WO2020078118A1 - 应用经验模态分解和粒子群优化算法的泵噪消除方法 - Google Patents

应用经验模态分解和粒子群优化算法的泵噪消除方法 Download PDF

Info

Publication number
WO2020078118A1
WO2020078118A1 PCT/CN2019/103602 CN2019103602W WO2020078118A1 WO 2020078118 A1 WO2020078118 A1 WO 2020078118A1 CN 2019103602 W CN2019103602 W CN 2019103602W WO 2020078118 A1 WO2020078118 A1 WO 2020078118A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump noise
particle swarm
pump
waveform
noise
Prior art date
Application number
PCT/CN2019/103602
Other languages
English (en)
French (fr)
Inventor
瞿逢重
江琴
张昱森
靳国正
张璟辰
张祝军
吴叶舟
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2020513792A priority Critical patent/JP6878690B2/ja
Publication of WO2020078118A1 publication Critical patent/WO2020078118A1/zh
Priority to US17/232,162 priority patent/US20210231487A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/04Frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising

Definitions

  • the invention belongs to the technical field of wireless logging while drilling, and relates to a pump noise elimination method using empirical mode decomposition (EMD) and particle swarm optimization algorithm (Particle Swarm Optimization, PSO).
  • EMD empirical mode decomposition
  • PSO particle swarm optimization algorithm
  • Mud pulse is the pressure wave signal converted by the mud pump under the action of the mud pump after the data measured by the downhole instrument is converted into the electrical signal, and finally the mud is used as the medium to transmit the signal to the surface. Its reliability is high, the transmission distance is long, and it is more in line with the actual situation of drilling. It is a common transmission method in China. Because the mud pump piston needs to continuously reciprocate during the mud transmission signal process, and periodic pump noise will be generated during the movement, so for the mud pulse signal, the pump noise must be eliminated before the signal can be correctly decoded.
  • the mud pulse communication system is a time-varying system.
  • the periodic hypothesis of pump noise is an approximation hypothesis established within a time window of finite length. As the operating time of the system increases, the difference between the acquired pump noise samples and the waveform of the pump noise within a unit period will gradually increase, resulting in an increase in the residual noise in the noise canceling output, affecting the noise canceling effect.
  • the purpose of the present invention is to provide a pump noise elimination method using empirical mode decomposition and particle swarm optimization algorithm in view of the shortcomings of the prior art. Better pump noise elimination effect.
  • the object of the present invention is achieved by the following technical solution: a pump noise elimination method using empirical mode decomposition and particle swarm optimization algorithm, characterized in that the method includes the following steps:
  • the mud pressure signal of step 1 is intercepted in segments with the period T of step 2 as a time interval, and all the segmented signals are summed and averaged; the average value is closest to the actual periodic pump noise in a single cycle
  • the step 5 is specifically: for the particle swarm optimization algorithm, the initialization weight coefficient is 1, and the PSO parameters are initialized, and the PSO parameters include the upper and lower bounds of the weight coefficient, the number of particles, and the maximum number of iterations. Then iterate the decoding process.
  • the received signal minus the empirical waveform of the pump noise is decoded for equalization decision, and its mean square error value (Mean Square Value, MSE) is calculated as the output feedback parameter.
  • MSE mean square error value
  • the updated weight coefficient and the corresponding The bases of are multiplied, and then all the products are added to get the updated empirical waveform.
  • MSE as a cost function for the next iteration, until the maximum number of iterations or iteration termination conditions are reached, the final weight coefficient is multiplied by the corresponding basis, and the pump noise is removed from the received signal.
  • the calculation method of MSE is as follows:
  • w is the weight coefficient vector of each base
  • N is the number of symbols for this denoising
  • d i is the decision value of the i-th symbol
  • the physical meaning of MSE is the error power (Error Power) of the decoding output.
  • the particle swarm algorithm judges the direction of the particle's progress through the change trend of MSE, so as to find the best weight coefficient and improve the noise reduction effect.
  • the beneficial effect of the present invention is that the basic idea of the pump noise elimination method using EMD and PSO in the present invention is to treat the pump noise as a linear combination of a group of bases, and the update process of the pump noise is to determine the most of this group of bases based on the decision output Best linear combination.
  • EMD decomposes the pump noise samples into a set of bases, which can be used to reconstruct a waveform estimate that is closer to the actual pump noise.
  • PSO can find the coefficient of the best linear combination of this group of bases as an update mechanism for the pump noise samples.
