WO2020077881A1 - 一种复杂型腔结构钛合金铸件精密铸造方法 - Google Patents

一种复杂型腔结构钛合金铸件精密铸造方法 Download PDF

Info

Publication number
WO2020077881A1
WO2020077881A1 PCT/CN2019/000140 CN2019000140W WO2020077881A1 WO 2020077881 A1 WO2020077881 A1 WO 2020077881A1 CN 2019000140 W CN2019000140 W CN 2019000140W WO 2020077881 A1 WO2020077881 A1 WO 2020077881A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
titanium alloy
cavity structure
complex cavity
mold
Prior art date
Application number
PCT/CN2019/000140
Other languages
English (en)
French (fr)
Inventor
娄延春
赵军
史昆
刘时兵
刘鸿羽
杨海涛
王彦鹏
Original Assignee
沈阳铸造研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳铸造研究所有限公司 filed Critical 沈阳铸造研究所有限公司
Publication of WO2020077881A1 publication Critical patent/WO2020077881A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/002Removing cores by leaching, washing or dissolving
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the invention belongs to the field of casting technology, and relates to a precision casting method of titanium alloy castings with complex cavity structure, specifically a precision compounding of graphite casting mold, metal core, vacuum consumable electrode arc condensing shell melting centrifugal casting technology Casting technology.
  • titanium alloy castings mainly adopt two casting methods: investment precision casting process and mechanically processed graphite casting process.
  • the investment precision casting process is suitable for castings with high dimensional accuracy, high surface quality requirements, and large batches.
  • the graphite casting process is suitable for the production of castings with high mechanical properties, high pressure bearing, small batches, and relatively simple casting structure.
  • a liquid engine core over-flow titanium alloy component has a complex cavity structure, mainly composed of a complex twisted flow channel and a three-dimensional variable curved blade composite, and the flow channel has a narrow (minimum only 5mm) parts
  • casting cavity and structure needs Integral casting is integrally formed.
  • the internal quality and surface quality of castings are required to meet Class I Class B standards specified in GJB 2896A-2007. If the traditional graphite casting process is used alone for production, the surface quality and dimensional accuracy of the casting will not be met. At the same time, the graphite core cannot be cleaned after casting, which will generate a large amount of excess and cannot meet the requirements for use.
  • the purpose of the present invention is to provide a titanium with high dimensional accuracy control, high internal quality, high surface quality, high performance, short duration, and low cost, aiming at the technical deficiency that the existing process method cannot achieve the precise molding of the complex cavity overcurrent parts.
  • Alloy precision casting method The casting process is compounded by CNC machining graphite casting mold, CNC machining low carbon steel metal core and plasma spraying high chemical stability coating on its surface, vacuum consumable electrode arc condensing shell melting furnace vacuum centrifugal casting complex New precision casting process for precision molding of titanium alloy flow parts.
  • the present invention provides a precision casting method of a complex cavity structure titanium alloy casting, which includes the following process steps:
  • Plasma spraying casting surface using plasma spraying technology, spray the refractory coating powder to step (1) graphite casting surface and step (2) metal core surface;
  • Vacuum degassing place the graphite casting skin and metal core processed in step (3) in a vacuum degassing furnace, evacuate to ⁇ 5 ⁇ 10 -1 Pa, heat to 840 ⁇ 860 °C, After 2 hours of heat preservation, the furnace is cooled to 30 °C ⁇ 200 °C and released;
  • Mold combination assemble and combine the graphite mold skin and metal core processed in step (4);
  • step (6) Smelting and casting: place the combined mold in step (5) in a vacuum consumable electrode arc smelting furnace, start the vacuum pump, evacuate to ⁇ 10-1Pa, melt, and then use vacuum centrifugal casting The process of pouring titanium alloy liquid into the mold;
  • Metal core pickling remove the core after casting in step (6), first remove the graphite skin of the casting by mechanical methods, and then perform sandblasting on the surface of the casting. The casting is placed in an acid solution for dissolution to obtain a titanium alloy casting with a complex cavity structure.
  • the refractory coating in the step (3) is prepared by the following method: mixing the yttrium oxide powder, calcium oxide powder, and zirconia powder uniformly and then ball milling for 3 hours to obtain a mixed powder; using a high temperature arc smelting method High-temperature sintering, sintering temperature 1800 °C ⁇ 3000 °C, spheroidizing and granulation after sintering to prepare 45 ⁇ m refractory coating powder.
