WO2020079202A1 - Multilayer biodegradable film - Google Patents

Multilayer biodegradable film Download PDF

Info

Publication number
WO2020079202A1
WO2020079202A1 PCT/EP2019/078310 EP2019078310W WO2020079202A1 WO 2020079202 A1 WO2020079202 A1 WO 2020079202A1 EP 2019078310 W EP2019078310 W EP 2019078310W WO 2020079202 A1 WO2020079202 A1 WO 2020079202A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
polymer
deflection temperature
biodegradable
Prior art date
Application number
PCT/EP2019/078310
Other languages
French (fr)
Inventor
Laurent Massacrier
Jean Mattieu BROUILLAT
Joseph THIBIERGE
Original Assignee
Cdl
Leygatech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cdl, Leygatech filed Critical Cdl
Priority to EP19786616.3A priority Critical patent/EP3867056A1/en
Publication of WO2020079202A1 publication Critical patent/WO2020079202A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/06Vegetal particles
    • B32B2264/062Cellulose particles, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the invention relates to a biodegradable plastic film usable in flowpack-type packaging processes, having at least two layers, and at least two different polymeric materials, as well as to a process for manufacturing such a film.
  • the flowpack packaging system consists of obtaining an airtight packaging in which the roll of plastic film wraps the product. It is used in the food industry in particular for the packaging of fresh fruits and vegetables, biscuits, confectionery, the packaging of chocolate, aromatic herbs, spices or salting, but also finds applications in the field cosmetics, pharmaceuticals, communication (cards, gadgets, printed products ...) or industry (pens, cutter ).
  • This packaging system is used to package products in trays as well as bulk products. It is particularly suitable for packaging single or small quantities of products, in particular samples, or sub-packaging in cardboard packaging (cookies, confectionery ...) or in molded cellulose.
  • This continuous packaging method can be used at high speed and has a low cost price.
  • Barrier films can be used for perishable food products or those with a long shelf life, and for products packaged in a modified atmosphere or vacuum.
  • the films used to date for flowpack applications are essentially based on fossil materials, such as for example multilayer films made of PE / PA (Polyethylene / polyamide), PE / PP (Polyethylene / polypropylene), PE / EVOH / PP (Polyethylene / Ethylene vinyl alcohol / polypropylene), PA / EVOH / PP (polyamide / Ethylene vinyl alcohol / polypropylene), and are not recyclable or biodegradable.
  • Current Flowpack films for fruit and vegetable packaging are mainly coextruded BOPP films. Some are laser microperforated to provide breathing. Other solutions are PET / PE (polyester / polyethylene) laminated films, in which the polyester provides thermal resistance and the PE the weld.
  • PET / PE polyethylene
  • biodegradable bioplastics successfully penetrate certain niche and mass markets: bags, in particular fruit and vegetables, or mulch films are today essentially biodegradable.
  • Patent application JP 2004114582 describes a method of manufacturing a packaging film having at least two layers of different polymers. These films (PET and PEN) have a deflection temperature difference under load of at least 20 ° C, and the production is carried out by flat co-extrusion. Inorganic particles are added to what is called “polyester resin raw material", that is to say the layer (C) of PEN, which exhibits the highest deflection temperature under load. Furthermore, the polymers used in this patent application (PET and PEN) are not biodegradable.
  • WO2009014313A1 describes a biaxially oriented and biaxially oriented biodegradable laminated film comprising at least a first layer of resin and at least a second layer of resin which are laminated together alternately, the first and second layers of resin containing as main components respectively a polymer based on polylactic acid and a polyester-based aromatic resin, which exhibit biodegradability, flexibility, increased gas barrier property and thermal resistance, useful for ecological packaging.
  • WO2017207662A1 relates to a heat-shrinkable multilayer thermoplastic film which forms a barrier to gases, suitable for the manufacture of packaging and comprising a first outer sealing layer, a second outer polyester layer, an inner barrier layer, no layer (s) polyamide or polyester inner (s), no polyolefin layers placed between the barrier layer and the sealing layer and at least one bulk polyolefin layer of specific relative thickness placed between the inner barrier layer and the polyester layer outside.
  • biodegradable films must consist of at least two layers of different polymers:
  • This layer provides the overall mechanical properties of the package. It generally has a high melting point, and a high resistance to flexing at temperature (also called HDT).
  • a layer of solder which is intended to allow the film to be closed by soldering.
  • This layer should have a low melting point, so that the welding temperature does not lead to the melting of the structural layer, and thus to the maintenance of the integrity of the structural layer.
  • the ability for a package to be used in Flowpack technology lies in its ability to be welded and cut at high speed, and continuously.
  • the film must have a layer of polymer ensuring the sealing function, and one or more other so-called structural layers, allowing an effective and clean cutting of each pack.
  • This or these layers must be rigid enough to maintain the film during its passage through the Flowpack machine, and not melt during the production of the weld, which would cause burrs or rupture of the seal: the packaging would then lose its integrity and functionality.
  • the two polymers must have:
  • a difference in the melting temperature to allow welding A difference in HDT (resistance to deflection at temperature), so that the film can be used in the flowpack method without it collapsing on itself.
  • the structural layer must have a high HDT so that the mechanical properties are maintained during the welding operations.
  • Recrystallization temperatures which are as close as possible to avoid the phenomena of “curling” during the production of the multilayer film, that is to say the bending of a layer (layer at high crystallization temperature) relative to to the other layer if the recrystallization of this other layer (inducing a shrinkage of the film) takes place at a temperature too far from that of the layer at high crystallization temperature.
  • the deflection resistance at temperature (also called HDT, deflection temperature under load, or temperature of thermal distortion) is a characteristic of a film which is known in the art and which is measured by standardized methods. This is the temperature at which normalized samples subjected to the action of a given load undergo conventional deformation (begin to soften). It is preferred to use the international standard ISO 75-2, using loads of 0.45 MPa (method B). We can thus characterize a film by HDTB (deflection temperature under load measured by method B of the aforementioned standard). This material-dependent constant (and the norm used for the measurement) can therefore be considered to reflect the “rigidity” of the material as the temperature increases.
  • HDT deflection temperature under load
  • the present invention provides a method for manufacturing a film for food packaging having at least one of the following characteristics: a. Be biodegradable under industrial composting conditions, in accordance with standard EN 13432 (see below): the management of this packaging after use is then legitimately done in the trash of fermentable household waste, without the need for incineration or the problem of recycling .
  • the layer with low melting point allows the packaging to be welded around the food, while the layer (s) with the highest melting point ensure the structure and cohesion of the packaging, also allowing cutting efficient and clean between each pack.
  • vs. preferably have sufficient transparency so that the food can be recognized through the packaging, both by the consumer and during checkout.
  • d. have sufficient mechanical properties for the intended use, and in particular to withstand the stresses during its use, handling and storage.
  • WVTR water vapor
  • OTR oxygen
  • biodegradable in the context of the present invention any biological, physical and / or chemical degradation, at the molecular level, of substances by the action of environmental factors (in particular enzymes derived from the metabolism processes of microorganisms) .
  • environmental factors in particular enzymes derived from the metabolism processes of microorganisms
  • biodegradation can be defined as the decomposition of organic matter into carbon dioxide, water, biomass and / or methane under the action of microorganisms (bacteria, enzymes, fungi).
  • this term is known in the art and polymers can be classified according to their biodegradability or not. In particular, some fossil polymers are clearly non-biodegradable.
  • the material subjected to the test must contain a minimum of 50% of volatile solids
  • the biodegradability must be determined for each packaging material or each significant organic component of the packaging material, by significant is meant any organic component representing more than 1% of the dry mass of this material
  • each material subjected to the test must be inherently and ultimately biodegradable as demonstrated by laboratory tests (identical to that of ISO 14851: 1999 and 14852: 1999) and must comply with the criteria and levels of following acceptance: in aerobic environment, the percentage of biodegradation of the test material must be at least 90% in total or at least 90% of the maximum degradation of an appropriate reference substance once a plateau has been reached both for the test material and for the reference substance (eg cellulose). The duration of the test must be a maximum of 6 months. In an anaerobic environment, the test period must be a maximum of 2 months and the percentage of biodegradation based on the production of biogas must be greater than or equal to 50% of the theoretical value applicable to the test material.
  • each material subjected to the test must disintegrate during a biological waste treatment process: after a composting process of 12 weeks at most, a maximum of 10% of the initial dry mass of the material subjected to the test sieving can be refused for a mesh vacuum of 2 mm.
  • the invention thus relates to a method of manufacturing a biodegradable film having at least two layers of different biodegradable polymers, which have a deflection temperature difference under load of at least 20 ° C, characterized in that the manufacture is carried out by co-extrusion and that the polymer having the lowest deflection temperature under load has been supplemented by addition of inorganic fillers or with organic agents so that its recrystallization temperature is increased.
  • co-extrusion means that each layer of polymer in the film has been extruded in an independent screw.
  • the co-extrusion is an inflation extrusion. In another embodiment, the co-extrusion is a flat extrusion.
  • the two polymers must have a deflection temperature difference under load of at least 20 ° C, in order to be used in flowpack packaging methods.
  • a difference in deflection temperature under load also induces a difference in recrystallization temperature (recrystallization point) (the polymer at lower deflection temperature also has a lower melting point and a recrystallization temperature weaker) which can lead to the phenomenon of "curling" described above.
  • the polymer is supplemented with fillers as defined above and below. The Applicants have in fact shown that the addition of such fillers makes it possible to modify (increase) the recrystallization temperature of the polymer, and thus to allow the manufacture of the multilayer film without the curling effect.
  • the film obtained is a biodegradable plastic film, which can also be described as plastic, or thermoplastic.
  • the examples show that there is no need to drastically increase the recrystallization temperature of the low-melting polymer, but that an increase of 10 ° C, preferably 12 ° C or more, preferably 14 ° C or more, even more preferably 15 ° C or more may be sufficient.
  • the manufacturing is preferably carried out by inflation extrusion.
  • Extrusion inflation is a known process of continuous transformation, in which the granules (compound) enter a heated tube (extruder) provided with a worm. These granules can be of a single type or of several types when it is desired to produce a mixture.
  • the homogenized material is pushed, compressed, then passes through a die.
  • the polymer thus formed is then expanded with compressed air at the outlet of the extruder / die.
  • the outlet of the extruder is generally vertical in particular for reasons of space, and to prevent the film from being unbalanced due to gravity. Compressed air is blown into the molten material which swells and rises vertically in a long bubble of film.
  • rollers After cooling, rollers flatten the film into a flat sheath which is cooled and wound on reels.
  • This method is well known for obtaining films used in the manufacture of packaging, garbage bags, freezer bags, medical bags for infusion and flexible and thin sheets of coatings for horticultural greenhouses.
  • the polymer During processing by inflation extrusion, the polymer is in the molten state in the screw and the extrusion head: at the outlet of the die, it is still above its Tf (melting temperature), and can be deformed (stretched and swollen) until reaching its Te (recrystallization temperature). It then acquires a frozen state and can almost no longer be deformed.