  • the present invention corrects the current pump noise samples in a weighted form in a limited number of denoising cycles, so that it gradually converges to the changed pump noise waveform in a unit cycle within a limited number of iterations to adapt the system to a long time
  • the pump noise changes slowly during operation.
  • Figure 1 is a block diagram of the pump noise cancellation method based on EMD-PSO
  • Figure 2 is a schematic diagram of the sensor pressure signal
  • Figure 3 is a schematic diagram of the pumping signal
  • Figure 4 is a schematic diagram of pump noise samples obtained by coherent averaging
  • Fig. 5 is a waveform diagram of each channel signal obtained by decomposing pump impulsive samples using EMD;
  • Figure 6 is a schematic diagram of the output signal of noise reduction
  • FIG. 7 is a schematic diagram of the amplification of the noise-cancelling output signal.
  • Figure 1 is a structural diagram of the pump noise cancellation method based on EMD-PSO.
  • the pressure signal measured by the downhole sensor we will sequentially perform a low-pass filter, use the coherent average method to extract the empirical waveform of the pump noise, and then Use the EMD-PSO joint iterative method to update the pump noise samples until they match the actual pump noise waveform.
  • a section of real-well dual-pump data is selected as the pressure signal.
  • the waveform is shown in Figure 2.
  • the basic frequencies of the dual pumps are 0.994Hz and 1Hz respectively, the modulation mode is FSK, the code rate is 13bps, and the depth is 2890m.
  • the performance index of the low-pass filter After obtaining the measured pressure signal from the sensor, first, determine the performance index of the low-pass filter according to the characteristics of the pressure data and perform low-pass filtering to obtain a mud pressure signal that filters out some white noise;
  • the pumping signal is measured by the pumping sensor.
  • the pump flushing sensor is a displacement sensor or a travel switch installed on the mud pump, which is used to record the position information of the mud pump piston.
  • the stroke switch type pumping sensor as an example, its output is generally a set of switching sequence composed of rectangular pulse signals. A low level indicates that the travel switch has not been triggered, and a high level indicates that the travel switch has been triggered. The rising edge of each rectangular pulse corresponds to the moment when the piston reaches the travel switch.
  • the pressure signal is segmented and intercepted at a time interval of T, and all the segmented signals are summed and averaged.
  • the average value obtained is closest to the empirical waveform of the actual waveform of the periodic pump noise in a single period, that is, the pump noise sample, as shown in Figure 4;
  • the weight coefficient For the particle swarm optimization algorithm, initialize the weight coefficient to 1, initialize the PSO parameters, such as the upper and lower bounds of the weight coefficient, the number of particles, and the maximum number of iterations, and then start the iteration of the decoding process.
  • the received signal minus the empirical waveform of the pump noise is decoded for equalization decision, and its mean square error value (Mean Square Value, MSE) is calculated as the output feedback parameter.
  • MSE mean square error value
  • the updated weight coefficient and the corresponding The bases of are multiplied, and then all the products are added to get the updated empirical waveform.
  • MSE as a cost function for the next iteration, until the maximum number of iterations or iteration termination conditions are reached, the final weight coefficient is multiplied by the corresponding basis, and the pump noise is removed from the received signal.
  • the calculation method of MSE is as follows:
  • w is the weight coefficient vector of each base
  • N is the number of symbols for this denoising
  • d i is the decision value of the i-th symbol
  • the physical meaning of MSE is the error power (Error Power) of the decoding output.
  • the particle swarm algorithm judges the direction of the particle's progress through the change trend of MSE, so as to find the best weight coefficient and improve the noise reduction effect.
  • the denoising output obtained after particle convergence is shown in Figure 6, and Figure 7 is an enlarged schematic diagram.
  • the frequency of the denoised signal is relatively clear, with a high degree of recognition and good denoising effect.
  • the method of the present invention can effectively eliminate the pump noise in the case of a single pump or a dual pump at the same frequency.
  • the method of the present invention is performed in the time domain to eliminate the periodic pump noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Genetics & Genomics (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measuring Fluid Pressure (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本发明公开了一种应用经验模态分解和粒子群优化算法的泵噪消除方法,该方法是基于泵噪声为一组基的线性组合的假设,在泵噪样本提取出来之后,利用经验模态分解将所提取的泵噪样本分解成一组信号作为基,通过粒子群优化算法可以找到这组基最佳线性组合的系数,更新泵噪样本,提升消噪效果。本发明在有限个消噪周期中,以加权的形式对当前泵噪样本进行修正,使其在有限的迭代次数内逐渐收敛于变化后的单位周期内的泵噪波形,以适应系统在长时间运行过程中泵噪声的缓慢变化。

