WO2020079760A1 - 端末、及び、通信方法 - Google Patents

端末、及び、通信方法 Download PDF

Info

Publication number
WO2020079760A1
WO2020079760A1 PCT/JP2018/038556 JP2018038556W WO2020079760A1 WO 2020079760 A1 WO2020079760 A1 WO 2020079760A1 JP 2018038556 W JP2018038556 W JP 2018038556W WO 2020079760 A1 WO2020079760 A1 WO 2020079760A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
granularity
base station
command
Prior art date
Application number
PCT/JP2018/038556
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
徹 内野
高橋 秀明
リフェ ワン
シャオツェン グオ
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/285,271 priority Critical patent/US20210392601A1/en
Priority to PCT/JP2018/038556 priority patent/WO2020079760A1/ja
Priority to EP18936947.3A priority patent/EP3869876A1/en
Publication of WO2020079760A1 publication Critical patent/WO2020079760A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • H04W74/0891Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access for synchronized access

Definitions

  • the present disclosure relates to a terminal and a communication method.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • a successor system of LTE is also under study for the purpose of further widening the band and speeding up from LTE.
  • LTE successor systems include, for example, LTE-Advanced (LTE-A), Future Radio Access (FRA), 5th generation mobile communication system (5G), 5Gplus (5G +), Radio Access Technology (New-RAT), New.
  • LTE-A LTE-Advanced
  • FAA Future Radio Access
  • 5G 5th generation mobile communication system
  • 5G + 5th generation mobile communication system
  • 5G + 5th generation mobile communication system
  • New-RAT Radio Access Technology
  • NR Radio
  • One of the purposes of the present disclosure is to improve synchronization accuracy.
  • a terminal controls a granularity of adjusting the communication timing according to a size of the adjustment information and a receiving unit that receives adjustment information for adjusting the communication timing based on a reference time. And a section.
  • FIG. 3 is a block diagram showing a configuration example of a base station according to an aspect of the present disclosure.
  • FIG. 20 is a block diagram illustrating a configuration example of a terminal according to an aspect of the present disclosure. It is a figure which shows an example of a structure of MAC (Media Access Control) RAR (Random Access Response) of release 15 of NR.
  • FIG. 3 is a diagram showing a first configuration example of a MAC RAR according to one aspect of the present disclosure.
  • FIG. 16 is a diagram showing a second configuration example of a MAC RAR according to one aspect of the present disclosure.
  • FIG. 16 is a diagram showing a third configuration example of a MAC RAR according to one aspect of the present disclosure. It is a figure which shows the structural example of TAC MAC CE of release 15. It is a figure showing the 1st example of composition of TAC MAC CE concerning one mode of this indication. It is a figure showing the 2nd example of composition of TAC MAC CE concerning one mode of this indication. It is a figure showing the 3rd example of composition of TAC MAC CE concerning one mode of this indication.
  • FIG. 3 is a diagram showing an example in which CC (Component Carrier) # 0 and # 1 belong to TAG (Timing Advance Group) # 0, and CCs # 2, # 3 and # 4 belong to TAG # 1.
  • CC Component Carrier
  • LCID Logical Channel ID
  • SIB System Information Block
  • SIB9 SIB9 concerning one mode of this indication.
  • DLInformationTransfer downlink information transfer
  • timeReferenceInfo composition of a parameter (timeReferenceInfo) of time reference information concerning one mode of this indication.
  • FIG. 16 is a diagram illustrating an example of a hardware configuration of a base station and a terminal according to an aspect of the present disclosure.
  • Use cases include, for example, industrial systems that include motion controllers, sensors or actuators (sometimes called Time Sensitive Networking (TSN)), live performance, smart grids, or local conference systems. is there.
  • TSN Time Sensitive Networking
  • stricter requirements than the existing system may be required with respect to synchronization accuracy between devices (eg, User Equipment (UE), terminals, nodes, or entities).
  • UE User Equipment
  • FIG. 1 is a diagram illustrating an example of a configuration of a wireless communication system according to an aspect of the present disclosure.
  • the wireless communication system has, for example, base stations (eg, also called gNB or eNB) 10a, 10b and terminals (eg, also called UE) 20a, 20b.
  • the terminal 20a wirelessly connects (wirelessly accesses) the base station 10a, for example.
  • the terminal 20b wirelessly connects (radio-accesses) the base station 10b, for example.
  • the number of base stations and terminals is not limited to two, but may be one or three or more. Further, the configurations of the base station 10 and the terminal 20 which will be described later are examples of functions related to the present embodiment.
  • the base station 10 and the terminal 20 may have a function not shown. Further, as long as it has the function of performing the operation according to the present embodiment, the function classification or the name of the functional unit is not limited.
  • the operations for establishing the synchronization between the terminal 20a and the terminal 20b include, for example, the following (operation a), (operation b), and (operation c).
  • the base station 10a and the base station 10b acquire time information indicating a reference time from a server (not shown) and synchronize with the reference time.
  • FIG. 1 shows a case where Coordinated Universal Time (UTC) is used as an example of the reference time.
  • UTC Coordinated Universal Time
  • the reference time is not limited to UTC, and may be GPS (Global Positioning System) time or local time.
  • UTC may be equated with GMT (Greenwich Mean Time).
  • the propagation path between the base station 10a and the terminal 20a and the propagation path between the base station 10b and the terminal 20b may be different from each other. Due to the difference in the propagation path between each terminal and the base station, an error may occur in the reception timing of the reference time information (in other words, propagation delay) at each terminal, and the synchronization accuracy between terminals may deteriorate. There is. Therefore, for example, the terminal 20a and the terminal 20b use the adjustment information regarding the time notified from the base station 10a and the base station 10b (for example, a timing advance (Timing Advance (TA)) command described later) to adjust the synchronization. (Or amend).
  • TA Timing Advance
  • each of the terminal 20a and the terminal 20b synchronizes with the reference time (for example, UTC).
  • the terminal 20a and the terminal 20b are synchronized with each other at the reference time, whereby the synchronization between the terminal 20a and the terminal 20b is established.
  • FIG. 2 shows an example of a synchronization adjustment process between the gNB (for example, the base station 10a or the base station 10b in FIG. 1) and the UE (for example, the terminal 20a or the terminal 20b in FIG. 1).
  • the gNB for example, the base station 10a or the base station 10b in FIG. 1
  • the UE for example, the terminal 20a or the terminal 20b in FIG. 1.
  • the gNB notifies the UE of information regarding the reference time (hereinafter referred to as time reference information) (for example, corresponding to the operation (b) in FIG. 1).
  • the time reference information includes the reference time (hereinafter, referred to as “T gNB ”) acquired by gNB . Further, the time reference information includes reference SFN information (for example, referred to as reference SFN) indicating which frame timing (for example, system frame number: System Frame Number (SFN)) the reference time T gNB is. You can be. For example, the time “T gNB ” may indicate the time at the ending boundary of the frame indicated by the reference SFN. Note that the time reference information may include other information different from T gNB and reference SFN.
  • the time reference information is notified from the gNB to the UE, for example.
  • system information for example, System Information Block (SIB)
  • SIB System Information Block
  • RRC Radio Resource Control
  • SIB9 SIB9 in the 5G (NR) system
  • SIB16 SIB16 in the LTE system
  • UE-specific RRC signaling for example, dedicated RRC signaling or unicast RRC signaling
  • the gNB notifies the UE of adjustment information (for example, TA command (TAC)) indicating an adjustment value for adjusting the communication timing based on the reference time (in other words, transmission or delivery).
  • the TA command is an adjustment value for synchronously receiving signals transmitted from a plurality of UEs having different propagation paths or different distances to the gNB in the gNB.
  • the cumulative value of the TA command is set to, for example, a value that is twice the time corresponding to the propagation path from when the signal reaches the UE to the gNB. In other words, a value of half (1/2 times) the cumulative value of the TA command represents the propagation delay time added corresponding to the propagation path between the gNB and the UE.
  • the TA command may be information indicating the time itself corresponding to the propagation delay, or information for calculating the time corresponding to the propagation delay (for example, an index or the like).
  • the TA command may be notified using RAR (Random Access Response) (or also called message 2) in random access (Random Access (RA)) processing. Also, the TA command may be notified using a MAC control element (Media Access Control Control Element (MAC CE)) in a case different from the RA processing.
  • RAR Random Access Response
  • MAC CE Media Access Control Control Element
  • the gNB generates a TA command for each UE and sends each TA command to the corresponding UE.
  • the UE calculates the timing adjustment value (TA / 2 in the example of FIG. 2) based on the value TA set in the TA command.
  • the UE can update the timing adjustment value (that is, the cumulative value of the TA command) using the notified new TA command every time the TA command is notified. . With this update, as shown in FIG. 2, the UE can follow the change in the communication environment of the UE and synchronize with the reference time notified from the gNB.
  • the pair of the base station 10a and the terminal 20a and the pair of the base station 10b and the terminal 20b shown in FIG. 1 perform the same synchronization processing as the gNB and the UE shown in FIG. 2, respectively.
  • the terminals 20a and 20b shown in FIG. 1 are synchronized with the reference time, respectively, and as a result, the terminals 20a and 20b are in a synchronized state.
  • the granularity of TA indication (TA resolution, or the minimum value that can be indicated by TA) by the legacy TA command is 16 ⁇ (64/2 ⁇ ) ⁇ T c ⁇ (520/2 ⁇ ) ns. is there.
  • is a value corresponding to SCS (SubCarrier Spacing).