  • Tf melting temperature
  • Te recrystallization temperature
  • the die is fed by several single-screw extruders, each screw being able to convey one or more materials: this technology therefore makes it possible to superimpose layers of different materials, and finally to assemble their properties to confer in the final packaging the characteristics essential to its function, such as sealability, rigidity, barrier properties ...
  • the same polymer in this co-extrusion process, can be used in several different screws, in order to form superimposed layers composed of the same polymer.
  • This structure can be verified by analysis of a section of the film, in particular by microscopy.
  • each screw is adjusted in flow rate and temperature profile according to the polymer worked, independently of the other screws; indeed, each polymer has its own transformation temperature, a function of its melting temperature. The location of each extrusion screw will also determine which layer will be inside the bubble, and which layer will be outside.
  • the difficulty lies in the isotropic cooling of the various products: the recrystallization of the various materials can generate phenomena of film twisting (curling), which render the product unsuitable for its subsequent use. It is also important to ensure the interface compatibility of the different layers to prevent delamination of one of the layers of the film.
  • the table below gives the Te values for some biodegradable polymers, cooled under rapid kinetic conditions.
  • the films used are biodegradable, and can be of fossil origin, that is to say a plastic material, and in particular a thermoplastic material. It can be chosen from the group consisting of aliphatic polyesters, aromatic aliphatic polyesters, aliphatic-aromatic co-polyesters and in particular copolyesters of butanediol-adipic and terephthalic acids, polyamides, polyester-amides, polyethers , polyesters - ethers - amides, polyesters - urethanes, polyesters - ureas and their mixtures.
  • Biodegradable polymers of microbial or vegetable origin can also be used, rather than a polymer of fossil origin.
  • This polymer is then chosen in particular from the group consisting of polylactic acid (PLA) or microbial polymers such as polyalkanoates of the polybutyrate (PHB), polyvalerate (PHV), or polyhydroxybutyratevalerate (PHBV) type. It is also possible to use a polymer from the family of lactones and polycaprolactones, or mixtures of polymers of microbial origin and of fossil origin.
  • PLA is a linear thermoplastic aliphatic polyester; it is produced by several techniques, notably azeotropic condensation, polymerization by direct condensation, or polymerization by lactide formation (ring-opening), the most used on an industrial scale. Due to the chiral nature of lactic acid, the stereochemistry of PLA is complex. As lactic acid exists in two stereoisomeric forms, the dimer obtained from two lactic acids can be present in three different enantiomeric forms. Subsequently, PLA can exist in three stereochemical forms: poly (L-lactide) (PLLA), poly (D-lactide) (PDLA), and poly (DL-lactide) (PDLLA). L lactic acid is very preferentially synthesized by bacteria.
  • PDLLA is an amorphous polymer, while the PLLA and PDLA forms are semi-crystalline.
  • PLLA has a crystallinity of around 37%, a glass transition temperature between 50 and 80 ° C and a melting temperature between 173 and 178 ° C.
  • the melting temperature of PLLA can be increased by approximately 50 ° C by mixing PLLA with PDLA, which then form a highly regular stereo-complex with greater crystallinity.
  • Semi-crystalline forms and their mixtures are described as “thermally resistant”.
  • each granule is composed of a mixture of the two polymers, which could be obtained by mixing the polymers in a "compounding screw".
  • the polymer having the highest melting point is chosen from the group consisting of aliphatic polyesters, copolyester compounds aromatic aliphatics, and aliphatic polyesters of the polyhydroxyalkanoate family, and mixtures thereof.
  • copolyesters are particularly preferred, and in particular polybutylenesuccinate.
  • polybutyleneadipateterephatalate preferably preferred (the proportions are chosen by a person skilled in the art according to his needs).
  • polyhydroxybutyrateco-valerate is particularly suitable.
  • the polymer at lower deflection temperature (which will also have lower melting and recrystallization temperatures than the other polymer) is chosen from the group consisting of polylactones, aromatic aliphatic copolyester compounds and d amorphous polylactic acid, and compounds of (polycaprolactone and compounds of amorphous PLA and PBAT).
  • polylactones e-polycaprolactones are particularly preferred.
  • the compounds of aromatic aliphatic copolyesters those formed by compounding polybutyleneadipateterephatalate and amorphous polylactic acid are preferred.
  • additives in polymers with a low melting point makes it possible to increase the recrystallization temperature.
  • additives are notably added to the extrusion screw at the same time as the polymer granules.
  • additives can be heterogeneous multiamides, such as N, N, 'N "- tricyclohexyl-1, 3,5-benzenetricarboxylamide, hydrazides, and in particular benoylhydrazydes, such as octomethylenedicarboxyliquedibenoylhydrazyde or decamethylenedicarboxyliquedibenoylhydrazides. low concentration (less than 1% by weight).
  • Talc calcium carbonate, microcrystalline cellulose or glycidylmethacrylate can also be used. These compounds can be added to concentrations ranging from 1% to 10% by weight, generally greater than or equal to 3% or even 4%, and less than or equal to 8%.
  • talc or calcium carbonate for their high industrial availability, their low cost, and also their ability to be so-called reinforcing fillers when their particle size is small, namely a large specific surface, measure in BET (ISO 9277) greater than 15 m 2 / g.
  • These fillers are used at concentrations typically less than 10%.
  • the method described above is particularly suitable for polymers having deflection temperatures which differ from at least 25 ° C, or even at least 30 ° C, or even at least 35 ° C, or even at least 40 ° C.
  • the film has two layers, the high deflection temperature layer being formed of polybutylene succinate and the lower deflection temperature layer being formed of talc additive polycaprolactones.
  • the film has more than two layers.
  • it comprises two layers at high deflection temperature, consisting respectively of polybutylenesuccinate, of a compound of an aromatic aliphatic copolyester and of polylactic acid (generally with thermal resistance) optionally additive with glycidyl methacrylate, the lower layer deflection temperature being formed of polycaprolactones with microcrystalline cellulose additive.
  • the present method is particularly advantageous for obtaining films which can be used for the packaging of fruit & vegetables, that is to say films which are waterproof, but which allow breathing (exchanges of water vapor and / or oxygen or C0 2 ) with the outside of the packaging, preventing fogging and good preservation of the products.
  • a layer PCL loaded with talc (which allows good nucleation / crystallization during cooling).
  • the films obtained have a water vapor transmission of between 200 and 1000 g / m 2 / 24h at 38 ° C. at 90% relative humidity (RH) and / or oxygen transmission between 2500 and 6000cm 3 / m 2 / 24h at 23 ° C at 50% relative humidity.
  • organic fillers are preferably used, in particular glycidyl methacrylate (ester of methacrylic acid and glycidol) as filler, which can also be added to the barrier film layer (at higher temperature deflection).
  • this charge is suitable when this layer is a compound containing thermally resistant PLA, since it also makes it possible to disperse the PLA phase in the phase of the other, the small size of the PLA in this layer allowing better transparency.
  • the method makes it possible to obtain a film which has a transmittance in the visible greater than 80%, preferably greater than 90%, or greater than 95% (400 to 800 nm), which means from 80%, 90% or 95% (respectively) of visible light passes through the film allowing good identification of food through the biodegradable multilayer film.
  • Films of various thicknesses can be made by the co-extrusion methods presented (inflation or flat extrusion). It is preferred when the total film thickness is 10 microns or more. Preferably, it does not exceed 200 microns.
  • the layer of polymer under high temperature deflection under load consists of 50% or more (up to 75%) of the film thickness. Consequently, the layer at the lowest deflection temperature under load consists of at most 50%, and generally at least 25% of the film thickness. These percentages remain valid for all the layers having the same deflection temperature properties under load, when the film contains several layers.
  • the invention also relates to a biodegradable multilayer film having and consisting of at least two layers of different polymers, which have a deflection temperature difference under load of at least 20 ° C., the polymer having the deflection temperature under lowest charge having been supplemented by addition of inorganic fillers or with organic agents so that its recrystallization point is increased.
  • these polymers are biodegradable, and are chosen in particular from those listed above.
  • this film is capable of being obtained by a method as described above.
  • the above films are particularly suitable for use in a flowpack packaging method, for the uses mentioned above, and in particular the packaging of fruits and vegetables.
  • Figure 1 evolution of the polymer module as a function of temperature. Dotted line: film A. Solid line: film B.
  • Figure 2 evolution of the conservation module as a function of temperature by dynamic mechanical analysis. Dotted line: film A. Solid line: film B.
  • the melting temperature and heat resistance (HDT B) are not correlated. Some examples are given in Table 1 above for some common biodegradable polymers.
  • thermal behavior over a temperature range is also not identical between 2 polymers with identical or very similar HDT B values ( Figure 1).
  • the multilayer film used to produce the packaging must have sufficient mechanical properties for machine passage, Flowpack for example, for storage and handling with the foodstuff during its life cycle, without deterioration of its integrity.
  • FIG. 2 thus shows that, for the same HDT B situated around 90/92 ° C., a polymer A (dotted lines) can prove to be much more rigid at ambient temperature than a polymer B (solid line).
  • polymer B which is more ductile, will have superior functionality due to its ability to resist moderate elongation (160% at break) during machine passage or handling, without immediately breaking, for a level of stress identical to polymer A, close to 25 MPa.
  • Polymer B can therefore be more suitable for industrial use than polymer A.
  • the multilayer inflation extrusion process has the advantage of retaining the barrier properties of each layer of the film, which would not be possible if the different polymeric materials were mixed in the same screw, since we would then change minimum the glass transition temperature (induced plasticization effect), and probably the free volume.
  • Messin et al (ACS Appl. Mater. Interfaces 2017, 9, 34, 29101-29112) report an improvement in permeability for multilayer films obtained by co-extrusion.
  • the coextruded film has 1 'advantage of having the mechanical and thermal properties of the 2 original polymers, with a high HDT B, and elongation properties of at least 150%.
  • the PBAT layer is not between the two layers of PBS which are overlapped.
  • the permeability properties of the most barrier polymer in single-layer film in 25 ⁇ m are given by the manufacturer to:
  • the water vapor permeability (WVTR) of such a biodegradable film is particularly advantageous because when used as flowpack packaging for fruits and vegetables, it will allow a good gas exchange, especially during temperature changes.
  • e-polycaprolactone alone layer with low melting point (HDT B around 50 ° C)
  • Polybutylenesuccinate alone layer with high melting point (HDT B around 95 ° C);
  • the coextruded film has the advantage of having very good mechanical properties and 2 layers with very different thermal behaviors, with an HDT B difference greater than 20 ° C.
  • the polymer having the highest HDT B will preferably be placed in the central layer of the film, but also with the possibility of being located on the outer layer. In all cases, the polymer having the lowest HDT B will be located on the inner layer or on the outer layer of the three-layer film.
  • the preceding three-layer coextruded film allows easy implementation in Flowpack.
  • Flowpack For example, on an ULMA ATLANTIS 23 industrial machine, it is advantageously used with the following operating conditions:
  • the layer with a low melting point therefore makes it possible to obtain the good welding qualities, with applications well above the Tf (50 ° C.), but below the Tf of one of the structural polymers (95 ° C).
  • the good transparency of the film is also noted, greatly improved by the structure extruded by inflation extrusion rather than in monolayer.
  • the coextruded film has a transmittance in the visible greater than 95% (400 to 800 nm); 95% of visible light passes through the film allowing good identification of food through the biodegradable multilayer film.
  • a film A obtained by monolayer extrusion by mixing 3 materials has an average transmittance of 75% in the visible range
  • a three-layer film B film obtained according to the method according to the invention, and comprising the same isocomposition polymers has a transmittance greater than 80%.

