WO2020078047A1 - 一种双动力供电系统 - Google Patents

一种双动力供电系统 Download PDF

Info

Publication number
WO2020078047A1
WO2020078047A1 PCT/CN2019/094533 CN2019094533W WO2020078047A1 WO 2020078047 A1 WO2020078047 A1 WO 2020078047A1 CN 2019094533 W CN2019094533 W CN 2019094533W WO 2020078047 A1 WO2020078047 A1 WO 2020078047A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
main circuit
main
transformer
catenary
Prior art date
Application number
PCT/CN2019/094533
Other languages
English (en)
French (fr)
Inventor
王位
皮凯俊
付金
娄超
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2020078047A1 publication Critical patent/WO2020078047A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection

Definitions

  • the invention relates to the field of electric drive locomotive power supply, in particular to a dual power supply system.
  • electric drive locomotives have two power supply modes: contact network power supply mode and diesel unit power supply mode.
  • contact network power supply mode there is a big difference in the power supply circuit structure between the catenary power supply mode and the diesel unit power supply mode.
  • the electric drive locomotive can only work in the power zone. Once it enters the non-power zone, it will not work properly.
  • diesel unit power supply mode the diesel unit is limited by the capacity of the fuel tank and cannot be powered for a long time. Environmental protection.
  • the purpose of the present invention is to provide a dual-power supply system, which can be applied to two power supply modes of catenary and diesel generator set, and the two power supply modes are independent of each other and can be automatically switched. Therefore, when there is a power zone, the application can select the contact network power supply mode, and when entering the no-power zone, the application can switch to the diesel unit power supply mode, the electric drive locomotive can still work normally; moreover, the dual power supply system The two power supply modes are switched to use, which lasts longer and is more environmentally friendly.
  • the present invention provides a dual-power supply system, including a main contact circuit power supply main circuit, a main power supply circuit of a diesel generating unit that is not supplied at the same time as the main contact circuit power supply circuit, and a power source for inputting itself
  • a rectifier inverter module that performs rectification and then inversion, a power supply switching device and a controller for receiving a catenary power supply instruction or a diesel unit power supply instruction;
  • the output end of the power supply switching device is connected to the controller, and the input end of the rectifier and inverter module is respectively connected to the output end of the main power supply circuit of the contact network and the output end of the main power supply circuit of the diesel generator set.
  • the output terminal of the rectifier inverter module is connected to the traction motor of the electric drive locomotive;
  • the controller is used to control the main power supply circuit of the catenary to start supplying power to the traction motor after receiving the power supply instruction of the catenary; control the main circuit of the power supply of the diesel generator to start after receiving the power supply instruction of the diesel generator Power the traction motor.
  • the controller is also used to adjust the rectification link of the rectifier and inverter module to stabilize the power supply voltage of the traction motor when the contact network power supply main circuit starts to supply power to the traction motor.
  • the main power supply circuit of the contact network includes a pantograph, a main circuit breaker, a traction transformer, and a charging circuit for connecting the first end to the contact network when the bow is completed;
  • the output terminal includes an output positive terminal and an output negative terminal, and the input terminal of the rectifier inverter module includes an input positive terminal and an input negative terminal connected one-to-one with the output terminal of the contact network power supply main circuit;
  • the second end of the pantograph is connected to the first end of the main circuit breaker, the second end of the main circuit breaker is connected to the positive input end of the traction transformer, and the negative input end of the traction transformer is grounded ,
  • the positive output end of the traction transformer is connected to the first end of the charging circuit, the second end of the charging circuit serves as the positive output end of the main circuit power supply circuit, and the negative output end of the traction transformer serves as The negative output terminal of the main circuit of the contact network power supply;
  • the controller is specifically used to control the pantograph to raise the bow and the main circuit breaker to close after receiving the catenary power supply instruction, and to control the charging circuit to complete the capacitance in the rectifier inverter module In order to facilitate the main circuit of the catenary power supply for the traction motor.
  • the controller is further used to determine whether the catenary power supply main circuit satisfies the power supply before controlling the pantograph to raise the bow and closing the main circuit breaker.
  • the step of controlling the pantograph to raise the bow and the closing of the main circuit breaker is performed only when it meets the power supply condition.
  • the output terminal of the traction transformer includes two pairs of positive output terminals and negative output terminals
  • the charging circuit includes two sub-charging circuits connected one-to-one with the two positive output terminals of the traction transformer;
  • the sub-charging circuit includes a first switch, a current limiting resistor and a second switch; among them:
  • the first end of the first switch is connected to the first end of the second switch, the common end is correspondingly connected to the positive output end of the traction transformer, and the second end of the first switch is connected to the current limit
  • the first end of the resistor is connected, the second end of the current limiting resistor is connected to the second end of the second switch, and the common end is correspondingly connected to the positive input end of the rectifier inverter module;
  • the controller is specifically used to control the first switch to close when the pantograph raises the bow and the main circuit breaker to close, and to control the first switch to open and control the switch after a preset time
  • the second switch is closed to facilitate the charging circuit to complete the pre-charging of the capacitor in the rectifier and inverter module.
  • the main power supply circuit of the contact network further includes a first lightning arrester and a second lightning arrester; wherein:
  • the first end of the first lightning arrester is respectively connected to the second end of the pantograph and the first end of the main circuit breaker, the second end of the first lightning arrester is grounded, and the second end of the second lightning arrester One end is respectively connected to the second end of the main circuit breaker and the positive input end of the traction transformer, and the second end of the second lightning arrester is grounded.
  • the main power supply circuit of the contact network further includes:
  • a grounding switch in which a first end is connected to the first end of the main circuit breaker, a second end is connected to the second end of the main circuit breaker, and the grounding terminal is grounded.
  • the main circuit of the contact network power supply further includes a high-voltage voltage transformer, a high-voltage current transformer and a ground current transformer; wherein:
  • the first end of the high-voltage voltage transformer is connected to the first end of the main circuit breaker, the second end of the high-voltage voltage transformer is grounded, and the first end of the high-voltage current transformer is connected to the main circuit breaker
  • the second end of the high-voltage current transformer is connected to the positive input end of the traction transformer, and the first end of the grounded current transformer is connected to the negative input end of the traction transformer.
  • the second end of the grounding current transformer is grounded;
  • the controller is also used to determine the working status of the main power supply circuit of the catenary according to the voltage and current values detected by the high-voltage voltage transformer, the high-voltage current transformer and the grounding current transformer, When the main circuit of the power supply fails, the main circuit breaker is cut off in time.
  • the power supply switching device is specifically a mechanical power supply switching switch.
  • the invention provides a dual-power power supply system, which includes a main power supply circuit of a contact network, a main power supply circuit of a diesel generator that is not supplied at the same time as the main power supply circuit of the contact network, and a rectifier for rectifying the power input by itself and then inverting the inverter Inverter module, power supply switching device and controller for receiving contact network power supply instruction or diesel unit power supply instruction; wherein: the output end of the power supply switching device is connected to the controller, and the input end of the rectifier inverter module is respectively connected to the contact network power supply main
  • the output of the circuit is connected to the output of the main circuit of the diesel generator power supply, and the output of the rectifier inverter module is connected to the traction motor of the electric drive locomotive;
  • the controller is used to control the main circuit of the catenary power supply after receiving the catenary power supply command. Traction motor power supply; after receiving the diesel unit power supply command, the main circuit of the diesel unit power supply is controlled to start supplying power to the traction motor
