WO2020078249A1 - 一种基于雷达信号的多目标生命探测方法及探测雷达 - Google Patents
一种基于雷达信号的多目标生命探测方法及探测雷达 Download PDFInfo
- Publication number
- WO2020078249A1 WO2020078249A1 PCT/CN2019/110304 CN2019110304W WO2020078249A1 WO 2020078249 A1 WO2020078249 A1 WO 2020078249A1 CN 2019110304 W CN2019110304 W CN 2019110304W WO 2020078249 A1 WO2020078249 A1 WO 2020078249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radar
- echo signal
- amplitude
- signal
- signals
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/887—Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
- G01S13/888—Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons through wall detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/003—Bistatic radar systems; Multistatic radar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
- G01S7/2923—Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
- G01S7/2926—Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods by integration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/411—Identification of targets based on measurements of radar reflectivity
Definitions
- the invention relates to the field of life detection methods and devices, in particular to a multi-target life detection method and detection radar based on radar signals.
- Life detection radar is a kind of fusion of biomedical engineering technology and radar technology that can penetrate non-metallic media (wood, soil, brick, gravel, etc.), a non-contact, long-distance detection of human vital signs (mainly respiratory signals) New radar.
- Life detection radar technology does not have any restrictions on the measured object, without the connection of contact electrodes, sensors, cables, etc., and can detect and identify human bodies at a certain distance and through a certain medium, so it is widely used in disasters (earthquakes) , Landslides, mine disasters, etc.) post-personnel search, partition wall monitoring in the fight against terrorism, and battlefield reconnaissance. Because ultra-wide spectrum radar has strong penetrating ability and its echo has distance information, the current mainstream life detection radar uses ultra-wide spectrum radar technology.
- the current ultra-wide spectrum life detection radar is mainly based on single-base radar and multi-base radar with fixed antenna array.
- the main problems are: 1.
- the single-base radar cannot locate the target, and due to the single detection path, the blind detection It may encounter thick reinforced concrete and cannot penetrate; 2.
- the multi-base life detection radar with fixed antenna array increases the detection path and can achieve multi-target detection, because the antenna array is fixed, each probe cannot be flexibly adapted to ruggedness.
- the surface of the ruin causes the electromagnetic wave attenuation caused by the coupling between the probe and the surface of the ruin, which affects the penetration ability and detection effect.
- the fixation of the antenna array also causes the problem that the detection path cannot be freely selected according to the site conditions.
- the object of the present invention is to provide a multi-target life detection method and a detection radar based on radar signals, to solve the problems that the life detection method of the prior art does not have a high position detection accuracy for life targets and is prone to misjudgment.
- a multi-target life detection method based on radar signals includes the following steps:
- Step 1 Transmit the life detection radar signal; receive the original echo signal of the life detection radar;
- Step 2 Perform distance accumulation on the original echo signal and then perform noise elimination to obtain the preprocessed echo signal
- Step 3 Time-accumulate the preprocessed echo signal to obtain a first echo signal, the first echo signal is composed of multiple amplitude signals, each amplitude signal corresponds to a radar detection distance ;
- Step 4 Perform inflection point envelope extraction on the first echo signal to obtain a second echo signal
- the inflection point envelope extraction is to find a plurality of inflection point amplitude signals in the first echo signal, and set all amplitude signals except the inflection point amplitude signal in the first echo signal to zero;
- the amplitude signal of the inflection point is greater than the two amplitude signals adjacent to the left and right of the amplitude signal of the inflection point;
- Step 5 Arrange the amplitude signals in the second echo signal in descending order according to magnitude, select the first M amplitude signals as M marker amplitude signals, and then obtain the second echo signal
- M is a positive integer greater than 1;
- Step 6 Obtain the ratio of each of the marked amplitude signals to the average value
- the marker amplitude signal corresponding to the ratio fluctuates, that is, there is a life target at the radar detection distance corresponding to the marker amplitude signal;
- step 2 is performed according to the following steps:
- Step 21 Perform distance accumulation on the original echo signal to obtain an echo signal after distance accumulation
- Step 22 Normalize the echo signal after the distance accumulation to obtain a normalized echo signal
- Step 23 De-noise the normalized echo signal to obtain a pre-processed echo signal.
- a pre-processed echo signal is obtained by using a smooth filtering method.
- the 200-1200th echo signal in the preprocessed echo signal is taken for time accumulation.
- the inflection point envelope extraction is performed on the first echo signal twice to obtain a second echo signal.
- step 5 is performed according to the following steps:
- Step 51 After arranging all the amplitude signals in the second echo signal in descending order of amplitude, select the first M amplitude signals as M marker amplitude signals;
- Step 52 Set Z amplitude signals before and after each marker amplitude signal to zero in the second echo signal, Z is a positive integer;
- Step 53 Find the average value of all amplitude signals except the three mark amplitude signals in the second echo signal.
- a multi-target life detection radar for implementing the above-mentioned multi-target life detection method, the multi-target life detection radar includes an array antenna module, a radar main control module and a control display;
- the array antenna module is connected with the radar main control module, and is used for transmitting life detection radar signals and receiving life detection radar original echo signals;
- the radar main control module is connected to the control display, and is used to perform distance accumulation on the original echo signal and then perform noise cancellation to obtain a preprocessed echo signal;
- the radar main control module is also used to time accumulate the preprocessed echo signal to obtain a first echo signal, and the first echo signal is composed of multiple amplitude signals, each amplitude The value signal corresponds to a radar detection distance;
- the radar main control module is further used for extracting an inflection point envelope of the first echo signal to obtain a second echo signal; wherein the inflection point envelope extraction is in the first echo signal Find multiple inflection point amplitude signals, and set all amplitude signals except the inflection point amplitude signal in the first echo signal to zero; wherein the inflection point amplitude signal is greater than the two inflection points of the inflection point amplitude signal Amplitude signals;
- the radar main control module is also used to arrange all the amplitude signals in the second echo signal in descending order according to the magnitude of amplitude, select the first M amplitude signals as M marker amplitude signals, and obtain An average value of all amplitude signals except the M marked amplitude signals in the second echo signal, M is a positive integer greater than 1;
- the radar master control module is also used to obtain the ratio of each of the marker amplitude signals to the average value; if the ratio is greater than the threshold, the marker amplitude signal corresponding to the ratio fluctuates, that is, the marker amplitude signal
- the corresponding radar detection distance has a life target; otherwise, there is no target;
- the control display is used to output the detection result of the radar main control module, including whether there is a life target within the radar detection distance and the distance between the life target and the array antenna module.
- the array antenna module includes one radar transmitting antenna and multiple radar receiving antennas, and the radar transmitting antenna and each of the radar receiving antennas are connected by a folding arm movable;
- the radar transmitting antenna is used for transmitting life detection radar signals
- the radar receiving antenna is used to receive the original echo signal of the life detection radar.
- the array antenna module includes one radar transmitting antenna and four radar receiving antennas.
- the present invention has the following technical features:
- the life detection method provided by the present invention uses a normalization method to normalize the amplitude of the radar signal in the fast time (distance) dimension, which solves the problem of energy attenuation caused by the increase in distance during the transmission of the radar signal. Effectively reduce the miss rate of remote targets.
- the life detection method provided by the present invention adopts the method of twice inflection point envelope extraction, including the "tailing” removal step before and after the mark amplitude signal to reduce the target misjudgment caused by the "tailing" effect and improve the multi-target axial Recognition accuracy.
- the life detection radar provided by the invention adopts a four-channel ultra-wide spectrum radar system with one transmission and four collections, which increases the detection path and improves the probability of target detection.
- a five-joint metal folding arm structure is used between the life detection radar transmitting antenna and each receiving antenna provided by the present invention, which increases the detection flexibility in complex ruin on-site radar life detection, so that each transmitting, receiving unit and ruin surface
- the realization of contact coupling detection effectively improves the penetration ability and detection efficiency, and meets the needs of rapid detection and positioning of multiple targets buried under the rubble.
- FIG. 1 is a schematic flowchart of a multi-target life detection method provided by the present invention
- Figure 2 is a schematic diagram of a two-dimensional matrix of the original radar echo signal
- FIG. 3 is a schematic structural diagram of a multi-target life detection radar provided by the present invention.
- FIG. 4 is a schematic diagram of the detection of the shrinkage of the array antenna module provided by the present invention.
- FIG. 5 is a schematic diagram of unfolding detection of an array antenna module provided by the present invention.
- FIG. 6 is a schematic diagram of detecting the ruins of an array antenna module provided by the present invention.
- FIG. 7 is a schematic diagram of a three-target detection scenario provided in an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a first echo signal after time accumulation in one embodiment of the present invention.
- FIG. 9 is a schematic diagram of an echo signal obtained after an inflection point envelope extraction in one embodiment of the present invention.
- FIG. 10 is a schematic diagram of a second echo signal provided in an embodiment of the present invention.
- the symbols in the figure represent: 1- radar transmitting antenna, 2- radar receiving antenna, 21- first radar receiving antenna, 22- second radar receiving antenna, 23- third radar receiving antenna, 24-- fourth radar receiving antenna, A -First human target, B-second human target, X-first target, Y-second target, Z-third target.
- This embodiment discloses a multi-target life detection method based on radar signals. As shown in FIG. 1, it includes the following steps:
- Step 1 Transmit the life detection radar signal and receive the life detection radar original echo signal
- the life detection radar signal is reflected when it encounters an object to form the original radar echo signal.
- the original radar echo signal is a stable fixed value, but when When the life detection radar signal meets a living body, the original echo signal of the radar will fluctuate. Therefore, these small fluctuations can be used to detect the living body.
- the living body includes animals, humans and other objects containing life, but in this embodiment
- the life goal refers to the human life body, so the life body includes the life goal.