Description

应用经验模态分解和粒子群优化算法的泵噪消除方法 技术领域
本发明属于无线随钻测井的技术领域,涉及一种应用经验模态分解(Empirical Mode Decomposition,EMD)和粒子群优化算法(Particle Swarm Optimization,PSO)的泵噪消除方法。
背景技术
目前,在无线随钻测量系统中,泥浆脉冲信号传输已经在世界范围得到广泛使用。泥浆脉冲,它是将井下仪器测量到的数据转换为电信号后,在泥浆泵作用下转换为的压力波信号,最后以泥浆为介质将信号传输至地面。其可靠性较高,传输距离远,更符合钻井的实际情况,是国内通用的传输方式。由于泥浆传输信号过程中需借助泥浆泵活塞不断往复运动,而在运动过程中,会产生周期性的泵噪声,因此对泥浆脉冲信号,必须消除泵噪声,才可进行信号的正确解码。泥浆脉冲通信系统属于时变系统。随着钻进深度的增加,包括泵噪声特性在内的泥浆信道参数可能持续性地发生变化。而泵噪声的周期性假设是建立在有限长度时间窗口内的近似性假设。随着系统运行时间的增加,所取得的泵噪样本与单位周期内泵噪声的波形之间的差异将逐渐增大,导致消噪输出中的残余噪声增加,影响消噪效果。
发明内容
本发明的目的在于针对现有技术的不足,提供一种应用经验模态分解和粒子群优化算法的泵噪消除方法,本发明利用经验模态分解和粒子群优化算法不断更新泵噪样本来达到更好的泵噪消除效果。
本发明的目的是通过以下技术方案来实现的:一种应用经验模态分解和粒子群优化算法的泵噪消除方法,其特征在于,该方法包括以下步骤:
(1)获取传感器获取测得的压力信号并进行低通滤波,得到滤除部分白噪声的泥浆压力信号。
(2)以泵冲传感器测得的泵冲信号作为时间基准,得到泵噪声信号的周期T;
(3)对步骤1的泥浆压力信号以步骤2的周期T为时间间隔进行分段截取,将所有分段信号求和并求平均;得到平均值最接近于周期性泵噪声在单个周期内实际波形的经验波形p(m),即泵噪样本;
(4)对泵噪样本进行模态分解,得到构成泵噪的一组基;
(5)通过粒子群优化算法找到这组基最佳线性组合的系数,更新泵噪样本。
进一步地,所述步骤5具体为:对于粒子群优化算法,初始化权重系数为1,初始化PSO 参数,所述PSO参数包括权重系数的上下界、粒子个数及最大迭代次数等。然后开始解码过程的迭代。将接收信号减去泵噪声的经验波形后解码进行均衡判决,计算出其均方误差值(Mean Square Value,MSE)为输出反馈参量,每次利用优化算法迭代后,将更新的权重系数与相应的基对应相乘,然后将所有乘积相加得到更新之后的经验波形。按照同样的步骤计算MSE作为代价函数进行下一次迭代运算,直到达到最大迭代次数或迭代终止条件后,将最终的权重系数与相应的基对应相乘,得到用于从接收信号中消除泵噪声的最佳经验波形,输出最终解码符号。MSE的计算方式如下:
Figure PCTCN2019103602-appb-000001
其中,w为各个基的权重系数向量,N是本次消噪的符号个数,d i是第i个符号的判决值,
Figure PCTCN2019103602-appb-000002
是第i个符号的估计值。MSE的物理含义是解码输出的误差能量(Error Power),粒子群算法通过MSE的变化趋势来判断粒子的前进方向,从而找到最佳的权重系数,提升消噪效果。
本发明的有益效果是,本发明应用EMD和PSO的泵噪消除方法基本思想是将泵噪看作一组基的线性组合,泵噪的更新过程是根据判决输出来确定出这组基的最佳线性组合方式。其中,EMD将泵噪样本分解成一组基,利用这组基可以重构出更贴近实际泵噪声的波形估计。同时,对于构成泵噪的任意一组基,PSO可以找到这组基最佳线性组合的系数,作为泵噪样本的更新机制。本发明在有限个消噪周期中,以加权的形式对当前泵噪样本进行修正,使其在有限的迭代次数内逐渐收敛于变化后的单位周期内的泵噪波形,以适应系统在长时间运行过程中泵噪声的缓慢变化。