  • the dual power supply system of the present application can be applied to the two power supply modes of the catenary and the diesel generator set, and the two power supply modes are independent of each other, and the two power supply modes can be automatically switched by using the switching instruction and controller of the power supply switching device . Therefore, when there is a power zone, the application can select the contact network power supply mode, and when entering the no-power zone, the application can switch to the diesel unit power supply mode, the electric drive locomotive can still work normally; moreover, the dual power supply system The two power supply modes are switched and used. Compared with the prior art, which only uses the diesel unit power supply mode, the use time is longer, and it is more environmentally friendly.
  • FIG. 1 is a schematic structural diagram of a dual-power supply system provided by the present invention.
  • FIG. 2 is a schematic structural diagram of a dual power supply main circuit provided by the present invention.
  • the core of the present invention is to provide a dual-power supply system, which can be applied to two power supply modes of catenary and diesel generator set, and the two power supply modes are independent of each other and can be automatically switched. Therefore, when there is a power zone, the application can select the contact network power supply mode, and when entering the no-power zone, the application can switch to the diesel unit power supply mode, the electric drive locomotive can still work normally; moreover, the dual power supply system The two power supply modes are switched to use, which lasts longer and is more environmentally friendly.
  • FIG. 1 is a schematic structural diagram of a dual-power supply system provided by the present invention.
  • the dual-power power supply system includes: a mains power supply circuit 1 of a catenary, a mains power supply circuit of a diesel generator that is not supplied at the same time as the mains power supply circuit 2 of a catenary, and a rectifier inverter for rectifying the power input by itself and then inverting it Module 3, a power supply switching device 4 and a controller 5 for receiving a contact network power supply instruction or a diesel generator power supply instruction;
  • the output end of the power supply switching device 4 is connected to the controller 5, the input end of the rectifier inverter module 3 is respectively connected to the output end of the contact network power supply main circuit 1 and the output end of the diesel generator power supply main circuit 2, the rectifier inverter module 3 The output end is connected to the traction motor of the electric drive locomotive;
  • the controller 5 is used to control the catenary power supply main circuit 1 to start supplying power to the traction motor after receiving the catenary power supply instruction; to control the diesel generator power supply main circuit 2 to start supplying power to the traction motor after receiving the diesel unit power supply instruction.
  • the dual power supply system of the present application includes a contact network power supply main circuit 1, a diesel generator power supply main circuit 2, a rectifier and inverter module 3, a power supply switching device 4 and a controller 5.
  • a contact network power supply main circuit 1 belongs to AC-DC-AC (rectification before inverter) power supply
  • diesel engine power supply mode also belongs to AC-DC-AC (rectification before inverter) power supply
  • the two can share a rectifier inverter module 3 ( The two are not supplied at the same time, and the interface of the rectifier and inverter module 3 is compatible with the AC voltage input by the two), thereby being combined into a dual power supply circuit (having two power supply modes of contact network and diesel generator set) to achieve dual power supply.
  • the present application combines the command receiving function of the power supply switching device 4 and the control function of the controller 5. Specifically, after the controller 5 is powered on, it first performs a self-test. After the self-test is passed, it detects the command state of the power supply switching device 4 (the power supply switching device 4 has two command states: contact network power supply command state and diesel engine In the group power supply command state, after receiving a command, the power supply switching device 4 will always be in the command state corresponding to the command unless another command is received again).
  • the controller 5 controls the catenary power supply main circuit 1 (or the diesel unit power supply main circuit 2) to start outputting electrical energy, and After being rectified and inverted by the rectifying and inverting module 3, the traction motor of the electric drive locomotive is powered.
  • the controller 5 When the controller 5 is working, if the current command state of the power supply switching device 4 is the contact network power supply command state, after the power supply switching device 4 receives the diesel unit power supply command again (which can be sent by the staff), it is sent to the controller 5 ; Then the controller 5 controls the main circuit 1 of the catenary power supply to stop power supply, and at the same time controls the main circuit 2 of the diesel generator power supply to start outputting electric power, and supplies power to the traction motor of the electric drive locomotive after being rectified and inverted by the rectifier inverter module 3, thus completing Switching between two power supply modes. Preferably, the switching time of the two should ensure that the power supply of the traction motor is not interrupted.
  • the staff when there is a power zone, the staff can send the catenary power supply command to put the dual power supply system in the catenary power supply mode, and when entering the no-power zone, the staff can send the diesel unit power supply command to make the dual power supply system Switch to the diesel unit power supply mode, the electric drive locomotive can still work normally; moreover, the two power supply modes of the dual power supply system are switched to use, compared with the diesel unit power supply mode only, the use time is longer and more environmentally friendly.
  • main circuit 1 of the catenary power supply and the main circuit 2 of the diesel generator set are independent of each other. When one power supply mode fails, it does not affect the operation of the other power supply mode, thereby enhancing the redundancy of the vehicle power supply system. Sex.
  • the invention provides a dual-power power supply system, which includes a main power supply circuit of a contact network, a main power supply circuit of a diesel generator that is not supplied at the same time as the main power supply circuit of the contact network, and a rectifier for rectifying the power input by itself and then inverting the inverter Inverter module, power supply switching device and controller for receiving contact network power supply instruction or diesel unit power supply instruction; wherein: the output end of the power supply switching device is connected to the controller, and the input end of the rectifier inverter module is respectively connected to the contact network power supply main
  • the output of the circuit is connected to the output of the main circuit of the diesel generator power supply, and the output of the rectifier inverter module is connected to the traction motor of the electric drive locomotive;
  • the controller is used to control the main circuit of the catenary power supply after receiving the catenary power supply command. Traction motor power supply; after receiving the diesel unit power supply command, the main circuit of the diesel unit power supply is controlled to start supplying power to the traction motor
  • the dual power supply system of the present application can be applied to the two power supply modes of the catenary and the diesel generator set, and the two power supply modes are independent of each other, and the two power supply modes can be automatically switched by using the switching instruction and controller of the power supply switching device . Therefore, when there is a power zone, the application can select the contact network power supply mode, and when entering the no-power zone, the application can switch to the diesel unit power supply mode, the electric drive locomotive can still work normally; moreover, the dual power supply system The two power supply modes are switched and used. Compared with the prior art, which only uses the diesel unit power supply mode, the use time is longer, and it is more environmentally friendly.
  • the controller 5 is also used to adjust the rectification link of the rectifier inverter module 3 to stabilize the power supply voltage of the traction motor when the catenary power supply main circuit 1 starts to supply power to the traction motor.
  • this application first presets a reference power supply voltage.
  • the controller 5 adjusts the rectifier link of the rectifier inverter module 3 (that is, adjusts the conduction time of the switch tube in the rectifier link), thereby adjusting the power supply voltage of the traction motor, so that the power supply voltage of the traction motor tracks the set reference Voltage improves the stability and reliability of the power supply of the contact network.
  • FIG. 2 is a schematic structural diagram of a dual power supply main circuit provided by the present invention.
  • the main power supply circuit 1 of the catenary includes a pantograph P, a main circuit breaker Q1, a traction transformer T, and a charging circuit for connecting the first end to the catenary when the bow is completed.
  • the output end of the main network power supply circuit 1 includes an output positive end and an output negative end, and the input end of the rectifier inverter module 3 includes an input positive end and an input negative end connected one-to-one to the output end of the contact network power supply main circuit 1; :
  • the second end of the pantograph P is connected to the first end of the main circuit breaker Q1.
  • the second end of the main circuit breaker Q1 is connected to the positive input end of the traction transformer T.
  • the negative input end of the traction transformer T is grounded.
  • the positive output terminal is connected to the first terminal of the charging circuit, the second terminal of the charging circuit is used as the positive output terminal of the main power supply circuit 1 of the contact network, and the negative output terminal of the traction transformer T is used as the negative output terminal of the main power supply circuit 1 of the contact network;
