WO2020077720A1 - 双绝缘光伏线及光伏系统 - Google Patents

双绝缘光伏线及光伏系统 Download PDF

Info

Publication number
WO2020077720A1
WO2020077720A1 PCT/CN2018/116024 CN2018116024W WO2020077720A1 WO 2020077720 A1 WO2020077720 A1 WO 2020077720A1 CN 2018116024 W CN2018116024 W CN 2018116024W WO 2020077720 A1 WO2020077720 A1 WO 2020077720A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
double
photovoltaic wire
insulated photovoltaic
insulated
Prior art date
Application number
PCT/CN2018/116024
Other languages
English (en)
French (fr)
Inventor
李永志
王璐
陈骁琦
康慧
Original Assignee
江苏亨通电力电缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通电力电缆有限公司 filed Critical 江苏亨通电力电缆有限公司
Priority to ZA2019/01347A priority Critical patent/ZA201901347B/en
Publication of WO2020077720A1 publication Critical patent/WO2020077720A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present disclosure relates to the field of optical communication transmission technology, and in particular, to a double-insulated photovoltaic line and photovoltaic system.
  • Photovoltaic systems are usually installed outdoors, and the operating environment is harsh. Years of engineering experience indicate that the materials used outdoors should be based on ultraviolet, ozone, severe temperature changes, and chemical erosion. People usually do not regard the wiring system connecting photovoltaic modules and inverters as a key component, but the use of photovoltaic wires in photovoltaic systems is very necessary. The quality of the photovoltaic wires used is closely related to the life of the entire photovoltaic system.
  • the cable not only easily brings hidden dangers, but also because the damage of the photovoltaic line will have a direct impact on the work of the entire photovoltaic system, therefore, the short life of traditional photovoltaic lines and the problem of easy damage will also directly lead to a decline in the service life of the photovoltaic system. .
  • the design and selection of photovoltaic lines need to take into account factors such as high temperature resistance, ultraviolet radiation resistance, weather resistance, corrosion resistance, high and low temperature changes, and anti-rat gnaw. If the traditional photovoltaic wire is used in this environment, the photovoltaic wire sheath will be fragile, and even the insulation layer of the photovoltaic wire will be decomposed, which will directly increase the loss of the photovoltaic system, and at the same time the risk of short circuit in the photovoltaic system will increase In the medium to long term, the possibility of fire or personal injury is also higher.
  • the design of photovoltaic lines mainly considers aspects such as high temperature resistance, UV protection, and mechanical impact resistance, and increases the thickness of the insulating layer and the sheath layer to improve its safety and reliability; however, the increase in the outer diameter limits the scope of application of photovoltaic lines For example, it can not be applied to the occasions that need to be penetrated or bundled, and it also reduces the flexibility of the photovoltaic wire.
  • the present disclosure provides a double-insulated photovoltaic wire and a photovoltaic system.
  • the double-insulated photovoltaic wire has excellent properties such as thin wall thickness, anti-mouse ant and flame retardant properties, and is applied to a photovoltaic system to improve the safety and service life of the photovoltaic system.
  • An aspect of an embodiment of the present disclosure provides a double-insulated photovoltaic wire applied to a DC or AC circuit that is less than or equal to 2000V.
  • the double-insulated photovoltaic wire includes a core, a cladding layer, an inner insulating layer, for the outer insulation layer and the nylon layer, the thickness of the wrapping layer is less than or equal to 0.14 mm, the overlapping coverage of the wrapping layer is 10-20%, and the thickness of the nylon layer is 0.2-0.6 mm.
  • the wire core is a conductive core
  • the material of the conductive core includes at least one of copper, aluminum, or aluminum alloy.
  • the wire core is a multi-layer conductive core cladding structure.
  • the core is a stranded structure of multiple copper single wires.
  • the wrapping layer is a mica tape layer.
  • the wrapping layer is a ceramicized fire-retardant composite layer.
  • the inner insulating layer is a flame-retardant radiation cross-linked polyolefin insulating layer.
  • the outer insulating layer is a flame-retardant irradiation cross-linked polyolefin insulating layer, and the flame retardant level is UL standard VW-1 level.
  • the inner insulating layer and the outer insulating layer are processed by a double-layer co-extrusion process.