附图说明
图1是基于EMD-PSO的泵噪消除方法结构图;
图2是传感器压力信号示意图;
图3是泵冲信号示意图;
图4是利用相干平均法得到的泵噪样本示意图;
图5是采用EMD分解泵躁样本得到的各路信号波形图;
图6是消噪输出信号示意图;
图7是消噪输出信号放大示意图。
具体实施方式
下面结合附图和具体实例对本发明做进一步的描述,但本发明的实施和保护范围不限于此。
图1是基于EMD-PSO的泵噪消除方法结构图,如图所示,对于井下传感器测得的压力信 号我们会依次进行低通滤波器、利用相干平均法提取泵噪声的经验波形,然后再使用EMD-PSO联合的迭代方法更新泵噪样本,直至与实际的泵噪声波形相符合。本例选取了一段实井双泵数据作为压力信号,波形如图2所示。双泵的基本频率分别是0.994Hz和1Hz,调制方式为FSK,码率13bps,深度2890m。
在从传感器获取测得的压力信号后,首先,根据压力数据特性确定低通滤波器性能指标并进行低通滤波,得到滤除部分白噪声的泥浆压力信号;
再通过引入图3所示的泵冲信号作为时间基准,得到泵噪声信号的周期T。泵冲信号由泵冲传感器测得。泵冲传感器是安装在泥浆泵上的位移传感器或者行程开关,用于记录泥浆泵活塞的位置信息。以行程开关类泵冲传感器为例,其输出一般为一组由矩形脉冲信号构成的开关量序列。低电平表示行程开关未被触发,高电平表示行程开关已被触发,每一个矩形脉冲的上升沿对应活塞到达行程开关处的时刻。对压力信号以T为时间间隔进行分段截取,将所有分段信号求和并求平均。在求和次数足够多的情况下,得到的平均值最接近于周期性泵噪声在单个周期内实际波形的经验波形,即泵噪样本,如图4所示;
接着对泵噪样本进行模态分解,得到如图5所示的构成泵噪的一组基及这组基对应的系数;
对于粒子群优化算法,初始化权重系数为1,初始化PSO参数,如权重系数的上下界,粒子个数及最大迭代次数等,然后开始解码过程的迭代。将接收信号减去泵噪声的经验波形后解码进行均衡判决,计算出其均方误差值(Mean Square Value,MSE)为输出反馈参量,每次利用优化算法迭代后,将更新的权重系数与相应的基对应相乘,然后将所有乘积相加得到更新之后的经验波形。按照同样的步骤计算MSE作为代价函数进行下一次迭代运算,直到达到最大迭代次数或迭代终止条件后,将最终的权重系数与相应的基对应相乘,得到用于从接收信号中消除泵噪声的最佳经验波形,输出最终解码符号。MSE的计算方式如下:
Figure PCTCN2019103602-appb-000003
其中w为各个基的权重系数向量,N是本次消噪的符号个数,d i是第i个符号的判决值,
Figure PCTCN2019103602-appb-000004
是第i个符号的估计值。MSE的物理含义是解码输出的误差能量(Error Power),粒子群算法通过MSE的变化趋势来判断粒子的前进方向,从而找到最佳的权重系数,提升消噪效果。
本例中,粒子收敛后得到的消噪输出如图6所示,图7为其放大示意图。图中所示,消噪后的信号频率较为分明,可辨识度较高,消噪效果良好。
综上所述,本发明所提方法能够有效消除单泵或者双泵同频情况下的泵噪声,与现有技术相比,本发明方法在时域中进行,对于周期性的泵噪声的消除提供了一种可行性的解决方案,可适应系统在长时间运行过程中泵噪声出现的变化,提高解码准确度。