  • the controller 5 is specifically used to control the pantograph P to raise the bow and the main circuit breaker Q1 to close after receiving the catenary power supply instruction, and to control the charging circuit to complete the pre-charging of the capacitor in the rectifier inverter module 3, so as to facilitate the catenary
  • the power supply main circuit 1 supplies power to the traction motor.
  • the catenary power supply main circuit 1 of the present application includes a pantograph P, a main circuit breaker Q1, a traction transformer T, and a charging circuit, and its working principle is that after the controller 5 receives the catenary power supply instruction, it controls the The pantograph P raises the bow and the main circuit breaker Q1 closes, thereby closing the grid-side circuit, the grid-side voltage flows into the rectifier inverter module 3 after being stepped down by the traction transformer T, and is rectified by the rectifier inverter module 3 The traction motor of the transmission locomotive supplies power.
  • the rectifying and inverting module 3 includes a capacitor
  • the capacitor is an energy storage element
  • the charging circuit is controlled to precharge the capacitor in the rectifier inverter module 3, and the charging circuit works for a period After the time, the controller 5 may control the charging circuit to stop charging (without affecting the power supply of the main power supply circuit 1 of the catenary).
  • the controller 5 is further used to determine whether the main circuit 1 of the catenary power supply meets the power supply condition after receiving the catenary power supply instruction and before controlling the pantograph P to raise the bow and the main circuit breaker Q1 to close. Only when it meets the power supply conditions, the steps of controlling the pantograph P to raise the bow and the main circuit breaker Q1 to close are executed.
  • the controller 5 of the present application first determines whether the catenary power supply main circuit 1 satisfies the power supply conditions, and when it meets the power supply conditions (that is, all links in the circuit can work normally, and the rectifier inverter Module 3 is ready) only when the pantograph P is raised and the main circuit breaker Q1 is closed, thereby improving the safety and reliability of the catenary power supply.
  • the output terminal of the traction transformer T includes two pairs of positive output terminals and negative output terminals
  • the charging circuit includes two sub-charging circuits connected one-to-one with the two positive output terminals of the traction transformer T; each sub-charging The circuit includes a first switch K1, a current limiting resistor R and a second switch K2; where:
  • the first terminal of the first switch K1 is connected to the first terminal of the second switch K2, the common terminal is correspondingly connected to the positive output terminal of the traction transformer T, and the second terminal of the first switch K1 is connected to the first terminal of the current limiting resistor R Connection, the second end of the current limiting resistor R is connected to the second end of the second switch K2, and the common end is correspondingly connected to the positive input end of the rectifier inverter module 3;
  • the controller 5 is specifically used to control the first switch K1 to close when the pantograph P is raised and the main circuit breaker Q1 is closed, and to control the first switch K1 to open and the second switch K2 to close after a preset time, In order to facilitate the charging circuit to complete the pre-charging of the capacitor in the rectifier inverter module 3.
  • the output terminal of the traction transformer T of the present application includes two pairs of outputs (a positive output terminal and a negative output terminal corresponding to the positive output terminal are a pair of outputs), and the charging circuit includes two sub-charging Circuit.
  • Each sub-charging circuit includes a first switch K1, a current limiting resistor R and a second switch K2.
  • the controller 5 controls the first switch K1 to close when controlling the pantograph P to raise the bow and the main circuit breaker Q1 to close , Pre-charge the capacitor through a current-limiting resistor R, after a period of normal circuit operation, then control the first switch K1 to open and the second switch K2 to close, that is, the current-limiting resistor R short circuit, the charging circuit completes rectification and inverter Precharge of the capacitor in module 3.
  • the main power supply circuit 1 of the contact network further includes a first lightning arrester SA1 and a second lightning arrester SA2; wherein:
  • the first end of the first lightning arrester SA1 is respectively connected to the second end of the pantograph P and the first end of the main circuit breaker Q1, the second end of the first lightning arrester SA1 is grounded, and the first end of the second lightning arrester SA2 is respectively connected to the main
  • the second end of the circuit breaker Q1 is connected to the positive input end of the traction transformer T, and the second end of the second arrester SA2 is grounded.
  • the main circuit 1 for contact network power supply of the present application further includes a first lightning arrester SA1 and a second lightning arrester SA2.
  • the lightning arrester is an electrical appliance that prevents communication cables from being damaged by lightning, thereby improving the safety of the power supply of the contact network.
  • the main power supply circuit 1 of the contact network further includes:
  • a ground switch ES in which the first end is connected to the first end of the main circuit breaker Q1, the second end is connected to the second end of the main circuit breaker Q1, and the grounding terminal is grounded.
  • the main circuit 1 of the catenary power supply of the present application further includes a grounding switch ES.
  • a grounding switch ES When the line where the main circuit breaker Q1 is located needs to be repaired, the main circuit breaker Q1 is opened and the grounding switch ES is closed, thereby ensuring the safety of equipment and maintenance personnel.
  • the main circuit 1 of the catenary power supply further includes a high-voltage voltage transformer PT, a high-voltage current transformer CT and a ground current transformer ET; wherein:
  • the first end of the high-voltage voltage transformer PT is connected to the first end of the main circuit breaker Q1, the second end of the high-voltage voltage transformer PT is grounded, and the first end of the high-voltage current transformer CT is connected to the second end of the main circuit breaker Q1 ,
  • the second end of the high-voltage current transformer CT is connected to the positive input end of the traction transformer T, the first end of the grounded current transformer ET is connected to the negative input end of the traction transformer T, and the second end of the grounded current transformer ET is grounded;
  • controller 5 is also used to determine the working condition of the main power supply circuit 1 of the catenary according to the voltage and current values detected by the high-voltage voltage transformer PT, the high-voltage current transformer CT and the ground current transformer ET, so as to supply the main circuit 1 When the fault occurs, cut off the main breaker Q1 in time.
  • the main circuit 1 of the catenary power supply of the present application further includes a high-voltage voltage transformer PT (measuring the voltage value on the line between the pantograph P and the main circuit breaker Q1), a high-voltage current transformer CT (measuring the main circuit breaker Q1 The current flowing on the line between the traction transformer T) and the ground current transformer ET (measure the current flowing through the ground terminal of the traction transformer T), three measuring devices send the measured physical quantity to the controller 5, the controller 5 can According to the received voltage value and current value, determine the working status of the catenary power supply main circuit 1, so as to discover the failure of the catenary power supply main circuit 1 in time (you can determine the working condition of the catenary power supply main circuit 1 by setting the safety range value.
  • the main circuit 1 of the catenary power supply is considered faulty), and the main circuit breaker Q1 is cut off in time when the main circuit 1 of the catenary power supply fails, thus ensuring the safety of the catenary power supply .
  • the main circuit 2 of the diesel generator power supply includes the diesel generator set and the output contactor Q2.
  • the controller 5 controls the main circuit breaker Q1 to open, and controls the startup and output contact of the diesel generator set. Q2 is closed, so that the diesel unit provides power for the traction motor of the electric drive locomotive.
  • the diesel generator may have a fault, even after the controller 5 controls the diesel generator to start and the output contactor Q2 is closed, the diesel generator power supply main circuit 2 cannot normally supply power to the traction motor.
  • the controller 5 of the present application first judges whether the main power supply circuit 2 of the diesel generator meets the power supply condition, and when it meets the power supply condition (that is, the diesel generator can work normally, and the rectifier inverter module 3 is ready Good: The rectifier inverter module 3 sends the excitation permission signal) to control the start of the diesel unit and the output contactor Q2 is closed (output AC690V or other values), thereby improving the safety and reliability of diesel engine power supply. Further, since the AC voltage output from the main circuit 2 of the diesel generator power supply is relatively small, the rectifier and inverter module 3 at this time adopts uncontrolled rectification.
  • the power supply switching device 4 is specifically a mechanical power supply switching switch.
  • the power supply switching device 4 of the present application may select a mechanical power supply switching switch, and decide which power supply mode to switch to according to the switch state of the power supply switching switch.