  • T c is a basic time unit in NR, and is 0.509 ns, for example. Therefore, as shown in FIG.
  • “legacy” in the present embodiment may mean that it is defined in Non-Patent Documents 2 and 3. Therefore, “legacy” may be read as “conventional”, “Release 15”, or “Release 15 NR”.
  • the delay is required to be within 0.25 ⁇ s to 1 ⁇ s.
  • the total timing error exceeds 1 ⁇ s, and this requirement cannot be satisfied. That is, in the SCS “15 kHz”, the timing inaccuracy due to the granularity of the legacy TA instruction cannot be ignored. In other SCSs, the error cannot be suppressed within 0.25 ⁇ s as shown in FIG. Therefore, in order to minimize the total timing error, a TA instruction with a finer granularity is considered. Note that the application of the TA instruction with a finer granularity is not limited to the case of SCS “15 kHz”.
  • a TA instruction with a finer granularity may be applied to SCS “30 kHz” where the total timing error is close to 1 ⁇ s, or to SCS “60 kHz” and / or “130 kHz”. Good.
  • N TA (N TA + N TA, offset ) ⁇ T c before the start of the corresponding DL (Downlink) frame.
  • N TA is a TA between DL and UL (Uplink).
  • N TA, offset is a fixed offset used to calculate TA.
  • N TA T A ⁇ 16 ⁇ (64/2 ⁇ )
  • T A 0,1,2, ..., 3846, and T A is instructed to the UE by the MAC RAR.
  • FIG. 4 is a block diagram showing an example of the configuration of base station 10 (for example, base station 10a or base station 10b shown in FIG. 1) according to the present embodiment.
  • the base station 10 includes, for example, a transmission unit 101, a reception unit 102, and a control unit 103.
  • the transmitter 101 transmits a signal (DL signal) for the terminal 20 to the terminal 20.
  • the transmission unit 101 transmits the DL signal under the control of the control unit 103.
  • the DL signal includes, for example, system information including time reference information (for example, SIB9, SIB16), upper layer signaling including time reference information, RA message including TA command (for example, RAR), or MAC including TA command.
  • CE TA MAC CE may be included.
  • the receiving unit 102 receives a signal (UL signal) transmitted from the terminal 20.
  • the UL signal includes, for example, an RA preamble, a measurement report (for example, Measurement Report (MR)) indicating the measurement result of the communication quality in the terminal 20, channel quality information, a control channel signal, a data channel signal, or a reference signal. Etc. are included.
  • the channel quality information is, for example, channel quality information (CQI).
  • the control channel is, for example, Physical Uplink Control Channel (PUCCH), and the data channel is, for example, Physical Uplink Shared Channel (PUSCH).
  • the reference signal is, for example, Sounding Reference Signal (SRS).
  • the control unit 103 controls the transmission process of the transmission unit 101 and the reception process of the reception unit 102.
  • the control unit 103 controls the TA command transmission process in the transmission unit 101.
  • FIG. 5 is a block diagram showing an example of the configuration of the terminal 20 (for example, the terminal 20a or the terminal 20b shown in FIG. 1) according to the present embodiment.
  • the terminal 20 includes, for example, a reception unit 201, a transmission unit 202, and a control unit 203.
  • the receiving unit 201 receives the DL signal transmitted from the base station 10. For example, the receiving unit 201 receives the DL signal under the control of the control unit 203. The receiving unit 201 may directly receive a signal transmitted from another terminal 20 (not shown) without passing through the base station 10.
  • the transmitting unit 202 transmits the UL signal to the base station 10.
  • the transmission unit 202 transmits the UL signal under the control of the control unit 203.
  • the transmission unit 202 may directly transmit a signal addressed to another terminal 20 (not shown) without passing through the base station 10.
  • the control unit 203 controls the reception process in the reception unit 201 and the transmission process in the transmission unit 202. For example, the control unit 203 detects the TA command from the received DL signal, and the control unit 203 uses the detected TA command to synchronize the communication timing with the reference time.
  • the finer granularity TA instruction may be realized by at least one of the following (A1), (A2), and (A3).
  • (A1) Add at least 1 bit (the maximum is 4 bits, for example) to the legacy TA command. That is, the size of the legacy TA command is expanded. For example, 1 bit to double the granularity, 2 bits to multiply 4 times, 3 bits to multiply 8 times, 4 bits to multiply 16 times, Add to TA command.
  • (A2-1) Use the reserved bit of RAR for TA command in order to extend TA command by 1 bit. For example, as shown in FIG. 7, the first reserved bit at the beginning (Oct1) of the RAR is used for the TA command.
  • the RAR In order to extend the TA command by 1 bit or more, the RAR is extended to 8 octets, and the available additional bits are used for the TA command (the legacy RAR is 7 octets as shown in FIG. 6). . That is, RAR is extended to 8 octets, and at least part of 8 bits increased by the extension is used for the TA command. For example, as shown in FIG. 8, the TA command is extended to 16 bits by using 4 bits, which is at least a part of the bits increased by the extension of RAR, for the TA command.
  • At least two of the above options (A2-1) to (A2-3) may be combined.
  • (A2-1) and (A2-2) may be combined and the reserved bit of RAR and the bit increased by the extension of RAR may be used for the TA command.
  • (A2-1) and (A2-3) may be combined and the reserved bit of RAR and the bit increased by reducing other fields may be used for the TA command.
  • (A3) Apply at least one of the following options (A3-1) to (A3-3) to the TAC release 15 TAC MAC CE shown in FIG.
  • TAC MAC CE is expanded to 2 octets in order to expand the TA command by 1 bit or more. That is, TAC MAC CE is extended to 2 octets, and at least part of the 8 bits increased by the extension is used for the TA command. For example, as shown in FIG. 11, the TA command is extended to 9 bits by using 3 bits, which is at least a part of the bits increased by the extension of TAC MAC CE, for the TA command.
  • TAG Timing Advance Group ID field
  • the TAG ID field is reduced by 1 bit, and the 1 bit increased by the reduction is used for the TA command.
  • two TAGs can be supported using the remaining 1-bit TAG ID.
  • (A3-3) Remove the TAG ID field to extend the TA command by 1 or 2 bits. Then, the removed field is used for the TA command. That is, without using the TAG ID field, the 1 or 2 bits increased by not using the TAG ID field are used for the TA command.
  • (A3-3-1) one TAG case can be supported.
  • (A3-3-2) TAC MAC CE for one TAG can support up to four TAGs with the constraint that it can be transmitted only by CC (Component Carrier) in the TAG.
  • CC Component Carrier
  • CC # 0 and # 1 belong to TAG # 0, and CC # 2, # 3 and # 4 belong to TAG # 1.
  • the terminal 20 interprets the TA command received in CC # 0 or # 1 as a TA command of TAG # 0, uses it for TA control of TAG # 0, and receives it in CC # 2, # 3, or # 4.
  • the TA command is interpreted as a TA command of TAG # 1 and used for TA control of TAG # 1.
  • the TAC for TAG # 0 can be transmitted only by the CC (eg CC # 0) in TAG # 0.
  • the TAC for TAG # 1 can be transmitted only by the CC (eg, CC # 2) in TAG # 1. Transmission of the TAC for TAG # 1 may be restricted in CCs (for example, CC # 0) in different TAG # 0.
  • the following options (B1) or (B2) may be applied during initial access (RA processing).
  • the UE uses the legacy granularity TA command format.
  • the UE uses the legacy RAR shown in FIG. 6 for initial access.
  • the UE uses the TA command format with a finer granularity.
  • the UE uses one of the RARs shown in FIGS. 7 to 9 for initial access.
  • At least one of the following options (C1) to (C4) may be applied after the completion of the initial access or when it is different from the initial access.
  • the UE uses the TA command format with a finer granularity.
  • the UE uses the TAC MAC CE format shown in FIGS. 11 to 13.
  • the UE supports only one finer-grained TAC MAC CE format, and UE-dedicated RRC signaling for setting whether to use the finer-grained TAC MAC CE format To support.
  • the UE supports any one of the TAC MAC CE formats shown in FIGS. 11 to 13.
  • the UE-specific RRC signaling may be unicast RRC signaling that carries time reference information.
  • UE-specific RRC signaling may be newly defined.
  • (C3) UE supports only one TAC MAC CE format, and the use of that TAC MAC CE format is determined based on SIB9. If finer-grained time reference information is indicated, the finer-grained TAC MAC CE format is used. That is, whether or not to use the TAC MAC CE format with a finer granularity may be determined based on other information (SIB9 in the above case).
  • (C3-1) SIB9 may include information related to GPS time and / or UTC. Further, when the (C3-2) time reference information parameter (timeRefecenceInfo) is included in the SIB9 (for example, SIB16 of LTE Release 15), a TAC MAC CE format with a finer granularity may be used. When the time reference information parameter (timeRefecenceInfo) is not included in SIB9, the TAC MAC CE format of the legacy granularity may be used. The parameters of the time reference information will be described later in detail with reference to FIGS. 16 to 19.
  • C4 2 or more TAC MAC CE formats, and LCID (Logical Channel ID) can be used to distinguish between those different TAC MAC CE formats.
  • LCID Logical Channel ID
  • at least one of the Reserved indexes (“100001-101110 (binary number)” in FIG. 15) in the LCID table shown in FIG. 15 is used to distinguish between different TAC MAC CE formats. May be done.
  • (D1) For each TAG, the variable X (0, 1, 2 or 3) for determining the TA granularity is set quasi-statically by RRC. Incidentally, (D1-1) if TA granularity is once set, its TAG, TA particle size is 2 -X ⁇ 16 ⁇ (64/2 ⁇ ) ⁇ T C. Further, for each TAG for which the value of (D1-2) X is set, the maximum value of the TA instruction is 2 -X times, and the granularity of TA is 2 X times.
  • (D2) RAR is still based on legacy TA granularity, at least one of the following options (D2-1) and (D2-2) may apply.
  • the UE does not apply a finer TA granularity for that TAG. That is, the legacy TA granularity is applied to that TAG until a finer TA granularity is reset. In other words, the UE applies the legacy TA granularity at each RAR, and applies the legacy TA granularity until it receives a finer granularity TA indication.
  • Whether to apply a finer TA granularity may be determined based on the SCS. For example, in the case of SCS “15 kHz” and “30 kHz”, it is difficult to satisfy the requirement that the delay is within 1 ⁇ s, so a finer TA granularity is applied, and in the case of other SCS, it is easy to satisfy the requirement. Legacy TA granularity may be applied.
  • FIG. 16 shows an example of a conventional SIB9.