Claims (3)

  1. 一种应用经验模态分解和粒子群优化算法的泵噪消除方法,其特征在于,该方法包括以下步骤:
    (1)获取传感器获取测得的压力信号并进行低通滤波,得到滤除部分白噪声的泥浆压力信号。
    (2)以泵冲传感器测得的泵冲信号作为时间基准,得到泵噪声信号的周期T;
    (3)对步骤1的泥浆压力信号以步骤2的周期T为时间间隔进行分段截取,将所有分段信号求和并求平均;得到平均值最接近于周期性泵噪声在单个周期内实际波形的经验波形p(m),即泵噪样本;
    (4)对泵噪样本进行模态分解,得到构成泵噪的一组基;
    (5)通过粒子群优化算法找到这组基最佳线性组合的系数,更新泵噪样本。
  2. 根据权利要求1所述的一种应用经验模态分解和粒子群优化算法的泵噪消除方法,其特征在于,所述步骤5具体为:对于粒子群优化算法,初始化权重系数为1,初始化PSO参数,然后开始解码过程的迭代。将接收信号减去泵噪声的经验波形后解码进行均衡判决,计算出其均方误差值MSE为输出反馈参量,每次利用优化算法迭代后,将更新的权重系数与相应的基对应相乘,然后将所有乘积相加得到更新之后的经验波形。按照同样的步骤计算MSE作为代价函数进行下一次迭代运算,直到达到最大迭代次数或迭代终止条件后,将最终的权重系数与相应的基对应相乘,得到用于从接收信号中消除泵噪声的最佳经验波形,输出最终解码符号。MSE的计算方式如下:
    Figure PCTCN2019103602-appb-100001
    其中,w为各个基的权重系数向量,N是本次消噪的符号个数,d i是第i个符号的判决值,
    Figure PCTCN2019103602-appb-100002
    是第i个符号的估计值。MSE的物理含义是解码输出的误差能量,粒子群算法通过MSE的变化趋势来判断粒子的前进方向,从而找到最佳的权重系数,提升消噪效果。
  3. 根据权利要求2所述的一种应用经验模态分解和粒子群优化算法的泵噪消除方法,其特征在于,所述PSO参数包括权重系数的上下界、粒子个数及最大迭代次数等。
PCT/CN2019/103602 2018-10-17 2019-08-30 应用经验模态分解和粒子群优化算法的泵噪消除方法 WO2020078118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020513792A JP6878690B2 (ja) 2018-10-17 2019-08-30 経験的モード分解及び粒子群最適化法が応用されたポンプノイズ除去方法
US17/232,162 US20210231487A1 (en) 2018-10-17 2021-04-16 Method for eliminating pump noise by empirical mode decomposition and particle swarm optimization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811210824.6A CN109522802B (zh) 2018-10-17 2018-10-17 应用经验模态分解和粒子群优化算法的泵噪消除方法
CN201811210824.6 2018-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/232,162 Continuation US20210231487A1 (en) 2018-10-17 2021-04-16 Method for eliminating pump noise by empirical mode decomposition and particle swarm optimization

Publications (1)

Publication Number Publication Date
WO2020078118A1 true WO2020078118A1 (zh) 2020-04-23

Family

ID=65770057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103602 WO2020078118A1 (zh) 2018-10-17 2019-08-30 应用经验模态分解和粒子群优化算法的泵噪消除方法

Country Status (4)