- the signal along the fast time direction that is, the column vector of the two-dimensional matrix
- the signal along the slow time direction that is, the row vector of the two-dimensional matrix
- Step 2 Perform accumulative distance accumulation in the fast time direction on the original echo signal, and then perform noise cancellation to obtain the preprocessed echo signal;
- the modulation method of radar echoes at the near distance points in the fast time direction is approximately the same and has a certain correlation, without affecting the useful information, firstly, the two-dimensional matrix R (m, n) is in space. The distance is accumulated along the fast time direction in order to reduce the amount of calculation, realize real-time analysis and give the detection results.
- step 2 is executed according to the following steps:
- Step 21 Perform distance accumulation in the fast time direction on the original echo signal to obtain an echo signal after distance accumulation
- Equation I the distance accumulation algorithm is shown in Equation I:
- R 1 (k, n) is the two-dimensional matrix form of the echo signal after distance accumulation
- L is the cumulative window width along the fast time dimension, The symbol indicates rounding down.
- the original echo signal can be reduced from 2048 distance sampling points of R (m, n) to R 1 (k, n) about 200 distance sampling points, that is, the matrix is reduced from 2048 to 200 dimensions, and the signal after distance accumulation undergoes subsequent signal processing and target recognition, and its detection effect is the same as the original radar echo before distance accumulation
- the signal is consistent. This can effectively increase the signal processing speed and improve the efficiency of radar detection and rescue.
- the distance accumulation of the signal in the fast time dimension can also suppress the high-frequency interference on the fast time signal to a certain extent.
- Step 22 Normalize the echo signal after the distance accumulation to obtain a normalized echo signal
- the signal R 1 (k, n) after the distance accumulation is used II performs normalization along the fast time dimension to obtain the normalized echo signal:
- R 2 (k, n) is the two-dimensional matrix form of the normalized radar callback signal
- the matrix size is K ⁇ N
- N is the slow time signal contained in the data R 1 (k, n)
- the number is the number of sampling points in slow time.
- the signal amplitude is between -1 and 1, and the size of the signal (the number of rows and the number of columns) remains unchanged.
- Step 23 De-noise the normalized echo signal to obtain a pre-processed echo signal.
- the normalized echo signal still contains static clutter reflected by the wall in the detection environment and reflected by other stationary objects. These static clutter form a strong fundamental frequency interference, thus drowning the human micro-motion signal.
- the difference between static clutter interference and human fretting signals is that the static clutter interference does not change with time, while the human fretting signal changes with time.
- a smooth filtering method is used to subtract the corresponding average of the slow time signal from the normalized echo signal to achieve the purpose of removing static clutter interference.
- R 3 (k, n) is the two-dimensional matrix form of the preprocessed echo signal.
- Step 3 Perform time accumulation in the slow time direction on the pre-processed echo signal to obtain a first echo signal, the first echo signal is composed of multiple amplitude signals, each amplitude signal Corresponding to a radar detection distance;
- the pre-processed echo signal is accumulated in time.
- the preprocessed echo signal is in the form of a two-dimensional matrix, where each row represents the amplitude signal at each time point at a certain distance, that is, from the original one distance corresponds to multiple slow time amplitudes
- the value signal is compressed into a distance corresponding to an accumulated amplitude signal. Since the trapped living body cannot move when facing the trapped living body, the distance will not change, but its radar amplitude signal will change with time. It will be much larger than the surrounding inanimate objects, so accumulation in the slow time direction is equivalent to making the radar amplitude signal of the living body much larger than that of other non-living bodies, which improves the accuracy of life detection.
- the 200-1200 echo signals in the pre-processed echo signal are taken for time accumulation, as shown in Formula IV.
- R 4 (k) is the column vector form of the first echo signal.
- each amplitude signal corresponds to a radar detection distance, which is specifically obtained using formula V:
- Range represents the detection range, which corresponds to 60 ns, which is 9 meters in this embodiment.
- Step 4 Perform inflection point envelope extraction on the first echo signal to obtain a second echo signal
- the inflection point envelope extraction is to find a plurality of inflection point amplitude signals in the first echo signal, and set all amplitude signals except the inflection point amplitude signal in the first echo signal to zero;
- the amplitude signal of the inflection point is greater than the two amplitude signals adjacent to the left and right of the amplitude signal of the inflection point;
- the interference needs to be further removed.
- One of the main interferences in radar echo is the side lobe interference near the peak, and the side lobe exhibits a characteristic of attenuation to both sides.
- the peak signal is identified by the inflection point, that is, when the amplitude signal at a certain point is greater than the amplitude signals at the two points on the left and right sides of the point, the point is called the inflection point.
- the inflection point in the radar signal R 4 (k) is more practical for target identification, so all points that satisfy the following conditions, ie, inflection points, are retained:
- the second inflection point envelope extraction is performed on the first echo signal to obtain
- the second echo signal is to retain all points in the radar signal R 5 (k) that satisfy the following conditions, that is, the second inflection point:
- R 5 (k + a) is the first non-zero value on the right of R 5 (k)
- R 5 (kb) is the first non-zero value on the left of R 5 (k).
- the first echo signal is in the form of a one-dimensional matrix: [1434,1578,1657,976,1014,1002,587,963,1011,936,1064,1216,948,1164,831].
- Step 5 Arrange the amplitude signals in the second echo signal in descending order according to magnitude, select the first M amplitude signals as M marker amplitude signals, and then obtain the second echo signal
- M is a positive integer greater than 1;
- the amplitude of the M marker amplitude signals is higher than the other amplitude signals in the second echo signal, so there may be living bodies in the radar detection distance corresponding to the M marker amplitude signals, further Judging these M marker amplitude signals can find the position of the living body.
- this step includes:
- Step 51 After arranging all the amplitude signals in the second echo signal in descending order of amplitude, select the first M amplitude signals as M marker amplitude signals;
- the first M large values in the second inflection point envelope data R 6 (k) are sequentially found, which are sequentially labeled Max1, Max2, ..., MaxM.
- Step 52 Set Z amplitude signals before and after each marker amplitude signal to zero in the second echo signal, Z is a positive integer;
- Step 53 Find the average value of all amplitude signals except the M marker amplitude signals in the second echo signal.
- Step 6 Obtain the ratio of each of the marked amplitude signals to the average value
- the marker amplitude signal corresponding to the ratio fluctuates, that is, there is a life target at the radar detection distance corresponding to the marker amplitude signal;
- the location is judged as a living target, and if the ratio Q is less than or equal to the threshold, it is judged as no target.
- the threshold Threshold can be adjusted according to the signal-to-noise ratio of the actual signal. Different thresholds correspond to different target recognition sensitivities.
- the ratio of each of the marker amplitude signal and the average value is less than the threshold, it means that there is no life target in the current detection area.
- the life target is a human body.
- the multi-target life detection radar includes an array antenna module, a radar main control module and a control display;
- the array antenna module is connected to the radar main control module, and is used to transmit a life detection radar signal, wait for the life detection radar signal to be reflected by a living body, and then receive the life detection radar original echo signal;
- the radar main control module is connected to the control display, and is used to accumulate the distance of the original echo signal in the fast time direction and then perform noise cancellation to obtain the preprocessed echo signal;
- the radar main control module is also used to accumulate the pre-processed echo signals in a slow time direction to obtain a first echo signal, and the first echo signal is composed of multiple amplitude signals Composition, each amplitude signal corresponds to a radar detection distance;
- the radar main control module is further used for extracting an inflection point envelope of the first echo signal to obtain a second echo signal; wherein the inflection point envelope extraction is in the first echo signal Find multiple inflection point amplitude signals, and set all amplitude signals except the inflection point amplitude signal in the first echo signal to zero; wherein the inflection point amplitude signal is greater than the two inflection points of the inflection point amplitude signal Amplitude signals;
- the radar main control module is also used to arrange all the amplitude signals in the second echo signal in descending order according to the magnitude of amplitude, select the first M amplitude signals as M marker amplitude signals, and obtain An average value of all amplitude signals except the M marked amplitude signals in the second echo signal, M is a positive integer greater than 1;
- the radar master control module is also used to obtain the ratio of each of the marker amplitude signals to the average value; if the ratio is greater than the threshold, the marker amplitude signal corresponding to the ratio fluctuates, that is, the marker amplitude signal
- the corresponding radar detection distance has a life target; otherwise, there is no target;
- the control display is used to output the detection result of the radar main control module, including whether there is a life target within the radar detection distance and the distance between the life target and the array antenna module.
- the multi-target life detection radar includes a radar main control module, an array antenna module and a control display.
- the radar main control module and the array antenna module are electrically connected through a cable, and are structurally connected through a metal folding arm.
- the radar main control module and the control The display is connected via WiFi.
- the radar main control module is composed of an ARM control unit, a DSP acquisition processing unit, a time base control unit, and a power management unit; the control display is used to communicate with the radar main control module, control the work of the entire system, and display detection results.
- the block diagram of the multi-target life detection radar is shown in Figure 3.
- the array antenna module During detection, the array antenna module emits electromagnetic wave signals to the detection area.
- the radar reflected wave is modulated by the target's life information.
- the array antenna module After receiving the reflected wave containing these information, the array antenna module transmits the data to the DSP acquisition and processing unit for signal processing. Then it is transmitted to the control display via wireless WiFi for display.
- the array antenna module includes a radar transmitting antenna 1 and a plurality of radar receiving antennas 2, and the radar transmitting antenna 1 and each of the radar receiving antennas 2 are connected by a folding arm movable;
- the radar transmitting antenna 1 is used to transmit life detection radar signals
- the radar receiving antenna 2 is used to receive the original echo signal of the life detection radar.
