持電極と外部とを連通する2つの流体通路が設けられており、
一方の流体通路が、他方の流体通路よりも径が大きい、
請求項1から3のいずれか1項に記載の電気化学セル。 - 水および酸素を排出する流体通路が、水を供給する流体通路よりも径が大きい、
請求項4に記載の電気化学セル。 - 前記第1電極と前記第2電極の表面には、溝が設けられている、
請求項1から5のいずれか1項に記載の電気化学セル。 - 前記第1電極と前記第2電極の表面には、粗面加工が施されている、
請求項1から5のいずれか1項に記載の電気化学セル。 - 前記第1ユニットは、前記第1電極と電気的に接続し、前記嵌合凹部が設けられた面と反対側の面から側面まで延びる第1外部電極を有し、
前記第2ユニットは、前記第2電極と電気的に接続し、前記嵌合凸部が設けられた面と反対側の面から側面まで延びる第2外部電極を有する、
請求項1から7のいずれか1項に記載の電気化学セル。 - 前記第1ユニットおよび前記第2ユニットは、流体を供給または排出するための流体通路を側面に有しており、
前記第1外部電極および前記第2外部電極は、前記流体通路が設けられた側面とは異なる側面に設けられている、
請求項8に記載の電気化学セル。 - 請求項1から9のいずれか1項に記載の電気化学セルを複数有し、
複数の電気化学セルが電気的に直列または並列に接続されている、
セルスタック。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018197348 | 2018-10-19 | ||
JP2018-197348 | 2018-10-19 | ||
JP2019037417A JP7213537B2 (ja) | 2018-10-19 | 2019-03-01 | 電気化学セルおよびセルスタック |
JP2019-037417 | 2019-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020080201A1 true WO2020080201A1 (ja) | 2020-04-23 |
Family
ID=70283091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039692 WO2020080201A1 (ja) | 2018-10-19 | 2019-10-08 | 電気化学セルおよびセルスタック |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020080201A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213027A (ja) * | 1994-12-08 | 1996-08-20 | Japan Gore Tex Inc | 電気化学装置用電極とその製造方法 |
JP2013537262A (ja) * | 2010-09-13 | 2013-09-30 | イノテック エーエムディー リミティド | 酸素濃縮器および方法 |
-
2019
- 2019-10-08 WO PCT/JP2019/039692 patent/WO2020080201A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213027A (ja) * | 1994-12-08 | 1996-08-20 | Japan Gore Tex Inc | 電気化学装置用電極とその製造方法 |
JP2013537262A (ja) * | 2010-09-13 | 2013-09-30 | イノテック エーエムディー リミティド | 酸素濃縮器および方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5232271B2 (ja) | 高圧水電解装置 | |
US8691060B2 (en) | Water electrolysis apparatus | |
US9590254B2 (en) | Fuel cell stack | |
US8163431B2 (en) | Bipolar plate for fuel cell comprising a housing for measuring connector | |
US20110159395A1 (en) | Fuel cell stack | |
JP5054049B2 (ja) | 電解装置 | |
JP4852157B2 (ja) | 水電解装置 | |
JP2009503254A (ja) | 複数の圧縮可能な層を含む流動場部材を備えた電気化学セル | |
JP7213537B2 (ja) | 電気化学セルおよびセルスタック | |
JP2015032421A (ja) | 燃料電池スタック | |
JP5075328B2 (ja) | セパレータ | |
CN108140865B (zh) | 燃料电池堆 | |
WO2020080201A1 (ja) | 電気化学セルおよびセルスタック | |
KR20060095177A (ko) | 비전도성 분리판을 구비한 전기화학 단위 셀 및 이를 이용한 전기화학 셀 조립체 | |
JP5095670B2 (ja) | 電解装置 | |
JP4124914B2 (ja) | 電解槽 | |
US20090181281A1 (en) | Electrochemical cell bipolar plate | |
JP2007234315A (ja) | 燃料電池 | |
JP2011208163A (ja) | 水電解装置 | |
JP4838879B2 (ja) | 水電解装置 | |
JP2016160462A (ja) | 水電解装置 | |
KR101159306B1 (ko) | 전극구조 | |
JP2006210212A (ja) | 高分子電解質型燃料電池 | |
JP2004259457A (ja) | 水電解および燃料電池の可逆セル | |
JP6469351B2 (ja) | 燃料電池スタック |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874147 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19874147 Country of ref document: EP Kind code of ref document: A1 |