  • the conventional NR SIB9 is similar to LTE SIB16 and includes information related to GPS time and UTC (Coordinated Universal Time) (see the parameter “timeInfoUTC” in FIG. 16).
  • the granularity of the parameter timeInfoUTC is 10 ms like the SIB16 before Release 15 of LTE, even if the SIB9 having this parameter timeInfoUTC is used, the time synchronization requirement of 1 ⁇ s or less cannot be satisfied.
  • FIG. 17 shows an example of SIB9 according to the present embodiment.
  • the NR SIB9 was strengthened similarly to this.
  • a parameter (timeReferenceInfo) of time reference information similar to SIB16 can be set.
  • the information elements (TimeReferenceInfo information elements) of the time reference information may have the configuration shown in FIG. 19 (see Non-Patent Document 3).
  • the SIB9 can handle a finer granularity of 0.25 ⁇ s and can satisfy the requirement of the synchronization time of 1 ⁇ s or less.
  • FIG. 18 shows an example of a downlink information transfer (DLInformationTransfer) message according to this embodiment.
  • timeReferenceInfo of time reference information via RRC signaling of UE dedicated (dedicated) is introduced in Release 15 of LTE. Therefore, in the present embodiment, similar reinforcement may be performed.
  • a parameter of time reference information (timeReferenceInfo) can be set in a message of downlink information transfer (DLInformationTransfer). Note that the information element of the time reference information may have a configuration as shown in FIG. 19 (see Non-Patent Document 3).
  • a terminal according to an aspect of the present disclosure, according to a reception unit that receives adjustment information (for example, a TA command) for adjusting communication timing based on a reference time, and a communication timing according to a size (for example, the number of bits) of the adjustment information. And a control unit that controls the granularity for adjusting.
  • adjustment information for example, a TA command
  • a size for example, the number of bits
  • the terminal can adjust time synchronization with a finer granularity. Therefore, the present disclosure contributes to satisfying the time synchronization requirement of, for example, 1 ⁇ s or less.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional blocks may be realized by combining the one device or the plurality of devices with software.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and observation. Broadcasting, notifying, communicating, forwarding, configuration, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. I can't.
  • a functional block (component) that causes transmission to function is called a transmitter (transmitting unit) or a transmitter (transmitter).
  • the implementation method is not particularly limited.
  • the base station, the user terminal, and the like according to the embodiment of the present disclosure may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • 20 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to an embodiment of the present disclosure.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the word “device” can be read as a circuit, device, unit, or the like.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured to not include some devices.
  • Each function in the base station 10 and the user terminal 20 causes a predetermined software (program) to be loaded on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs calculation and controls communication by the communication device 1004. Alternatively, it is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the control units 103 and 203 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least part of the operations described in the above-described embodiments is used.
  • the control unit 203 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operating in the processor 1001, and may be implemented similarly for other functional blocks.
  • the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is configured by at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store an executable program (program code), a software module, or the like for implementing the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disc). At least one of a (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, and a key drive), a floppy (registered trademark) disk, a magnetic strip, or the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database including at least one of the memory 1002 and the storage 1003, a server, or another appropriate medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD). May be composed of For example, antennas of the base station and the terminal may be realized by the communication device 1004.
  • the transmitter / receiver may be implemented by physically or logically separating the transmitter and the receiver.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and the hardware may implement part or all of each functional block. For example, the processor 1001 may be implemented using at least one of these hardware.
  • the notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by notification information (MIB (Master Information Block), SIB (System Information Block)), another signal, or a combination thereof.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), systems using other suitable systems, and extensions based on these. It may be applied to at least one of the next-generation systems. Also, a plurality of systems may be combined and applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station may be performed by its upper node in some cases.
  • the various operations performed for communication with a terminal are the base station and other network nodes than the base station (eg MME or S-GW and the like are conceivable, but not limited to these).
  • MME or S-GW network nodes
  • a combination of a plurality of other network nodes for example, MME and S-GW may be used.
  • Information and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information that is input / output can be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
  • the determination may be performed based on a value represented by 1 bit (0 or 1), may be performed based on a Boolean value (Boolean: true or false), or may be compared by numerical values (for example, a predetermined value). (Comparison with value).
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched according to execution.
  • the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • the software uses a wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and / or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • At least one of the channel and the symbol may be a signal (signaling).
  • the signal may also be a message.
  • a component carrier CC may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resources may be those indicated by the index.
  • Base station In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “"Accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission / reception point”, “cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
  • a base station may be referred to by terms such as macro cell, small cell, femto cell, and pico cell.
  • a base station can accommodate one or more (eg, three) cells.
  • the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, small indoor base station (RRH: Communication services can also be provided by Remote Radio Head.
  • RRH small indoor base station
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of at least one of the base station and the base station subsystem that perform communication services in this coverage. Refers to.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations are defined by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned type or unmanned type). ) May be sufficient.
  • at least one of the base station and the mobile station also includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (eg, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • the words such as “up” and “down” may be replaced with the words corresponding to the communication between terminals (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station 10 may have the function of the above-described user terminal 20.
  • determining and “determining” as used in this disclosure may encompass a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment, calculating, computing, processing, deriving, investigating, and looking up, search, inquiry. (Eg, searching in a table, database, or another data structure), ascertaining what is considered to be “judgment” and “decision” may be included.
  • “decision” and “decision” include receiving (for example, receiving information), transmitting (for example, transmitting information), input, output, and access. (Accessing) (for example, accessing data in a memory) may be regarded as “judging” or “deciding”.
  • judgment and “decision” means to consider that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. May be included. That is, the “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, the “determination (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, and It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • two elements are in the radio frequency domain, with at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , Can be considered to be “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave region and the light (both visible and invisible) region.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot) according to the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • the radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (for example, 1 ms) that does not depend on the numerology.
  • Numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transmission / reception
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • At least one of a specific filtering process performed by the device in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be configured with a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit when transmitting a signal. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the transport block, code block, codeword, etc. may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRB: Physical RB), subcarrier groups (SCG: Sub-Carrier Group), resource element groups (REG: Resource Element Group), PRB pairs, RB pairs, etc. May be called.
  • PRB Physical resource blocks
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (may also be called a partial bandwidth) may represent a subset of consecutive common RBs (common resource blocks) for a certain neurology in a certain carrier. Good.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE does not have to expect to send and receive a given signal / channel outside the active BWP.
  • BWP bitmap
  • the above-mentioned structure of the radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
  • the "maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or the rated maximum transmission power ( The rated UE maximum transmit power).
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed as “different” as well.
  • One aspect of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、基準時刻に基づく通信タイミングを調整するための調整情報を受信する受信部と、調整情報のサイズに応じて、通信タイミングを調整する粒度を制御する制御部と、を備える。