Abstract

The invention relates to a biodegradable plastic film that can be used in flow pack type packaging methods, having at least two layers, formed of at least two different polymer materials having a difference in deflection temperature under load, and also to a method for manufacturing such a film.

Description

FILM BIODEGRADABLE A COUCHES MULTIPLES  MULTI-LAYER BIODEGRADABLE FILM
L’invention se rapporte à un film plastique biodégradable utilisable dans des procédés de packaging type flowpack, présentant au moins deux couches, et aux moins deux matériaux polymères différents, ainsi qu’à un procédé de fabrication d’un tel film. The invention relates to a biodegradable plastic film usable in flowpack-type packaging processes, having at least two layers, and at least two different polymeric materials, as well as to a process for manufacturing such a film.
Le système d’emballage « flowpack » consiste en l’obtention d’un emballage hermétique dans lequel le rouleau de film plastique enveloppe le produit. Il est utilisé dans l’industrie agroalimentaire notamment pour l’emballage des fruits et légumes frais, la biscuiterie, la confiserie, l’emballage du chocolat, des herbes aromatiques, d’épices ou de salaison, mais trouve également des applications dans le domaine des cosmétiques, des produits pharmaceutiques, de la communication (cartes, gadgets, produits imprimés...) ou de l’industrie (stylos, cutter...). The flowpack packaging system consists of obtaining an airtight packaging in which the roll of plastic film wraps the product. It is used in the food industry in particular for the packaging of fresh fruits and vegetables, biscuits, confectionery, the packaging of chocolate, aromatic herbs, spices or salting, but also finds applications in the field cosmetics, pharmaceuticals, communication (cards, gadgets, printed products ...) or industry (pens, cutter ...).
Ce système d’emballage sert autant à emballer des produits en barquettes que des produits en vrac. Il est particulièrement adapté au conditionnement de produits à l’unité ou en petite quantité, notamment des échantillons, ou des sous- emballages dans des emballages cartons (biscuiterie, confiserie...) ou en cellulose moulée.  This packaging system is used to package products in trays as well as bulk products. It is particularly suitable for packaging single or small quantities of products, in particular samples, or sub-packaging in cardboard packaging (cookies, confectionery ...) or in molded cellulose.
Il s’agit essentiellement de former une gaine autour du produit en réalisant une soudure longitudinale et de fermer le film par soudure des extrémités du sachet. Les soudures de tête, de pied et dorsale sont généralement des soudures gaufrées.  It is essentially a question of forming a sheath around the product by carrying out a longitudinal weld and of closing the film by welding of the ends of the sachet. The head, foot and back welds are generally embossed welds.
Ce mode d’emballage en continu peut être utilisé à haute cadence et présente un faible coût de revient.  This continuous packaging method can be used at high speed and has a low cost price.
On peut utiliser des films à couche barrière pour les produits alimentaires périssables ou ceux ayant une longue durée de conservation, et pour les produits emballés dans une atmosphère modifiée ou sous vide.  Barrier films can be used for perishable food products or those with a long shelf life, and for products packaged in a modified atmosphere or vacuum.
Les films utilisés à ce jour pour les applications « flowpack » sont essentiellement à base de matières fossiles, comme par exemple des films multicouches constitués de PE/PA (Polyéthylène/polyamide), PE/PP (Polyéthylène/polypropylène), PE/EVOH/PP (Polyéthylène/Ethylène alcool vinylique/polypropylène), PA/EVOH/PP (polyamide/Ethylène alcool vinylique/polypropylène), et ne sont pas recyclables ou biodégradables. Les films Flowpack actuels pour le conditionnement de fruits et légumes sont principalement des films BOPP (polypropylène bi-orienté) coextrudés. Certains sont microperforés laser pour apporter la respiration. D’autres solutions sont des films laminés PET/PE (polyester / polyéthylène), dans lesquels le polyester apporte la tenue thermique et le PE la soudure. Un des problèmes de ces films est l’obligation de microperforation pour permettre la respiration, ces plastiques étant essentiellement complètement étanches et hermétiques. The films used to date for flowpack applications are essentially based on fossil materials, such as for example multilayer films made of PE / PA (Polyethylene / polyamide), PE / PP (Polyethylene / polypropylene), PE / EVOH / PP (Polyethylene / Ethylene vinyl alcohol / polypropylene), PA / EVOH / PP (polyamide / Ethylene vinyl alcohol / polypropylene), and are not recyclable or biodegradable. Current Flowpack films for fruit and vegetable packaging are mainly coextruded BOPP films. Some are laser microperforated to provide breathing. Other solutions are PET / PE (polyester / polyethylene) laminated films, in which the polyester provides thermal resistance and the PE the weld. One of the problems with these films is the requirement for microperforation to allow breathing, these plastics being essentially completely waterproof and hermetic.
Grâce à leurs performances et à leurs propriétés spécifiques, les bioplastiques biodégradables pénètrent avec succès certains marchés de niche comme de masse : ainsi, les sacs, notamment de fruits et légumes, ou les films de paillage sont aujourd’hui essentiellement biodégradables. Thanks to their performance and their specific properties, biodegradable bioplastics successfully penetrate certain niche and mass markets: bags, in particular fruit and vegetables, or mulch films are today essentially biodegradable.
Malheureusement, ces matériaux sont encore peu utilisés pour l’emballage de produits alimentaires, et ce probablement à cause de leurs propriétés physico- chimiques (scellabilité, propriétés thermiques, propriétés barrière...) peu adaptées lorsqu’ils sont mis en oeuvre en mono-matériaux. Même si des additifs commencent à être développés sur certaines matrices par des industriels ou des universités, ils ne sont pas nécessairement adaptés aux contraintes du marché ou de la filière industrielle.  Unfortunately, these materials are still little used for the packaging of food products, and this probably because of their physicochemical properties (sealability, thermal properties, barrier properties, etc.) which are unsuitable when they are used in mono. -materials. Even if additives are starting to be developed on certain matrices by industrialists or universities, they are not necessarily adapted to the constraints of the market or the industrial sector.
Il convient donc de développer des nouveaux films biodégradables permettant de remplacer les films composites multicouches utilisés à ce jour qui sont composés de différentes matières d’origine fossile (ni biodégradables ni recyclables), afin de pouvoir notamment produire des emballages alimentaires par la méthode flowpack. It is therefore advisable to develop new biodegradable films making it possible to replace the multilayer composite films used to date which are composed of different materials of fossil origin (neither biodegradable nor recyclable), in order to be able in particular to produce food packaging by the flowpack method.
La demande de brevet JP 2004114582 décrit une méthode de fabrication d'un film d'emballage présentant au moins deux couches de polymères différents. Ces films (PET et PEN) ont un écart de température de fléchissement sous charge d'au moins 20°C, et la fabrication est effectuée par co-extrusion à plat. Des particules inorganiques sont ajoutées dans ce qui est appelé « polyester resin raw material », c’est-à-dire la couche (C) de PEN, qui présente la température de fléchissement sous charge la plus élevée. Par ailleurs, les polymères utilisés dans cette demande de brevet (PET et PEN) ne sont pas biodégradables. W02009014313A1 décrit un film stratifié biodégradable orienté biaxialement et orienté biaxialement comprenant au moins une première couche de résine et au moins une seconde couche de résine qui sont stratifiées ensemble alternativement, les première et seconde couches de résine contenant comme composants principaux respectivement un polymère à base d'acide polylactique et une résine aromatique à base de polyester, qui présentent une biodégradabilité, flexibilité, propriété barrière aux gaz et résistance thermique accrues, utiles pour un emballage écologique. Patent application JP 2004114582 describes a method of manufacturing a packaging film having at least two layers of different polymers. These films (PET and PEN) have a deflection temperature difference under load of at least 20 ° C, and the production is carried out by flat co-extrusion. Inorganic particles are added to what is called "polyester resin raw material", that is to say the layer (C) of PEN, which exhibits the highest deflection temperature under load. Furthermore, the polymers used in this patent application (PET and PEN) are not biodegradable. WO2009014313A1 describes a biaxially oriented and biaxially oriented biodegradable laminated film comprising at least a first layer of resin and at least a second layer of resin which are laminated together alternately, the first and second layers of resin containing as main components respectively a polymer based on polylactic acid and a polyester-based aromatic resin, which exhibit biodegradability, flexibility, increased gas barrier property and thermal resistance, useful for ecological packaging.
WO2017207662A1 se rapporte à un film thermoplastique multicouche thermorétractable, faisant barrière aux gaz, apte à la fabrication d'emballages et comprenant une première couche d'étanchéité extérieure, une deuxième couche de polyester extérieure, une couche barrière intérieure, pas de couche(s) intérieure(s) de polyamide ou de polyester, pas de couches de polyoléfine placées entre la couche barrière et la couche d'étanchéité et au moins une couche en vrac de polyoléfine d'épaisseur relative spécifique placée entre la couche barrière intérieure et la couche polyester extérieure.  WO2017207662A1 relates to a heat-shrinkable multilayer thermoplastic film which forms a barrier to gases, suitable for the manufacture of packaging and comprising a first outer sealing layer, a second outer polyester layer, an inner barrier layer, no layer (s) polyamide or polyester inner (s), no polyolefin layers placed between the barrier layer and the sealing layer and at least one bulk polyolefin layer of specific relative thickness placed between the inner barrier layer and the polyester layer outside.
Ces films biodégradables doivent être constitués d’au moins deux couches de polymères différents : These biodegradable films must consist of at least two layers of different polymers:
Une couche de structure qui permet d’obtenir la rigidité souhaitée, la résistance mécanique, et qui peut déterminer la façon dont l’emballage se déchirera. Cette couche fournit les propriétés mécaniques globales de l’emballage. Elle présente généralement un haut point de fusion, et une tenue au fléchissement à la température (aussi appelée HDT) élevée. A layer of structure that achieves the desired stiffness, mechanical strength, and that can determine how the package will tear. This layer provides the overall mechanical properties of the package. It generally has a high melting point, and a high resistance to flexing at temperature (also called HDT).
Une couche de soudure, qui est destinée à permettre de fermer le film par soudure. Cette couche devra présenter un bas point de fusion, afin que la température de soudure ne mène pas à la fusion de la couche de structure, et ainsi au maintien de l’intégrité de la couche de structure. A layer of solder, which is intended to allow the film to be closed by soldering. This layer should have a low melting point, so that the welding temperature does not lead to the melting of the structural layer, and thus to the maintenance of the integrity of the structural layer.
La capacité, pour un emballage, d’être utilisé dans la technologie Flowpack, réside dans son aptitude à être soudé et découpé à haute cadence, et en continu. Pour cela, le film doit posséder une couche de polymère assurant la fonction de soudure, et une ou plusieurs autres couches dites de structure, permettant une découpe efficace et nette de chaque pack. Cette ou ces couches doivent être suffisamment rigides pour assurer le maintien du film lors de son passage dans la machine Flowpack, et ne pas fondre lors de la réalisation de la soudure, ce qui entraînerait des bavures ou la rupture de la soudure : l’emballage perdrait alors son intégrité et sa fonctionnalité. The ability for a package to be used in Flowpack technology lies in its ability to be welded and cut at high speed, and continuously. For this, the film must have a layer of polymer ensuring the sealing function, and one or more other so-called structural layers, allowing an effective and clean cutting of each pack. This or these layers must be rigid enough to maintain the film during its passage through the Flowpack machine, and not melt during the production of the weld, which would cause burrs or rupture of the seal: the packaging would then lose its integrity and functionality.
Ainsi, les deux polymères doivent présenter :  Thus, the two polymers must have:
Une différence dans la température de fusion pour permettre la soudure Une différence de HDT (tenue au fléchissement à la température), afin que le film puisse être utilisé dans la méthode flowpack sans qu’il ne s’affaisse sur lui-même. En particulier, la couche de structure doit présenter un HDT élevé pour que les propriétés mécaniques soient maintenues pendant les opérations de soudure.  A difference in the melting temperature to allow welding A difference in HDT (resistance to deflection at temperature), so that the film can be used in the flowpack method without it collapsing on itself. In particular, the structural layer must have a high HDT so that the mechanical properties are maintained during the welding operations.
Des températures de recristallisation qui soient le plus proche possible pour éviter les phénomènes de « curling » lors de la production du film multicouche, c’est-à-dire l’incurvation d’une couche (couche à haute température de cristallisation) par rapport à l’autre couche si la recristallisation de cette autre couche (induisant une rétractation du film) s’opère à une température trop éloignée de celle de la couche à haute température de cristallisation.  Recrystallization temperatures which are as close as possible to avoid the phenomena of “curling” during the production of the multilayer film, that is to say the bending of a layer (layer at high crystallization temperature) relative to to the other layer if the recrystallization of this other layer (inducing a shrinkage of the film) takes place at a temperature too far from that of the layer at high crystallization temperature.
La tenue au fléchissement à la température (aussi appelée HDT, température de fléchissement sous charge, ou température de distorsion thermique) est une caractéristique d’un film qui est connue dans l’art et qui est mesurée par des méthodes normées. Il s’agit de la température à partir de laquelle des échantillons normés soumis à l’action d’une charge donnée subissent une déformation conventionnelle (commencent à ramollir). Il est préféré d’utiliser la norme internationale ISO 75-2, utilisant des charges de 0,45 MPa (méthode B). On peut ainsi caractériser un film par la HDTB (température de fléchissement sous charge mesurée par la méthode B de la norme précitée). Cette constante dépendant du matériau (et de la normé utilisée pour la mesure) peut donc être considérée comme reflétant la « rigidité » du matériau au fur et à mesure que la température augmente. The deflection resistance at temperature (also called HDT, deflection temperature under load, or temperature of thermal distortion) is a characteristic of a film which is known in the art and which is measured by standardized methods. This is the temperature at which normalized samples subjected to the action of a given load undergo conventional deformation (begin to soften). It is preferred to use the international standard ISO 75-2, using loads of 0.45 MPa (method B). We can thus characterize a film by HDTB (deflection temperature under load measured by method B of the aforementioned standard). This material-dependent constant (and the norm used for the measurement) can therefore be considered to reflect the “rigidity” of the material as the temperature increases.