Abstract

一种双动力供电系统,包括接触网供电主电路、与接触网供电主电路不同时供电的柴油机组供电主电路、用于将自身输入的电源先进行整流再进行逆变的整流逆变模块、用于接收接触网供电指令或柴油机组供电指令的供电切换装置及控制器。可见,本申请的双动力供电系统可适用于接触网与柴油机组两种供电模式,且两种供电模式相互独立,并可利用供电切换装置的切换指令及控制器实现两种供电模式的自动切换。因此,在有电区时,本申请可选择接触网供电模式,而在进入无电区时,本申请可切换至柴油机组供电模式,电传动机车仍可正常工作;而且,双动力供电系统的两种供电模式切换使用,相比于只采用柴油机组供电模式,使用时间更长,且更为环保。

Description

一种双动力供电系统
本申请要求于2018年10月17日提交至中国专利局、申请号为201811208901.4、发明名称为“一种双动力供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电传动机车供电领域,特别是涉及一种双动力供电系统。
背景技术
目前,电传动机车有两种供电模式:接触网供电模式和柴油机组供电模式。现有技术中,接触网供电模式和柴油机组供电模式在供电电路结构上存在较大差异,通常只为电传动机车设置一种供电电路(接触网供电电路或柴油机组供电电路),但是,在接触网供电模式下,电传动机车只能在有电区工作,一旦进入无电区,便无法正常工作;在柴油机组供电模式下,柴油机组受油箱容量的限制,无法长时间供电,且不环保。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种双动力供电系统,可适用于接触网与柴油机组两种供电模式,且两种供电模式相互独立,可自动切换。因此,在有电区时,本申请可选择接触网供电模式,而在进入无电区时,本申请可切换至柴油机组供电模式,电传动机车仍可正常工作;而且,双动力供电系统的两种供电模式切换使用,使用时间更长,且更为环保。
为解决上述技术问题,本发明提供了一种双动力供电系统,包括接触网供电主电路、与所述接触网供电主电路不同时供电的柴油机组供电主电路、用于将自身输入的电源先进行整流再进行逆变的整流逆变模块、用于接收接触网供电指令或柴油机组供电指令的供电切换装置及控制器;其中:
所述供电切换装置的输出端与所述控制器连接,所述整流逆变模块的 输入端分别与所述接触网供电主电路的输出端和所述柴油机组供电主电路的输出端连接,所述整流逆变模块的输出端与电传动机车的牵引电机连接;
所述控制器用于在接收到所述接触网供电指令后控制所述接触网供电主电路开始为所述牵引电机供电;在接收到所述柴油机组供电指令后控制所述柴油机组供电主电路开始为所述牵引电机供电。
优选地,所述控制器还用于当所述接触网供电主电路开始为所述牵引电机供电时,调节所述整流逆变模块的整流环节以稳定所述牵引电机的供电电压。
优选地,所述接触网供电主电路包括用于在自身升弓完成时第一端接入接触网的受电弓、主断路器、牵引变压器及充电电路;则所述接触网供电主电路的输出端包括输出正端和输出负端,所述整流逆变模块的输入端包括与所述接触网供电主电路的输出端一一对应连接的输入正端和输入负端;其中:
所述受电弓的第二端与所述主断路器的第一端连接,所述主断路器的第二端与所述牵引变压器的输入正端连接,所述牵引变压器的输入负端接地,所述牵引变压器的输出正端与所述充电电路的第一端连接,所述充电电路的第二端作为所述接触网供电主电路的输出正端,所述牵引变压器的输出负端作为所述接触网供电主电路的输出负端;
则所述控制器具体用于在接收到所述接触网供电指令后,控制所述受电弓升弓和所述主断路器闭合,并控制所述充电电路完成所述整流逆变模块中电容的预充电,以便于所述接触网供电主电路为所述牵引电机供电。
优选地,所述控制器还用于在接收到所述接触网供电指令之后,在控制所述受电弓升弓和所述主断路器闭合之前,判断所述接触网供电主电路是否满足供电条件,当其满足所述供电条件时才执行所述控制所述受电弓升弓和所述主断路器闭合的步骤。
优选地,所述牵引变压器的输出端包括两对输出正端和输出负端,所述充电电路包括与所述牵引变压器的两个输出正端一一连接的两个子充电电路;每个所述子充电电路包括第一开关、限流电阻及第二开关;其中:
所述第一开关的第一端与所述第二开关的第一端连接,其公共端与所 述牵引变压器的输出正端对应连接,所述第一开关的第二端与所述限流电阻的第一端连接,所述限流电阻的第二端与所述第二开关的第二端连接,其公共端与所述整流逆变模块的输入正端对应连接;
则所述控制器具体用于在控制所述受电弓升弓和所述主断路器闭合时控制所述第一开关闭合,并在预设时间后控制所述第一开关断开且控制所述第二开关闭合,以便于所述充电电路完成所述整流逆变模块中电容的预充电。
优选地,所述接触网供电主电路还包括第一避雷器和第二避雷器;其中:
所述第一避雷器的第一端分别与所述受电弓的第二端和所述主断路器的第一端连接,所述第一避雷器的第二端接地,所述第二避雷器的第一端分别与所述主断路器的第二端和所述牵引变压器的输入正端连接,所述第二避雷器的第二端接地。
优选地,所述接触网供电主电路还包括:
第一端与所述主断路器的第一端连接、第二端与所述主断路器的第二端连接、接地端接地的接地开关。
优选地,所述接触网供电主电路还包括高压电压互感器、高压电流互感器及接地电流互感器;其中:
所述高压电压互感器的第一端与所述主断路器的第一端连接,所述高压电压互感器的第二端接地,所述高压电流互感器的第一端与所述主断路器的第二端连接,所述高压电流互感器的第二端与所述牵引变压器的输入正端连接,所述接地电流互感器的第一端与所述牵引变压器的输入负端连接,所述接地电流互感器的第二端接地;
则所述控制器还用于根据所述高压电压互感器、高压电流互感器及接地电流互感器检测的电压值及电流值判定所述接触网供电主电路的工作状况,以在所述接触网供电主电路故障时及时切断所述主断路器。
优选地,所述供电切换装置具体为机械式供电切换开关。