Description

端末、及び、通信方法
 本開示は、端末、及び、通信方法に関する。
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。
 5G等の無線通信システムでは、装置間において、例えば、1μsオーダー等の非常に高い同期(例えば、synchronicity、時間同期、クロック同期とも呼ぶ)の精度をサポートすることが検討されている(例えば、非特許文献1を参照)。
 本開示の目的の1つは、同期精度の向上を図ることにある。
 本開示の一態様に係る端末は、基準時刻に基づく通信タイミングを調整するための調整情報を受信する受信部と、前記調整情報のサイズに応じて、前記通信タイミングを調整する粒度を制御する制御部と、を備える。
 本開示によれば、同期精度の向上を図ることができる。
本開示の一態様に係る無線通信システムの構成例を示す図である。 TAC(Timing Advance Command)による同期方法の例を示す図である。 無線通信システムにおけるトータルタイミングエラーの例を示す図である。 本開示の一態様に係る基地局の構成例を示すブロック図である。 本開示の一態様に係る端末の構成例を示すブロック図である。 NRのリリース15のMAC(Media Access Control) RAR(Random Access Response)の構成の一例を示す図である。 本開示の一態様に係るMAC RARの第1の構成例を示す図である。 本開示の一態様に係るMAC RARの第2の構成例を示す図である。 本開示の一態様に係るMAC RARの第3の構成例を示す図である。 リリース15のTAC MAC CEの構成例を示す図である。 本開示の一態様に係るTAC MAC CEの第1の構成例を示す図である。 本開示の一態様に係るTAC MAC CEの第2の構成例を示す図である。 本開示の一態様に係るTAC MAC CEの第3の構成例を示す図である。 CC(Component Carrier)#0及び#1がTAG(Timing Advance Group)#0に属し、CC#2,#3及び#4がTAG#1に属する例を示す図である。 LCID(Logical Channel ID)テーブルを示す図である。 従来のSIB(System Information Block)9の例を示す図である。 本開示の一態様に係るSIB9の例を示す図である。 本開示の一態様に係るダウンリンク情報転送(DLInformationTransfer)のメッセージの例を示す図である。 本開示の一態様に係る時間参照情報のパラメータ(timeReferenceInfo)の構成例を示す図である。 本開示の一態様に係る基地局及び端末のハードウェア構成の例を示す図である。
 以下、本開示の一態様に係る実施の形態を、図面を参照して説明する。
 様々なユースケースに5Gシステムを適用することが検討される。ユースケースには、例えば、モーション・コントローラ、センサ又はアクチュエータを含む産業用システム(例えば、Time Sensitive Networking(TSN)と呼ぶこともある)、ライブパフォーマンス、スマートグリッド、又は、ローカル・カンファレンス・システム等がある。これらのユースケースでは、装置(例えば、User Equipment(UE)、端末、ノード又はエンティティと呼ぶこともある)間の同期精度に関して既存システムよりも厳しい要件が求められることがある。
 図1は、本開示の一態様に係る無線通信システムの構成の一例を示す図である。
 図1に示すように、無線通信システムは、例えば、基地局(例えば、gNB又はeNBとも呼ばれる)10a,10b、及び、端末(例えば、UEとも呼ばれる)20a,20bを有する。端末20aは、例えば、基地局10aと無線接続(無線アクセス)する。端末20bは、例えば、基地局10bと無線接続(無線アクセス)する。
 なお、基地局及び端末の数は、それぞれ2つに限られず、1つ又は3つ以上であってもよい。また、後述する基地局10及び端末20の後述する構成は、本実施の形態に関連する機能の一例を示すものである。基地局10及び端末20は、図示しない機能を有してもよい。また、本実施の形態に係る動作を実行する機能であれば、機能区分、または、機能部の名称は限定されない。
 端末20aと端末20bとの間の同期を確立するための動作には、例えば、以下の(動作a)、(動作b)及び(動作c)がある。
 (動作a)基地局10a及び基地局10bは、基準時刻を示す時間情報を、サーバ(図示せず)から取得し、基準時刻に同期する。なお、図1は、基準時刻の一例に協定世界時(Coordinated Universal Time(UTC))を用いる場合を示す。しかし、基準時刻は、UTCに限定されず、GPS(Global Positioning System)時刻、または、ローカル時刻であってもよい。なお、UTCは、GMT(Greenwich Mean Time)と同一視されることもある。
 (動作b)基地局10a及び端末20aは、基地局10aが同期している基準時刻に基づいて互いに同期する。同様に、基地局10b及び端末20bは、基地局10bが同期している基準時刻に基づいて互いに同期する。
 (動作c)基地局10aと端末20aとの間の伝搬経路、及び、基地局10bと端末20bとの間の伝搬経路は、互いに異なる可能性がある。各端末と基地局との間の伝搬経路に差が生じることによって、各端末での基準時間情報の受信タイミング(換言すると、伝搬遅延)に誤差が生じ、端末間の同期精度が劣化する可能性がある。そこで、例えば、端末20a及び端末20bは、基地局10a及び基地局10bからそれぞれ通知される時刻に関する調整情報(例えば、後述するタイミングアドバンス(Timing Advance(TA))コマンド)を用いて、同期の調整(又は補正)を行う。
 以上の動作によって、端末20a及び端末20bの各々は、基準時刻(例えば、UTC)に同期する。端末20a及び端末20bが基準時刻にそれぞれ同期することにより、端末20aと端末20bとの間の同期が確立する。
 次に、装置間の同期における調整方法(図1に示す動作(c))について説明する。
 図2は、gNB(例えば、図1の基地局10a又は基地局10b)とUE(例えば、図1の端末20a又は端末20b)との間における同期の調整処理の一例を示す。
 図2に示すように、gNBは、基準時刻に関する情報(以下、時間参照情報(time reference information)と呼ぶ)をUEへ通知する(例えば、図1の動作(b)に対応)。
 時間参照情報には、gNBが取得した基準時刻(以下、「TgNB」と表す)が含まれる。また、時間参照情報には、基準時刻TgNBがどのフレームタイミング(例えば、システムフレーム番号:System Frame Number(SFN))の時刻であるかを示す参照SFN情報(例えば、reference SFNと呼ぶ)が含まれてよい。例えば、時刻「TgNB」は、reference SFNが示すフレームの終了境界(ending boundary)における時刻を示してもよい。なお、時間参照情報には、TgNB及びreference SFNとは異なる他の情報が含まれてもよい。
 時間参照情報は、例えば、gNBからUEへ通知される。gNBからUEへの通知には、報知情報の一例であるシステム情報(例えば、System Information Block(SIB))、又は、上位レイヤシグナリング(上位レイヤパラメータ又はRadio Resource Control(RRC)シグナリングと呼ぶ)が用いられてよい。時間参照情報の通知に用いられるシステム情報は、例えば、5G(NR)システムにおけるSIB9又はLTEシステムにおけるSIB16である。また、時間参照情報の通知には、例えば、UE個別のRRCシグナリング(例えば、dedicated RRCシグナリング又はunicast RRCシグナリング)が用いられてもよい。