- the array antenna module is the core hardware system of the life detection radar. Its key performances such as sensitivity and stability directly determine the ability of the UWB life detection radar to detect the target of the living body. In order to meet the requirements of high sensitivity and strong penetration in the detection of people in complex ruins, this embodiment uses an ultra-wide band (UWB) radar transmission system with a center frequency and bandwidth of 400MHz, taking into account detection. Sensitivity and penetration ability, using high-precision digital stepping, DSP + AD acquisition processing, ARM control integration and other technologies, complete and realize the design of high-performance UWB detection radar front-end system.
- UWB ultra-wide band
- digital stepping is the key technology of the front-end system of UWB search and rescue biological radar, which mainly includes the design of host timing generation and pulse forming circuit. Its performance not only determines the quality of the transmitted signal, but also determines the equivalent sampling accuracy of the receiver, thus directly Affect the detection sensitivity of UWB biological radar.
- the radar host has designed a high-precision, low-jitter step control logic circuit based on equivalent sampling technology and high-speed digital chips.
- the minimum step size is not more than 10ps and the jitter is not more than 10ps. It can theoretically distinguish the target from 1.5 in the air.
- the fretting of mm (the fretting of the body surface caused by human respiration is mostly between a few millimeters and a few centimeters), which satisfies the signal sampling with high distance resolution ability, which lays the foundation for the detection and extraction of weak life signals of deeply buried personnel.
- the array antenna module is structurally designed with multiple foldable metal articulated arms, the radar transmitting antenna 1 and the multiple radar receiving antennas 2 are connected by a deformable folding arm, and the cable between them is on the folding arm Internal wiring, the distance between the radar transmitting antenna 1 and the radar receiving antenna 2 can be adjusted freely within 1.08 meters through the expansion and contraction of the folding arm.
- the array antenna module includes one radar transmitting antenna 1 and four radar receiving antennas 2.
- the first radar transmitting antenna 21, the second radar transmitting antenna 22, the third radar transmitting antenna 23, and the fourth radar transmitting antenna 24 are placed in the center of the folding bracket, and the four radar receiving antennas are placed in A variety of detection modes can be combined by adjusting the expansion, contraction and rotation of each radar receiving antenna on the upper, lower, left and right articulated arms of the folding stand.
- the battery adopts a built-in method and is placed in the radar transmitting antenna 1. It is detachable, which is convenient for charging the battery.
- the structural design of the array antenna module makes the antenna layout flexible during detection. It can conduct multi-path penetration detection of ruins from different positions and different angles, and the probability of target detection is greatly increased.
- the multi-degree-of-freedom folding arm design makes the life detection radar probe adaptable to the complex ruin detection environment and clings to the irregular complex ruin surface, reducing the electromagnetic wave air attenuation caused by the suspended probe, and improving the penetration detection capability.
- the number of probes can be increased or decreased according to the detection needs, forming a detection mode with different probe numbers.
- the life detection radar provided by the present invention has at least the following three typical detection mode examples:
- the contraction detection mode refers to a detection mode in which the first radar transmitting antenna 21, the second radar transmitting antenna 22, the third radar transmitting antenna 23, and the fourth radar transmitting antenna 24 are respectively placed around the radar transmitting antenna 1 and are close to the radar transmitting antenna. As shown in Figure 4. Because the radar transmitting antenna and the radar receiving antenna are contracted together, it is similar to the detection mode of receiving and sending. There is no attenuation caused by the electromagnetic wave propagation delay between the transmitting and receiving units. Human target detection and recognition under conditions.
- the expanded detection mode refers to a type in which the first radar transmitting antenna 21, the second radar transmitting antenna 22, the third radar transmitting antenna 23, and the fourth radar transmitting antenna 24 are respectively placed around the radar transmitting antenna 1 and the folded arms are fully extended
- the detection pattern of the ten-shaped planar antenna array is shown in Figure 5. Because the distance between the radar transmitting antenna and the radar receiving antenna can be fully extended up to 1.08 meters (the geometric center of the radar transmitting antenna to the geometric center of the radar receiving antenna), the expanded detection mode has a strong target positioning ability and can be applied to penetrate brick walls (The detection surface is flat) Multi-target detection recognition and positioning.
- the ultra-wide spectrum radar transceiver antenna has the smallest energy attenuation and the best detection effect when it is closely coupled with the detection medium.