  • the coating thickness of the refractory coating is controlled to 0.15-0.25 mm.
  • the added amounts of yttrium oxide powder, calcium oxide powder, and zirconia powder are respectively 7-16%, 1-10%, and 85-95% in mass percentage.
  • the particle sizes of the yttrium oxide powder, calcium oxide powder, and zirconia powder are all 45-75 ⁇ m.
  • the added amounts of the yttrium oxide powder, calcium oxide powder, and zirconium oxide powder are 8%, 2%, and 90%, respectively, by mass percentage.
  • the gap between the consumable electrode and the inner wall of the crucible is 30-100 mm.
  • the melting conditions are a voltage of 38-40V, a current of 12000A-18000A, a cooling water pressure of 0.4 MPa, a crucible inlet water temperature of 19 ° C, and a crucible outlet water temperature of 38 ° C.
  • the rotation speed in the centrifugal pouring process in the step (6) is 100-300 rpm / min.
  • the consumable electrode is made of ZTC4ELI alloy ingot, and its raw materials include the following components according to the mass fraction: Al is 5.5-6.8%, V is 3.5-4.5%, Fe is 0-0.3% and Not 0, Si is 0 to 0.15% and not 0, C is 0 to 0.1% and not 0, N is 0 to 0.05% and not 0, H is 0 to 0.015% and not 0, O is 0 to 0.20% and not 0, the balance is Ti.
  • Using a CNC machining center to process graphite casting molds and metal cores can control the casting mold accuracy to ⁇ 0.08mm and the surface roughness to Ra3.2 to Ra6.3 to ensure the casting mold dimensional accuracy and surface quality, processing speed and The processing efficiency is greatly improved, suitable for mass production.
  • the quenching effect of graphite casting can refine the grains of the casting, greatly improve the mechanical properties of the casting and reduce the internal defects of the casting.
  • the good thermal insulation performance and surface coating of the metal core can reduce the cold insulation and flow mark defects on the casting surface, and the dimensional accuracy of the metal core is high, which can effectively ensure the dimensional accuracy of the complex cavity of the casting.
  • the raw material composition of the ZTC4ELI consumable electrode is shown in Table 1:
  • Plasma spraying mold surface Using plasma spraying technology, spray the prepared spray powder to the surface of graphite mold and metal core, the thickness of the coating is controlled at 0.15mm.
  • Vacuum degassing Place the graphite casting mold and metal core in a vacuum degassing furnace, evacuate to 5 ⁇ 10 -1 Pa, heat to 850 ° C, keep the furnace cool to 180 ° C after 2 hours and release the furnace.
  • Metal core pickling remove the core of the casting after the casting is completed, first remove the graphite skin of the casting by mechanical methods, then blast the surface of the casting, and place the blasted casting in acid Dissolve in the liquid to obtain titanium alloy casting with complex cavity structure.
  • the raw material composition of ZTC4ELI consumable electrode is shown in Table 2:
  • Plasma spraying mold surface Using plasma spraying technology, spray the prepared spray powder to the surface of graphite mold and metal core, the thickness of the coating is controlled at 0.20mm.
  • Vacuum degassing Place the graphite casting mold and metal core in a vacuum degassing furnace, evacuate to 3 ⁇ 10-1Pa, heat to 850 ° C, and keep the furnace cool to 150 ° C after 2 hours of heat preservation.
  • Metal core pickling remove the core of the casting after the casting is completed, first remove the graphite skin of the casting by mechanical methods, then blast the surface of the casting, and place the blasted casting in acid Dissolve in the liquid to obtain titanium alloy casting with complex cavity structure.
  • the raw material composition of ZTC4ELI consumable electrode is shown in Table 3:
  • Plasma spraying mold surface Using plasma spraying technology, spray the prepared spray powder to the surface of graphite mold and metal core, and the coating thickness should be controlled at 0.25mm.
  • Vacuum degassing Place the graphite casting mold and metal core in a vacuum degassing furnace, evacuate to 3 ⁇ 10 -1 Pa, heat to 850 ° C, and keep the furnace cooled to 200 ° C after 2 hours of heat preservation.
  • Metal core pickling remove the core of the casting after the casting is completed, first remove the graphite skin of the casting by mechanical methods, then blast the surface of the casting, and place the blasted casting in acid Dissolve in the liquid to obtain titanium alloy casting with complex cavity structure.