Industriellement, on utilise un test normatif dit de température de fléchissement sous charge (HDT) : l’éprouvette est placée sur deux appuis distants de 100 mm dans un four dont la montée en température est programmée à 2 °C/min. La charge de flexion est appliquée sur la partie supérieure de l’échantillon à l’aide d’un poinçon. La norme internationale ISO 75-2, utilisée pour caractériser les plastiques et ébonites, demande des charges de 0,45 MPa (méthode HDT B). Le fléchissement le plus faible est de 0,25 mm. On peut utiliser l’outil de DMA (Dynamic Mechanical Analyser), et suivre l’évolution de conservation du module élastique sous une rampe de température : on enregistre donc la capacité de résistance du matériau sur une large plage thermique, potentiellement jusqu’à la fusion du polymère, et on lit la valeur de HDT B lorsque la contrainte arrive à 0,45 MPa. Ce protocole et cet outil sont donc plus informatifs, et plus riches que le test ISO référent. Industrially, a normative test known as deflection temperature under load (HDT) is used: the test piece is placed on two supports 100 mm apart in an oven whose temperature rise is programmed at 2 ° C / min. The bending load is applied to the upper part of the sample using a punch. The international standard ISO 75-2, used to characterize plastics and ebonites, requires charges of 0.45 MPa (HDT B method). The the lowest deflection is 0.25 mm. We can use the DMA (Dynamic Mechanical Analyzer) tool, and follow the evolution of conservation of the elastic module under a temperature ramp: we therefore record the resistance capacity of the material over a wide thermal range, potentially up to the melting of the polymer, and the value of HDT B is read when the stress reaches 0.45 MPa. This protocol and this tool are therefore more informative, and richer than the referent ISO test.
La présente invention fournit une méthode pour fabriquer un film pour l’emballage alimentaire présentant au moins une des caractéristiques suivantes : a. Être biodégradable dans des conditions de compostage industriel, conforme à la norme EN 13432 (voir ci-après) : la gestion de cet emballage après usage se fait alors légitimement dans la poubelle des déchets ménagers fermentescibles, sans besoin d’incinération ni problématique de recyclage. The present invention provides a method for manufacturing a film for food packaging having at least one of the following characteristics: a. Be biodegradable under industrial composting conditions, in accordance with standard EN 13432 (see below): the management of this packaging after use is then legitimately done in the trash of fermentable household waste, without the need for incineration or the problem of recycling .
b. Être composé de plusieurs matériaux et présenter au moins deux couches : l’une des couches du film possède un point de fusion plus bas que l’autre ou les autres, et les polymères présentent un écart de HDT B d’au moins 20 °C. Cet écart thermique facilite le passage machine lors du conditionnement, avec une technologie Flowpack par exemple pour les Fruits et Légumes. En effet, la couche à bas point de fusion permet la soudure de l’emballage autour de l’aliment, tandis que la ou les couches de plus haut point de fusion assurent la structure et la cohésion de l’emballage, permettant aussi une découpe efficace et nette entre chaque pack.  b. Be composed of several materials and have at least two layers: one of the film layers has a lower melting point than the other or the others, and the polymers have a HDT B difference of at least 20 ° C . This thermal difference facilitates machine passage during packaging, with Flowpack technology for example for Fruits and Vegetables. Indeed, the layer with low melting point allows the packaging to be welded around the food, while the layer (s) with the highest melting point ensure the structure and cohesion of the packaging, also allowing cutting efficient and clean between each pack.
c. préférentiellement posséder une transparente suffisante de façon à ce que l’aliment puisse être reconnu au travers de l’emballage, tant par le consommateur que lors du passage en caisse.  vs. preferably have sufficient transparency so that the food can be recognized through the packaging, both by the consumer and during checkout.
d. posséder des propriétés mécaniques suffisantes pour l’usage envisagé, et notamment pour résister aux contraintes lors de son utilisation, de sa manipulation et du stockage.  d. have sufficient mechanical properties for the intended use, and in particular to withstand the stresses during its use, handling and storage.
e. préférentiellement permettre une respiration contrôlée des aliments par un ajustement des propriétés barrière (vapeur d’eau et/ou oxygène), fonction des aliments conditionnés et de leur cycle industriel (par exemple, éviter la création de points de rosée). La transmission de vapeur d’eau (WVTR) ou d’oxygène (OTR) permet de mesurer la perméabilité d’un film. Elles peuvent être mesurées par des méthodes connues dans l’art, comme par exemple avec les normes ASTM E96, DIN 53122 ou ISO 2528 pour le WVTR, et les normes ASTMD3985, ASTM F 1927, DIN 53380-3 ou JIS K-7126 pour l’OTR. e. preferably allow controlled breathing of food by adjusting the barrier properties (water vapor and / or oxygen), depending on the packaged food and its industrial cycle (for example, avoiding the creation of dew points). The transmission of water vapor (WVTR) or oxygen (OTR) makes it possible to measure the permeability of a film. They can be measured by methods known in the art, such as with standards ASTM E96, DIN 53122 or ISO 2528 for WVTR, and standards ASTMD3985, ASTM F 1927, DIN 53380-3 or JIS K-7126 for the OTR.
Par « biodégradable », on entend dans le cadre de la présente invention toute dégradation biologique, physique et/ou chimique, au niveau moléculaire, des substances par l'action de facteurs environnementaux (en particulier des enzymes issues des processus de métabolisme des microorganismes). De nombreuses définitions ont été adoptées concernant la biodégradation (ISO 472-1998, ASTM sous-comité D20-96, DIN 103.2-1993), en fonction des organismes de normalisation, des techniques de mesure de la biodégradabilité et du milieu de dégradation. Un consensus s’est toutefois dégagé pour dire que la biodégradation peut être définie comme étant la décomposition de matières organiques en gaz carbonique, eau, biomasse et/ou méthane sous l’action de micro-organismes (bactéries, enzymes, champignons). Ainsi, ce terme est connu dans l’art et les polymères peuvent être classés selon leur biodégradabilité ou non. En particulier, certains polymères fossiles sont clairement non biodégradables. By “biodegradable” is meant in the context of the present invention any biological, physical and / or chemical degradation, at the molecular level, of substances by the action of environmental factors (in particular enzymes derived from the metabolism processes of microorganisms) . Many definitions have been adopted for biodegradation (ISO 472-1998, ASTM subcommittee D20-96, DIN 103.2-1993), depending on the standardization bodies, techniques for measuring biodegradability and the degradation medium. However, a consensus has emerged that biodegradation can be defined as the decomposition of organic matter into carbon dioxide, water, biomass and / or methane under the action of microorganisms (bacteria, enzymes, fungi). Thus, this term is known in the art and polymers can be classified according to their biodegradability or not. In particular, some fossil polymers are clearly non-biodegradable.
On peut citer la norme EN 13432 qui définit les exigences relatives aux emballages biodégradables valorisable en compostage industriel, à utiliser dans le cadre du domaine de l’invention. Les critères d’évaluation au sens de ladite norme sont les suivants :  Mention may be made of standard EN 13432 which defines the requirements relating to biodegradable packaging which can be reused in industrial composting, to be used within the scope of the invention. The evaluation criteria within the meaning of said standard are as follows:
- le matériau soumis à l’essai doit contenir un minimum de 50% de solides volatils  - the material subjected to the test must contain a minimum of 50% of volatile solids
- la concentration des substances toxiques et dangereuses identifiées dans la norme (Zn, Cu, Ni, Cd, Pb, Hg, Cr, Mo, Se, As, Fe) doit être inférieure au seuil indiqué dans cette dernière  - the concentration of toxic and dangerous substances identified in the standard (Zn, Cu, Ni, Cd, Pb, Hg, Cr, Mo, Se, As, Fe) must be lower than the threshold indicated in the latter
- la biodégradabilité doit être déterminée pour chaque matériau d’emballage ou chaque constituant organique significatif du matériau d’emballage, par significatif on entend tout constituant organique représentant plus de 1 % de la masse à sec de ce matériau  - the biodegradability must be determined for each packaging material or each significant organic component of the packaging material, by significant is meant any organic component representing more than 1% of the dry mass of this material
- la proportion totale de constituants organiques dont la biodégradabilité n’est pas déterminée ne doit pas dépasser 5% - chaque matériau soumis à l’essai doit être biodégradable de façon inhérente et ultime comme démontré par les essais en laboratoire (identiques à celui de l’ISO 14851 : 1999 et 14852 : 1999) et doit être conforme aux critères et aux niveaux d’acceptation suivants : en milieu aérobie, le pourcentage de biodégradation du matériau d’essai doit être égal à 90% au total au moins ou à 90% de la dégradation maximale d’une substance de référence appropriée une fois qu’un plateau a été atteint tant pour le matériau d’essai que pour la substance de référence (par exemple cellulose). La durée de l’essai doit être au maximum de 6 mois. En milieu anaérobie, la période de l’essai doit être au maximum de 2 mois et le pourcentage de biodégradation fondé sur la production de biogaz doit être supérieur ou égal à 50% de la valeur théorique applicable au matériau d’essai. - the total proportion of organic constituents whose biodegradability is not determined must not exceed 5% - each material subjected to the test must be inherently and ultimately biodegradable as demonstrated by laboratory tests (identical to that of ISO 14851: 1999 and 14852: 1999) and must comply with the criteria and levels of following acceptance: in aerobic environment, the percentage of biodegradation of the test material must be at least 90% in total or at least 90% of the maximum degradation of an appropriate reference substance once a plateau has been reached both for the test material and for the reference substance (eg cellulose). The duration of the test must be a maximum of 6 months. In an anaerobic environment, the test period must be a maximum of 2 months and the percentage of biodegradation based on the production of biogas must be greater than or equal to 50% of the theoretical value applicable to the test material.
- chaque matériau soumis à l’essai doit se désintégrer au cours d’un processus biologique de traitement des déchets : après un processus de compostage de 12 semaines au plus, un maximum de 10% de la masse sèche initiale du matériau soumis à un essai de tamisage peut faire l’objet d’un refus pour un vide de maille de 2 mm.  - each material subjected to the test must disintegrate during a biological waste treatment process: after a composting process of 12 weeks at most, a maximum of 10% of the initial dry mass of the material subjected to the test sieving can be refused for a mesh vacuum of 2 mm.
- le compost final doit satisfaire aux exigences européennes ou à défaut aux exigences nationales relatives à la qualité du compost.  - the final compost must meet European requirements or, failing this, national requirements relating to the quality of the compost.
Un certain nombre de polymères et notamment ceux cités ci-dessous remplissent les conditions de cette norme et sont donc des polymères biodégradables, de façon générale, et plus particulièrement en lien avec la norme EN 13432.  A certain number of polymers and in particular those mentioned below meet the conditions of this standard and are therefore biodegradable polymers, in general, and more particularly in connection with standard EN 13432.
Dans un premier aspect, l’invention se rapporte ainsi à une méthode de fabrication d’un film biodégradable présentant au moins deux couches de polymères biodégradables différents, qui ont un écart de température de fléchissement sous charge d’au moins 20°C, caractérisée en ce que la fabrication est effectuée par co-extrusion et que le polymère présentant la température de fléchissement sous charge la plus basse a été supplémenté par addition de charges inorganiques ou par des agents organiques de telle sorte que sa température de recristallisation soit augmentée. In a first aspect, the invention thus relates to a method of manufacturing a biodegradable film having at least two layers of different biodegradable polymers, which have a deflection temperature difference under load of at least 20 ° C, characterized in that the manufacture is carried out by co-extrusion and that the polymer having the lowest deflection temperature under load has been supplemented by addition of inorganic fillers or with organic agents so that its recrystallization temperature is increased.
Le terme co-extrusion signifie que chaque couche de polymère du film a été extrudée dans une vis indépendante.  The term co-extrusion means that each layer of polymer in the film has been extruded in an independent screw.
Dans un mode de réalisation préférée, la co-extrusion est une extrusion gonflage. Dans un autre mode de réalisation, la co-extrusion est une extrusion à plat. In a preferred embodiment, the co-extrusion is an inflation extrusion. In another embodiment, the co-extrusion is a flat extrusion.
Ainsi que vu plus haut, les deux polymères doivent avoir une différence de température de fléchissement sous charge d’au moins 20°C, afin de pouvoir être utilisés dans des méthodes d’emballage flowpack. Toutefois, on observe qu’une telle différence de température de fléchissement sous charge induit également une différence de température de recristallisation (point de recristallisation) (le polymère à plus faible température de fléchissement présente également un point de fusion plus bas et une température de recristallisation plus faible) qui peut mener au phénomène de « curling » décrit plus haut. Ainsi, on supplémente le polymère avec des charges telles que définies ci-dessus et plus bas. Les Déposantes ont en effet montré que l’addition de telles charges permet de modifier (augmenter) la température de recristallisation du polymère, et ainsi de permettre la fabrication du film multicouche sans effet de curling. As seen above, the two polymers must have a deflection temperature difference under load of at least 20 ° C, in order to be used in flowpack packaging methods. However, it is observed that such a difference in deflection temperature under load also induces a difference in recrystallization temperature (recrystallization point) (the polymer at lower deflection temperature also has a lower melting point and a recrystallization temperature weaker) which can lead to the phenomenon of "curling" described above. Thus, the polymer is supplemented with fillers as defined above and below. The Applicants have in fact shown that the addition of such fillers makes it possible to modify (increase) the recrystallization temperature of the polymer, and thus to allow the manufacture of the multilayer film without the curling effect.