- Figure 6 is an example of the ruin detection mode of a multi-base deformable life detection radar (a detection mode using one radar transmitting antenna and two radar receiving antennas). Two human targets are buried under the ruins, and their buried positions are different and shallow Different. Traditional life detection radars either cannot guarantee that each receiving or transmitting unit can be closely coupled to the surface of the ruins (fixed array multi-base life detection radar) causing energy attenuation, or can only detect from one detection point (single base life detection (Radar) It is thus possible that the thickest ruin detection path is selected to be difficult to penetrate.
- the structural design of the deformable folding arm makes the selection of the detection point and detection path more flexible, which can ensure the detection and identification of each target to the greatest extent At the same time, ensure that each receiving or transmitting unit can be closely coupled with the complex ruin surface to reduce energy attenuation.
- the radar transmitting antenna After the radar transmitting antenna emits electromagnetic waves to reach the second human target B, electromagnetic waves load the second human target B's breathing and other vital signals from two paths back to the radar receiving antenna 22 and the radar receiving respectively
- the antenna 24, the length of the two electromagnetic wave propagation paths and the thickness of the ruined medium penetrated are different, so that in the two channels formed by the radar transmitting antenna-radar receiving antenna 22 and the radar transmitting antenna-radar receiving antenna 24, the second human target B Two results of detection and identification are formed, and the two results are mutually verified and complement each other, thereby increasing the probability of target detection and reducing missed judgments.
- the life detection radar described in the present invention is used to detect three human targets through walls under laboratory conditions.
- the experimental scenario is shown in FIG. 7.
- three channels were used for detection, that is, the transmitting unit and one receiving unit were placed closely in the middle; the other two receiving units were placed on both sides, in a straight line with the transmitting unit and 1 meter away from the central transmitting unit.
- the brick wall is a 24 cm thick red brick wall.
- the first target X is located at a distance of about 1.1 meters from the radar axis to the right and the second target Y is located at a distance from the radar axis At a position of about 4.8 meters and to the left, the third target Z is located close to the central axis at a distance of about 6.9 meters from the radar axis.
- the data collected by channel one that is, the channel placed in the middle
- the data collected by channel one is used as an example to describe the multi-target detection and recognition method.
- the first echo signal after pre-processing and time accumulation of the radar original echo is shown in Figure 8, you can see After a certain amount of time has elapsed, the amplitude of the signal at the target ’s location increases and is higher than the amplitude of the signal at the non-target, forming several “peaks”, but the number of “peaks” is more than the actual target number, and the “peaks "There is a trailing phenomenon behind”.
- the first echo signal is subjected to envelope extraction once to obtain the vector signal after the envelope filter extraction.
- the signal at the non-inflection point position is set to zero, and the partial amplitude is relatively high. Small noise and interference are removed, but target recognition is still not possible.
- the second envelope extraction is continued to obtain the second echo signal, and the first three large values (the first large value, the second large value, and the third large value) are calculated using the bubble sorting algorithm for the second echo signal,
- the three values are labeled Max1, Max2, and Max3 in sequence.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
一种基于雷达信号的多目标生命探测方法及探测雷达,该方法包括:对预处理后的回波信号进行慢时间方向上的时间累积,获得第一回波信号;对该第一回波信号进行拐点包络提取,获得第二回波信号;求取该第二回波信号中的除M个标记幅值信号以外的所有幅值信号的平均值;若该标记幅值信号与平均值的比值大于阈值,则标记幅值信号对应的雷达探测距离处具有生命目标。该生命探测方法采用归一化方法将雷达信号幅值在快时间(距离)维度上归一化,解决了雷达信号在传输过程中随着距离的增加产生的能量衰减问题,有效降低了远端目标的漏判率;采用两次拐点包络提取的方法,提高了多目标轴向识别准确率。
Description
本发明涉及生命探测方法和装置领域,具体涉及一种基于雷达信号的多目标生命探测方法及探测雷达。
生命探测雷达是一种融合生物医学工程技术和雷达技术可穿透非金属介质(木、土、砖、碎石等)非接触、远距离探测人类生命体征(以呼吸信号为主)的一种新型雷达。生命探测雷达技术对被测量对象无任何约束,无需接触性电极、传感器、电缆等的连接,而且可以隔一定的距离、穿透一定的介质对人体进行探测识别,所以被广泛应用于灾(地震、塌方、矿难等)后人员搜寻、反恐怖斗争中的隔墙监控及战场侦察等领域。由于超宽谱雷达具有强穿透能力且其回波拥有距离信息等特点,目前的生命探测雷达主流采用超宽谱雷达技术。
现有的生命探测雷达针对单目标探测及定位的信号处理识别算法研究较多,但是针对多目标的探测及位置识别研究较少,目前只能实现穿墙探测三个或三个以下人体目标,且需要目标在雷达轴向和切向上分别错开一定距离,这主要是因为单通道对多目标探测和轴向距离区分准确率不高。单通道对多目标轴向探测识别方面还存在以下问题:1.分布于不同轴向距离上的各目标,由于雷达波随着距离增加而衰减,其信号幅值差异较大,尤其当目标处于探测区域远端时,其幅值变得很小,不利于目标从背景噪声中提取并识别;2.目标自身信号会在其后方产生一定的高幅值区域,即“拖尾”现象,这种“拖尾”往往会将一个目标误判成两个目标从而造成误判。
现行的超宽谱生命探测雷达以单基地雷达和固定天线阵列的多基地雷达为主,存在问题主要是:1、单基地雷达不能对目标进行定位,且由于探测路径单一,在盲探过程中有可能遇到厚的钢筋混凝土而无法穿透;2、固定天线阵列的多基地生命探测雷达虽然增加了探测路径且可以实现多目标探测,但是由于天线阵列固定,每个探头不能灵活适应崎岖不平的废墟表面,导致探头与废墟表面耦合不严而造成电磁波衰减,影响穿透能力和探测效果,另外天线阵列的固定也产生探测路径不能根据现场情况自由选择的问题。
发明内容
本发明的目的在于提供一种基于雷达信号的多目标生命探测方法及探测雷达,用以 解决现有技术中生命探测方法对生命目标的位置探测精度不高,容易出现误判等问题。
为了实现上述任务,本发明采用以下技术方案:
一种基于雷达信号的多目标生命探测方法,包括以下步骤:
步骤1、发射生命探测雷达信号;接收生命探测雷达原始回波信号;
步骤2、对所述的原始回波信号进行距离累积后再进行噪声消除,获得预处理后的回波信号;
步骤3、对所述预处理后的回波信号进行时间累积,获得第一回波信号,所述的第一回波信号由多个幅值信号组成,每个幅值信号对应一个雷达探测距离;