Abstract

一种复杂型腔结构钛合金铸件精密铸造方法,采用数控加工石墨铸型、数控加工低碳钢金属型芯、对表面进行等离子喷涂高化学稳定性涂层、真空自耗电极电弧凝壳熔炼炉真空离心铸造相复合的铸造工艺。通过利用金属型芯较好的保温性能和表面涂层,可以减少铸型表面的冷隔和流痕缺陷,并且金属型芯的尺寸精度高,可以有效保证铸件复杂型腔的尺寸精度,提供了一种高尺寸精度控制、高内部质量、高表面质量、高性能、短工期、低成本的钛合金精密铸造方法。

Description

一种复杂型腔结构钛合金铸件精密铸造方法 技术领域
本发明属于铸造工艺领域,涉及一种复杂型腔结构钛合金铸件精密铸造方法,具体说是一种将石墨铸型、金属型芯、真空自耗电极电弧凝壳熔炼离心铸造技术复合的精密铸造成型技术。
背景技术
目前钛合金铸件主要采用熔模精密铸造工艺和机械加工石墨铸型铸造工艺两种铸造方法。其中熔模精密铸造工艺适合尺寸精度高、表面质量要求高、大批量等铸件的铸造。石墨铸型工艺适合力学性能高、承压高、小批量,铸件结构相对简单的铸件生产。
针对某液体发动机核心过流钛合金部件具有复杂型腔结构,主要由复杂扭曲流道和三维变曲面叶片复合构成,并且流道存在狭小(最小处仅5mm)的部位,铸件型腔和结构需要整体铸造一体成型。铸件内部质量和表面质量要求达到GJB2896A-2007规定I类B级标准。如果单独采用传统石墨铸型工艺方法进行生产,将无法达到铸件表面质量和尺寸精度要求,同时,石墨型芯铸造完成后无法清理,会产生大量多余物,无法满足使用要求。如果单独采用熔模精密铸造工艺方法进行生产,由于铸件需要整体铸造,并且型腔复杂,无法完成型壳制备,并且容易产生大量的面层涂料剥落,在铸件内部形成大量的夹渣缺陷,导致铸件报废。目前,单独采用石墨铸型工艺和熔模精密铸造工艺均无法实现高质量该复杂型腔钛合金过流部件整体铸造成型,急需开发一种复杂型腔结构钛合金铸件精密铸造新方法。
发明内容
本发明的目的是针对现有工艺方法无法实现复杂型腔过流部件精密成型的 技术不足,提供一种高尺寸精度控制、高内部质量、高表面质量、高性能、短工期、低成本的钛合金精密铸造方法。采用数控加工石墨铸型、数控加工低碳钢金属型芯并对其表面进行等离子喷涂高化学稳定性涂层、真空自耗电极电弧凝壳熔炼炉真空离心铸造相复合的铸造工艺,进行复杂型腔钛合金过流部件精密成型的精密铸造新工艺。
为实现上述目的,本发明提供了一种复杂型腔结构钛合金铸件精密铸造方法,包括如下工艺步骤:
(1)制作石墨铸型外皮:利用数控加工中心制作工艺图,然后按照工艺图机械加工制作石墨铸型外皮;
(2)加工金属型芯:利用数控加工中心制作工艺图,然后按照工艺图机械加工制作金属型芯;
(3)等离子喷涂铸型表面:利用等离子喷涂技术,将耐火涂层粉料喷涂到步骤(1)石墨铸型表面和步骤(2)金属型芯表面;
(4)真空除气:将步骤(3)处理后的石墨铸型外皮和金属型芯放置于真空除气炉中,抽真空到≤5×10 -1Pa,加热到840~860℃,,保温2小时后炉冷到30℃~200℃出炉;
(5)铸型组合:将步骤(4)处理后的石墨铸型外皮和金属型芯进行装配组合;
(6)熔炼浇铸:将步骤(5)组合好的铸型放置于真空自耗电极电弧凝壳熔炼炉中,启动真空泵,抽真空至≤10-1Pa后,进行熔炼,然后采用真空离心浇注工艺向铸型内浇注钛合金液体;
(7)金属型芯酸洗:将步骤(6)铸造完成后的铸件进行型芯去除,首先将铸件石墨外皮用机械方法进行去除,然后对铸件表面进行喷砂处理,将喷砂 处理后的铸件放置于酸液中进行溶解,得到复杂型腔结构钛合金铸件。
所述步骤(3)中耐火涂层通过以下方法制得:将氧化钇粉、氧化钙粉、氧化锆粉混合均匀后球磨3小时得到混合粉料;采用高温电弧熔炼方法对所得混合粉料进行高温烧结,烧结温度1800℃~3000℃,烧结后再进行球化造粒,制得45μm耐火涂层粉料。