On peut aussi noter que, du fait notamment de ses composants et de la méthode de fabrication, le film obtenu est un film plastique biodégradable, que l’on peut également qualifier de plastique, ou thermoplastique.  It can also be noted that, due in particular to its components and the manufacturing method, the film obtained is a biodegradable plastic film, which can also be described as plastic, or thermoplastic.
Les exemples montrent qu’il n’est pas besoin d’augmenter drastiquement la température de recristallisation du polymère à bas point de fusion, mais qu’une augmentation de 10°C, de préférence de 12°C ou plus, de façon préférée de 14°C ou plus, de façon encore plus préféré de 15°C ou plus peut s’avérer suffisante.  The examples show that there is no need to drastically increase the recrystallization temperature of the low-melting polymer, but that an increase of 10 ° C, preferably 12 ° C or more, preferably 14 ° C or more, even more preferably 15 ° C or more may be sufficient.
La fabrication est préférentiellement effectuée par extrusion gonflage. L'extrusion gonflage est un procédé connu de transformation en continu, dans lequel les granulés (compound) entrent dans un tube (extrudeuse) chauffé muni d’une vis sans fin. Ces granulés peuvent être d’un seul type ou de plusieurs types lorsque l’on veut réaliser un mélange. La matière homogénéisée est poussée, comprimée, puis passe à travers une filière. Le polymère ainsi formé est alors dilaté avec de l'air comprimé en sortie d’extrudeuse / filière. La sortie de l’extrudeuse est généralement verticale notamment pour des questions d’espace, et éviter que le film ne soit déséquilibré du fait de la gravité. On insuffle de l’air comprimé dans la matière fondue qui se gonfle et s’élève verticalement en une longue bulle de film. Après refroidissement, des rouleaux aplatissent le film en une gaine plane qui est refroidie et enroulée sur des bobines. Cette méthode est bien connue pour l’obtention des films utilisés dans la fabrication d’emballages, de sacs-poubelles, de sacs de congélation, des poches médicales pour perfusion et des feuilles souples et fines de revêtements pour serres horticoles. The manufacturing is preferably carried out by inflation extrusion. Extrusion inflation is a known process of continuous transformation, in which the granules (compound) enter a heated tube (extruder) provided with a worm. These granules can be of a single type or of several types when it is desired to produce a mixture. The homogenized material is pushed, compressed, then passes through a die. The polymer thus formed is then expanded with compressed air at the outlet of the extruder / die. The outlet of the extruder is generally vertical in particular for reasons of space, and to prevent the film from being unbalanced due to gravity. Compressed air is blown into the molten material which swells and rises vertically in a long bubble of film. After cooling, rollers flatten the film into a flat sheath which is cooled and wound on reels. This method is well known for obtaining films used in the manufacture of packaging, garbage bags, freezer bags, medical bags for infusion and flexible and thin sheets of coatings for horticultural greenhouses.
Lors de la mise en oeuvre par extrusion gonflage, le polymère est à l’état fondu dans la vis et la tête d’extrusion : en sortie de filière, il est encore au-dessus de sa Tf (température de fusion), et peut être déformé (étiré et gonflé) jusqu’à atteindre sa Te (température de recristallisation). Il acquiert alors un état figé et ne peut quasiment plus être déformé. Les températures de recristallisation des polymères sont aussi des paramètres intrinsèques.  During processing by inflation extrusion, the polymer is in the molten state in the screw and the extrusion head: at the outlet of the die, it is still above its Tf (melting temperature), and can be deformed (stretched and swollen) until reaching its Te (recrystallization temperature). It then acquires a frozen state and can almost no longer be deformed. The recrystallization temperatures of the polymers are also intrinsic parameters.
Dans le principe de réalisation de films multicouches, la filière est alimentée par plusieurs extrudeuses mono-vis, chaque vis pouvant convoyer une ou plusieurs matières : cette technologie permet donc de superposer des couches de matières différentes, et d’assembler finalement leurs propriétés pour conférer à l’emballage final les caractéristiques indispensables à sa fonction, telles que la scellabilité, la rigidité, les propriétés de barrière...  In the principle of producing multilayer films, the die is fed by several single-screw extruders, each screw being able to convey one or more materials: this technology therefore makes it possible to superimpose layers of different materials, and finally to assemble their properties to confer in the final packaging the characteristics essential to its function, such as sealability, rigidity, barrier properties ...
Il convient de noter que, dans ce procédé de co-extrusion, on peut utiliser le même polymère dans plusieurs vis différentes, afin de former des couches superposées composées d’un même polymère. Cette structure peut être vérifiée par analyse d’une coupe du film, notamment par microscopie.  It should be noted that, in this co-extrusion process, the same polymer can be used in several different screws, in order to form superimposed layers composed of the same polymer. This structure can be verified by analysis of a section of the film, in particular by microscopy.
Chaque vis est réglée en débit et en profil de températures selon le polymère travaillé, indépendamment des autres vis ; en effet, chaque polymère possède sa propre température de transformation, fonction de sa température de fusion. La place de chaque vis d’extrusion permettra aussi de déterminer quelle couche sera à l’intérieur de la bulle, et quelle couche sera à l’extérieur.  Each screw is adjusted in flow rate and temperature profile according to the polymer worked, independently of the other screws; indeed, each polymer has its own transformation temperature, a function of its melting temperature. The location of each extrusion screw will also determine which layer will be inside the bubble, and which layer will be outside.
Par exemple, et concernant les polymères biodégradables, il est connu que la transformation des copolyesters type PBAT (polybutylèneadipate téréphtalate) ou PBS (poly(butylène succinate)) se réalise vers 140 °C, tandis que la mise en oeuvre des polycaprolactones type PCL (e-polycaprolactone), plutôt vers 100 °C, et celle des PLA (acide polylactique) au-dessus de 160 °C.  For example, and concerning biodegradable polymers, it is known that the transformation of copolyesters type PBAT (polybutyleneadipate terephthalate) or PBS (poly (butylene succinate)) is carried out at around 140 ° C., while the use of polycaprolactones type PCL ( e-polycaprolactone), rather around 100 ° C, and that of PLA (polylactic acid) above 160 ° C.
Ainsi que vu plus haut, la difficulté réside dans le refroidissement isotrope des différents produits : la recristallisation des différentes matières peut engendrer des phénomènes de torsion du film (curling), qui rendent le produit inapte à son usage ultérieur. Il convient également de veiller à la compatibilité d’interface des différentes couches pour prévenir une délamination d’une des couches du film. Le tableau ci-dessous donne les valeurs de Te pour quelques polymères biodégradables, refroidis dans des conditions cinétiques rapides. As seen above, the difficulty lies in the isotropic cooling of the various products: the recrystallization of the various materials can generate phenomena of film twisting (curling), which render the product unsuitable for its subsequent use. It is also important to ensure the interface compatibility of the different layers to prevent delamination of one of the layers of the film. The table below gives the Te values for some biodegradable polymers, cooled under rapid kinetic conditions.
[Tableau 1]  [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
Températures de fusion et de tenue au fléchissement à la température et de recristallisation n.d : non donné.  Melting temperatures and resistance to deflection at temperature and recrystallization n.d: not given.
On rappelle que les films utilisés sont biodégradables, et peuvent être d’origine fossile, c’est-à-dire une matière plastique et, notamment une matière thermoplastique. Il peut être choisi dans le groupe constitué des polyesters aliphatiques, des polyesters aliphatiques aromatiques, des co-polyesters aliphatiques - aromatiques et notamment des copolyesters de butanediol-acides adipique et téréphtalique, des poly-amides, des polyesters - amides, des poly- éthers, des polyesters - éthers - amides, polyesters - uréthanes, polyesters - urées et de leurs mélanges. It will be recalled that the films used are biodegradable, and can be of fossil origin, that is to say a plastic material, and in particular a thermoplastic material. It can be chosen from the group consisting of aliphatic polyesters, aromatic aliphatic polyesters, aliphatic-aromatic co-polyesters and in particular copolyesters of butanediol-adipic and terephthalic acids, polyamides, polyester-amides, polyethers , polyesters - ethers - amides, polyesters - urethanes, polyesters - ureas and their mixtures.
On peut aussi utiliser des polymères biodégradables d’origine microbienne ou végétale, plutôt qu’un polymère d’origine fossile. Ce polymère est alors notamment choisi dans le groupe constitué de l’acide polylactique (PLA) ou des polymères microbiens tels que des polyalcanoates du type polybutyrate (PHB), polyvalérate (PHV), ou polyhydroxybutyratevalérate (PHBV). On peut également utiliser un polymère de la famille des lactones et polycaprolactones, ou des mélanges de polymères d’origine microbienne et d’origine fossile. Les polymères poly-e- caprolactone, polyéthylène et polybutylène-succinate, polyhydroxybutyrate- hydroxyvalérate, acide polylactique, polyalkylène-adipate, polyalkylène-adipate- succinate, polyalkylène-adipate-caprolactame, polyalkylène-adipate-e- caprolactone, polyadipate de diglycidyléther-diphénol, poly-e-caprolactone/e- caprolactame, polybutylèneadipate-co-téréphthalate, polyalkylène-sebacate, polyalkylène-azelate, leurs copolymères, et leurs mélanges sont également utilisables dans le cadre de la présente invention. Biodegradable polymers of microbial or vegetable origin can also be used, rather than a polymer of fossil origin. This polymer is then chosen in particular from the group consisting of polylactic acid (PLA) or microbial polymers such as polyalkanoates of the polybutyrate (PHB), polyvalerate (PHV), or polyhydroxybutyratevalerate (PHBV) type. It is also possible to use a polymer from the family of lactones and polycaprolactones, or mixtures of polymers of microbial origin and of fossil origin. Polymers poly-e-caprolactone, polyethylene and polybutylene-succinate, polyhydroxybutyrate-hydroxyvalerate, polylactic acid, polyalkylene-adipate, polyalkylene-adipate- succinate, polyalkylene adipate-caprolactam, polyalkylene adipate-e- caprolactone, diglycidyl ether-diphenol polyadipate, poly-e-caprolactone / e- caprolactam, polybutylene adipate-co-terephthalate, polyalkylene-sebacate, polyalkylene, polyalkylene their mixtures can also be used in the context of the present invention.
Le PLA est un polyester aliphatique thermoplastique linéaire ; il est produit par plusieurs techniques notamment la condensation azéotropique, polymérisation par condensation directe, ou polymérisation par formation de lactide (ring-opening), la plus utilisée à l’échelle industrielle. En raison de la nature chirale de l'acide lactique, la stéréochimie du PLA est complexe. Comme l’acide lactique existe sous deux formes stéréo-isomères, le dimère obtenu à partir de deux acides lactiques peut se présenter sous trois formes énantiomériques différentes. Par la suite, le PLA peut exister sous trois formes stéréochimiques : poly (L-lactide) (PLLA), poly (D-lactide) (PDLA), et poly (DL-lactide) (PDLLA). L’acide L lactique est très préférentiellement synthétisée par les bactéries.  PLA is a linear thermoplastic aliphatic polyester; it is produced by several techniques, notably azeotropic condensation, polymerization by direct condensation, or polymerization by lactide formation (ring-opening), the most used on an industrial scale. Due to the chiral nature of lactic acid, the stereochemistry of PLA is complex. As lactic acid exists in two stereoisomeric forms, the dimer obtained from two lactic acids can be present in three different enantiomeric forms. Subsequently, PLA can exist in three stereochemical forms: poly (L-lactide) (PLLA), poly (D-lactide) (PDLA), and poly (DL-lactide) (PDLLA). L lactic acid is very preferentially synthesized by bacteria.
Le PDLLA est un polymère amorphe, tandis que les formes PLLA et PDLA sont semi cristallines. Par exemple, le PLLA possède une cristallinité d’environ 37%, une température de transition vitreuse entre 50 et 80 °C et une température de fusion entre 173 et 178 °C. La température de fusion du PLLA peut être augmentée de 50 °C environ en mélangeant le PLLA avec du PDLA, qui forment alors un stéréo-complexe hautement régulier de plus grande cristallinité. Les formes semi-cristallines et leurs mélanges sont qualifiés de « thermiquement résistant ».  PDLLA is an amorphous polymer, while the PLLA and PDLA forms are semi-crystalline. For example, PLLA has a crystallinity of around 37%, a glass transition temperature between 50 and 80 ° C and a melting temperature between 173 and 178 ° C. The melting temperature of PLLA can be increased by approximately 50 ° C by mixing PLLA with PDLA, which then form a highly regular stereo-complex with greater crystallinity. Semi-crystalline forms and their mixtures are described as “thermally resistant”.
Lorsque que l’on veut utiliser un mélange de polymères, on utilise un « compound » en entrée de vis d’extrusion, plutôt que chacun des polymères. Ce terme est bien connu de l’homme du métier du domaine de la plasturgie et désigne un mélange fondu prêt à l’emploi. En particulier, chaque granulé est composé d’un mélange des deux polymères, qui a pu être obtenu par mélange des polymères dans une « vis de compoundage ». When we want to use a mixture of polymers, we use a "compound" at the entry of extrusion screws, rather than each of the polymers. This term is well known to those skilled in the art of the plastics industry and designates a ready-to-use molten mixture. In particular, each granule is composed of a mixture of the two polymers, which could be obtained by mixing the polymers in a "compounding screw".
Dans un mode de réalisation préféré, le polymère présentant le plus haut point de fusion (c’est-à-dire la plus haute tenue au fléchissement) est choisi dans le groupe constitué des polyesters aliphatiques, des compounds de copolyesters aliphatiques aromatiques, et les polyesters aliphatiques de la famille des polyhydroxyalcanoates, et leurs mélanges. In a preferred embodiment, the polymer having the highest melting point (that is to say the highest flexural strength) is chosen from the group consisting of aliphatic polyesters, copolyester compounds aromatic aliphatics, and aliphatic polyesters of the polyhydroxyalkanoate family, and mixtures thereof.