 また、図2に示すように、gNBは、基準時刻に基づく通信タイミングを調整するための調整値を示す調整情報(例えば、TAコマンド(TAC))をUEへ通知(換言すると、送信又はdelivery)する。TAコマンドは、伝搬経路又は距離の異なる得る複数のUEからgNBへ送信される信号がgNBにおいて同期して受信するための調整値である。TAコマンドの累積値には、例えば、信号がgNBからUEへ到達するまでの伝搬経路に対応する時間の2倍の値が設定される。換言すると、TAコマンドの累積値の半分(1/2倍)の値は、gNBとUEとの間の伝搬経路に対応して加えられる伝搬遅延時間を表す。
 なお、TAコマンドは、伝搬遅延に対応する時間そのものを表す情報でもよく、伝搬遅延に対応する時間を算出するための情報(例えば、インデックス等)でもよい。
 TAコマンドは、ランダムアクセス(Random Access(RA))処理では、RAR(Random Access Response)(又は、message 2とも呼ばれる)を用いて通知されてよい。また、TAコマンドは、RA処理と異なるケースでは、MAC制御要素(Media Access Control Control Element(MAC CE))を用いて通知されてよい。
 例えば、gNBは、UE毎にTAコマンドを生成し、各TAコマンドを対応するUEへ送信する。UEは、TAコマンドを受信した後、TAコマンドに設定されている値TAに基づいて、タイミング調整値(図2の例ではTA/2)を算出する。UEは、算出したタイミング調整値又はその累積値を用いて、時間参照情報に含まれる時刻TgNBを調整し、時刻TUE(=TgNB+TA/2)を算出することができる。なお、UEは、RA処理と異なるケースでは、TAコマンドが通知される度に、その通知された新たなTAコマンドを用いて、タイミング調整値(つまりTAコマンドの累積値)を更新することができる。この更新により、図2に示すように、UEは、UEの通信環境の変化に追従して、gNBから通知される基準時刻に同期できる。
 例えば、図1に示す基地局10aと端末20aとの組、及び、基地局10bと端末20bとの組は、それぞれ、図2に示すgNB及びUEと同様の同期処理を行う。これにより、図1に示す端末20a及び端末20bは、それぞれ基準時刻に同期し、結果的に、端末20aと端末20bとが同期している状態となる。
 レガシーのTAコマンドによるTA指示(TA indication)の粒度(TAの分解能、またはTAで指示し得る最小の値)は、16×(64/2μ)×Tc≒(520/2μ)nsである。ここで、μは、SCS(SubCarrier Spacing)に対応する値である。例えば、μ=0は、SCS「15kHz」に対応し、μ=1は、SCS「30kHz」に対応する。また、Tcは、NRでの基本時間単位(basic time unit)であり、例えば、0.509nsである。したがって、図3に示すように、SCS「15kHz」の場合、レガシーのTA指示の粒度を用いる場合に発生し得る最大の誤差の値は、TAの分解能の半分である260ns(=520/2)である。また、TAの分解能の不足に加え、その他の様々な誤差を考慮すると、トータルタイミングエラーの最大値は、1337nsである。なお、本実施の形態における「レガシー」は、非特許文献2、3に規定されていることを意味してよい。したがって、「レガシー」は、「従来」、「Release 15」、又は「Release 15 NR」と読み替えられてもよい。
 例えば、ライブパフォーマンスを行うようなユースケースでは、遅延が0.25μs~1μs以内であることが要求される。しかし、上記の通り、SCS「15kHz」の場合、トータルタイミングエラーが1μsを超過しており、この要求を満たせない。すなわち、SCS「15kHz」において、レガシーのTA指示の粒度が原因のタイミングの不正確さは無視できない。その他のSCSにおいても、図3に示すように、誤差を0.25μs以内に抑えることはできない。よって、トータルタイミングエラーを最小限にするために、より細かな粒度(finer granularity)のTA指示が検討される。なお、より細かな粒度のTA指示の適用は、SCS「15kHz」の場合に限定されない。例えば、図3に示すように、より細かな粒度のTA指示は、トータルタイミングエラーが1μs近いSCS「30kHz」に適用されてもよいし、SCS「60kHz」及び/又は「130kHz」に適用されてもよい。
 また、UEからのUL伝送は、対応するDL(Downlink)フレームの開始前に、TTA=(NTA+NTA,offset)×Tcを開始する。NTAは、DLとUL(Uplink)の間のTAである。なお、NTA,offsetは、TAを算出するために使用される固定オフセットである。ここで、RA処理の場合、NTA=TA×16×(64/2μ), TA=0,1,2,...,3846であり、TAはMAC RARによってUEに指示される。他の処理の場合、NTA_new=NTA_old+(TA-31)×16×(64/2μ), TA=0,1,2,...,63であり、TAはMAC CEによってUEに指示される。この場合も、同期精度を高めるために、より細かな粒度のTA指示が検討される。
 そこで、本開示では、より細かな粒度のTA指示について説明する。
 [基地局及び端末の構成]
 図4は、本実施の形態に係る基地局10(例えば、図1に示す基地局10a又は基地局10b)の構成の一例を示すブロック図である。基地局10は、例えば、送信部101と、受信部102と、制御部103と、を含む。
 送信部101は、端末20向けの信号(DL信号)を端末20へ送信する。例えば、送信部101は、制御部103の制御により、DL信号を送信する。
 DL信号には、例えば、時間参照情報を含むシステム情報(例えば、SIB9、SIB16)、時間参照情報を含む上位レイヤシグナリング、TAコマンドを含むRAメッセージ(例えば、RAR)、又は、TAコマンドを含むMAC CE(TA MAC CE)が含まれてよい。
 受信部102は、端末20から送信される信号(UL信号)を受信する。例えば、受信部102は、制御部103からの制御に基づき、UL信号を受信する。UL信号には、例えば、RAプリアンブル、端末20における通信品質の測定結果を示す測定報告(例えば、Measurement Report(MR))、チャネル品質情報、制御チャネルの信号、データチャネルの信号、又は、参照信号等が含まれる。なお、チャネル品質情報は、例えば、channel quality information(CQI)である。制御チャネルは、例えば、Physical Uplink Control Channel(PUCCH)であり、データチャネルは、例えば、Physical Uplink Shared Channel(PUSCH)である。また、参照信号は、例えば、Sounding Reference Signal(SRS)である。
 制御部103は、送信部101における送信処理、及び、受信部102における受信処理を制御する。例えば、制御部103は、送信部101におけるTAコマンドの送信処理を制御する。
 図5は、本実施の形態に係る端末20(例えば、図1に示す端末20a又は端末20b)の構成の一例を示すブロック図である。端末20は、例えば、受信部201と、送信部202と、制御部203と、を含む。
 受信部201は、基地局10から送信されるDL信号を受信する。例えば、受信部201は、制御部203からの制御に基づき、DL信号を受信する。なお、受信部201は、他の端末20(図示せず)から送信される信号を、基地局10を介さずに直接受信してもよい。
 送信部202は、UL信号を基地局10へ送信する。例えば、送信部202は、制御部203からの制御に基づき、UL信号を送信する。なお、送信部202は、他の端末20(図示せず)宛ての信号を、基地局10を介さずに直接送信してもよい。