所述步骤(3)中耐火涂层涂料涂层厚度控制在0.15~0.25mm。
所述步骤(3)中氧化钇粉、氧化钙粉、氧化锆粉的添加量按质量百分比分别为7~16%、1~10%、85~95%。
所述氧化钇粉、氧化钙粉、氧化锆粉的粒度均为45~75μm。
优选的,所述氧化钇粉、氧化钙粉、氧化锆粉的添加量按质量百分比分别为8%、2%、90%。
所述步骤(6)中自耗电极与坩埚内壁间隙为30~100mm。
所述步骤(6)中熔炼条件为电压为38~40V,电流12000A~18000A,冷却水压0.4MPa,坩埚进口水温19℃,坩埚出口水温38℃。
所述步骤(6)中离心浇注过程中转速为100~300rpm/min。
所述步骤(6)中自耗电极采用ZTC4ELI合金锭制成,其原料按质量分数配比包括如下成分:Al为5.5~6.8%、V为3.5~4.5%、Fe为0~0.3%且不为0、Si为0~0.15%且不为0、C为0~0.1%且不为0、N为0~0.05%且不为0、H为0~0.015%且不为0、O为0~0.20%且不为0、余量为Ti。
本发明优点:
1、采用数控加工中心加工石墨铸型和金属型芯可以将铸型精度控制在±0.08mm,表面粗糙度控制在Ra3.2~Ra6.3,保证铸型尺寸精度和表面质量,加工速度和加工效率大幅度提高,适合批量生产。
2、利用石墨铸型的激冷作用可以细化铸件晶粒,大幅度提高铸件力学性能和减少铸件内部缺陷。利用金属型芯较好的保温性能和表面涂层,可以减少铸型表面的冷隔和流痕缺陷,并且金属型芯的尺寸精度高,可以有效保证铸件复杂型腔的尺寸精度。
3、利用酸液溶解铸件金属型芯,可以加工和制造非常复杂的流道和型腔,彻底解决铸件复杂型腔流道铸造完成后无法清理的问题。
4、工艺简单,操作方便,效率高,成本低。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围不受实施例的限制,如果该领域的技术熟练人员根据上述发明内容对本发明做出一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1
ZTC4ELI自耗电极原材料成分如表1所示:
表1
元素 Ti Al V Fe C N H O
含量 余量 6.30 4.10 0.08 0.03 0.0023 0.0039 0.090
(1)机械加工石墨铸型外皮:利用数控加工中心按照工艺图纸将石墨铸型外皮加工出来。
(2)机械加工金属型芯:利用数控加工中心按照工艺图纸将金属型芯加工出来。
(3)等离子喷涂用耐火涂层原料制备:取6%粒度45μm~75μm的氧化钇粉、9%粒度45μm~75μm氧化钙粉、85%粒度45μm~75μm氧化锆粉混合均匀后球磨3小时;采用高温电弧熔炼的方法对所得粉料进行高温烧结,烧结温度1800℃~3000℃,所得材料再进行球化造粒,制得45μm粉末。
(3)等离子喷涂铸型表面:利用等离子喷涂技术,将制备好的喷涂粉末喷涂到石墨铸型表面和金属型芯表面,涂层厚度控制在0.15mm。
(4)真空除气:将石墨铸型和金属型芯放置于真空除气炉中,抽真空到5×10 -1Pa,加热到850℃,保温2小时后炉冷到180℃出炉。
(5)铸型组合:按照铸型组型装配要求,将石墨铸型外皮和金属型芯进行装配组合,等待浇铸。
(6)熔炼浇铸:将组合好的铸型放置于真空自耗电极电弧凝壳熔炼炉中进行真空离心浇铸,自耗电极采用ZTC4ELI合金锭制成,自耗电极与坩埚内壁间隙为80mm,启动真空泵,抽真空至3×10 -1Pa后,进行熔炼,电压38-40V,电流12000A~18000A;冷却水压0.4MPa,坩埚进口水温19℃,坩埚出口水温38℃。然后采用真空离心浇注工艺向铸型内浇注钛合金液体,离心转速100转/分。