本发明提供了一种双动力供电系统,包括接触网供电主电路、与接触网供电主电路不同时供电的柴油机组供电主电路、用于将自身输入的电源 先进行整流再进行逆变的整流逆变模块、用于接收接触网供电指令或柴油机组供电指令的供电切换装置及控制器;其中:供电切换装置的输出端与控制器连接,整流逆变模块的输入端分别与接触网供电主电路的输出端和柴油机组供电主电路的输出端连接,整流逆变模块的输出端与电传动机车的牵引电机连接;控制器用于在接收到接触网供电指令后控制接触网供电主电路开始为牵引电机供电;在接收到柴油机组供电指令后控制柴油机组供电主电路开始为牵引电机供电。
可见,本申请的双动力供电系统可适用于接触网与柴油机组两种供电模式,且两种供电模式相互独立,并可利用供电切换装置的切换指令及控制器实现两种供电模式的自动切换。因此,在有电区时,本申请可选择接触网供电模式,而在进入无电区时,本申请可切换至柴油机组供电模式,电传动机车仍可正常工作;而且,双动力供电系统的两种供电模式切换使用,相比于现有技术只采用柴油机组供电模式,使用时间更长,且更为环保。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种双动力供电系统的结构示意图;
图2为本发明提供的一种双动力供电主电路的结构示意图。
具体实施方式
本发明的核心是提供一种双动力供电系统,可适用于接触网与柴油机组两种供电模式,且两种供电模式相互独立,可自动切换。因此,在有电区时,本申请可选择接触网供电模式,而在进入无电区时,本申请可切换至柴油机组供电模式,电传动机车仍可正常工作;而且,双动力供电系统的两种供电模式切换使用,使用时间更长,且更为环保。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明提供的一种双动力供电系统的结构示意图。
该双动力供电系统包括:接触网供电主电路1、与接触网供电主电路1不同时供电的柴油机组供电主电路2、用于将自身输入的电源先进行整流再进行逆变的整流逆变模块3、用于接收接触网供电指令或柴油机组供电指令的供电切换装置4及控制器5;其中:
供电切换装置4的输出端与控制器5连接,整流逆变模块3的输入端分别与接触网供电主电路1的输出端和柴油机组供电主电路2的输出端连接,整流逆变模块3的输出端与电传动机车的牵引电机连接;
控制器5用于在接收到接触网供电指令后控制接触网供电主电路1开始为牵引电机供电;在接收到柴油机组供电指令后控制柴油机组供电主电路2开始为牵引电机供电。
具体地,本申请的双动力供电系统包括接触网供电主电路1、柴油机组供电主电路2、整流逆变模块3、供电切换装置4及控制器5,其工作原理为:考虑到接触网(25kV)供电模式属于交流-直流-交流(先整流后逆变)供电,柴油机供电模式也属于交流-直流-交流(先整流后逆变)供电,所以二者可共用一个整流逆变模块3(二者不同时供电,且该整流逆变模块3的接口可兼容二者输入的交流电压),从而组合成双动力供电电路(具备接触网与柴油机组两种供电模式),实现双动力供电。
而且,为了实现两种供电模式的自动切换,本申请将供电切换装置4的指令接收功能和控制器5的控制功能相结合。具体地,在控制器5上电后,首先进行自检,待自检通过后,便检测供电切换装置4的指令状态(供电切换装置4的指令状态有两种:接触网供电指令状态和柴油机组供电指令状态,供电切换装置4在接收到一个指令后,便一直处于该指令对应的指令状 态,除非重新接收到另一指令)。若供电切换装置4此时的指令状态为接触网供电指令状态(或柴油机组供电指令状态),控制器5则控制接触网供电主电路1(或柴油机组供电主电路2)开始输出电能,并经整流逆变模块3整流逆变后为电传动机车的牵引电机供电。
在控制器5工作时,若供电切换装置4当前的指令状态为接触网供电指令状态,在供电切换装置4重新接收到柴油机组供电指令(可由工作人员发送)后,将其发送至控制器5;然后由控制器5控制接触网供电主电路1停止供电,同时控制柴油机组供电主电路2开始输出电能,并经整流逆变模块3整流逆变后为电传动机车的牵引电机供电,从而完成两种供电模式的切换。较优地,二者切换时间要保证牵引电机供电不中断。
因此,在有电区时,工作人员可发送接触网供电指令,使双动力供电系统处于接触网供电模式,而在进入无电区时,工作人员可发送柴油机组供电指令,使双动力供电系统切换至柴油机组供电模式,电传动机车仍可正常工作;而且,双动力供电系统的两种供电模式切换使用,相比于只采用柴油机组供电模式,使用时间更长,且更为环保。
需要说明的是,接触网供电主电路1和柴油机组供电主电路2相互独立,当一种供电模式出现故障时并不影响另一种供电模式的工作,从而增强了整车供电系统的冗余性。
本发明提供了一种双动力供电系统,包括接触网供电主电路、与接触网供电主电路不同时供电的柴油机组供电主电路、用于将自身输入的电源先进行整流再进行逆变的整流逆变模块、用于接收接触网供电指令或柴油机组供电指令的供电切换装置及控制器;其中:供电切换装置的输出端与控制器连接,整流逆变模块的输入端分别与接触网供电主电路的输出端和柴油机组供电主电路的输出端连接,整流逆变模块的输出端与电传动机车的牵引电机连接;控制器用于在接收到接触网供电指令后控制接触网供电主电路开始为牵引电机供电;在接收到柴油机组供电指令后控制柴油机组供电主电路开始为牵引电机供电。
可见,本申请的双动力供电系统可适用于接触网与柴油机组两种供电模式,且两种供电模式相互独立,并可利用供电切换装置的切换指令及控 制器实现两种供电模式的自动切换。因此,在有电区时,本申请可选择接触网供电模式,而在进入无电区时,本申请可切换至柴油机组供电模式,电传动机车仍可正常工作;而且,双动力供电系统的两种供电模式切换使用,相比于现有技术只采用柴油机组供电模式,使用时间更长,且更为环保。
在上述实施例的基础上:
作为一种优选地实施例,控制器5还用于当接触网供电主电路1开始为牵引电机供电时,调节整流逆变模块3的整流环节以稳定牵引电机的供电电压。
进一步地,考虑到接触网供电主电路1输出的交流电压波动较大,导致牵引电机的供电电压波动较大,所以本申请首先预设一个基准供电电压,当牵引电机的供电电压偏离所设基准供电电压时,控制器5便调节整流逆变模块3的整流环节(即调节整流环节中开关管的导通时间),从而调节牵引电机的供电电压,使牵引电机的供电电压跟踪所设基准供电电压,提高了接触网供电的稳定性和可靠性。