  • the outer surface of the nylon layer is provided with a plurality of protrusions, the plurality of protrusions are arranged along the length direction of the double-insulated photovoltaic wire, and are evenly distributed along the circumferential direction of the double-insulated photovoltaic wire.
  • protrusions of two adjacent weeks are interlaced with each other.
  • the protrusion is a wedge-shaped protrusion.
  • the double-insulated photovoltaic wire further includes a waterproof layer disposed between the outer insulating layer and the nylon layer.
  • the waterproof layer is a fragile non-woven fabric layer.
  • the double-insulated photovoltaic wire further includes a tearing rope, which is provided on the outer surface of the waterproof layer and arranged along the length direction of the double-insulating photovoltaic wire.
  • a photovoltaic system which includes any of the double insulated photovoltaic wires described above.
  • the double-insulated photovoltaic wire proposed in the present disclosure includes a wire core, a wrapping layer, an inner insulating layer, an outer insulating layer, and a nylon layer sequentially wrapped from inside to outside, and the thickness of the wrapping layer is less than or equal to 0.14 mm, the overlap rate of the cladding layer is 10-20%, and the thickness of the nylon layer is 0.2-0.6 mm.
  • this double-insulated photovoltaic wire has thin-walled, rodent-proof, flame retardant and other excellent properties, and can be safely and reliably applied to a photovoltaic system to increase the life of the entire photovoltaic system.
  • FIG. 1 is a schematic diagram of a first cross-sectional structure of a double-insulated photovoltaic wire provided by a first embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a second cross-sectional structure of a double-insulated photovoltaic wire provided by the first embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a first cross-sectional structure of a double-insulated photovoltaic wire provided by a second embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a first cross-sectional structure of a double-insulated photovoltaic wire provided by a third embodiment of the present disclosure.
  • Pictograms 10-double insulated photovoltaic wire; 11-core; 12-winding cladding; 13-inner insulation layer; 14-outer insulation layer; 15-nylon layer; 20-double insulated photovoltaic wire; 21-core; 22 -Wrapped cladding; 23-Insulating layer; 24-Outer insulating layer; 25-Nylon layer; 26-Bump; 30-Double insulated photovoltaic wire; 31-Wire core; 32-Wound cladding; 33-Inner insulating layer ; 34- outer insulating layer; 35- waterproof layer; 36- nylon layer; 37- torn rope.
  • the terms “inner”, “outer”, etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, or the utility model product is usually placed when used
  • the orientation or positional relationship is only for the convenience of describing the present disclosure and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the present disclosure .
  • the terms “first”, “second”, etc. are only used to distinguish descriptions, and cannot be understood as indicating or implying relative importance.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • setup and “connection” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a double-insulated photovoltaic wire provided by the first embodiment of the present disclosure, reflecting the cross-sectional structure of the double-insulated photovoltaic wire;
  • FIG. 2 is a view of the double-insulated photovoltaic wire provided by the first embodiment of the present disclosure along its length
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a double-insulated photovoltaic wire provided by the first embodiment of the present disclosure, reflecting the cross-sectional structure of the double-insulated photovoltaic wire
  • FIG. 2 is a view of the double-insulated photovoltaic wire provided by the first embodiment of the present disclosure along its length
  • FIG. 1 is a schematic
  • FIG. 3 is a schematic diagram of the cross-sectional structure of the double-insulated photovoltaic wire provided by the second embodiment of the present disclosure, embodying another form of double-insulated photovoltaic wire 4 is a schematic diagram of a cross-sectional structure of a double-insulated photovoltaic wire provided by a third embodiment of the present disclosure, which embodies another form of cross-sectional structure of a double-insulated photovoltaic wire.
  • this embodiment provides a double-insulated photovoltaic wire 10 including a core 11, a wrapping layer 12, an inner insulating layer 13, an outer insulating layer 14 and a nylon layer 15 that are sequentially wrapped from inside to outside
  • the thickness of the wrapping layer 12 is less than or equal to 0.14 mm, the overlapping coverage of the wrapping layer 12 is 10-20%, and the thickness of the nylon layer 15 is 0.2-0.6 mm.