(7)金属型芯酸洗:将铸造完成后的铸件进行型芯去除,首先将铸件石墨外皮用机械方法进行去除,然后对铸件表面进行喷砂处理,将喷砂处理后的铸件放置于酸液中进行溶解,得到复杂型腔结构钛合金铸件。
实施例2
ZTC4ELI自耗电极原材料成分如表2所示:
表2
元素 Ti Al V Fe C N H O
含量 余量 6.38 4.12 0.08 0.02 0.0020 0.0035 0.080
(1)机械加工石墨铸型外皮:利用数控加工中心按照工艺图纸将石墨铸型外皮加工出来。
(2)机械加工金属型芯:利用数控加工中心按照工艺图纸将金属型芯加工出来。
(3)等离子喷涂用耐火涂层原料制备:取8%粒度45μm~75μm的氧化钇 粉、2%粒度45μm~75μm氧化钙粉、90%粒度45μm~75μm氧化锆粉混合均匀后球磨3.5小时;采用高温电弧熔炼的方法对所得粉料进行高温烧结,烧结温度1800℃~3000℃,所得材料再进行球化造粒,制得45μm粉末。
(3)等离子喷涂铸型表面:利用等离子喷涂技术,将制备好的喷涂粉末喷涂到石墨铸型表面和金属型芯表面,涂层厚度控制在0.20mm。
(4)真空除气:将石墨铸型和金属型芯放置于真空除气炉中,抽真空到3×10-1Pa,加热到850℃,保温2小时后炉冷到150℃出炉。
(5)铸型组合:按照铸型组型装配要求,将石墨铸型外皮和金属型芯进行装配组合,等待浇铸。
(6)熔炼浇铸:将组合好的铸型放置于真空自耗电极电弧凝壳熔炼炉中进行真空离心浇铸,自耗电极采用ZTC4ELI合金锭制成,自耗电极与坩埚内壁间隙为85mm,启动真空泵,抽真空至3×10 -1Pa后,进行熔炼,电压38~40V,电流12000A~18000A;冷却水压0.4MPa,坩埚进口水温19℃,坩埚出口水温38℃。然后采用真空离心浇注工艺向铸型内浇注钛合金液体,离心转速200转/分。
(7)金属型芯酸洗:将铸造完成后的铸件进行型芯去除,首先将铸件石墨外皮用机械方法进行去除,然后对铸件表面进行喷砂处理,将喷砂处理后的铸件放置于酸液中进行溶解,得到复杂型腔结构钛合金铸件。
实施例3
ZTC4ELI自耗电极原材料成分如表3所示:
表3
元素 Ti Al V Fe C N H O
含量 余量 6.35 4.12 0.03 0.01 0.0020 0.0030 0.080
(1)机械加工石墨铸型外皮:利用数控加工中心按照工艺图纸将石墨铸型外皮加工出来。
(2)机械加工金属型芯:利用数控加工中心按照工艺图纸将金属型芯加工出来。
(3)等离子喷涂用耐火涂层原料制备:取8%粒度45μm~75μm的氧化钇粉、3%粒度45μm~75μm氧化钙粉、89%粒度45μm~75μm氧化锆粉混合均匀后球磨4小时;采用高温电弧熔炼的方法对所得粉料进行高温烧结,烧结温度1800℃~3000℃,所得材料再进行球化造粒,制得45μm粉末。
(3)等离子喷涂铸型表面:利用等离子喷涂技术,将制备好的喷涂粉末喷涂到石墨铸型表面和金属型芯表面,涂层厚度控制在0.25mm。
(4)真空除气:将石墨铸型和金属型芯放置于真空除气炉中,抽真空到3×10 -1Pa,加热到850℃,保温2小时后炉冷到200℃出炉。
(5)铸型组合:按照铸型组型装配要求,将石墨铸型外皮和金属型芯进行装配组合,等待浇铸。
(6)熔炼浇铸:将组合好的铸型放置于真空自耗电极电弧凝壳熔炼炉中进行真空离心浇铸,自耗电极采用ZTC4ELI合金锭制成,自耗电极与坩埚内壁间隙为90mm,启动真空泵,抽真空至3×10 -1Pa后,进行熔炼,电压38-40V,电流12000A~18000A;冷却水压0.4MPa,坩埚进口水温19℃,坩埚出口水温38℃。然后采用真空离心浇注工艺向铸型内浇注钛合金液体,离心转速300转/分。
(7)金属型芯酸洗:将铸造完成后的铸件进行型芯去除,首先将铸件石墨外皮用机械方法进行去除,然后对铸件表面进行喷砂处理,将喷砂处理后的铸件放置于酸液中进行溶解,得到复杂型腔结构钛合金铸件。