需要说明的是,本申请的预设是提起设置好的,只需要设置一次,除非根据实际情况需要修改,否则不需要重新设置。
请参照图2,图2为本发明提供的一种双动力供电主电路的结构示意图。
作为一种优选地实施例,接触网供电主电路1包括用于在自身升弓完成时第一端接入接触网的受电弓P、主断路器Q1、牵引变压器T及充电电路;则接触网供电主电路1的输出端包括输出正端和输出负端,整流逆变模块3的输入端包括与接触网供电主电路1的输出端一一对应连接的输入正端和输入负端;其中:
受电弓P的第二端与主断路器Q1的第一端连接,主断路器Q1的第二端与牵引变压器T的输入正端连接,牵引变压器T的输入负端接地,牵引变压器T的输出正端与充电电路的第一端连接,充电电路的第二端作为接触网供电主电路1的输出正端,牵引变压器T的输出负端作为接触网供电主电路1的输出负端;
则控制器5具体用于在接收到接触网供电指令后,控制受电弓P升弓和主断路器Q1闭合,并控制充电电路完成整流逆变模块3中电容的预充电,以便于接触网供电主电路1为牵引电机供电。
具体地,本申请的接触网供电主电路1包括受电弓P、主断路器Q1、牵引变压器T及充电电路,其工作原理为:控制器5在接收到接触网供电指令后,便控制受电弓P升弓和主断路器Q1闭合,从而接通网侧电路,网侧电压便经牵引变压器T降压后流入整流逆变模块3,并经整流逆变模块3整流逆变后为电传动机车的牵引电机供电。考虑到整流逆变模块3中包含电容,电容是一个储能元件,电路闭合瞬间,若电容内没有充满能量,则电容的充电电流较大,易引起过流现象。所以,本申请设置一个充电电路,在控制器5控制受电弓P升弓和主断路器Q1闭合的同时,控制充电电路对整流逆变模块3中的电容进行预充电,待充电电路工作一段时间后,控制器5控制充电电路停止充电即可(不影响接触网供电主电路1的供电)。
作为一种优选地实施例,控制器5还用于在接收到接触网供电指令之后,在控制受电弓P升弓和主断路器Q1闭合之前,判断接触网供电主电路1是否满足供电条件,当其满足供电条件时才执行控制受电弓P升弓和主断路器Q1闭合的步骤。
进一步地,考虑到接触网供电主电路1可能存在故障问题,即使控制器5在控制受电弓P升弓和主断路器Q1闭合后,接触网供电主电路1也无法正常为牵引电机供电。所以,本申请的控制器5在接收到接触网供电指令之后,先判断接触网供电主电路1是否满足供电条件,当其满足供电条件(即电路中各环节均可正常工作,且整流逆变模块3准备好)时才控制受电弓P升弓和主断路器Q1闭合,从而提高了接触网供电的安全性和可靠性。
作为一种优选地实施例,牵引变压器T的输出端包括两对输出正端和输出负端,充电电路包括与牵引变压器T的两个输出正端一一连接的两个子充电电路;每个子充电电路包括第一开关K1、限流电阻R及第二开关K2;其中:
第一开关K1的第一端与第二开关K2的第一端连接,其公共端与牵引变压器T的输出正端对应连接,第一开关K1的第二端与限流电阻R的第一端连 接,限流电阻R的第二端与第二开关K2的第二端连接,其公共端与整流逆变模块3的输入正端对应连接;
则控制器5具体用于在控制受电弓P升弓和主断路器Q1闭合时控制第一开关K1闭合,并在预设时间后控制第一开关K1断开且控制第二开关K2闭合,以便于充电电路完成整流逆变模块3中电容的预充电。
具体地,请参照图2,本申请的牵引变压器T的输出端包括两对输出(一个输出正端和与该输出正端对应的输出负端为一对输出),则充电电路包括两个子充电电路。每个子充电电路均包括第一开关K1、限流电阻R及第二开关K2,其工作原理为:控制器5在控制受电弓P升弓和主断路器Q1闭合时控制第一开关K1闭合,通过一个限流电阻R对电容进行预充电,过一段时间电路正常工作后,再控制第一开关K1断开且控制第二开关K2闭合,即将限流电阻R短路,充电电路完成整流逆变模块3中电容的预充电。
作为一种优选地实施例,接触网供电主电路1还包括第一避雷器SA1和第二避雷器SA2;其中:
第一避雷器SA1的第一端分别与受电弓P的第二端和主断路器Q1的第一端连接,第一避雷器SA1的第二端接地,第二避雷器SA2的第一端分别与主断路器Q1的第二端和牵引变压器T的输入正端连接,第二避雷器SA2的第二端接地。
进一步地,本申请的接触网供电主电路1还包括第一避雷器SA1和第二避雷器SA2,避雷器是一种防止通信线缆免受雷电损坏的电器,从而提高了接触网供电的安全性。
作为一种优选地实施例,接触网供电主电路1还包括:
第一端与主断路器Q1的第一端连接、第二端与主断路器Q1的第二端连接、接地端接地的接地开关ES。
进一步地,本申请的接触网供电主电路1还包括接地开关ES,当主断路器Q1所在线路需要检修时,主断路器Q1断开,接地开关ES合闸,从而保证设备和检修人员的安全。
作为一种优选地实施例,接触网供电主电路1还包括高压电压互感器PT、高压电流互感器CT及接地电流互感器ET;其中:
高压电压互感器PT的第一端与主断路器Q1的第一端连接,高压电压互感器PT的第二端接地,高压电流互感器CT的第一端与主断路器Q1的第二端连接,高压电流互感器CT的第二端与牵引变压器T的输入正端连接,接地电流互感器ET的第一端与牵引变压器T的输入负端连接,接地电流互感器ET的第二端接地;
则控制器5还用于根据高压电压互感器PT、高压电流互感器CT及接地电流互感器ET检测的电压值及电流值判定接触网供电主电路1的工作状况,以在接触网供电主电路1故障时及时切断主断路器Q1。
进一步地,本申请的接触网供电主电路1还包括高压电压互感器PT(测量受电弓P与主断路器Q1之间线路上的电压值)、高压电流互感器CT(测量主断路器Q1与牵引变压器T之间线路上流经的电流)及接地电流互感器ET(测量牵引变压器T接地端流经的电流),三个测量器件将测量的物理量发送至控制器5,控制器5便可根据接收的电压值及电流值判定接触网供电主电路1的工作状况,从而及时发现接触网供电主电路1故障(可通过设置安全范围值判定接触网供电主电路1的工作状况,若任一测量器件测量的物理量不在所对应的安全范围值内,则认为接触网供电主电路1故障),并在接触网供电主电路1故障时及时切断主断路器Q1,从而保证接触网供电的安全性。