  • the double-insulated photovoltaic wire 10 Compared with the existing similar photovoltaic wires, the double-insulated photovoltaic wire 10 has thin-walled, rodent-proof, flame retardant and other excellent properties, and can be safely and reliably applied to the photovoltaic system to increase the life of the entire photovoltaic system.
  • the double insulated photovoltaic wire 10 is applied to a DC or AC circuit lower than or equal to 2000V.
  • the double-insulated photovoltaic wire 10 can be applied to the circuit system before the transformer in the photovoltaic power generation system, that is, the double-insulated photovoltaic wire 10 can be used as a module to a junction box and a junction box to an inverter in an existing photovoltaic system. Photovoltaic wires in the circuit system from the inverter to the transformer.
  • the wire core 11 is a conductive core
  • the material of the conductive core includes at least one of copper, aluminum, or aluminum alloy. Copper, aluminum or aluminum alloy has good electrical conductivity and good flexibility, and can be used as the core 11 of the double insulated photovoltaic wire 10 to improve the conductive performance and flexibility of the double insulated photovoltaic wire 10.
  • the wire core 11 may be a copper core, and on this basis, a tin, nickel, or silver material layer may also be plated on the surface of the copper core.
  • the wire core 11 is a multi-layer conductive core cladding structure.
  • the wire core 11 may also be AA8000 series aluminum alloy or copper clad aluminum.
  • the core 11 is a stranded structure of multiple copper single wires.
  • a plurality of copper single wires are twisted, which enables the core 11 to have better torsion resistance and tensile properties.
  • the stranding form of the core 11 is regular stranding.
  • the core 11 is formed by annealing, bundling, and twisting multiple copper single wires.
  • the performance requirements of the conductor such as DC resistance and structure size conform to ASTM B8 and UL 1581 stipulated Class B twisted copper conductor; the surface of the core 11 should be smooth, free of oil stains, non-damaging insulation burrs, sharp edges, and raised or broken single wires.
  • the cladding layer 12 is wrapped around the core 11.
  • the cladding layer 12 is used for fire resistance, fireproofing, and covering the conductor to prevent the inner insulating layer 13 from embedding into the core 11.
  • the cladding layer 12 has good high temperature resistance and combustion resistance;
  • the winding cladding 12 is provided to make the AC / DC composite double insulated photovoltaic wire 10 safe and reliable in the project operation.
  • the cladding 12 can be a mica tape layer; the mica tape has excellent high temperature resistance, combustion resistance and insulation performance, and the normal mica tape has good flexibility, which is used to make the cladding 12 to ensure wire
  • the core 11 is not affected by the high temperature of the external environment, and still has insulating properties in the case where the protective material outside the core 11 is damaged.
  • the cladding layer 12 may be a ceramic fire-resistant refractory composite layer; the ceramic fire-resistant refractory composite layer can replace the mica tape layer as the fire-resistant refractory layer of the double-insulated photovoltaic wire 10, and the density of the ceramic fire-resistant refractory composite material is lower than
  • the mica tape can reduce the weight of the double insulated photovoltaic wire 10, and has the advantages of high strength, excellent mechanical properties, and high insulation performance.
  • the applicant has found through extensive research that when the thickness of the cladding 12 is less than or equal to 0.14 mm, the double-insulated photovoltaic wire 10 has better fire resistance and fire resistance and better flexibility, and the outer diameter is smaller, which is suitable for wearing The hole environment and other occasions where the outer diameter of the double-insulated photovoltaic wire 10 is limited, and conforms to the existing wrapping technology.
  • the applicant has obtained through extensive research that when the overlapping coverage rate of the cladding 12 is in the range of 10-20%, it can not only ensure the tight sealing function and good flexibility of the cladding 12, but also have a small outer diameter. It is suitable for the penetration environment and other occasions where the outer diameter of the double insulated photovoltaic wire 10 is limited.
  • the inner insulating layer 13 is a flame-retardant irradiation cross-linked polyolefin insulating layer.
  • the inner insulating layer 13 uses a flame retardant radiation cross-linked polyolefin layer for photovoltaic wires that meets the UL4703-2014 standard at 90 ° C.