Claims (10)

  1. 一种复杂型腔结构钛合金铸件精密铸造方法,其特征在于:包括以下步骤:
    (1)制作石墨铸型外皮:利用数控加工中心制作工艺图,然后按照工艺图机械加工制作石墨铸型外皮;
    (2)加工金属型芯:利用数控加工中心制作工艺图,然后按照工艺图机械加工制作金属型芯;
    (3)等离子喷涂铸型表面:利用等离子喷涂技术,将耐火涂层粉料喷涂到步骤(1)石墨铸型表面和步骤(2)金属型芯表面;
    (4)真空除气:将步骤(3)处理后的石墨铸型外皮和金属型芯放置于真空除气炉中,抽真空到≤5×10 -1Pa,加热到840~860℃,,保温2小时后炉冷到30℃~200℃出炉;
    (5)铸型组合:将步骤(4)处理后的石墨铸型外皮和金属型芯进行装配组合;
    (6)熔炼浇铸:将步骤(5)组合好的铸型放置于真空自耗电极电弧凝壳熔炼炉中,启动真空泵,抽真空至≤10-1Pa后,进行熔炼,然后采用真空离心浇注工艺向铸型内浇注钛合金液体;
    (7)金属型芯酸洗:将步骤(6)铸造完成后的铸件进行型芯去除,首先将铸件石墨外皮用机械方法进行去除,然后对铸件表面进行喷砂处理,将喷砂处理后的铸件放置于酸液中进行溶解,得到复杂型腔结构钛合金铸件。
  2. 根据权利要求1所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述步骤(3)中耐火涂层通过以下方法制得:将氧化钇粉、氧化钙粉、氧化锆粉混合均匀后球磨3小时得到混合粉料;采用高温电弧熔炼方法对所得混合粉料进行高温烧结,烧结温度1800℃~3000℃,烧结后再进行球化造粒,制得45μm耐火涂层粉料。
  3. 根据权利要求1所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述步骤(3)中耐火涂层涂料涂层厚度控制在0.15~0.25mm。
  4. 根据权利要求2所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述步骤(3)中氧化钇粉、氧化钙粉、氧化锆粉的添加量按质量百分比分别为7~16%、1~10%、85~95%。
  5. 根据权利要求2所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述氧化钇粉、氧化钙粉、氧化锆粉的粒度均为45~75μm。
  6. 根据权利要求4所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述氧化钇粉、氧化钙粉、氧化锆粉的添加量按质量百分比分别为8%、2%、90%。
  7. 根据权利要求1所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述步骤(6)中自耗电极与坩埚内壁间隙为30~100mm。
  8. 根据权利要求1所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述步骤(6)中熔炼条件为电压为38~40V,电流12000A~18000A,冷却水压0.4MPa,坩埚进口水温19℃,坩埚出口水温38℃。
  9. 根据权利要求1所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述步骤(6)中离心浇注过程中转速为100~300rpm/min。
  10. 根据权利要求1所述的复杂型腔结构钛合金铸件精密铸造方法,其特征在于:所述步骤(6)中自耗电极采用ZTC4ELI合金锭制成,其原料按质量分数配比包括如下成分:Al为5.5~6.8%、V为3.5~4.5%、Fe为0~0.3%且不为0、Si为0~0.15%且不为0、C为0~0.1%且不为0、N为0~0.05%且不为0、H为0~0.015%且不为0、O为0~0.20%且不为0、余量为Ti。
PCT/CN2019/000140 2018-10-19 2019-07-09 一种复杂型腔结构钛合金铸件精密铸造方法 WO2020077881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811218497.9 2018-10-19
CN201811218497.9A CN111069532B (zh) 2018-10-19 2018-10-19 一种复杂型腔结构钛合金铸件精密铸造方法