此外,请参照图2,柴油机组供电主电路2包括柴油机组和输出接触器Q2,控制器5在接收到柴油机组供电指令后,控制主断路器Q1断开,同时控制柴油机组启动和输出接触器Q2闭合,从而由柴油机组为电传动机车的牵引电机供电。同样地,考虑到柴油机组可能存在故障问题,即使控制器5在控制柴油机组启动和输出接触器Q2闭合后,柴油机组供电主电路2也无法正常为牵引电机供电。所以,本申请的控制器5在接收到柴油机组供电指令之后,先判断柴油机组供电主电路2是否满足供电条件,当其满足供电条件(即柴油机组可正常工作,且整流逆变模块3准备好:整流逆变模块3发出励磁允许信号)时才控制柴油机组启动和输出接触器Q2闭合(输出AC690V或其它值),从而提高了柴油机供电的安全性和可靠性。进一步地,由于柴油机组供电主电路2输出的交流电压波动较小,此时的整流逆变模块 3采用不控整流。
作为一种优选地实施例,供电切换装置4具体为机械式供电切换开关。
具体地,本申请的供电切换装置4可以选用机械式供电切换开关,根据供电切换开关的开关状态决定切换至哪种供电模式。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种双动力供电系统,其特征在于,包括接触网供电主电路、与所述接触网供电主电路不同时供电的柴油机组供电主电路、用于将自身输入的电源先进行整流再进行逆变的整流逆变模块、用于接收接触网供电指令或柴油机组供电指令的供电切换装置及控制器;其中:
    所述供电切换装置的输出端与所述控制器连接,所述整流逆变模块的输入端分别与所述接触网供电主电路的输出端和所述柴油机组供电主电路的输出端连接,所述整流逆变模块的输出端与电传动机车的牵引电机连接;
    所述控制器用于在接收到所述接触网供电指令后控制所述接触网供电主电路开始为所述牵引电机供电;在接收到所述柴油机组供电指令后控制所述柴油机组供电主电路开始为所述牵引电机供电。
  2. 如权利要求1所述的双动力供电系统,其特征在于,所述控制器还用于当所述接触网供电主电路开始为所述牵引电机供电时,调节所述整流逆变模块的整流环节以稳定所述牵引电机的供电电压。
  3. 如权利要求1所述的双动力供电系统,其特征在于,所述接触网供电主电路包括用于在自身升弓完成时第一端接入接触网的受电弓、主断路器、牵引变压器及充电电路;则所述接触网供电主电路的输出端包括输出正端和输出负端,所述整流逆变模块的输入端包括与所述接触网供电主电路的输出端一一对应连接的输入正端和输入负端;其中:
    所述受电弓的第二端与所述主断路器的第一端连接,所述主断路器的第二端与所述牵引变压器的输入正端连接,所述牵引变压器的输入负端接地,所述牵引变压器的输出正端与所述充电电路的第一端连接,所述充电电路的第二端作为所述接触网供电主电路的输出正端,所述牵引变压器的输出负端作为所述接触网供电主电路的输出负端;
    则所述控制器具体用于在接收到所述接触网供电指令后,控制所述受电弓升弓和所述主断路器闭合,并控制所述充电电路完成所述整流逆变模块中电容的预充电,以便于所述接触网供电主电路为所述牵引电机供电。
  4. 如权利要求3所述的双动力供电系统,其特征在于,所述控制器还用于在接收到所述接触网供电指令之后,在控制所述受电弓升弓和所述主 断路器闭合之前,判断所述接触网供电主电路是否满足供电条件,当其满足所述供电条件时才执行所述控制所述受电弓升弓和所述主断路器闭合的步骤。
  5. 如权利要求3所述的双动力供电系统,其特征在于,所述牵引变压器的输出端包括两对输出正端和输出负端,所述充电电路包括与所述牵引变压器的两个输出正端一一连接的两个子充电电路;每个所述子充电电路包括第一开关、限流电阻及第二开关;其中:
    所述第一开关的第一端与所述第二开关的第一端连接,其公共端与所述牵引变压器的输出正端对应连接,所述第一开关的第二端与所述限流电阻的第一端连接,所述限流电阻的第二端与所述第二开关的第二端连接,其公共端与所述整流逆变模块的输入正端对应连接;
    则所述控制器具体用于在控制所述受电弓升弓和所述主断路器闭合时控制所述第一开关闭合,并在预设时间后控制所述第一开关断开且控制所述第二开关闭合,以便于所述充电电路完成所述整流逆变模块中电容的预充电。
  6. 如权利要求5所述的双动力供电系统,其特征在于,所述接触网供电主电路还包括第一避雷器和第二避雷器;其中:
    所述第一避雷器的第一端分别与所述受电弓的第二端和所述主断路器的第一端连接,所述第一避雷器的第二端接地,所述第二避雷器的第一端分别与所述主断路器的第二端和所述牵引变压器的输入正端连接,所述第二避雷器的第二端接地。
  7. 如权利要求6所述的双动力供电系统,其特征在于,所述接触网供电主电路还包括:
    第一端与所述主断路器的第一端连接、第二端与所述主断路器的第二端连接、接地端接地的接地开关。
  8. 如权利要求7所述的双动力供电系统,其特征在于,所述接触网供电主电路还包括高压电压互感器、高压电流互感器及接地电流互感器;其中:
    所述高压电压互感器的第一端与所述主断路器的第一端连接,所述高 压电压互感器的第二端接地,所述高压电流互感器的第一端与所述主断路器的第二端连接,所述高压电流互感器的第二端与所述牵引变压器的输入正端连接,所述接地电流互感器的第一端与所述牵引变压器的输入负端连接,所述接地电流互感器的第二端接地;
    则所述控制器还用于根据所述高压电压互感器、高压电流互感器及接地电流互感器检测的电压值及电流值判定所述接触网供电主电路的工作状况,以在所述接触网供电主电路故障时及时切断所述主断路器。
  9. 如权利要求1-8任一项所述的双动力供电系统,其特征在于,所述供电切换装置具体为机械式供电切换开关。
PCT/CN2019/094533 2018-10-17 2019-07-03 一种双动力供电系统 WO2020078047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811208901.4 2018-10-17
CN201811208901.4A CN109327073A (zh) 2018-10-17 2018-10-17 一种双动力供电系统