 制御部203は、受信部201における受信処理、及び、送信部202における送信処理を制御する。例えば、制御部203は、受信したDL信号から、TAコマンドを検出する、そして、制御部203は、検出したTAコマンドを用いて、通信タイミングを基準時刻に同期させる。
 次に、レガシーのTA指示と比べて、より細かな粒度(finer granularity)のTA指示について説明する。より細かな粒度のTA指示を用いることにより、上述のとおり、トータルタイミングエラーを最小限にでき、また、端末20間の同期精度を向上できる。
 より細かな粒度のTA指示は、次の(A1)、(A2)及び(A3)の少なくとも1つによって実現されてよい。
 (A1)レガシーのTAコマンドに、少なくとも1ビット(最大は例えば4ビット)を追加する。つまり、レガシーのTAコマンドのサイズを拡張する。例えば、粒度を2倍にするためには1ビットを、4倍にするためには2ビットを、8倍にするためには3ビットを、16倍にするためには4ビットを、レガシーのTAコマンドに追加する。
 (A2)図6に示すNRのリリース15のRAR(レガシーのRAR)に対して、次のオプション(A2-1)~(A2-3)の少なくとも1つを適用する。
 (A2-1)TAコマンドを1ビット分拡張するために、RARの予約ビット(reserved bit)をTAコマンドに使用する。例えば、図7に示すように、RARの先頭(Oct1)の1ビット目の予約ビットをTAコマンドに使用する。
 (A2-2)TAコマンドを1ビット以上拡張するために、RARを8オクテットに拡張し、利用可能となる追加ビットをTAコマンドに使用する(図6に示すようにレガシーのRARは7オクテット)。すなわち、RARを8オクテットに拡張し、その拡張によって増えた8ビットの少なくとも一部をTAコマンドに使用する。例えば、図8に示すように、RARの拡張によって増えた分のビットの少なくとも一部である4ビットをTAコマンドに使用することにより、TAコマンドを16ビットに拡張する。
 (A2-3)TAコマンドを1ビット以上拡張し、且つ、RARを7オクテットに維持するために、RARの他のフィールド、例えばULグラント(UL grant)のフィールドを縮小する。すなわち、他のフィールドを縮小することによって増えたビットをTAコマンドに使用する。例えば図9に示すように、ULグラントフィールドの縮小によって増えた分の4ビットをTAコマンドに使用することにより、TAコマンドを16ビットに拡張する。
 なお、上記のオプション(A2-1)~(A2-3)の少なくとも2つを組み合わせてもよい。例えば、(A2-1)と(A2-2)とを組み合わせ、RARの予約ビットと、RARの拡張によって増えたビットとをTAコマンドに使用してもよい。また、例えば、(A2-1)と(A2-3)とを組み合わせて、RARの予約ビットと、他のフィールドを縮小することによって増えたのビットとをTAコマンドに使用してもよい。
 (A3)図10に示すNRのリリース15のTAC MAC CEに対して、次のオプション(A3-1)~(A3-3)の少なくとも1つを適用する。
 (A3-1)TAコマンドを1ビット以上拡張するために、TAC MAC CEを2オクテットに拡張する。すなわち、TAC MAC CEを2オクテットに拡張し、その拡張によって増えた8ビットの少なくとも一部をTAコマンドに使用する。例えば、図11に示すように、TAC MAC CEの拡張によって増えた分のビットの少なくとも一部である3ビットをTAコマンドに使用することにより、TAコマンドを9ビットに拡張する。
 (A3-2)TAコマンドを1ビット分拡張するために、TAG(Timing Advance Group) IDフィールドの1ビット分をTAコマンドに使用する。例えば、図12に示すように、TAG IDフィールドを1ビット分縮小し、その縮小によって増えた1ビットをTAコマンドに使用する。この場合、残りの1ビットのTAG IDを用いて、2つのTAGをサポートできる。
 (A3-3)TAコマンドを1又は2ビット分拡張するために、TAG IDフィールドを除去する。そして、その除去した分のフィールドをTAコマンドに使用する。すなわち、TAG IDフィールドを使用せずに、そのTAG IDフィールドの不使用によって増えた1又は2ビットをTAコマンドに使用する。この場合、(A3-3-1)1つのTAGのケースをサポートできる。或いは、(A3-3-2)1つのTAG用のTAC MAC CEがそのTAG内のCC(Component Carrier)によってのみ伝送可能という制約において、4つのTAGまでをサポートできる。
 上記(A3-3-2)の一例を、図14を参照して説明する。例えば、図14に示すように、CC#0及び#1がTAG#0に属し、CC#2、#3及び#4がTAG#1に属する。この場合、端末20は、CC#0または#1で受信したTAコマンドはTAG#0のTAコマンドと解釈してTAG#0のTA制御に利用し、CC#2、#3または#4で受信したTAコマンドはTAG#1のTAコマンドと解釈してTAG#1のTA制御に利用する。換言すれば、TAG#0用のTACは、TAG#0内のCC(例えばCC#0)によってのみ伝送可能である。また、TAG#1用のTACは、TAG#1内のCC(例えばCC#2)によってのみ伝送可能である。TAG#1用のTACは、異なるTAG#0内のCC(例えばCC#0)において伝送が制限されてよい。
 次に、何れのTAコマンドのフォーマットが適用されるべきであるかをUE(端末20)が決定する方法について説明する。
 初期アクセス(RA処理)において、次のオプション(B1)又は(B2)が適用されてよい。
 (B1)UEは、レガシーの粒度(granularity)のTAコマンドのフォーマットを(常に)使用する。例えば、UEは、初期アクセスでは、図6に示すレガシーのRARを使用する。
 (B2)UEは、より細かな粒度(finer granularity)のTAコマンドのフォーマットを(常に)使用する。例えば、UEは、初期アクセスでは、図7~図9に示す何れかのRARを使用する。
 初期アクセスの完了後、又は、初期アクセスとは異なる場合において、次のオプション(C1)から(C4)の少なくとも1つが適用されてよい。
 (C1)UEは、より細かな粒度のTAコマンドのフォーマットを(常に)使用する。例えば、UEは、図11~図13に示すTAC MAC CEフォーマットを使用する。
 (C2)UEは、ただ1つのより細かな粒度のTAC MAC CEフォーマットをサポートし、より細かな粒度のTAC MAC CEフォーマットを使用するか否かを設定するためのUE個別(dedicated)のRRCシグナリングをサポートする。例えば、UEは、図11~図13に示す何れか1つのTAC MAC CEフォーマットをサポートする。なお、UE個別のRRCシグナリングは、時間参照情報を運ぶユニキャストのRRCシグナリングであってよい。或いは、UE個別のRRCシグナリングは、新たに定義されてもよい。
 (C3)UEは、ただ1つのTAC MAC CEフォーマットをサポートし、そのTAC MAC CEフォーマットの使用がSIB9に基づいて決まる。もし、より細かな粒度の時間参照情報が指示される場合、より細かな粒度のTAC MAC CEフォーマットが使用される。すなわち、より細かな粒度のTAC MAC CEフォーマットを使用するか否かが、他の情報(上記の場合SIB9)に基づいて決まってよい。
 なお、(C3-1)SIB9は、GPS時刻及び/又はUTCに関連する情報を含んでよい。また、(C3-2)時間参照情報のパラメータ(timeRefecenceInfo)がSIB9に含まれる場合(例えばLTEのリリース15のSIB16のように)、より細かな粒度のTAC MAC CEフォーマットが使用されてよい。時間参照情報のパラメータ(timeRefecenceInfo)がSIB9に含まれない場合、レガシーの粒度のTAC MAC CEフォーマットが使用されてよい。なお、時間参照情報のパラメータについては、後に図16~図19を参照して詳述する。