Publications (1)

Publication Number Publication Date
WO2020077881A1 true WO2020077881A1 (zh) 2020-04-23

Family

ID=70283307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000140 WO2020077881A1 (zh) 2018-10-19 2019-07-09 一种复杂型腔结构钛合金铸件精密铸造方法

Country Status (2)

Country Link
CN (1) CN111069532B (zh)
WO (1) WO2020077881A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088739A (zh) * 2021-03-30 2021-07-09 孙增俊 泡沫金属的制备工艺、制备装置及泡沫金属
CN113560497B (zh) * 2021-06-18 2023-02-24 洛阳双瑞精铸钛业有限公司 一种低成本高效率的薄壁钛合金铸件的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236571A (en) * 1978-01-27 1980-12-02 Pont-A-Mousson S.A. Process and installation for the continuous casting of tubular products
US20040040690A1 (en) * 2001-06-11 2004-03-04 Ranjan Ray Centrifugal casting of titanium alloys with improved surface quality, structural integrity and mechanical properties in isotropic graphite molds under vacuum
CN1954943A (zh) * 2005-10-27 2007-05-02 联合工艺公司 铸造型芯的去除方法
CN104190875A (zh) * 2014-09-12 2014-12-10 中国船舶重工集团公司第十二研究所 一种复杂薄壁壳体的复合铸型成形方法
CN104513914A (zh) * 2014-12-23 2015-04-15 沈阳铸造研究所 一种超低间隙相高韧性铸造钛合金及熔铸方法
CN105583364A (zh) * 2015-12-17 2016-05-18 贵州安吉航空精密铸造有限责任公司 一种形成钛合金铸件小尺寸复杂型腔的铸造工艺
CN108465780A (zh) * 2018-04-18 2018-08-31 洛阳双瑞精铸钛业有限公司 一种导弹用大型钛合金进气道的制备工艺方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575039B2 (en) * 2003-10-15 2009-08-18 United Technologies Corporation Refractory metal core coatings
CN101745602A (zh) * 2009-12-29 2010-06-23 沈阳铸造研究所 钛合金熔模精密铸造用低成本可熔金属型芯的生产方法
CN101733383B (zh) * 2010-01-28 2011-10-05 沈阳铸造研究所 石墨型-陶瓷芯钛合金精密铸造方法
CN104014737B (zh) * 2014-05-19 2016-11-02 沈阳工业大学 一种复杂内嵌空腔结构陶瓷型芯的制备工艺
CN105618723B (zh) * 2014-12-10 2018-03-27 沈阳铸造研究所 一种基于惰性气氛的钛合金自耗电极凝壳熔炼铸造工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236571A (en) * 1978-01-27 1980-12-02 Pont-A-Mousson S.A. Process and installation for the continuous casting of tubular products
US20040040690A1 (en) * 2001-06-11 2004-03-04 Ranjan Ray Centrifugal casting of titanium alloys with improved surface quality, structural integrity and mechanical properties in isotropic graphite molds under vacuum
CN1954943A (zh) * 2005-10-27 2007-05-02 联合工艺公司 铸造型芯的去除方法
CN104190875A (zh) * 2014-09-12 2014-12-10 中国船舶重工集团公司第十二研究所 一种复杂薄壁壳体的复合铸型成形方法
CN104513914A (zh) * 2014-12-23 2015-04-15 沈阳铸造研究所 一种超低间隙相高韧性铸造钛合金及熔铸方法
CN105583364A (zh) * 2015-12-17 2016-05-18 贵州安吉航空精密铸造有限责任公司 一种形成钛合金铸件小尺寸复杂型腔的铸造工艺
CN108465780A (zh) * 2018-04-18 2018-08-31 洛阳双瑞精铸钛业有限公司 一种导弹用大型钛合金进气道的制备工艺方法