Country Link
US (1) US20210231487A1 (zh)
JP (1) JP6878690B2 (zh)
CN (1) CN109522802B (zh)
WO (1) WO2020078118A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116104486A (zh) * 2023-01-10 2023-05-12 中煤科工西安研究院(集团)有限公司 一种基于钻杆传播的声波信号测量与处理方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522802B (zh) * 2018-10-17 2022-05-24 浙江大学 应用经验模态分解和粒子群优化算法的泵噪消除方法
CN110146812B (zh) * 2019-05-15 2021-07-13 吉林大学珠海学院 一种基于特征节点增量式宽度学习的电机故障诊断方法
CN111535802B (zh) * 2020-05-08 2023-04-14 中国石油大学(华东) 泥浆脉冲信号处理方法
US11940586B2 (en) * 2020-12-16 2024-03-26 Halliburton Energy Services, Inc. Noise elimination or reduction in drilling operation measurements using machine learning
CN114112013B (zh) * 2021-11-04 2023-06-30 北京建筑大学 古建筑安全性测定方法和装置、电子设备和存储介质
CN114499057B (zh) * 2022-03-14 2023-06-20 浙江大学 一种无刷直流电机磁干扰消除方法
CN116955941B (zh) * 2023-09-21 2023-12-19 中石化经纬有限公司 一种随钻测量连续波信号去噪方法
CN118243213B (zh) * 2024-03-25 2024-09-03 青岛零一动测数据科技有限公司 一种振动噪声监测分析方法及振动噪声监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012602A1 (en) * 2009-07-16 2011-01-20 Baker Hughes Incorporated Cancellation of Vibration Noise in Deep Transient Resistivity Measurements While Drilling
CN104133982A (zh) * 2014-06-27 2014-11-05 中天启明石油技术有限公司 一种泥浆脉冲信号泵冲噪声的消除方法
WO2016108912A1 (en) * 2014-12-31 2016-07-07 Halliburton Energy Services, Inc. Mud pulse telemetry demodulation using a pump noise estimate obtained from acoustic or vibration data
CN106089188A (zh) * 2016-06-02 2016-11-09 中国石油大学(华东) 一种泥浆脉冲信号泵噪声实时去除方法
CN106321080A (zh) * 2016-09-13 2017-01-11 中国石油大学(华东) 一种随钻泥浆连续波脉冲信号的处理方法
CN109522802A (zh) * 2018-10-17 2019-03-26 浙江大学 应用经验模态分解和粒子群优化算法的泵噪消除方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113379A (en) * 1977-12-05 1992-05-12 Scherbatskoy Serge Alexander Method and apparatus for communicating between spaced locations in a borehole
US4642800A (en) * 1982-08-23 1987-02-10 Exploration Logging, Inc. Noise subtraction filter
US5481260A (en) * 1994-03-28 1996-01-02 Nordson Corporation Monitor for fluid dispensing system
US5774379A (en) * 1995-07-21 1998-06-30 The University Of Chicago System for monitoring an industrial or biological process
US6862558B2 (en) * 2001-02-14 2005-03-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Empirical mode decomposition for analyzing acoustical signals
US8004421B2 (en) * 2006-05-10 2011-08-23 Schlumberger Technology Corporation Wellbore telemetry and noise cancellation systems and method for the same
CN102022348B (zh) * 2010-12-07 2013-04-24 北京航空航天大学 一种水泵汽蚀测量方法
WO2012162391A2 (en) * 2011-05-25 2012-11-29 University Of Central Florida Research Foundation, Inc. Systems and methods for detecting small pattern changes in sensed data
EP2890866A4 (en) * 2012-08-29 2016-07-20 Services Petroliers Schlumberger SYSTEM AND METHOD FOR BOARD LOOP SIGNAL GAIN
CN103164583B (zh) * 2013-03-26 2015-05-20 中北大学 基于粒子群优化方法的轴向柱塞泵配流盘优化设计方法
US9614699B2 (en) * 2015-08-12 2017-04-04 King Fahd University Of Petroleum And Minerals Apparatuses and methodologies for decision feedback equalization using particle swarm optimization
CN105865654B (zh) * 2016-03-23 2018-07-27 东南大学 一种声波测温信号的选取方法及锅炉测温方法
CN106778694A (zh) * 2017-01-18 2017-05-31 北京工业大学 一种基于集合经验模态分解和支持向量机的齿轮传动噪声分析方法
CN107506330A (zh) * 2017-08-14 2017-12-22 电子科技大学 一种基于粒子群算法的变分模态分解算法参数优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012602A1 (en) * 2009-07-16 2011-01-20 Baker Hughes Incorporated Cancellation of Vibration Noise in Deep Transient Resistivity Measurements While Drilling
CN104133982A (zh) * 2014-06-27 2014-11-05 中天启明石油技术有限公司 一种泥浆脉冲信号泵冲噪声的消除方法
WO2016108912A1 (en) * 2014-12-31 2016-07-07 Halliburton Energy Services, Inc. Mud pulse telemetry demodulation using a pump noise estimate obtained from acoustic or vibration data
CN106089188A (zh) * 2016-06-02 2016-11-09 中国石油大学(华东) 一种泥浆脉冲信号泵噪声实时去除方法
CN106321080A (zh) * 2016-09-13 2017-01-11 中国石油大学(华东) 一种随钻泥浆连续波脉冲信号的处理方法
CN109522802A (zh) * 2018-10-17 2019-03-26 浙江大学 应用经验模态分解和粒子群优化算法的泵噪消除方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QU, FENGZHONG ET AL.: "Adaptive Dual-Sensor Noise Cancellation Method for Continuous Wave Mud Pulse Telemetry", JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, vol. 162, 31 March 2018 (2018-03-31), pages 386 - 393, XP055704211, DOI: 10.1016/j.petrol.2017.12.058 *
TU, BING ET AL.: "Research on MWD Mud Pulse Signal Extraction and Recognition", PROCEEDINGS OF THE 2011 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 15 August 2011 (2011-08-15), pages 2004 - 2008, XP032019874 *
ZHAO, JIANHUI ET AL.: "An Effective Approach for the Noise Removal of Mud Pulse Telemetry System", THE EIGHTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT AND INSTRUMENTS, 22 October 2007 (2007-10-22), XP031148154 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116104486A (zh) * 2023-01-10 2023-05-12 中煤科工西安研究院(集团)有限公司 一种基于钻杆传播的声波信号测量与处理方法