  • the strength of the polyolefin insulation material Both elasticity and hardness have been improved, solvent resistance and environmental stress cracking resistance have also been greatly improved, and heat resistance and short-circuit resistance have also been significantly improved.
  • the outer insulating layer 14 is a flame-retardant irradiation cross-linked polyolefin insulating layer, flame retardant grade VW-1.
  • the outer insulating layer 14 uses a flame retardant irradiation crosslinked polyolefin layer for photovoltaic wires that meets the UL4703-2014 standard at 90 ° C and has a flame retardant rating of VW-1; the outer insulating layer 14 is provided It can improve the flame retardant performance of the double-insulated photovoltaic wire 10.
  • the double-insulated photovoltaic wire 10 can pass the vertical burning test stipulated by UL 1581-2017 (1080).
  • the inner insulation layer 13 and the outer insulation layer 14 can achieve the function of composite insulation.
  • the composite insulation arrangement is more safe and reliable, which can improve the double insulation photovoltaic wire 10 Insulation performance, high temperature resistance, anti-ultraviolet radiation and safe flame retardant performance.
  • the inner insulating layer 13 and the outer insulating layer 14 are processed and produced by a double-layer co-extrusion process.
  • the double-layer co-extrusion process is used to reduce the size of the mold, adjust the distance between the molds, and increase the pressure when the insulating material is extruded, while ensuring that the mold does not appear in the production process.
  • the inner insulating layer 13 and the outer insulating layer 14 are more tightly coated on the surface of the core 11, so that the insulating cross section is free of impurities during the co-extrusion process, thereby controlling the interface quality and precise structural size of the inner insulating layer 13 and the outer insulating layer 14, The voltage resistance characteristics of the double insulated photovoltaic wire 10 are further improved.
  • the production mold needs to be optimized.
  • the nylon layer 15 is sheathed on the outside of the outer insulating layer 14, and the nylon layer 15 is disposed on the outermost layer of the double-insulated photovoltaic wire 10. Because nylon material has high mechanical strength and excellent wear resistance, cold resistance, surface hardness, Flexural strength, impact strength, chemical resistance, oil resistance, while easy to lay through the pipe, it can also prevent termites and rodents. The arrangement of the nylon layer 15 can improve the abrasion resistance and anti-rat ants of the double insulated photovoltaic wire 10 Protective properties such as resistance and oil resistance.
  • the thickness of the nylon layer 15 is 0.2-0.6 mm, and the thickness range is the reasonable design range of the nylon layer 15 of the double insulated photovoltaic wire 10.
  • the test results show that when the thickness of the nylon layer 15 exceeds 0.2 mm, the outer layer protection of the double-insulated photovoltaic wire 10 and the function of preventing rodents and ants can be guaranteed; the thickness of the nylon layer 15 is less than or equal to 0.6 mm, which can ensure the good performance of the double-insulated photovoltaic wire 10 Flexibility and heat dissipation, and the outer diameter of the double insulated photovoltaic wire 10 is controlled.
  • the double-insulated photovoltaic wire 10 proposed in this embodiment wraps the core 11, the cladding layer 12, the inner insulating layer 13, the outer insulating layer 14 and the nylon layer 15 in sequence from the inside to the outside.
  • the thickness of the cladding layer 12 is less than or equal to 0.14 mm
  • the overlap rate of the wrapping layer 12 is 10-20%
  • the thickness of the nylon layer 15 is 0.2-0.6 mm.
  • the inner insulation layer 13 and the outer insulation layer 14 of the double insulated photovoltaic wire 10 proposed in this embodiment are produced by a double-layer co-extrusion process to achieve composite insulation.
  • the double insulated photovoltaic wire 10 has thin walls , Anti-mouse ant, flame retardant and other excellent properties, can be safely and reliably applied to photovoltaic systems to improve the life of the entire photovoltaic system.
  • this embodiment proposes another form of double-insulated photovoltaic wire 20, which includes a core 21, a wrapping layer 22, an inner insulating layer 23, an outer insulating layer 24, and a nylon layer 25, which are sequentially wrapped from inside to outside .
  • a plurality of protrusions 26 are arranged outside the nylon layer 25 of the double-insulated photovoltaic wire 20 proposed in this embodiment. They are arranged in the length direction and are evenly distributed along the circumferential direction of the double insulated photovoltaic wire 10.