步骤4、对所述的第一回波信号进行拐点包络提取,获得第二回波信号;
其中所述的拐点包络提取是在所述第一回波信号中找到多个拐点幅值信号,将所述第一回波信号中除了拐点幅值信号以外的所有幅值信号置零;
其中所述拐点幅值信号均大于该拐点幅值信号左右相邻的两个幅值信号;
步骤5、将所述的第二回波信号中所有幅值信号的按照幅值大小降序排列,选取前M个幅值信号作为M个标记幅值信号后,求取所述第二回波信号中除所述的M个标记幅值信号以外的所有幅值信号的平均值,M为大于1的正整数;
步骤6、获得每个所述标记幅值信号与所述平均值的比值;
若比值大于阈值,则该比值对应的标记幅值信号存在波动,即该标记幅值信号对应的雷达探测距离处具有生命目标;
反之,无目标;
完成本次生命探测。
进一步地,所述的步骤2按照以下步骤执行:
步骤21、对所述的原始回波信号进行距离累积,获得经距离累积后的回波信号;
步骤22、对所述的经距离累积后的回波信号进行归一化,获得归一化后的回波信号;
步骤23、对所述的归一化后的回波信号进行去噪,获得预处理后的回波信号。
进一步地,所述的步骤23、对所述的归一化后的回波信号进行去噪时,采用平滑滤波的方法获得预处理后的回波信号。
进一步地,所述的步骤3、对所述预处理后的回波信号进行时间累积时,取预处理后的回波信号中第200-1200道回波信号进行时间累积。
进一步地,对所述的第一回波信号进行两次拐点包络提取,获得第二回波信号。
进一步地,所述的步骤5按照以下步骤执行:
步骤51、将所述的第二回波信号中所有幅值信号按照幅值大小降序排列后,选取前M个幅值信号作为M个标记幅值信号;
步骤52、在所述的第二回波信号中将每个标记幅值信号前后Z个幅值信号置零,Z为正整数;
步骤53、求取所述的第二回波信号中除所述三个标记幅值信号以外的所有幅值信号的平均值。
进一步地,所述的M=3,Z=5。
一种多目标生命探测雷达,用于实现以上所述的多目标生命探测方法,所述的多目标生命探测雷达包括阵列天线模块、雷达主控模块以及控制显示器;
所述的阵列天线模块与所述的雷达主控模块连接,用于发射生命探测雷达信号,接收生命探测雷达原始回波信号;
所述的雷达主控模块与所述的控制显示器连接,用于对所述的原始回波信号进行距离累积后再进行噪声消除,获得预处理后的回波信号;
所述的雷达主控模块还用于对所述预处理后的回波信号进行时间累积,获得第一回波信号,所述的第一回波信号由多个幅值信号组成,每个幅值信号对应一个雷达探测距离;
所述的雷达主控模块还用于对所述的第一回波信号进行拐点包络提取,获得第二回波信号;其中所述的拐点包络提取是在所述第一回波信号中找到多个拐点幅值信号,将所述第一回波信号中除了拐点幅值信号以外的所有幅值信号置零;其中所述拐点幅值信号均大于该拐点幅值信号左右相邻的两个幅值信号;
所述的雷达主控模块还用于将所述的第二回波信号中所有幅值信号的按照幅值大小降序排列,选取前M个幅值信号作为M个标记幅值信号后,求取所述第二回波信号中除所述的M个标记幅值信号以外的所有幅值信号的平均值,M为大于1的正整数;
所述的雷达主控模块还用于获得每个所述标记幅值信号与所述平均值的比值;若比值大于阈值,则该比值对应的标记幅值信号存在波动,即该标记幅值信号对应的雷达探测距离处具有生命目标;反之,无目标;
所述的控制显示器用于输出雷达主控模块的探测结果,包括雷达探测距离内是否存在生命目标以及生命目标与所述阵列天线模块的距离。
进一步地,所述阵列天线模块包括1个雷达发射天线以及多个雷达接收天线,所述的雷达发射天线与每个所述的雷达接收天线之间采用折叠臂活动式连接;
所述的雷达发射天线用于发射生命探测雷达信号;
所述的雷达接收天线用于接收生命探测雷达原始回波信号。
进一步地,所述的阵列天线模块包括1个雷达发射天线以及4个雷达接收天线。
本发明与现有技术相比具有以下技术特点:
1、本发明提供的生命探测方法采用归一化方法将雷达信号幅值在快时间(距离)维度上归一化,解决了雷达信号在传输过程中随着距离的增加产生的能量衰减问题,有效降低了远端目标的漏判率。
2、本发明提供的生命探测方法采用两次拐点包络提取的方法,包括标记幅值信号前后的“拖尾”去除步骤来降低“拖尾”效应造成的目标误判,提高多目标轴向识别准确率。
3、本发明提供的生命探测雷达采用一发四收的四通道超宽谱雷达体制,增加了探测路径,提升了目标检出几率。
4、本发明提供的生命探测雷达发射天线与各接收天线之间采用五个关节的金属折叠臂结构,增加了复杂废墟现场雷达生命探测中的探测灵活性,使得各发射、接收单元与废墟面实现接触耦合探测,有效提高了穿透能力和探测效率,满足废墟掩埋下的多目标快速探测定位的需求。
图1为本发明提供的多目标生命探测方法的流程示意图;
图2为雷达原始回波信号的二维矩阵示意图;
图3为本发明提供的多目标生命探测雷达结构示意图;
图4为本发明提供的阵列天线模块收缩探测示意图;
图5为本发明提供的阵列天线模块展开探测示意图;
图6为本发明提供的阵列天线模块废墟探测示意图;
图7为本发明的一个实施例中提供的三目标探测场景示意图;
图8为本发明的一个实施例中经过时间累积后的第一回波信号示意图;
图9为本发明的一个实施例中经过一次拐点包络提取后获得的回波信号示意图;
图10为本发明的一个实施例中提供的第二回波信号示意图。
图中标号代表:1-雷达发射天线,2-雷达接收天线,21-第一雷达接收天线,22-第二雷达接收天线,23-第三雷达接收天线,24-第四雷达接收天线,A-第一人体目标,B-第二人体目标,X-第一目标,Y-第二目标,Z-第三目标。
以下是发明人提供的具体实施例,以对本发明的技术方案作进一步解释说明。
实施例一
本实施例公开了一种基于雷达信号的多目标生命探测方法,如图1所示,包括以下步骤:
步骤1、发射生命探测雷达信号,接收生命探测雷达原始回波信号;
在本实施例中,生命探测雷达信号在遇到物体时就进行反射,形成雷达原始回波信号,当生命探测雷达信号在遇见静态物体时,雷达原始回波信号是稳定的固定值,但是当生命探测雷达信号在遇见生命体时,雷达原始回波信号会出现波动,因此可以通过这些微小波动可以对生命体进行检测,生命体包括了动物、人体等包含生命的物体,但在本实施例中,生命目标是指人体生命体,因此生命体包括生命目标。
生物雷达接收的雷达原始回波信号R可以表示为二维矩阵R(m,n),如图2所示,其中m为行向量,代表时间,n为列向量,代表探测距离,m∈M,n∈N,M与N均为正整数,图2中的横轴表示探测时间,称为“慢时间”,单位是秒,沿着探测时间的方向为慢时间方向;纵轴表示探测距离,称为“快时间”,沿着探测距离的方向为快时间方向,单位是纳秒或米,快时间和距离的计算关系为:距离(m)=快时间(ns)×电磁波在介质中的传播速度(m/ns)。在某一时刻,沿着快时间方向的信号,即二维矩阵的列向量,叫做“道信号”;在某一距离点上,沿着慢时间方向的信号,即二维矩阵的行向量,叫做“点信号”。
步骤2、对所述的原始回波信号进行快时间方向上的距离累积后再进行噪声消除,获得预处理后的回波信号;
雷达原始回波信号存储在二维矩阵R(m,n)中,其中每个快时间信号包含2048、4096或者8192个(根据探测距离不同可选择设置)短整型数据,慢时间维度上的采样率为64Hz,即使按照每个快时间信号2048个数据计算,雷达原始回波信号每秒钟接收数据量也有2048×64×2=262144个字节,数据量大,影响后期信号处理和目标识别速度。
由于快时间方向上邻近距离点处的雷达回波的调制方式大致相同,且具有一定的相关性,因此,在不影响有用信息的前提下,首先对二维矩阵R(m,n)在空间域沿着快时间方向进行距离累积,以达到缩减运算量、实现实时分析并给出探测结果的目的。
所述的步骤2按照以下步骤执行:
步骤21、对所述的原始回波信号进行快时间方向上的距离累积,获得经距离累积 后的回波信号;
在本步骤中,距离累积算法如式I所示:
式中R
1(k,n)为经距离累积后的回波信号的二维矩阵形式,矩阵大小为K×N,其中k=1,2,…,K,K为距离累积后快时间维度的距离采样点数,
L为沿着快时间维度的距离累积窗宽,
符号表示向下取整。大量实验研究表明,当快时间信号采样点数设置为2048,距离累计窗宽L=10时,经过距离累积,原始回波信号可以从R(m,n)的2048个距离采样点减少到R
1(k,n)的200个左右的距离采样点,即矩阵从2048维降至200维,且距离累积后的信号经过后续信号处理和目标识别,其探测效果与距离累积前的雷达原始回波信号一致。这样可以有效增加信号处理速度,提高雷达探测搜救的工作效率。与此同时,在快时间维度上对信号进行距离累积,一定程度上也可以抑制快时间信号上的高频干扰。
步骤22、对所述的经距离累积后的回波信号进行归一化,获得归一化后的回波信号;
雷达信号在传输过程中随着距离的增加存在能量衰减的现象,为了减小因这种现象而造成的信号失真,在本步骤中,将距离累积后的信号R
1(k,n)采用式II沿着快时间维度进行归一化处理,获得归一化后的回波信号:
式中,R
2(k,n)为归一化后的雷达回拨信号的二维矩阵形式,矩阵大小为K×N,N为数据R
1(k,n)中包含的慢时间信号的个数,即慢时间上的采样点数。归一化后信号幅值都在-1到1之间,信号的尺寸(行数、列数)不变。
步骤23、对所述的归一化后的回波信号进行去噪,获得预处理后的回波信号。
归一化后的回波信号中仍然包含探测环境中的墙体反射以及其它静止物体反射的静态杂波,这些静态杂波形成较强的基频干扰,从而淹没人体微动信号。静态杂波干扰与人体微动信号的区别在于:静态杂波干扰部分不随时间变化,而人体微动信号随时间 变化。
作为一种优选的实施方式,采用平滑滤波的方法从归一化后的回波信号中减去对应的慢时间信号均值从而达到去除静态杂波干扰的目的。
其中,R
3(k,n)为预处理后的回波信号的二维矩阵形式。
步骤3、对所述预处理后的回波信号进行慢时间方向上的时间累积,获得第一回波信号,所述的第一回波信号由多个幅值信号组成,每个幅值信号对应一个雷达探测距离;
去除基频干扰后的,为了进一步排除探测结果的偶然性,扩大目标信息与干扰信息之间的差异,在本步骤中对预处理后的回波信号进行时间累积。
由于预处理后的回波信号是二维矩阵形式,其中每一行代表在某个距离上的每个时间点上的幅值信号,也就是说从原来的一个距离对应多个慢时间上的幅值信号,压缩为一个距离对应一个累加后的幅值信号,由于在面对受困生命体时,该受困生命体本身无法运动,距离不会发生变化,但是随着时间其雷达幅值信号会远大于周围的无生命物体,因此在慢时间方向上进行累积,相当于使有生命体的雷达幅值信号远大于其他非生命体的雷达幅值信号,提高了生命检测的准确率。
作为一种优选的实施方式,取预处理后的回波信号中第200-1200道回波信号进行时间累积,如式IV所示。
其中,R
4(k)为所述的第一回波信号的列向量形式。
在本步骤中,每个幅值信号对应一个雷达探测距离,具体采用式V获得:
其中Range表示探测范围,在本实施例中对应60ns,即9米。
步骤4、对所述的第一回波信号进行拐点包络提取,获得第二回波信号;
其中所述的拐点包络提取是在所述第一回波信号中找到多个拐点幅值信号,将所述第一回波信号中除了拐点幅值信号以外的所有幅值信号置零;
其中所述拐点幅值信号均大于该拐点幅值信号左右相邻的两个幅值信号;
在本步骤中,由于电磁环境的复杂性,经过时间累积处理之后,仍然很难直接从雷 达信号R
4(k)中找到被探测的目标。因此需要进一步去除干扰,雷达回波中一种很主要的干扰是峰值附近的旁瓣干扰,并且旁瓣呈现出一种向两侧衰减的特点。在本步骤中通过拐点识别峰值信号,即当某一点处的幅值信号比它左右两侧紧邻两点处的幅值信号都大时,称该点为拐点。在本步骤中认为雷达信号R
4(k)中的拐点对目标的识别更有实际价值,因此保留所有满足以下条件的点,即拐点:
R
4(k)>R
4(k+1)|R
4(k)>R
4(k-1) 式VI
将不满足拐点条件的各点对应的数值置零,满足条件的各点不改变原始位置顺序存储在新的一维数组中以形成一次包络滤波提取后的新的一维数组即向量R
5(k)。
从实际结果来看,一次拐点包络提取后的波形仍然有干扰存在无法准确识别目标,因此作为一种优选的实施方式,对所述的第一回波信号进行二次拐点包络提取,获得第二回波信号,即保留雷达信号R
5(k)中所有满足以下条件的点,即二次拐点:
R
5(k)>R
5(k+a)|R
5(k)>R
5(k-b) 式VII
其中R
5(k+a)为R
5(k)右边第一个不为零的值,R
5(k-b)为R
5(k)左边第一个不为零的值。
执行上述步骤进行第二次拐点包络提取,形成新的一维数组形式的第二回波信号R
6(k),经过取二次拐点包络提取之后的雷达信号去除了绝大多数干扰。
例如第一回波信号为一维矩阵形式:[1434,1578,1657,976,1014,1002,587,963,1011,936,1064,1216,948,1164,831],经过一次拐点包络提取后,获得[0,0,1657,0,1014,0,0,0,1011,0,0,1216,0,1164,0],经过二次拐点包络提取后,获得一维矩阵形式的第二回波信号:[0,0,1657,0,0,0,0,0,0,0,0,1216,0,0,0]。