Parmi les polyesters aliphatiques, on préfère notamment les copolyesters, et en particulier le polybutylènesuccinate.  Among the aliphatic polyesters, copolyesters are particularly preferred, and in particular polybutylenesuccinate.
Parmi les compounds de copolyesters aliphatiques aromatiques, on préfère notamment le polybutylèneadipatetéréphatalate, et d’acide polylactique résistant thermiquement (les proportions sont choisies par l’homme du métier en fonction de ses besoins).  Among the compounds of aromatic aliphatic copolyesters, polybutyleneadipateterephatalate, and thermally resistant polylactic acid are preferably preferred (the proportions are chosen by a person skilled in the art according to his needs).
Parmi les polyesters aliphatiques de la famille des polyhydroxyalcanoates, le polyhydroxybutyrateco-valérate est particulièrement adapté.  Among the aliphatic polyesters of the family of polyhydroxyalkanoates, polyhydroxybutyrateco-valerate is particularly suitable.
Dans un mode de réalisation préféré, le polymère à plus faible température de fléchissement (qui aura aussi de plus faibles températures de fusion et recristallisation que l’autre polymère) est choisi dans le groupe constitué des polylactones, des compounds de copolyesters aliphatiques aromatiques et d’acide polylactique amorphe, et des compounds de (polycaprolactone et de compounds de PLA amorphe et PBAT). In a preferred embodiment, the polymer at lower deflection temperature (which will also have lower melting and recrystallization temperatures than the other polymer) is chosen from the group consisting of polylactones, aromatic aliphatic copolyester compounds and d amorphous polylactic acid, and compounds of (polycaprolactone and compounds of amorphous PLA and PBAT).
Parmi les polylactones, on préfère notamment les e-polycaprolactones, Among the polylactones, e-polycaprolactones are particularly preferred,
Parmi les compounds de copolyesters aliphatiques aromatiques, on préfère ceux formés par compoundage de polybutylèneadipatetéréphatalate et d’acide polylactique amorphe. Among the compounds of aromatic aliphatic copolyesters, those formed by compounding polybutyleneadipateterephatalate and amorphous polylactic acid are preferred.
On peut aussi utiliser des compounds de (polycaprolactone et de compounds de PLA amorphe et PBAT).  It is also possible to use compounds of (polycaprolactone and compounds of amorphous PLA and PBAT).
Les Demanderesses ont montré que l’ajout d’additifs dans les polymères à bas point de fusion permet d’augmenter la température de recristallisation. Ces additifs sont notamment ajoutés dans la vis d’extrusion en même temps que les granulés de polymères. The Applicants have shown that the addition of additives in polymers with a low melting point makes it possible to increase the recrystallization temperature. These additives are notably added to the extrusion screw at the same time as the polymer granules.
Ces additifs peuvent être des multiamides hétérogènes, comme le N,N,'N"- tricyclohexyl-1 ,3,5-benzenetricarboxylamide, des hydrazides, et notamment des benoylhydrazydes, comme l’octomethylenedicarboxyliquedibenoylhydrazyde ou le décamethylenedicarboxyliquedibenoylhydrazydes. Ces composés sont généralement utilisés en faible concentration (moins de 1% en poids).  These additives can be heterogeneous multiamides, such as N, N, 'N "- tricyclohexyl-1, 3,5-benzenetricarboxylamide, hydrazides, and in particular benoylhydrazydes, such as octomethylenedicarboxyliquedibenoylhydrazyde or decamethylenedicarboxyliquedibenoylhydrazides. low concentration (less than 1% by weight).
On peut aussi utiliser du talc, du carbonate de calcium, de la cellulose microcristalline ou du glycidylmethacrylate. Ces composés peuvent être ajoutés à des concentrations allant de 1 % à 10 % en poids, généralement supérieures ou égales à 3% voire à 4%, et inférieure ou égales à 8%. Talc, calcium carbonate, microcrystalline cellulose or glycidylmethacrylate can also be used. These compounds can be added to concentrations ranging from 1% to 10% by weight, generally greater than or equal to 3% or even 4%, and less than or equal to 8%.
On préfère choisir le talc ou le carbonate de calcium pour leur grande disponibilité industrielle, leur faible coût, et également leur aptitude à être des charges dites de renfort lorsque leur taille granulométrique est faible, à savoir une surface spécifique importante, mesurer en BET (ISO 9277) supérieure à 15 m2/g. We prefer to choose talc or calcium carbonate for their high industrial availability, their low cost, and also their ability to be so-called reinforcing fillers when their particle size is small, namely a large specific surface, measure in BET (ISO 9277) greater than 15 m 2 / g.
On utilise ces charges à des concentrations typiquement inférieures à 10 %.  These fillers are used at concentrations typically less than 10%.
La méthode décrite plus haut est particulièrement adaptée pour des polymères présentant des températures de fléchissement qui différent d’au moins 25°C, voire d’au moins 30°C, voire d’au moins 35°C, voire d’au moins 40°C. The method described above is particularly suitable for polymers having deflection temperatures which differ from at least 25 ° C, or even at least 30 ° C, or even at least 35 ° C, or even at least 40 ° C.
Certains modes de réalisation sont présentés dans le tableau ci-dessous Some embodiments are presented in the table below
[Tableau 2]  [Table 2]
Figure imgf000014_0001
Figure imgf000014_0001
Exemples de films obtenus par la mise en oeuvre de la méthode décrite ci- dessus. Dans un mode de réalisation, le film présente deux couches, la couche à haute température de fléchissement étant formée de polybutylène succinate et la couche à plus faible température de fléchissement étant formée de polycaprolactones additivées de talc. Examples of films obtained by the implementation of the method described above. In one embodiment, the film has two layers, the high deflection temperature layer being formed of polybutylene succinate and the lower deflection temperature layer being formed of talc additive polycaprolactones.
Dans un autre mode de réalisation, le film présente plus de deux couches. En particulier, il comprend deux couches à haute température de fléchissement, constituées respectivement de polybutylènesuccinate, d’un compound d’un copolyester aliphatique aromatique et d’acide polylactique (généralement à résistance thermique) optionnellement additivé de glycidyl méthacrylate, la couche à plus faible température de fléchissement étant formée de polycaprolactones additivées de cellulose microcristalline.  In another embodiment, the film has more than two layers. In particular, it comprises two layers at high deflection temperature, consisting respectively of polybutylenesuccinate, of a compound of an aromatic aliphatic copolyester and of polylactic acid (generally with thermal resistance) optionally additive with glycidyl methacrylate, the lower layer deflection temperature being formed of polycaprolactones with microcrystalline cellulose additive.
La présente méthode est particulièrement intéressante pour obtenir des films utilisables pour le conditionnement de fruits & légumes, c’est-à-dire des films étanches à l’eau, mais permettant la respiration (échanges de vapeur d’eau et/ou d’oxygène ou de C02) avec l’extérieur de l’emballage, permettant d’éviter la formation de buée et une bonne conservation des produits. The present method is particularly advantageous for obtaining films which can be used for the packaging of fruit & vegetables, that is to say films which are waterproof, but which allow breathing (exchanges of water vapor and / or oxygen or C0 2 ) with the outside of the packaging, preventing fogging and good preservation of the products.
On peut utiliser notamment un film présentant :  One can use in particular a film having:
Une couche : résine PBAT chargée avec du PLA (résistant thermiquement) One layer: PBAT resin loaded with PLA (heat resistant)
Une couche : PCL chargée avec du talc (qui permet une bonne nucléation / cristallisation lors du refroidissement). A layer: PCL loaded with talc (which allows good nucleation / crystallization during cooling).
Il convient de noter qu’il n’est pas nécessaire de micro-perforer les films, cette propriété de perméabilité pouvant être ajustée par l’homme du métier en jouant sur les proportions des paramètres, l’épaisseur des couches, la nature ou la concentration des charges...  It should be noted that it is not necessary to micro-perforate the films, this permeability property being able to be adjusted by a person skilled in the art by varying the proportions of the parameters, the thickness of the layers, the nature or the load concentration ...
Ainsi, il est avantageux de réaliser des films multicouches par co-extrusion et notamment en extrusion gonflage : on peut obtenir une perméabilité à la vapeur d’eau (WVTR) de tels films biodégradables permettant un bon échange gazeux notamment lors des changements de températures (sortie/entrée frigo), et évitant ainsi l’apparition des points de rosée à l’intérieur de l’emballage, entraînant souvent un début de dégradation de l’aliment et une moins bonne conservation.  Thus, it is advantageous to produce multilayer films by co-extrusion and in particular in inflation extrusion: it is possible to obtain a permeability to water vapor (WVTR) of such biodegradable films allowing good gas exchange in particular during temperature changes ( exit / entry fridge), and thus avoiding the appearance of dew points inside the packaging, often leading to the start of degradation of the food and less good conservation.
On préfère ainsi lorsque les films obtenus présentent une transmission de la vapeur d'eau comprise en 200 et 1000 g/m2/24h à 38°Cà 90% d’humidité relative (RH) et/ou une transmission d’oxygène comprise entre 2500 et 6000cm3/m2/24h à 23°C à 50% d’humidité relative. It is thus preferred when the films obtained have a water vapor transmission of between 200 and 1000 g / m 2 / 24h at 38 ° C. at 90% relative humidity (RH) and / or oxygen transmission between 2500 and 6000cm 3 / m 2 / 24h at 23 ° C at 50% relative humidity.
Dans un mode de réalisation particulier, on peut également jouer sur la diffraction du film obtenu, c’est-à-dire la transparence des films. In a particular embodiment, one can also play on the diffraction of the film obtained, that is to say the transparency of the films.
Pour ce faire, on utilise préférentiellement des charges organiques, en particulier le méthacrylate de glycidyl (ester d’acide méthacrylique et de glycidol) en tant que charge, que l’on peut ajouter également à la couche de film barrière (à plus haute température de fléchissement). En particulier, cette charge est adaptée lorsque cette couche est un compound contenant du PLA résistant thermiquement, car permettant aussi de disperser la phase PLA dans la phase de l’autre, la faible taille des PLA dans cette couche permettant une meilleure transparence.  To do this, organic fillers are preferably used, in particular glycidyl methacrylate (ester of methacrylic acid and glycidol) as filler, which can also be added to the barrier film layer (at higher temperature deflection). In particular, this charge is suitable when this layer is a compound containing thermally resistant PLA, since it also makes it possible to disperse the PLA phase in the phase of the other, the small size of the PLA in this layer allowing better transparency.
Ainsi, la méthode permet d’obtenir un film qui présente une transmittance dans le visible supérieure à 80%, de préférence supérieure à 90%, ou supérieure à 95% (400 à 800 nm), ce qui signifie de 80%, 90% ou 95% (respectivement) de la lumière visible traverse le film permettant une bonne identification des aliments au travers du film multicouche biodégradable.  Thus, the method makes it possible to obtain a film which has a transmittance in the visible greater than 80%, preferably greater than 90%, or greater than 95% (400 to 800 nm), which means from 80%, 90% or 95% (respectively) of visible light passes through the film allowing good identification of food through the biodegradable multilayer film.
On peut fabriquer des films présentant des épaisseurs variées, par les méthodes de co-extrusion présentées (extrusion gonflage ou à plat). Il est préféré lorsque l’épaisseur totale du film est de 10 microns ou plus. De préférence, elle ne dépasse pas 200 microns. La couche formée de polymère à haute température de fléchissement sous charge consiste en 50% ou plus (pouvant aller jusqu’à 75%) de l’épaisseur du film. En conséquence la couche à la température de fléchissement sous charge la plus faible consiste en 50% au plus, et généralement au moins 25% de l’épaisseur du film. Ces pourcentages restent valables pour l’ensemble des couches ayant les mêmes propriétés de température de fléchissement sous charge, lorsque le film contient plusieurs couches. Films of various thicknesses can be made by the co-extrusion methods presented (inflation or flat extrusion). It is preferred when the total film thickness is 10 microns or more. Preferably, it does not exceed 200 microns. The layer of polymer under high temperature deflection under load consists of 50% or more (up to 75%) of the film thickness. Consequently, the layer at the lowest deflection temperature under load consists of at most 50%, and generally at least 25% of the film thickness. These percentages remain valid for all the layers having the same deflection temperature properties under load, when the film contains several layers.
L’invention se rapporte également à un film multicouche biodégradable présentant et constitué d’au moins deux couches de polymères différents, qui ont un écart de température de fléchissement sous charge d’au moins 20°C, le polymère présentant la température de fléchissement sous charge la plus basse ayant été supplémenté par addition de charges inorganiques ou par des agents organiques de telle sorte que son point de recristallisation soit augmenté. Ainsi que vu plus haut, ces polymères sont biodégradables, et sont notamment choisis parmi ceux listés plus haut. The invention also relates to a biodegradable multilayer film having and consisting of at least two layers of different polymers, which have a deflection temperature difference under load of at least 20 ° C., the polymer having the deflection temperature under lowest charge having been supplemented by addition of inorganic fillers or with organic agents so that its recrystallization point is increased. As well as seen above, these polymers are biodegradable, and are chosen in particular from those listed above.
Dans un mode de réalisation particulier, ce film est susceptible d’être obtenu par une méthode telle que décrite ci-dessus.  In a particular embodiment, this film is capable of being obtained by a method as described above.
Les films décrits ci-dessus et dans les exemples sont ainsi des objets de l’invention.  The films described above and in the examples are thus objects of the invention.
Les films ci-dessus sont particulièrement adaptés à une utilisation dans une méthode d’emballage flowpack, pour les usages cités plus haut, et notamment l’emballage de fruits et légumes.  The above films are particularly suitable for use in a flowpack packaging method, for the uses mentioned above, and in particular the packaging of fruits and vegetables.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
Figure 1 : évolution du module de polymères en fonction de la température. Trait en pointillés : film A. Trait plein : film B.  Figure 1: evolution of the polymer module as a function of temperature. Dotted line: film A. Solid line: film B.
Figure 2 : évolution du module de conservation en fonction de la température par analyse mécanique dynamique. Trait en pointillés : film A. Trait plein : film B.  Figure 2: evolution of the conservation module as a function of temperature by dynamic mechanical analysis. Dotted line: film A. Solid line: film B.
EXEMPLES EXAMPLES