Publications (1)

Publication Number Publication Date
WO2020078047A1 true WO2020078047A1 (zh) 2020-04-23

Family

ID=65261798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094533 WO2020078047A1 (zh) 2018-10-17 2019-07-03 一种双动力供电系统

Country Status (2)

Country Link
CN (1) CN109327073A (zh)
WO (1) WO2020078047A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327073A (zh) * 2018-10-17 2019-02-12 中车株洲电力机车有限公司 一种双动力供电系统
CN112339620B (zh) * 2020-10-28 2022-04-19 株洲中车时代电气股份有限公司 一种多流制列车供电模式的切换方法、系统及相关组件
CN114228753B (zh) * 2021-11-30 2023-03-14 中车大连机车车辆有限公司 一种机车用接触网、柴油机动力源转换方法
CN114633640B (zh) * 2022-01-17 2023-09-26 中车青岛四方机车车辆股份有限公司 轨道车辆的动力切换系统、方法及轨道车辆
CN114572127B (zh) * 2022-03-16 2023-07-25 宁波兴为汽车电子有限公司 一种多模车身供电控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201907426U (zh) * 2010-12-13 2011-07-27 南车株洲电力机车有限公司 一种适用于多种供电模式的机车供电电路
CN103407377A (zh) * 2013-06-24 2013-11-27 长春轨道客车股份有限公司 一种接触网和动力包混合供电的动车组牵引系统
CN104071018A (zh) * 2014-07-22 2014-10-01 南车株洲电力机车有限公司 一种列车供电电路、列车及供电控制方法
CN107554308A (zh) * 2017-09-20 2018-01-09 株洲时代电子技术有限公司 一种铁路工程机械混合动力源切换系统
CN109327073A (zh) * 2018-10-17 2019-02-12 中车株洲电力机车有限公司 一种双动力供电系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467455A (zh) * 2014-12-04 2015-03-25 株洲南车时代电气股份有限公司 一种多流制变流装置
CN205430070U (zh) * 2015-12-22 2016-08-03 徐翠林 一种多功能变频电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201907426U (zh) * 2010-12-13 2011-07-27 南车株洲电力机车有限公司 一种适用于多种供电模式的机车供电电路
CN103407377A (zh) * 2013-06-24 2013-11-27 长春轨道客车股份有限公司 一种接触网和动力包混合供电的动车组牵引系统
CN104071018A (zh) * 2014-07-22 2014-10-01 南车株洲电力机车有限公司 一种列车供电电路、列车及供电控制方法
CN107554308A (zh) * 2017-09-20 2018-01-09 株洲时代电子技术有限公司 一种铁路工程机械混合动力源切换系统
CN109327073A (zh) * 2018-10-17 2019-02-12 中车株洲电力机车有限公司 一种双动力供电系统

Also Published As

Publication number Publication date
CN109327073A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2020078047A1 (zh) 一种双动力供电系统
CN206569857U (zh) 一种电梯驱动器
CN102170178B (zh) 一种高压输电线路电流耦合取电装置
US9748796B2 (en) Multi-port energy storage system and control method thereof
CN107306047A (zh) 用于控制电动车辆充电系统的设备
WO2019218523A1 (zh) 一种动车组中动力车的高压网侧电路及其控制方法
CN103645412B (zh) 电池检测方法和装置
CN107276119A (zh) 一种储能变流器黑启动方法
CN109088430A (zh) 储能系统防逆流保护供电系统及其测控方法
JP3933974B2 (ja) 電圧変動補償装置
CN103280767B (zh) 变频器的制动电阻保护电路和方法
CN201854075U (zh) 充电控制装置和充电系统
CN207782475U (zh) 风力发电机组变桨系统的备用电源系统
JP6397673B2 (ja) 電源制御装置の制御方法
CN110495064A (zh) 直流电压系统的优化构造以及在供电电网失效时的方法
CN202026162U (zh) 一种高压输电线路电流耦合取电装置
CN109378831B (zh) 一种用于svg设备旁路开关的控制装置及控制方法
CN110707764A (zh) 用于opgw监测的感应取电系统
CN212386323U (zh) 电动汽车上电的装置
CN209150792U (zh) Eps逆变切换装置和应急电源
CN110350650B (zh) 大容量高可靠快速电源切换装置及其切换控制方法
CN204068227U (zh) 电压型配电网故障上报系统
CN209170216U (zh) 一种大功率变频器的控制系统
WO2019114651A1 (zh) 高速断路器保护控制方法、控制器、牵引控制系统和列车
CN216599112U (zh) 一种不间断的供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872753

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19872753

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19872753

Country of ref document: EP

Kind code of ref document: A1