步骤5、将所述的第二回波信号中所有幅值信号的按照幅值大小降序排列,选取前M个幅值信号作为M个标记幅值信号后,求取所述第二回波信号中除所述的M个标记幅值信号以外的所有幅值信号的平均值,M为大于1的正整数;
在本步骤中,M个标记幅值信号的幅值高于第二回波信号中的其他幅值信号,因此这M个标记幅值信号对应的雷达探测距离上可能会存在生命体,进一步的对这M个标记幅值信号进行判断就可以找到生命体的位置。
具体地,本步骤包括:
步骤51、将所述的第二回波信号中所有幅值信号按照幅值大小降序排列后,选取前M个幅值信号作为M个标记幅值信号;
在本步骤中,依次寻找出二次拐点包络数据R
6(k)中的前M个大值,依次标记为Max1、Max2、……、MaxM。
步骤52、在所述的第二回波信号中将每个标记幅值信号前后Z个幅值信号置零,Z为正整数;
在本步骤中,为了提高识别的准确率,需要去除“拖尾”效应的影响。由于人体胸壁具有一定的厚度,所以在某标记幅值信号一定距离范围内不可能是其他目标,而只能是标记幅值信号处目标所产生的“拖尾”,为了去除这种“拖尾”,将标记幅值信号附近前后Z个幅值信号置零。
作为一种优选的实施方式,当探测对象为人体时,所述的M=3,Z=5。
依次寻找出二次拐点包络数据R
6(k)中的前三个大值(第一大值、第二大值、第三大值),三个数值依次标记为Max1、Max2和Max3。最后去除目标位置附近的干扰(由于人体胸壁具有一定厚度的原因,在某目标点一定距离范围内不可能再有别的目标),将目标点附近前后5点的数值置零。
步骤53、求取所述的第二回波信号中除所述的M个标记幅值信号以外的所有幅值信号的平均值。
在本步骤中,采用式VIII获得平均值Background:
步骤6、获得每个所述标记幅值信号与所述平均值的比值;
若比值大于阈值,则该比值对应的标记幅值信号存在波动,即该标记幅值信号对应的雷达探测距离处具有生命目标;
反之,无目标;
完成本次生命探测。
在本实施例中,每个所述标记幅值信号与所述平均值的比值Q采用式IX获得:
比值Q大于阈值Threshold,则该处判别为有生命目标,比值Q小于等于阈值则判 别为无目标,阈值Threshold可以根据实际信号的信噪比情况进行调整,不同的阈值对应不同的目标识别灵敏度。
在本实施例中,如果每个所述标记幅值信号与所述平均值的比值均小于阈值,则说明当前探测区域内不存在生命目标,在本实施例中,生命目标为人体。
实施例二
本实施例公开了一种多目标生命探测雷达,用于实现实施例一中所述的多目标生命探测方法,所述的多目标生命探测雷达包括阵列天线模块、雷达主控模块以及控制显示器;
所述的阵列天线模块与所述的雷达主控模块连接,用于发射生命探测雷达信号,等待所述的生命探测雷达信号被生命体反射后,接收生命探测雷达原始回波信号;
所述的雷达主控模块与所述的控制显示器连接,用于对所述的原始回波信号进行快时间方向上的距离累积后再进行噪声消除,获得预处理后的回波信号;
所述的雷达主控模块还用于对所述预处理后的回波信号进行慢时间方向上的时间累积,获得第一回波信号,所述的第一回波信号由多个幅值信号组成,每个幅值信号对应一个雷达探测距离;
所述的雷达主控模块还用于对所述的第一回波信号进行拐点包络提取,获得第二回波信号;其中所述的拐点包络提取是在所述第一回波信号中找到多个拐点幅值信号,将所述第一回波信号中除了拐点幅值信号以外的所有幅值信号置零;其中所述拐点幅值信号均大于该拐点幅值信号左右相邻的两个幅值信号;
所述的雷达主控模块还用于将所述的第二回波信号中所有幅值信号的按照幅值大小降序排列,选取前M个幅值信号作为M个标记幅值信号后,求取所述第二回波信号中除所述的M个标记幅值信号以外的所有幅值信号的平均值,M为大于1的正整数;
所述的雷达主控模块还用于获得每个所述标记幅值信号与所述平均值的比值;若比值大于阈值,则该比值对应的标记幅值信号存在波动,即该标记幅值信号对应的雷达探测距离处具有生命目标;反之,无目标;
所述的控制显示器用于输出雷达主控模块的探测结果,包括雷达探测距离内是否存在生命目标以及生命目标与所述阵列天线模块的距离。
本发明提供的多目标生命探测雷达包括雷达主控模块、阵列天线模块以及控制显示器,雷达主控模块、阵列天线模块通过电缆进行电器连接,通过金属折叠臂进行结构连 接,雷达主控模块和控制显示器通过WiFi连接。所述雷达主控模块由ARM控制单元、DSP采集处理单元、时基控制单元和电源管理单元组成;所述控制显示器用于与雷达主控模块进行通信,控制整个系统工作,并显示探测结果。多目标生命探测雷达组成框图如图3所示。
探测时,阵列天线模块中向探测区发射电磁波信号,雷达反射波被目标的生命信息所调制,阵列天线模块接收到含有这些信息的反射波后,将数据传送至DSP采集处理单元进行信号处理,然后再通过无线WiFi传输至控制显示器进行显示。
可选地,所述阵列天线模块包括1个雷达发射天线1以及多个雷达接收天线2,所述的雷达发射天线1与每个所述的雷达接收天线2之间采用折叠臂活动式连接;
所述的雷达发射天线1用于发射生命探测雷达信号;
所述的雷达接收天线2用于接收生命探测雷达原始回波信号。
阵列天线模块是生命探测雷达的核心硬件系统,其灵敏度和稳定度等关键性能直接决定了UWB生命探测雷达探测生命体目标的能力。针对复杂废墟条件下人员探测中的灵敏度高、穿透能力强等要求,本实施例中采用中心频率和带宽均为400MHz的超宽谱(Ultra-wide Band,UWB)雷达发射体制,兼顾了探测灵敏度和穿透能力,采用高精度数字步进、DSP+AD采集处理、ARM控制集成等技术,完成并实现了高性能UWB探测雷达前端系统的设计。其中数字步进是UWB搜救生物雷达前端系统的关键技术,主要包括主机时序产生和脉冲形成电路的设计,它的性能不仅决定了发射信号的质量,而且决定接收机的等效采样精度,从而直接影响UWB生物雷达的探测灵敏度。雷达主机基于等效取样技术、选用高速数字芯片设计出了高精度、低抖动的步进控制逻辑电路,最小步长不大于10ps,抖动不大于10ps,从理论上能够分辨目标在空气中产生1.5mm的微动(人体呼吸引起的体表微动多在几毫米到几厘米之间),满足高距离分辨能力的信号取样,为深埋人员微弱生命信号的检测和提取奠定了基础。
在本实施例中,阵列天线模块在结构上设计了多个可折叠金属关节臂,雷达发射天线1与多个雷达接收天线2通过可变形折叠臂连接,而它们之间的电缆则在折叠臂内部走线,雷达发射天线1与雷达接收天线2之间距离通过折叠臂的展缩可在1.08米范围内自由调节。
优选地,所述的阵列天线模块包括1个雷达发射天线1以及4个雷达接收天线2。
如图4、5所示,第一雷达发射天线21、第二雷达发射天线22、第三雷达发射天线23以及第四雷达发射天线24置于折叠支架的中心,四个雷达接收天线置于可折叠支 架的上、下、左、右关节臂上,通过调整每个雷达接收天线的展开、收缩和旋转可以组合出多种探测模式。电池采用内置方式,置于雷达发射天线1内,可拆卸,方便对电池进行充电。
阵列天线模块的结构设计使得探测时天线布置方式灵活,可以从不同位置、不同角度对废墟进行多路径穿透探测,目标检出几率大大增加。而多自由度折叠臂设计使得生命探测雷达探头可以适应复杂的废墟探测环境,紧贴不规则的复杂废墟表面,减少因为探头悬空造成的电磁波空气衰减,提高了穿透探测能力。同时根据探测需要可以增减探头的个数,形成不同探头数的探测模式。基于上述的系统和结构设计,本发明提供的生命探测雷达至少具有以下三种典型的探测模式实例:
1、收缩探测模式
收缩探测模式是指第一雷达发射天线21、第二雷达发射天线22、第三雷达发射天线23以及第四雷达发射天线24分别置于雷达发射天线1四周且紧贴雷达发射天线的探测模式,如图4所示。因为雷达发射天线和雷达接收天线收缩在一起近似为收发一体的探测模式,发射、接收单元之间无因电磁波传播延迟而造成的衰减,所以收缩探测模式穿透能力强,适用于穿透厚介质条件下的人体目标探测识别。
2、展开探测模式
展开探测模式是指第一雷达发射天线21、第二雷达发射天线22、第三雷达发射天线23以及第四雷达发射天线24分别置于雷达发射天线1四周且折叠臂完全伸展开形成的一种“十”字形的平面天线阵列探测模式,如图5所示。因为雷达发射天线和雷达接收天线完全伸展开的距离可达1.08米(雷达发射天线几何中心对雷达接收天线几何中心),因此展开探测模式具有较强的目标定位能力,可以适用于穿透砖墙(探测表面平整)的多目标探测识别和定位。
3、废墟探测模式
超宽谱雷达收发天线在与探测介质紧贴耦合的情况下能量衰减最小,探测效果最佳。图6为多基地可变形生命探测雷达(采用的是一个雷达发射天线、两个雷达接收天线的探测模式)的废墟探测模式示例图,废墟下埋藏了两个人体目标,他们埋藏位置不同、深浅不一。传统的生命探测雷达要么不能保证每个接收或发射单元都能与废墟表面紧贴耦合(固定阵列多基地生命探测雷达)而造成能量衰减,要么只能从一个探测点进行探测(单基地生命探测雷达)从而有可能正好选择了最厚的废墟探测路径难以穿透。采用本发明提供的多目标生命探测雷达对如图6所示的废墟进行探测时,可变形折叠臂的结构设计使得探测点和探测路径选择更加灵活,可以最大程度地保证探测识别出每一 个目标,同时保证每一个接收或发射单元都能与复杂废墟表面紧贴耦合以减少能量衰减。以第二人体目标B的探测为例,雷达发射天线发射电磁波到达第二人体目标B后,电磁波加载第二人体目标B的呼吸等生命信号从两条路径分别反射回雷达接收天线22和雷达接收天线24,两条电磁波传播路径长短以及所穿透的废墟介质厚度不同,这样在雷达发射天线-雷达接收天线22和雷达发射天线-雷达接收天线24形成的两个通道中对第二人体目标B形成两个探测识别的结果,两个结果互相验证、互为补充,从而增加目标检出几率减少漏判。
实施例三
本实施例中,在实验室条件下采用本发明描述的生命探测雷达对三个人体目标进行穿墙探测,实验场景如图7所示。本次实验采用三个通道进行探测,即发射单元和一个接收单元紧贴置于中间;另外两个接收单元分别置于两边,与发射单元处于一条直线上且距中央发射单元1米。砖墙为24厘米厚的红砖墙。三个人体目标静止站立在墙后平静呼吸,各目标位置如图7所示,第一目标X位于距离雷达轴向距离约1.1米且偏右的位置,第二目标Y位于距离雷达轴向距离约4.8米且偏左的位置,第三目标Z位于距离雷达轴向距离约6.9米靠近中轴线的位置。在本实施例中,采用通道一(即置于中间的通道)采集的数据为例来对多目标探测识别方法进行说明。
采用上述多目标探测识别方法对通道一采集的雷达原始回波信号进行处理和目标识别,其中对雷达原始回波进行预处理和时间累积后的第一回波信号如图8所示,可以看到经过一定的时间累积后,目标所处的位置信号幅值提升,高于非目标处的信号幅值,形成了几个“波峰”,但是“波峰”数多于实际目标数,且“波峰”后面有“拖尾”现象存在。
在本实施例中对第一回波信号进行一次包络提取,得到一次包络滤波提取后的向量信号,如图9所示,可以看到非拐点位置的信号被置零,部分幅值较小的噪声和干扰被去除,但是仍然无法进行目标识别。
因此继续进行二次包络提取,得到第二回波信号,对第二回波信号采用冒泡排序算法计算前三个大值(第一大值、第二大值、第三大值),三个数值依次标记为Max1、Max2和Max3。将最大三个值附近的数值置零,就得到“拖尾”去除后的二次包络提取信号(第二回波信号),如图10所示。
对“拖尾”去除后的第二回波信号计算除三个最大值以外的所有幅值信号的平均值, 得到背景平均值Background,分别计算三个大值与Background的比值Q,通过设定合适的阈值Threshold,判断三个最大值是否为目标,如果是目标,其横坐标对应距离即为雷达到目标的轴向距离。采用本发明所描述的算法对本实例的判别结果为:探测区域内有三个目标,三个目标的位置分别为1.1米、4.7米、7.0米,目标个数、目标位置与实际相符合,探测结果正确。
Claims (10)
- 一种基于雷达信号的多目标生命探测方法,其特征在于,包括以下步骤:步骤1、发射生命探测雷达信号;接收生命探测雷达原始回波信号;步骤2、对所述的原始回波信号进行距离累积后再进行噪声消除,获得预处理后的回波信号;步骤3、对所述预处理后的回波信号进行时间累积,获得第一回波信号,所述的第一回波信号由多个幅值信号组成,每个幅值信号对应一个雷达探测距离;步骤4、对所述的第一回波信号进行拐点包络提取,获得第二回波信号;其中所述的拐点包络提取是在所述第一回波信号中找到多个拐点幅值信号,将所述第一回波信号中除了拐点幅值信号以外的所有幅值信号置零;其中所述拐点幅值信号均大于该拐点幅值信号左右相邻的两个幅值信号;步骤5、将所述的第二回波信号中所有幅值信号的按照幅值大小降序排列,选取前M个幅值信号作为M个标记幅值信号后,求取所述第二回波信号中除所述的M个标记幅值信号以外的所有幅值信号的平均值,M为大于1的正整数;步骤6、获得每个所述标记幅值信号与所述平均值的比值;若比值大于阈值,则该比值对应的标记幅值信号存在波动,即该标记幅值信号对应的雷达探测距离处具有生命目标;反之,无目标;完成本次生命探测。