Les exemples ci-dessous sont donnés pour illustrer certains modes de réalisation de l’invention et fournir à l’homme du métier certaines indications pour caractériser des polymères et obtenir des films conformes à l’invention. Pour ce faire, certains polymères peuvent ne pas être précisés, si l’exemple vise à illustrer une méthode particulière de sélection de polymères. L’homme du métier peut utiliser ces enseignements pour le choix des polymères et charges en fonction des applications visées.  The examples below are given to illustrate certain embodiments of the invention and to provide those skilled in the art with certain indications for characterizing polymers and obtaining films in accordance with the invention. To do this, some polymers may not be specified, if the example aims to illustrate a particular method of selecting polymers. Those skilled in the art can use these lessons for the choice of polymers and fillers according to the intended applications.
Exemple 1. Caractérisation de polymères  Example 1. Characterization of polymers
La température de fusion et de tenue à chaud (HDT B) ne sont pas corrélées. Quelques exemples sont donnés dans le tableau 1 ci-dessus pour quelques polymères biodégradables courants.  The melting temperature and heat resistance (HDT B) are not correlated. Some examples are given in Table 1 above for some common biodegradable polymers.
De plus, le comportement thermique sur une plage de température n’est également pas identique entre 2 polymères ayant des valeurs de HDT B identiques ou très proches (Figure 1 ).  In addition, the thermal behavior over a temperature range is also not identical between 2 polymers with identical or very similar HDT B values (Figure 1).
Sur la figure 1 , on voit que pour une valeur de HDT B proche de 50 °C, le polymère A (pointillés) aura une flexion plus progressive à la température alors que le polymère B (trait plein) fléchira très rapidement sur une plage de température réduite jusqu’à sa fusion vers 60 °C. Le comportement du polymère B ne permet pas un travail industriel car sa plage fonctionnelle est trop étroite. In FIG. 1, it can be seen that for an HDT B value close to 50 ° C., the polymer A (dotted lines) will have a more progressive bending at temperature while the polymer B (solid line) will flex very quickly over a range of temperature reduced until it melts around 60 ° C. The behavior of polymer B does not allow industrial work because its functional range is too narrow.
Exemple 2. Addition de charge dans un polymère Example 2. Addition of Filler in a Polymer
L’introduction de Carbonate de Calcium dans une matrice composée d’un mélange PBAT/PLA ne modifie pas les températures de fusion des 2 polymères en mélange, respectivement vers 125°C et 170 °C, mais la recristallisation de l’ensemble est nettement modifiée, passant de 55 °C sans Carbonate de Calcium à 81 °C avec Carbonate de Calcium, introduit à 8% w/w.  The introduction of Calcium Carbonate into a matrix composed of a PBAT / PLA mixture does not modify the melting temperatures of the 2 polymers in mixture, respectively around 125 ° C and 170 ° C, but the recrystallization of the whole is clearly modified, going from 55 ° C without Calcium Carbonate to 81 ° C with Calcium Carbonate, introduced at 8% w / w.
Ceci est également observé pour d’autres polymères : en choisissant une PCL (polycaprolactone) avec une Tf de 58 °C, la recristallisation du polymère pur est à 13 °C, mais passe à 27 °C lorsque l’on ajoute 3% de talc.  This is also observed for other polymers: by choosing a PCL (polycaprolactone) with a Tf of 58 ° C, the recrystallization of the pure polymer is at 13 ° C, but goes to 27 ° C when adding 3% of talc.
Ainsi, l’utilisation de charges spécifiques permet d’augmenter la température de recristallisation et ainsi de réduire les contraintes structurelles apparaissant du fait de l’écart de températures de recristallisation, et ainsi de conserver des propriétés dimensionnelles fonctionnelles pour l’utilisation en emballage alimentaire.  Thus, the use of specific fillers makes it possible to increase the recrystallization temperature and thus reduce the structural stresses appearing due to the difference in recrystallization temperatures, and thus to maintain functional dimensional properties for use in food packaging. .
Exemple 3. Propriétés mécaniques Example 3. Mechanical properties
Le film multicouche servant à la réalisation de l’emballage doit posséder des propriétés mécaniques suffisantes pour le passage machine, Flowpack par exemple, pour le stockage et la manipulation avec l’aliment conditionné lors de son cycle de vie, sans détérioration de son intégrité.  The multilayer film used to produce the packaging must have sufficient mechanical properties for machine passage, Flowpack for example, for storage and handling with the foodstuff during its life cycle, without deterioration of its integrity.
Il doit posséder suffisamment de rigidité pour sa bonne machinabilité, mais pas trop au risque de ne plus avoir de capacité d’allongement plastique et de casser rapidement. Cette fonction doit être apportée par la ou les couches de structures, qui doivent en plus avoir un point de fusion beaucoup plus haut que la couche soudante.  It must have enough rigidity for its good machinability, but not too much at the risk of no longer having a plastic elongation capacity and of breaking quickly. This function must be provided by the layer or layers of structures, which must in addition have a melting point much higher than the welding layer.
On peut choisir le meilleur matériau pour l’application visée, notamment le packaging Flowpack, en suivant l’évolution du module de conservation en fonction de la température de 30 °C jusqu’à plus de 100 °C par analyse mécanique dynamique (DMA).  We can choose the best material for the intended application, in particular the Flowpack packaging, by following the evolution of the preservation module according to the temperature from 30 ° C to more than 100 ° C by dynamic mechanical analysis (DMA) .
La figure 2 montre ainsi que, pour un même HDT B situé vers 90 / 92 °C, un polymère A (pointillés) peut s’avérer beaucoup plus rigide à température ambiante qu’un polymère B (trait plein). Toutefois, en suivant l’évolution du module, on peut montrer que le polymère B, plus ductile, présentera une fonctionnalité supérieure de par son aptitude à résister à un allongement modéré (160 % à la rupture) lors du passage machine ou de sa manipulation, sans rompre immédiatement, pour un niveau de contrainte identique au polymère A, proche des 25 MPa. FIG. 2 thus shows that, for the same HDT B situated around 90/92 ° C., a polymer A (dotted lines) can prove to be much more rigid at ambient temperature than a polymer B (solid line). However, following the evolution of the module, we can show that polymer B, which is more ductile, will have superior functionality due to its ability to resist moderate elongation (160% at break) during machine passage or handling, without immediately breaking, for a level of stress identical to polymer A, close to 25 MPa.
Le polymère B pourra donc être plus adapté à une utilisation industrielle que le polymère A.  Polymer B can therefore be more suitable for industrial use than polymer A.
Exemple 4. Perméabilité Example 4. Permeability
Le procédé d’extrusion gonflage multicouche possède l’avantage de conserver les propriétés barrière propres de chaque couche du film, ce qui ne serait pas possible si l’on mélangeait les différentes matières polymères dans une même vis, puisque l’on changerait alors au minimum la température de transition vitreuse (effet de plastification induit), et probablement le volume libre.  The multilayer inflation extrusion process has the advantage of retaining the barrier properties of each layer of the film, which would not be possible if the different polymeric materials were mixed in the same screw, since we would then change minimum the glass transition temperature (induced plasticization effect), and probably the free volume.
Ainsi, Messin et al (ACS Appl. Mater. Interfaces 2017, 9, 34, 29101-29112) rapportent une amélioration de la perméabilité pour des films multicouches obtenus en co-extrusion.  Thus, Messin et al (ACS Appl. Mater. Interfaces 2017, 9, 34, 29101-29112) report an improvement in permeability for multilayer films obtained by co-extrusion.
Exemple 5. Exemples spécifiques Example 5. Specific examples
A. Film tricouche - bimatière  A. Three-layer film - bi-material
Polybutylènesuccinate seul : HDT élevé mais fragilité mécanique  Polybutylenesuccinate alone: high HDT but mechanical brittleness
Compound de PBAT et PLA: HDT B faible mais bon allongement  Compound of PBAT and PLA: weak HDT B but good elongation
Film obtenu par extrusion gonflage, d’une épaisseur de 1 10 micromètres, avec une couche de 27,5 pm de Compound de PBAT et PLA amorphe et 2 couches de Polybutylènesuccinate pour une épaisseur totale de 82,5 pm : le film coextrudé possède l’avantage d’avoir les propriétés mécaniques et thermiques des 2 polymères d’origine, avec un HDT B élevé, et des propriétés à l’allongement d’au moins 150 %. Dans cet exemple, la couche de PBAT n’est pas entre les deux couches de PBS qui sont superposées.  Film obtained by swelling extrusion, with a thickness of 1 10 micrometers, with a layer of 27.5 μm of amorphous PBAT and PLA compound and 2 layers of Polybutylenesuccinate for a total thickness of 82.5 μm: the coextruded film has 1 'advantage of having the mechanical and thermal properties of the 2 original polymers, with a high HDT B, and elongation properties of at least 150%. In this example, the PBAT layer is not between the two layers of PBS which are overlapped.
Concernant les propriétés de perméabilité aux gaz du film tricouche bimatière, on mesure les valeurs suivantes, selon les normes définies précédemment :  Concerning the gas permeability properties of the two-layer three-layer film, the following values are measured, according to the standards defined above:
WVTR : 125 g/m2/24h à 23°c 50% RH et 625 g/m2/24h à 38°c 90% RHWVTR: 125 g / m 2 / 24h at 23 ° c 50% RH and 625 g / m 2 / 24h at 38 ° c 90% RH
OTR : 3350 cm3/m2/24h à 23°c 50% RH OTR: 3350 cm 3 / m 2 / 24h at 23 ° c 50% RH
Les propriétés à la perméabilité du polymère le plus barrière en film monocouche en 25 pm sont données par le fabricant à :  The permeability properties of the most barrier polymer in single-layer film in 25 μm are given by the manufacturer to:
WVTR : 500 g/m2/24h à 38°c 90% RH OTR : 6700 cm3/m2/24h à 23°c 50% RH WVTR: 500 g / m 2 / 24h at 38 ° c 90% RH OTR: 6700 cm 3 / m 2 / 24h at 23 ° c 50% RH
La perméabilité à la vapeur d’eau (WVTR) d’un tel film biodégradable est particulièrement intéressante car utilisé comme emballage Flowpack pour les fruits et légumes, il va permettre un bon échange gazeux notamment lors des changements de températures.  The water vapor permeability (WVTR) of such a biodegradable film is particularly advantageous because when used as flowpack packaging for fruits and vegetables, it will allow a good gas exchange, especially during temperature changes.
B. Film tricouche - trimatière B. Three-layer film - three-dimensional
e-polycaprolactone seul : couche à bas point de fusion (HDT B vers 50 °C) e-polycaprolactone alone: layer with low melting point (HDT B around 50 ° C)
Compound de PBAT et PLA semicristallin seul : première couche de structure avec de bonnes propriétés d’allongement Compound of semi-crystalline PBAT and PLA alone: first layer of structure with good elongation properties
Polybutylènesuccinate seul : couche à haut point de fusion (HDT B vers 95 °C) ;  Polybutylenesuccinate alone: layer with high melting point (HDT B around 95 ° C);
Film coextrudé 3 couches et trimatière : le film coextrudé possède l’avantage d’avoir de très bonnes propriétés mécaniques et 2 couches ayant des comportements thermiques très différents, avec un écart de HDT B supérieur à 20 °C. Le polymère possédant le HDT B le plus élevé sera mis de préférence dans la couche centrale du film, mais également avec la possibilité de se situer sur la couche externe. Dans tous les cas, le polymère ayant le HDT B le plus bas se situera sur la couche interne ou sur la couche externe du film tricouche.  Coextruded 3-layer and three-layer film: the coextruded film has the advantage of having very good mechanical properties and 2 layers with very different thermal behaviors, with an HDT B difference greater than 20 ° C. The polymer having the highest HDT B will preferably be placed in the central layer of the film, but also with the possibility of being located on the outer layer. In all cases, the polymer having the lowest HDT B will be located on the inner layer or on the outer layer of the three-layer film.
Le film coextrudé tricouche précédent, d’une épaisseur de 30 pm, permet une mise en oeuvre facilité en Flowpack. Par exemple, sur une machine industrielle ULMA ATLANTIS 23, il est mis en oeuvre avantageusement avec les conditions opératoires suivantes :  The preceding three-layer coextruded film, with a thickness of 30 μm, allows easy implementation in Flowpack. For example, on an ULMA ATLANTIS 23 industrial machine, it is advantageously used with the following operating conditions:
• Soudure chair / chair longue : 65 °C ; très bonne qualité et résistance à l’éclatement  • Flesh / long flesh weld: 65 ° C; very good quality and burst resistance
• Coupe-soudure chair / chair : 90 °C ; très bonne qualité et résistance à l’éclatement  • Flesh / flesh sealer: 90 ° C; very good quality and burst resistance
• Cadence : tests à 25 et 35 cps/min, identique au film traditionnel non biodégradable  • Cadence: tests at 25 and 35 cps / min, identical to the traditional non-biodegradable film
La couche à bas point de fusion permet donc d’obtenir les bonnes qualités de soudure, avec des mises en oeuvre bien en dessus de la Tf (50 °C), mais en dessous de la Tf d’un des polymères de structure (95 °C). On note également la bonne transparence du film, largement améliorée par la structure extrudée par extrusion gonflage plutôt qu’en monocouche. The layer with a low melting point therefore makes it possible to obtain the good welding qualities, with applications well above the Tf (50 ° C.), but below the Tf of one of the structural polymers (95 ° C). The good transparency of the film is also noted, greatly improved by the structure extruded by inflation extrusion rather than in monolayer.
En effet, le film coextrudé possède une transmittance dans le visible supérieure à 95 % (400 à 800 nm) ; 95 % de la lumière visible traverse le film permettant une bonne identification des aliments au travers du film multicouche biodégradable.  Indeed, the coextruded film has a transmittance in the visible greater than 95% (400 to 800 nm); 95% of visible light passes through the film allowing good identification of food through the biodegradable multilayer film.
C. Transparence C. Transparency
Il est avantageux de fabriquer des films multicouches par extrusion gonflage avec différents polymères pour jouer sur leur indice de réfraction, et obtenir ainsi une plus grande transparence du film.  It is advantageous to manufacture multilayer films by inflation extrusion with different polymers to play on their refractive index, and thus obtain greater transparency of the film.
Ainsi, un film A obtenu par extrusion monocouche en mélangeant 3 matières (PBAT, PLA et amidon) présente une transmittance moyenne de 75 % dans le domaine visible, alors qu’un film film B tricouche obtenu selon la méthode selon l’invention, et comportant les mêmes polymères à isocomposition présente une transmittance supérieure à 80 %. Thus, a film A obtained by monolayer extrusion by mixing 3 materials (PBAT, PLA and starch) has an average transmittance of 75% in the visible range, while a three-layer film B film obtained according to the method according to the invention, and comprising the same isocomposition polymers has a transmittance greater than 80%.