 (C4)2以上のTAC MAC CEフォーマットをサポートし、かつ、LCID(Logical Channel ID)が、それらの異なるTAC MAC CEフォーマットを区別するために使用され得る。例えば、図15に示すLCIDテーブル(非特許文献2を参照)におけるReservedのインデックス(図15では「100001-101110(2進数)」)の少なくとも1つが、異なるTAC MAC CEフォーマットを区別するために使用されてよい。
 [変形例1]
 次に、TAC MAC CEの変形例について説明する。TAC MAC CEには、次の(D1)及び(D2)の少なくとも1つが適用されよい。
 (D1)各TAGについて、TA粒度を決定するための変数X(0,1,2又は3)は、RRCによって準静的に設定される。なお、(D1-1)TA粒度がいったん設定された場合、そのTAGについて、TA粒度は、2-X×16×(64/2μ)×TCである。また、(D1-2)Xの値を設定された各TAGについて、TA指示の最大値は2-X倍に、TAの粒度は2X倍になる。
 (D2)RARが依然としてレガシーのTA粒度に基づく場合、次のオプション(D2-1)及び(D2-2)の少なくとも1つが適用されよい。
 (D2-1)いったん所与のTAGについてRARがUEによって受信されると、UEは、そのTAGについて、より細かなTA粒度を適用しない。すなわち、より細かなTA粒度が再設定されるまで、レガシーのTA粒度がそのTAGに適用される。別言すると、UEは、RARの度にレガシーのTA粒度を適用し、より細かな粒度のTA指示を受信するまで、レガシーのTA粒度を適用する。
 (D2-2)RARにはレガシーのTA粒度を使用し、他の処理にはより細かなTA粒度を適用する。すなわち、RARの後、TAC MAC CEによるTA粒度は、依然として、RRCに設定されたより細かな粒度に基づいている。別言すると、UEは、RARの前においてより細かなTA粒度を適用していた場合、RARの後も、より細かなTA粒度を適用する。
 [変形例2]
 より細かなTA粒度を適用するか否かは、SCSに基づいて決定されてもよい。例えば、SCS「15kHz」及び「30kHz」の場合は、遅延が1μs以内であるという要求を満たしにくいので、より細かなTA粒度が適用され、他のSCSの場合は、その要求を満たしやすいので、レガシーのTA粒度が適用されてよい。
 次に、図16から図19を参照して、時間参照情報について詳細に説明する。
 図16は、従来のSIB9の一例を示す。
 図16に示すように、従来のNR SIB9は、LTE SIB16に類似しており、GPS時刻及びUTC(Coordinated Universal Time)に関連する情報を含む(図16のパラメータ「timeInfoUTC」参照)。しかし、LTEのリリース15以前のSIB16と同様、パラメータtimeInfoUTCの粒度は10msであるので、このパラメータtimeInfoUTCを有するSIB9を用いても、1μs以下の時間同期の要求を満たすことができない。
 図17は、本実施の形態に係るSIB9の一例を示す。
 LTE SIB16は、リリース15において、高い同期要求を満たすために強化された。そこで、本実施の形態に係るNR SIB9には、これと類似する強化が行われてよい。例えば、図17に示すように、SIB9において、SIB16と類似する時間参照情報のパラメータ(timeReferenceInfo)を設定可能とする。なお、時間参照情報の情報要素(TimeReferenceInfo information elements)は、図19に示すような構成であってよい(非特許文献3を参照)。これにより、SIB9において、0.25μsのより細かな粒度を扱うことができ、1μs以下の同期時間の要求を満たすことができる。
 図18は、本実施の形態に係るダウンリンク情報転送(DLInformationTransfer)のメッセージの一例を示す。
 UE個別(dedicated)のRRCシグナリングを介した時間参照情報のパラメータ(timeReferenceInfo)が、LTEのリリース15において導入されている。そこで、本実施の形態では、これと類似する強化が行われてよい。例えば、図18に示すように、ダウンリンク情報転送(DLInformationTransfer)のメッセージにおいて、時間参照情報のパラメータ(timeReferenceInfo)を設定可能とする。なお、時間参照情報の情報要素は、図19に示すような構成であってよい(非特許文献3を参照)。
 [本開示のまとめ]
 本開示の一態様に係る端末は、基準時刻に基づく通信タイミングを調整するための調整情報(例えばTAコマンド)を受信する受信部と、調整情報のサイズ(例えばビット数)に応じて、通信タイミングを調整する粒度を制御する制御部と、を備える。
 この構成によれば、端末は、より細かな粒度にて時間同期を調整できる。よって、本開示は、例えば1μs以下の時間同期の要求を満たすことに貢献する。
(ハードウェア構成等)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、本開示の一実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103,203などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部203は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、基地局及び端末のアンテナなどは、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
<情報の通知、シグナリング>
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<適用システム>
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<入出力の方向>
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
<ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
<情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
<「システム」、「ネットワーク」>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
<基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
<移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
<基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
<用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
<参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<「手段」>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
<最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示の一態様は、無線通信システムに有用である。
 10、10a、10b 基地局
 20、20a、20b 端末
 101、202 送信部
 102、201 受信部
 103、203 制御部