- 如权利要求1所述的基于雷达信号的多目标生命探测方法,其特征在于,所述的步骤2按照以下步骤执行:步骤21、对所述的原始回波信号进行距离累积,获得经距离累积后的回波信号;步骤22、对所述的经距离累积后的回波信号进行归一化,获得归一化后的回波信号;步骤23、对所述的归一化后的回波信号进行去噪,获得预处理后的回波信号。
- 如权利要求2所述的基于雷达信号的多目标生命探测方法,其特征在于,所述的步骤23、对所述的归一化后的回波信号进行去噪时,采用平滑滤波的方法获得预处理后的回波信号。
- 如权利要求2所述的基于雷达信号的多目标生命探测方法,其特征在于,所述的步骤3、对所述预处理后的回波信号进行时间累积时,取预处理后的回波信号中第200-1200道回波信号进行时间累积。
- 如权利要求2所述的基于雷达信号的多目标生命探测方法,其特征在于,对所述的第一回波信号进行两次拐点包络提取,获得第二回波信号。
- 如权利要求2所述的基于雷达信号的多目标生命探测方法,其特征在于,所述的步骤5按照以下步骤执行:步骤51、将所述的第二回波信号中所有幅值信号按照幅值大小降序排列后,选取前M个幅值信号作为M个标记幅值信号;步骤52、在所述的第二回波信号中将每个标记幅值信号前后Z个幅值信号置零,Z为正整数;步骤53、求取所述的第二回波信号中除所述三个标记幅值信号以外的 所有幅值信号的平均值。
- 如权利要求6所述的基于雷达信号的多目标生命探测方法,其特征在于,所述的M=3,Z=5。
- 一种多目标生命探测雷达,其特征在于,用于实现权利要求1-7任一项权利要求所述的多目标生命探测方法,所述的多目标生命探测雷达包括阵列天线模块、雷达主控模块以及控制显示器;所述的阵列天线模块与所述的雷达主控模块连接,用于发射生命探测雷达信号,接收生命探测雷达原始回波信号;所述的雷达主控模块与所述的控制显示器连接,用于对所述的原始回波信号进行距离累积后再进行噪声消除,获得预处理后的回波信号;所述的雷达主控模块还用于对所述预处理后的回波信号进行时间累积,获得第一回波信号,所述的第一回波信号由多个幅值信号组成,每个幅值信号对应一个雷达探测距离;所述的雷达主控模块还用于对所述的第一回波信号进行拐点包络提取,获得第二回波信号;其中所述的拐点包络提取是在所述第一回波信号中找到多个拐点幅值信号,将所述第一回波信号中除了拐点幅值信号以外的所有幅值信号置零;其中所述拐点幅值信号均大于该拐点幅值信号左右相邻的两个幅值信号;所述的雷达主控模块还用于将所述的第二回波信号中所有幅值信号的按照幅值大小降序排列,选取前M个幅值信号作为M个标记幅值信号后,求取所述第二回波信号中除所述的M个标记幅值信号以外的所有幅值信号的平均值,M为大于1的正整数;所述的雷达主控模块还用于获得每个所述标记幅值信号与所述平均值 的比值;若比值大于阈值,则该比值对应的标记幅值信号存在波动,即该标记幅值信号对应的雷达探测距离处具有生命目标;反之,无目标;所述的控制显示器用于输出雷达主控模块的探测结果,包括雷达探测距离内是否存在生命目标以及生命目标与所述阵列天线模块的距离。
- 如权利要求8所述的多目标生命探测雷达,其特征在于,所述阵列天线模块包括1个雷达发射天线(1)以及多个雷达接收天线(2),所述的雷达发射天线(1)与每个所述的雷达接收天线(2)之间采用折叠臂活动式连接;所述的雷达发射天线(1)用于发射生命探测雷达信号;所述的雷达接收天线(2)用于接收生命探测雷达原始回波信号。
- 如权利要求9所述的多目标生命探测雷达,其特征在于,所述的阵列天线模块包括1个雷达发射天线(1)以及4个雷达接收天线(2)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/067,778 US11435470B2 (en) | 2018-10-15 | 2020-10-12 | Multi-target life detection method based on radar signal and detection radar |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811194565.2A CN109521422B (zh) | 2018-10-15 | 2018-10-15 | 一种基于雷达信号的多目标生命探测方法及探测雷达 |
CN201811194565.2 | 2018-10-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/067,778 Continuation US11435470B2 (en) | 2018-10-15 | 2020-10-12 | Multi-target life detection method based on radar signal and detection radar |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020078249A1 true WO2020078249A1 (zh) | 2020-04-23 |
Family
ID=65772392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/110304 WO2020078249A1 (zh) | 2018-10-15 | 2019-10-10 | 一种基于雷达信号的多目标生命探测方法及探测雷达 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11435470B2 (zh) |
CN (1) | CN109521422B (zh) |
WO (1) | WO2020078249A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111736147A (zh) * | 2020-06-29 | 2020-10-02 | 北京小米移动软件有限公司 | 检测设备、检测方法及装置、存储介质 |
CN112213725A (zh) * | 2020-09-28 | 2021-01-12 | 森思泰克河北科技有限公司 | 车载雷达的多径虚警抑制方法、装置及终端设备 |
CN112346054A (zh) * | 2020-11-04 | 2021-02-09 | 西安宝瑞达电子科技有限责任公司 | 用于机舱内藏匿的小微动物检测仪、方法及生物雷达传感器 |
CN112835010A (zh) * | 2021-03-17 | 2021-05-25 | 中国人民解放军海军潜艇学院 | 一种基于帧间积累的弱小目标检测合并方法 |
CN113740810A (zh) * | 2021-08-27 | 2021-12-03 | 西安交通大学 | 一种雷达信号增强方法、系统及设备 |
CN113786177A (zh) * | 2021-08-24 | 2021-12-14 | 煤炭科学研究总院 | 生命体征信息提取方法、装置及电子设备 |
CN118348481A (zh) * | 2024-06-18 | 2024-07-16 | 北京凌天智能装备集团股份有限公司 | 一种三维穿墙式雷达生命探测仪 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11004567B2 (en) | 2017-08-15 | 2021-05-11 | Koko Home, Inc. | System and method for processing wireless backscattered signal using artificial intelligence processing for activities of daily life |
US12094614B2 (en) | 2017-08-15 | 2024-09-17 | Koko Home, Inc. | Radar apparatus with natural convection |
CN109521422B (zh) * | 2018-10-15 | 2020-06-09 | 中国人民解放军第四军医大学 | 一种基于雷达信号的多目标生命探测方法及探测雷达 |
US11997455B2 (en) | 2019-02-11 | 2024-05-28 | Koko Home, Inc. | System and method for processing multi-directional signals and feedback to a user to improve sleep |
US10810850B2 (en) | 2019-02-19 | 2020-10-20 | Koko Home, Inc. | System and method for state identity of a user and initiating feedback using multiple sources |
US11971503B2 (en) | 2019-02-19 | 2024-04-30 | Koko Home, Inc. | System and method for determining user activities using multiple sources |
CN110346756B (zh) * | 2019-07-10 | 2023-06-06 | 四川中电昆辰科技有限公司 | 一种信号包络检测装置及方法及其到达时间修正方法 |
CN112386237B (zh) * | 2019-08-16 | 2024-04-16 | 富士通株式会社 | 生命体的检测装置、方法及系统 |
CN110554381B (zh) * | 2019-08-30 | 2021-07-27 | 湖南正申科技有限公司 | 用于冲激脉冲式穿墙雷达的人体静止目标加速检测方法 |
US11719804B2 (en) * | 2019-09-30 | 2023-08-08 | Koko Home, Inc. | System and method for determining user activities using artificial intelligence processing |
CN110879389B (zh) * | 2019-10-24 | 2022-09-16 | 中国人民解放军第四军医大学 | 基于多基地ir-uwb生物雷达信号的多人体目标识别定位方法 |
CN110879388B (zh) * | 2019-10-24 | 2023-03-10 | 中国人民解放军第四军医大学 | 基于ir-uwb生物雷达信号的人与动物非接触探测区分方法 |
CN113050071B (zh) * | 2019-12-27 | 2023-05-30 | 北京万集科技股份有限公司 | 激光雷达数据处理方法、装置、设备及存储介质 |
CN111337920B (zh) * | 2020-03-03 | 2022-07-15 | 成都金宇防务科技有限公司 | 一种防止云雾干扰的弹载雷达对地探测方法及装置 |
US11240635B1 (en) | 2020-04-03 | 2022-02-01 | Koko Home, Inc. | System and method for processing using multi-core processors, signals, and AI processors from multiple sources to create a spatial map of selected region |
CN111398944B (zh) * | 2020-04-09 | 2022-05-17 | 浙江大学 | 一种用于身份识别的雷达信号处理方法 |
US11184738B1 (en) | 2020-04-10 | 2021-11-23 | Koko Home, Inc. | System and method for processing using multi core processors, signals, and AI processors from multiple sources to create a spatial heat map of selected region |
CN111398951A (zh) * | 2020-04-28 | 2020-07-10 | 湖南正申科技有限公司 | 一种可旋转的分布式雷达生命探测定位装备 |
CN111398953A (zh) * | 2020-04-28 | 2020-07-10 | 湖南正申科技有限公司 | 一种可伸缩的分布式雷达生命探测定位装备 |
CN112014821B (zh) * | 2020-08-27 | 2022-05-17 | 电子科技大学 | 一种基于雷达宽带特征的未知车辆目标识别方法 |