Claims

REVENDICATIONS
1. Méthode de fabrication d’un film biodégradable présentant au moins deux couches de polymères biodégradables différents, qui ont un écart de température de fléchissement sous charge d’au moins 20°C, caractérisée en ce que la fabrication est effectuée par co-extrusion et que le polymère présentant la température de fléchissement sous charge la plus basse a été supplémenté par addition de charges inorganiques ou par des agents organiques de telle sorte que son point de recristallisation soit augmenté. 1. Method of manufacturing a biodegradable film having at least two different layers of biodegradable polymers, which have a deflection temperature difference under load of at least 20 ° C, characterized in that the manufacture is carried out by co-extrusion and that the polymer having the lowest deflection temperature under load has been supplemented by addition of inorganic fillers or with organic agents so that its recrystallization point is increased.
2. Méthode selon la revendication 1 , caractérisée en ce que le polymère biodégradable à température de fléchissement sous charge la plus élevée est choisi dans le groupe constitué des polyesters aliphatiques, notamment les copolyesters en particulier le polybutylènesuccinate, des compounds de copolyesters aliphatiques aromatiques, notamment le polybutylèneadipatetéréphatalate, et d’acide polylactique résistant thermiquement et les polyesters aliphatiques de la famille des polyhydroxyalcanoates, notamment le polyhydroxybutyrateco-valérate, et leurs mélanges. 2. Method according to claim 1, characterized in that the biodegradable polymer at deflection temperature under the highest load is chosen from the group consisting of aliphatic polyesters, in particular copolyesters in particular polybutylenesuccinate, compounds of aromatic aliphatic copolyesters, in particular polybutyleneadipateterephatalate, and thermally resistant polylactic acid and aliphatic polyesters of the family of polyhydroxyalkanoates, in particular polyhydroxybutyrateco-valerate, and their mixtures.
3. Méthode selon la revendication 1 ou 2, caractérisée en ce que le polymère à température de fléchissement sous charge la moins élevée est choisi dans le groupe constitué des polylactones, notamment les e-polycaprolactones, des compounds de copolyesters aliphatiques aromatiques, comme le polybutylèneadipatetéréphatalate (PBAT), et d’acide polylactique(PLA) amorphe, et des compounds de de (polycaprolactone et de compounds de PLA amorphe et PBAT). 3. Method according to claim 1 or 2, characterized in that the polymer at the lowest load deflection temperature is chosen from the group consisting of polylactones, in particular e-polycaprolactones, aromatic aliphatic copolyester compounds, such as polybutyleneadipateterephatalate (PBAT), and amorphous polylactic acid (PLA), and compounds of (polycaprolactone and amorphous PLA and PBAT compounds).
4. Méthode selon l’une des revendications 1 à 3, caractérisée en ce que les additifs sont choisis dans le groupe constitué des multiamides hétérogènes, en particulier le N,N,'N"-tricyclohexyl-1 ,3,5-benzenetricarboxylamide, des hydrazides,en particulier l’octomethylenedicarboxyliquedibenoylhydrazyde ou le décamethylenedicarboxyliquedibenoylhydrazyde, du talc, du carbonate de calcium, de la cellulose microcristalline, du glycidylmethacrylate et de leurs mélanges. 4. Method according to one of claims 1 to 3, characterized in that the additives are chosen from the group consisting of heterogeneous multiamides, in particular N, N, 'N "-tricyclohexyl-1, 3,5-benzenetricarboxylamide, hydrazides, in particular octomethylenedicarboxyliquedibenoylhydrazyde or decamethylenedicarboxyliquedibenoylhydrazyde, talc, calcium carbonate, microcrystalline cellulose, glycidylmethacrylate and mixtures thereof.
5. Méthode selon l’une des revendications 1 à 4, caractérisée en ce que les températures de fléchissement sous charge différent d’au moins 30°C, voire d’au moins 40°C. 5. Method according to one of claims 1 to 4, characterized in that the deflection temperatures under load different from at least 30 ° C, or even at least 40 ° C.
6. Méthode selon l’une des revendications 1 à 5, caractérisée en ce que la co- extrusion est une extrusion gonflage. 6. Method according to one of claims 1 to 5, characterized in that the co-extrusion is an inflation extrusion.
7. Méthode selon l’une des revendications 1 à 6, caractérisée en ce que le film présente deux couches, la couche à haute température de fléchissement étant formée de polybutylènesuccinate et la couche à plus faible température de fléchissement étant formée de polycaprolactones additivées de talc 7. Method according to one of claims 1 to 6, characterized in that the film has two layers, the high deflection temperature layer being formed of polybutylenesuccinate and the lower deflection temperature layer being formed of polycaprolactones with talc additives
8. Méthode selon l’une des revendications 1 à 6, caractérisée en ce que le film présente plus de deux couches et qu’il comprend deux couches à haute température de charge, constituées respectivement de polybutylènesuccinate, d’un compound d’un copolyester aliphatique aromatique et d’acide polylactique optionnellement additivé de glycidyl méthacrylate, la couche à plus faible température de fléchissement étant formée de polycaprolactones additivées de cellulose microcristalline. 8. Method according to one of claims 1 to 6, characterized in that the film has more than two layers and that it comprises two layers at high loading temperature, consisting respectively of polybutylenesuccinate, of a compound of a copolyester aromatic aliphatic and polylactic acid optionally additive glycidyl methacrylate, the layer at lower deflection temperature being formed of polycaprolactones additive microcrystalline cellulose.
9. Méthode selon l’une des revendications 1 à 8, caractérisée en ce que le film présente une transmission de la vapeur d'eau comprise en 200 et 1000 g/m2/24h à 38°Cà 90% d’humidité relative et/ou une transmission d’oxygène comprise entre 2500 et 6000cm3/m2/24h à 23°C à 50% d’humidité relative. 9. Method according to one of claims 1 to 8, characterized in that the film has a transmission of water vapor between 200 and 1000 g / m 2 / 24h at 38 ° C at 90% relative humidity and / or an oxygen transmission between 2500 and 6000cm 3 / m 2 / 24h at 23 ° C at 50% relative humidity.
10. Film multicouche biodégradable susceptible d’être obtenu par une méthode selon l’une des revendications 1 à 9. 10. Biodegradable multilayer film capable of being obtained by a method according to one of claims 1 to 9.
1 1. Utilisation d’un film multicouche selon la revendication 10 dans une méthode d’emballage flowpack. 1 1. Use of a multilayer film according to claim 10 in a flowpack packaging method.
PCT/EP2019/078310 2018-10-20 2019-10-18 Multilayer biodegradable film WO2020079202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19786616.3A EP3867056A1 (en) 2018-10-20 2019-10-18 Multilayer biodegradable film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859704 2018-10-20
FR1859704A FR3087384B1 (en) 2018-10-20 2018-10-20 Multi-layer biodegradable film

Publications (1)

Publication Number Publication Date
WO2020079202A1 true WO2020079202A1 (en) 2020-04-23

Family

ID=66641001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/078310 WO2020079202A1 (en) 2018-10-20 2019-10-18 Multilayer biodegradable film

Country Status (3)

Country Link
EP (1) EP3867056A1 (en)
FR (1) FR3087384B1 (en)
WO (1) WO2020079202A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000018172A1 (en) * 2020-07-27 2022-01-27 Bio C Srl SHEET, PARTICULARLY FOR COVERING SURFACES OR OBJECTS OF VARIOUS KINDS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114582A (en) 2002-09-27 2004-04-15 Mitsubishi Plastics Ind Ltd Polyester sheet for thermoforming and package
EP1598181A1 (en) * 2003-02-10 2005-11-23 Tamapoly Co., Ltd. Polylactic acid multi-layer film and process for formation thereof
WO2009014313A1 (en) 2007-07-23 2009-01-29 Skc Co., Ltd. Biodegradable biaxially oriented laminated film
WO2017207662A1 (en) 2016-06-01 2017-12-07 Cryovac, Inc. Gas-barrier heat-shrinkable film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114582A (en) 2002-09-27 2004-04-15 Mitsubishi Plastics Ind Ltd Polyester sheet for thermoforming and package
EP1598181A1 (en) * 2003-02-10 2005-11-23 Tamapoly Co., Ltd. Polylactic acid multi-layer film and process for formation thereof
WO2009014313A1 (en) 2007-07-23 2009-01-29 Skc Co., Ltd. Biodegradable biaxially oriented laminated film
WO2017207662A1 (en) 2016-06-01 2017-12-07 Cryovac, Inc. Gas-barrier heat-shrinkable film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200439, Derwent World Patents Index; AN 2004-414286, XP002794047 *
MESSIN ET AL., ACS APPL. MATER. INTERFACES, vol. 9, no. 34, 2017, pages 29101 - 29112

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000018172A1 (en) * 2020-07-27 2022-01-27 Bio C Srl SHEET, PARTICULARLY FOR COVERING SURFACES OR OBJECTS OF VARIOUS KINDS

Also Published As

Publication number Publication date
FR3087384A1 (en) 2020-04-24
EP3867056A1 (en) 2021-08-25
FR3087384B1 (en) 2022-08-12

Similar Documents

Publication Publication Date Title
US11807741B2 (en) Articles formed with renewable green plastic materials and starch-based polymeric materials lending increased biodegradability
CN110753720B (en) Biodegradable three-layer film
JP7250678B2 (en) Carbohydrate-based polymer material
US20070259195A1 (en) Polylactic acid composition, transparent heat resistant biodegradable molded article made of the same, and method for making the article
EP3221390B1 (en) Composition of polyester and thermoplastic starch, having improved mechanical properties
AU2020203452A1 (en) Biodegradable Sheets
JP5076287B2 (en) Polylactic acid film
EP3645413A1 (en) Biodegradable packaging, method for manufacturing same and uses thereof
WO2015092257A1 (en) Composition based on agro-based biodegradable polymers
EP2035223A2 (en) Biodegradable film
EP3867056A1 (en) Multilayer biodegradable film
JP2003094585A (en) Heat sealing film
KR20230079387A (en) Co-extruded multi-layer cellulose-based film and manufacturing method thereof and products manufactured therefrom
CN115803373A (en) Packaging film with antifogging agent
CN110325576B (en) Carbohydrate-based polymeric materials
JP3984492B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
CA3230576A1 (en) Method for producing biodegradable stretch films
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
FR3028520A1 (en) COMPOSITION BASED ON A MIXTURE OF POLYESTERS AND THERMOPLASTIC STARCH WITH IMPROVED FILMABILITY.
FR3104140A1 (en) Duo of two molded tubes to generate a range of food containers incorporating the needs of the circular economy.
WO2024013432A1 (en) Flexible multi-layer composite material
FR3103476A1 (en) Purposely fractionated process and food containers to optimize their life cycle and circular economy
FR3028519A1 (en) COMPOSITION BASED ON THERMOPLASTIC STARCH AND ALIPHATIC POLYESTER OR SEMI-ALIPHATIC POLYESTER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019786616

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019786616

Country of ref document: EP

Effective date: 20210520