Claims (6)

  1.  基準時刻に基づく通信タイミングを調整するための調整情報を受信する受信部と、
     前記調整情報のサイズに応じて、前記通信タイミングを調整する粒度を制御する制御部と、
     を備える端末。
  2.  前記調整情報は、ランダムアクセス要求に対する応答情報に含まれ、
     第1のサイズの前記調整情報が、前記通信タイミングの調整に関する第1の粒度を示し、第2のサイズの前記調整情報が、前記第1の粒度よりも細かい第2の粒度を示す、
     請求項1に記載の端末。
  3.  前記調整情報は、前記端末宛の制御情報に含まれ、
     前記第1のサイズの調整情報が、前記通信タイミングの調整に関する第1の粒度を示し、前記第2のサイズの調整情報が、前記第1の粒度よりも細かい第2の粒度を示す、
     請求項1に記載の端末。
  4.  前記制御部は、前記受信部が受信した所定のシステム情報に、時間参照情報が含まれない場合、前記第1のサイズの調整情報に応じて前記通信タイミングを調整し、前記時間参照情報が含まれる場合、前記第2のサイズの調整情報に応じて前記通信タイミングを調整する、
     請求項3に記載の端末。
  5.  前記制御部は、前記制御情報が、第1のフォーマットの場合、前記第1のサイズの調整情報に応じて前記通信タイミングを調整し、第2のフォーマットの場合、前記第2のサイズの調整情報に応じて前記通信タイミングを調整する、
     請求項3に記載の端末。
  6.  端末は、
     基準時刻に基づく通信タイミングを調整するための調整情報を受信し、
     前記調整情報のサイズに応じて、前記通信タイミングを調整する粒度を制御する、
     通信方法。
PCT/JP2018/038556 2018-10-16 2018-10-16 端末、及び、通信方法 WO2020079760A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/285,271 US20210392601A1 (en) 2018-10-16 2018-10-16 Terminal and communication method
PCT/JP2018/038556 WO2020079760A1 (ja) 2018-10-16 2018-10-16 端末、及び、通信方法
EP18936947.3A EP3869876A1 (en) 2018-10-16 2018-10-16 Terminal and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038556 WO2020079760A1 (ja) 2018-10-16 2018-10-16 端末、及び、通信方法

Publications (1)

Publication Number Publication Date
WO2020079760A1 true WO2020079760A1 (ja) 2020-04-23

Family

ID=70283834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038556 WO2020079760A1 (ja) 2018-10-16 2018-10-16 端末、及び、通信方法

Country Status (3)

Country Link
US (1) US20210392601A1 (ja)
EP (1) EP3869876A1 (ja)
WO (1) WO2020079760A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417186B (zh) * 2019-01-07 2021-07-16 华为技术有限公司 一种时间同步方法和装置
US20220061011A1 (en) * 2019-01-09 2022-02-24 Ntt Docomo, Inc. Terminal and communication method
WO2020167013A1 (en) * 2019-02-14 2020-08-20 Samsung Electronics Co., Ltd. Time synchronization method, ue, base station, device and computer readable storage medium
US20220201633A1 (en) * 2019-04-05 2022-06-23 Lg Electronics Inc. Suggestion for transmission timing error when nr-based cell or lte-based cell is selected as synchronization reference source for v2x sidelink communication

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2413365C2 (ru) * 2005-10-21 2011-02-27 Телефонактиеболагет Лм Эрикссон (Пабл) Методика выполнения процедуры произвольного доступа по радиоинтерфейсу
WO2007117186A1 (en) * 2006-04-07 2007-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Method, user equipment and radio base station for random access in a cellular telecommunications system
AU2015227401A1 (en) * 2008-09-10 2015-10-01 Nextnav, Llc Wide area positioning system
US9291712B2 (en) * 2009-09-10 2016-03-22 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
US9642161B2 (en) * 2011-05-11 2017-05-02 Nokia Solutions And Networks Oy Cross-scheduling for random access response
US9609605B2 (en) * 2015-04-15 2017-03-28 Ofinno Technologies, Llc Control elements in a wireless device and wireless network
CA2995679A1 (en) * 2015-08-14 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for positioning based on signal correlation function characteristics feedback
EP3400733B1 (en) * 2016-01-06 2021-08-25 LG Electronics Inc. Method for transmitting a mac pdu in wireless communication system and a device therefor
WO2018028983A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Technique for performing device-to-device operation
US11032816B2 (en) * 2017-08-10 2021-06-08 Qualcomm Incorporated Techniques and apparatuses for variable timing adjustment granularity
JP6977066B2 (ja) * 2017-08-11 2021-12-08 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおけるアップリンクタイミングを調整する方法、及びこのための装置
KR102417648B1 (ko) * 2017-09-11 2022-07-07 노키아 테크놀로지스 오와이 다수의 뉴머럴러지를 가진 업 링크 타이밍 조정
EP3692755A1 (en) * 2017-10-02 2020-08-12 Telefonaktiebolaget LM Ericsson (publ) Timing advance range adaptation in new radio

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 15", 3GPP TS 36.331, September 2018 (2018-09-01)
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification (Release 15", 3GPP TS 38.321 V15.3.0, September 2018 (2018-09-01)
"Study on Communication for Automation in Vertical Domains (Release 16", 3GPP TR 22.804, September 2018 (2018-09-01)
CATT: "Initial consideration on TSN", 3GPP TSG-RAN WG3 #101BIS R3-185557 , 3GPP, 29 September 2018 (2018-09-29), pages 1 - 3, XP051528833 *
CMCC: "Support for accurate reference timing delivery", 3GPP TSG-RAN WG3 #101BIS R3-186035, 3GPP, 29 September 2018 (2018-09-29), pages 1 - 5, XP051529300 *
HUAWEI: "Consideration on the accurate reference timing in TSN for I-IoT", 3GPP TSG-RAN WG3 #101BIS R3-185808, 3GPP, 29 September 2018 (2018-09-29), pages 1 - 4, XP051529077 *

Also Published As

Publication number Publication date
US20210392601A1 (en) 2021-12-16
EP3869876A1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2020095459A1 (ja) 無線ノード、及び、無線通信方法
WO2020079760A1 (ja) 端末、及び、通信方法
WO2020129228A1 (ja) 無線ノード、及び、無線通信方法
WO2020166039A1 (ja) 無線ノード、及び、無線通信制御方法
WO2020100373A1 (ja) 無線ノード、及び、リソース制御方法
JP7324004B2 (ja) 端末、無線通信方法、基地局及びシステム
AU2019427652A1 (en) User device and base station device
WO2020144783A1 (ja) 端末及び通信方法
WO2020144778A1 (ja) 端末、及び、通信方法
WO2020079763A1 (ja) 端末及び通信方法
WO2020194733A1 (ja) 無線ノード、及び、無線通信制御方法
WO2021149110A1 (ja) 端末及び通信方法
US20230034003A1 (en) Radio communication node
JP7148622B2 (ja) 端末及び通信方法
JP7275169B2 (ja) 端末及び通信方法
WO2022195778A1 (ja) 端末、基地局、及び送信方法
JP7273859B2 (ja) ユーザ装置及び基地局装置
WO2020090095A1 (ja) ユーザ装置
KR20210138011A (ko) 유저장치 및 기지국장치
JPWO2020161907A1 (ja) ユーザ装置
US20230370991A1 (en) Radio base station
US20240121736A1 (en) Terminal and radio base station
WO2022034669A1 (ja) 端末
WO2022153515A1 (ja) 端末及び通信方法
WO2021251439A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018936947

Country of ref document: EP

Effective date: 20210517

NENP Non-entry into the national phase

Ref country code: JP