CN112816960B (zh) * | 2021-02-03 | 2023-03-17 | 森思泰克河北科技有限公司 | 车内生命探测方法、装置、设备和存储介质 |
CN113126050B (zh) * | 2021-03-05 | 2022-08-19 | 沃尔夫曼消防装备有限公司 | 一种基于神经网络的生命探测方法 |
CN113030866B (zh) * | 2021-03-12 | 2023-06-06 | 中国铁道科学研究院集团有限公司 | 基于雷达电磁信号确定铁路碎石道床状态的方法及装置 |
CN113050060B (zh) * | 2021-03-25 | 2024-04-26 | 南京敏智达科技有限公司 | 基于稀疏重构与神经网络的生命探测方法及探测装置 |
CN113219423B (zh) * | 2021-03-31 | 2022-02-01 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | 一种探地雷达天线相位抖动评价方法 |
CN113126045B (zh) * | 2021-03-31 | 2022-02-01 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | 一种通用雷达天线幅度抖动评价方法 |
CN113189555B (zh) * | 2021-04-12 | 2023-02-14 | 浙江大学 | 基于时-距包围盒目标截取的多目标分割方法、步态识别方法、装置、系统和存储介质 |
CN113096122A (zh) * | 2021-05-06 | 2021-07-09 | 中国科学院地质与地球物理研究所 | 流星检测方法、装置及电子设备 |
CN113138372B (zh) * | 2021-05-24 | 2023-04-28 | 哈尔滨工业大学 | 一种基于改进型m/n检测器的多径环境下雷达目标检测方法 |
CN113674167B (zh) * | 2021-08-04 | 2024-09-06 | 安徽皖仪科技股份有限公司 | 一种激光雷达扫描图的平滑处理方法 |
CN114983373B (zh) * | 2022-06-02 | 2023-03-28 | 谢俊 | 一种检测人体心率的方法 |
CN118282440A (zh) * | 2022-12-30 | 2024-07-02 | 北京三星通信技术研究有限公司 | 一种通信系统中的节点设备及其方法 |
CN115980728B (zh) * | 2023-03-21 | 2023-08-04 | 湖南华诺星空电子技术股份有限公司 | 一种树丛穿透雷达目标检测方法、系统及设备 |
CN116381665B (zh) * | 2023-04-24 | 2023-11-14 | 中国人民解放军国防科技大学 | 一种基于四维生物雷达定位被困人员的方法及系统 |
CN118444279B (zh) * | 2024-07-08 | 2024-09-13 | 南京奥联智驾科技有限公司 | 一种雷达回波信号快速点迹凝聚方法、设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103169449A (zh) * | 2013-03-01 | 2013-06-26 | 中国科学院深圳先进技术研究院 | 呼吸信号检测方法和装置 |
CN103245976A (zh) * | 2013-05-23 | 2013-08-14 | 中国人民解放军第四军医大学 | 基于uwb生物雷达的人体目标与周围环境结构兼容探测方法 |
CN103308899A (zh) * | 2013-05-23 | 2013-09-18 | 中国人民解放军第四军医大学 | 一种基于过零点技术的生物雷达人体目标识别方法 |
CN106093868A (zh) * | 2016-05-26 | 2016-11-09 | 中国人民解放军第四军医大学 | 一种基于双源ir‑uwb生物雷达的强反射杂波消除方法 |
CN109521422A (zh) * | 2018-10-15 | 2019-03-26 | 中国人民解放军第四军医大学 | 一种基于雷达信号的多目标生命探测方法及探测雷达 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102058411B (zh) * | 2010-10-27 | 2013-05-08 | 中国人民解放军第四军医大学 | 一种多通道基于uwb雷达式生命探测仪 |
JP6270908B2 (ja) * | 2016-05-11 | 2018-01-31 | 三菱電機株式会社 | レーダ装置 |
EP3382419A1 (en) * | 2017-03-27 | 2018-10-03 | Melexis Technologies SA | Method and apparatus for echo detection |
CN108008391B (zh) * | 2017-11-28 | 2019-08-06 | 中南大学 | 一种基于fmcw的车载雷达多目标识别方法 |
-
2018
- 2018-10-15 CN CN201811194565.2A patent/CN109521422B/zh active Active
-
2019
- 2019-10-10 WO PCT/CN2019/110304 patent/WO2020078249A1/zh active Application Filing
-
2020
- 2020-10-12 US US17/067,778 patent/US11435470B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103169449A (zh) * | 2013-03-01 | 2013-06-26 | 中国科学院深圳先进技术研究院 | 呼吸信号检测方法和装置 |
CN103245976A (zh) * | 2013-05-23 | 2013-08-14 | 中国人民解放军第四军医大学 | 基于uwb生物雷达的人体目标与周围环境结构兼容探测方法 |
CN103308899A (zh) * | 2013-05-23 | 2013-09-18 | 中国人民解放军第四军医大学 | 一种基于过零点技术的生物雷达人体目标识别方法 |
CN106093868A (zh) * | 2016-05-26 | 2016-11-09 | 中国人民解放军第四军医大学 | 一种基于双源ir‑uwb生物雷达的强反射杂波消除方法 |
CN109521422A (zh) * | 2018-10-15 | 2019-03-26 | 中国人民解放军第四军医大学 | 一种基于雷达信号的多目标生命探测方法及探测雷达 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111736147A (zh) * | 2020-06-29 | 2020-10-02 | 北京小米移动软件有限公司 | 检测设备、检测方法及装置、存储介质 |
CN112213725A (zh) * | 2020-09-28 | 2021-01-12 | 森思泰克河北科技有限公司 | 车载雷达的多径虚警抑制方法、装置及终端设备 |
CN112346054A (zh) * | 2020-11-04 | 2021-02-09 | 西安宝瑞达电子科技有限责任公司 | 用于机舱内藏匿的小微动物检测仪、方法及生物雷达传感器 |
CN112346054B (zh) * | 2020-11-04 | 2024-05-07 | 西安宝瑞达电子科技有限责任公司 | 用于机舱内藏匿的小微动物检测仪、方法及生物雷达传感器 |
CN112835010A (zh) * | 2021-03-17 | 2021-05-25 | 中国人民解放军海军潜艇学院 | 一种基于帧间积累的弱小目标检测合并方法 |
CN113786177A (zh) * | 2021-08-24 | 2021-12-14 | 煤炭科学研究总院 | 生命体征信息提取方法、装置及电子设备 |
CN113740810A (zh) * | 2021-08-27 | 2021-12-03 | 西安交通大学 | 一种雷达信号增强方法、系统及设备 |
CN113740810B (zh) * | 2021-08-27 | 2024-04-02 | 西安交通大学 | 一种雷达信号增强方法、系统及设备 |
CN118348481A (zh) * | 2024-06-18 | 2024-07-16 | 北京凌天智能装备集团股份有限公司 | 一种三维穿墙式雷达生命探测仪 |
Also Published As
Publication number | Publication date |
---|---|
CN109521422B (zh) | 2020-06-09 |
US20210033724A1 (en) | 2021-02-04 |
CN109521422A (zh) | 2019-03-26 |
US11435470B2 (en) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020078249A1 (zh) | 一种基于雷达信号的多目标生命探测方法及探测雷达 | |
CN105005042B (zh) | 一种探地雷达地下目标定位方法 | |
US4896116A (en) | Pulse radar method and apparatus for detecting an object | |
CN102058411B (zh) | 一种多通道基于uwb雷达式生命探测仪 | |
CN101907709B (zh) | 一种穿墙探测雷达对运动人体目标搜索定位的方法 | |
CN106814358A (zh) | 一种用于超宽带穿墙雷达中多人体目标检测的系统及方法 | |
CN110879389B (zh) | 基于多基地ir-uwb生物雷达信号的多人体目标识别定位方法 | |
CN105353373B (zh) | 一种基于Hough变换探地雷达目标提取方法和装置 | |
CN106019254B (zh) | 一种uwb冲击生物雷达多人体目标距离向分离辨识方法 | |
CN107656255A (zh) | 基于多径回波的超宽带雷达动目标二维定位方法 | |
CN113447905A (zh) | 双毫米波雷达人体跌倒检测装置及检测方法 | |
CN103529442B (zh) | 一种基于几何反演阵列的目标探测方法与装置 | |
CN108828566A (zh) | 基于拖曳线列阵的水下脉冲信号识别方法 | |
US20220206111A1 (en) | Non-contact method for detectiing and distinguishing human and animal based on ir-uwb bio-radar signal | |
CN109581317A (zh) | 一种基于回波峰值匹配的角落目标定位方法 | |
CN104777467B (zh) | 基于频率扫描天线的目标检测方法 | |
CN108761445A (zh) | 一种用于穿墙生命探测雷达的目标定位方法 | |
CN110879388A (zh) | 基于ir-uwb生物雷达信号的人与动物非接触探测区分方法 | |
CN103308899A (zh) | 一种基于过零点技术的生物雷达人体目标识别方法 | |
CN114814832A (zh) | 基于毫米波雷达的人体跌倒行为实时监测系统及监测方法 | |
KR101780783B1 (ko) | 레이더를 이용한 주차면 감지 방법 | |
CN113281740A (zh) | 一种超宽带多普勒雷达生命探测系统 | |
Cui et al. | Ice radar investigation at Dome A, East Antarctica: Ice thickness and subglacial topography | |
KR102322480B1 (ko) | 대상체 크기 및 동작강도에 최적화된 검출 임계치를 적용할 수 있는 uwb 위치인식시스템 및 uwb 위치인식방법 | |
CN111856451B (zh) | 基于穿墙雷达的动静人体目标自适应检测方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19873413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19873413 Country of ref document: EP Kind code of ref document: A1 |