Also Published As

Publication number Publication date
CN111069532B (zh) 2022-01-21
CN111069532A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN109554561B (zh) 一种7系铝合金管材的生产工艺
WO2021174375A1 (zh) 一种大型复杂腔道钛合金铸件精密成形方法
WO2020077881A1 (zh) 一种复杂型腔结构钛合金铸件精密铸造方法
WO2023077668A1 (zh) 一种新能源汽车低偏析度电机转子微合金铝的制备方法及其制备的微合金铝
CN101947648B (zh) 锆及锆合金大型铸件的生产方法
CN103555976A (zh) 铝棒熔铸工艺
CN104388756B (zh) 一种镍基合金及其制备方法
CN115652266A (zh) 一种可机械加工的CoCrAlY靶材合金及其制备方法
CN103817313A (zh) 一种整体细晶向心叶轮铸件的制备方法
CN102744364A (zh) 高温镍基合金涡轮转子的生产方法
CN103317114A (zh) 用于锆及锆合金的金属型精密铸造方法
CN106119617A (zh) 一种铝锆合金及其粉末冶金成型方法
CN105420625A (zh) 一种耐氧化性介质高温腐蚀的不锈钢泵阀铸件及其制备方法
CN108866365A (zh) 一种高品质钛铝预合金粉末用电极制备方法
CN110899609B (zh) 一种钛及钛合金铸造用石墨型涂料膏及其制备方法和应用
CN107297483B (zh) 一种铝合金薄壁件浇注方法
CN106244838B (zh) 铌钛碳复合铝合金变质剂及其制备方法
CN114433859B (zh) 一种高品质钛合金粉末用电极、其制备和应用
CN112708800B (zh) 一种锌锂中间合金及其制备方法
CN111112569B (zh) 一种金属基陶瓷复合材料零件的加工工艺
CN100457322C (zh) 提高铸锭表面质量的方法
KR101961285B1 (ko) 알루미늄 다이캐스팅용 내소착 내마모 슬리브 제작방법 및 제작장치
CN111101073A (zh) 一种基于三板模的法兰制备方法
CN111074095A (zh) 一种高体积分数钛基复合材料精密成形铸造方法
CN110614353A (zh) 一种减少离心铸管内腔加工余量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874646

Country of ref document: EP

Kind code of ref document: A1