Also Published As

Publication number Publication date
JP2021508011A (ja) 2021-02-25
US20210231487A1 (en) 2021-07-29
CN109522802B (zh) 2022-05-24
CN109522802A (zh) 2019-03-26
JP6878690B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2020078118A1 (zh) 应用经验模态分解和粒子群优化算法的泵噪消除方法
CN106437689B (zh) 一种随钻泥浆正脉冲信号的处理方法
CN111535802B (zh) 泥浆脉冲信号处理方法
CN107083957B (zh) 钻井液随钻信号的泵冲干扰消除方法及系统
CN106089188B (zh) 一种泥浆脉冲信号泵噪声实时去除方法
CN110244202B (zh) 基于同步压缩小波变换域变压器局部放电去噪方法
CN104265278B (zh) 一种利用回音抵消技术消除随钻测井中的泵冲噪声的方法
GB2426166A (en) Voice activity detector
CN109687912B (zh) 相干光ofdm系统中一种时域容积卡尔曼相位噪声补偿方法
Chen et al. 1-D and 2-D digital fractional-order Savitzky–Golay differentiator
WO2022165737A1 (zh) 一种船舶机械设备早期微弱故障信号特征诊断方法
CN107333017B (zh) 一种重用权系数指数型误差自适应回声消除方法
CN105429719B (zh) 基于功率谱和多尺度小波变换分析强干扰信号检测方法
CN114218777B (zh) 一种极地冰下水声信道估计方法
CN110138459A (zh) 基于基追踪去噪的稀疏水声正交频分复用信道估计方法及装置
CN106301289A (zh) 利用自适应滤波算法消除泥浆脉冲信号中的泵冲噪声的方法
Chen et al. MWD drilling mud signal de-noising and signal extraction research based on the pulse-code information
CN113851144A (zh) 一种基于改进变分模态分解和主成分分析的语音信号去噪方法
CN107592096A (zh) 一种鲁棒偏差补偿自适应滤波器及其滤波方法
Chen et al. Study on model-based pump noise suppression method of mud pulse signal
CN102900430A (zh) 钻井液连续压力波信号的泵压干扰消除方法
CN110784423A (zh) 一种基于稀疏约束的水声信道估计方法
CN109102818B (zh) 一种基于信号频率概率密度函数分布的去噪音频采样算法
CN111901260B (zh) 一种降低工业现场噪声干扰的信道估计方法
CN102857194A (zh) 钻井液连续压力波信号的频带噪声消除方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513792

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873741

Country of ref document: EP

Kind code of ref document: A1