  • the plurality of protrusions 26 can further increase the roughness of the double-insulated photovoltaic wire 20, thereby improving the anti-drag performance and the wind-carrying performance of the double-insulated photovoltaic wire 20.
  • the protrusions 26 adjacent to each other are interlaced.
  • the plurality of protrusions 26 are a plurality of wedge-shaped protrusions.
  • a plurality of protrusions 26 are arranged along the length direction of the double-insulated photovoltaic wire 10, and are uniformly staggered on the outer surface of the nylon layer 25 along the circumferential direction of the double-insulated photovoltaic wire 20. This arrangement can make the plurality of protrusions 26 evenly distributed 2. Balanced force can improve the roughness of the double insulated photovoltaic wire 20 and extend the service life.
  • the plurality of protrusions 26 may also have other shapes and other arrangements.
  • This embodiment proposes another form of double-insulated photovoltaic wire 20, in which the wire core 21, the wrapping layer 22, the inner insulating layer 23, the outer insulating layer 24 and the nylon layer 25 are successively wrapped from the inside to the outside.
  • a plurality of protrusions 26 can increase the roughness of the double-insulated photovoltaic wire 20, thereby improving the anti-drag performance of the double-insulated photovoltaic wire 20, and add anti-drag for the double-insulated photovoltaic wire 10 proposed in the first embodiment A technical solution for drag performance.
  • this embodiment proposes another form of double-insulated photovoltaic wire 30, which includes a core 31, a wrap 32, an inner insulating layer 33, an outer insulating layer 34, and a waterproof layer 35 that are sequentially wrapped from the inside to the outside And nylon layer 36.
  • the double-insulated photovoltaic wire 30 proposed in this embodiment is provided with a waterproof layer 35 on the outer surface of the outer insulating layer 34.
  • the waterproof layer 35 is a fragile non-woven fabric layer.
  • the waterproof layer 35 can prevent moisture from infiltrating into the outer insulating layer 35 and the inner insulating layer 34 in the case of the nylon layer 36 cracking, and then infiltrating into the wire core 11, causing a safety accident.
  • the double-insulated photovoltaic wire 30 is also provided with a tear cord 37, which is provided outside the waterproof layer 35 and is arranged along the length of the double-insulated photovoltaic wire 30 to facilitate tearing along the length of the double-insulated photovoltaic wire 30 Open double insulated photovoltaic line 30.
  • This embodiment proposes another form of double-insulated photovoltaic wire 30 in which the core 31, the wrapping 32, the inner insulating layer 33, the outer insulating layer 34, the waterproof layer 35 and the nylon layer 36 and the double
  • the insulated photovoltaic wire 30 is provided with a tear rope 37 outside the waterproof layer 35 in the longitudinal direction, thereby improving the waterproof performance of the double insulated photovoltaic wire 30, and further improving the waterproof performance on the basis of the double insulated photovoltaic wire 10 proposed in the first embodiment A technical solution.
  • a photovoltaic system including any of the above double-insulated photovoltaic wires.
  • a photovoltaic system using any of the above double-insulated photovoltaic lines is exemplified, such as the circuit system before the transformer in the photovoltaic power generation system, that is, the module in the existing photovoltaic system to the junction box, the junction box to the inverter, and the inverter to the transformer Circuit system, etc., to improve the safety and service life of the photovoltaic system.
  • the present disclosure provides a double-insulated photovoltaic wire and photovoltaic system, which adopts an arrangement structure in which the wire core, the cladding layer, the inner insulation layer, the outer insulation layer and the nylon layer are sequentially wrapped from the inside to the outside. Excellent performances such as flame retardancy and long service life can be applied to a variety of photovoltaic systems.

Landscapes

  • Photovoltaic Devices (AREA)
  • Organic Insulating Materials (AREA)

Abstract

一种双绝缘光伏线(10)及光伏系统,属于光伏线技术领域。该绝缘光伏线(10)包括自内向外依次包设的线芯(11)、绕包层(12)、内绝缘层(13)、外绝缘层(14)和尼龙层(15),绕包层(12)的厚度小于或等于0.14mm,绕包层(12)的重叠搭盖率为10-20%,尼龙层(15)的厚度0.2-0.6mm。与现有的同类光伏线相比,该双绝缘光伏线(10)具有薄壁、防鼠蚁、阻燃等优良性能,能够安全可靠地应用于光伏系统,以提高整个光伏系统的寿命。

Description

双绝缘光伏线及光伏系统
相关申请的交叉引用
本申请要求于2018年10月16日提交中国专利局的申请号为2018216791162、名称为“交直流复合双绝缘光伏线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光通信传输技术领域,具体而言,涉及一种双绝缘光伏线及光伏系统。
背景技术
光伏系统通常安装于户外,运行环境恶劣,多年工程经验表明,户外使用的材料应根据紫外线、臭氧、剧烈温度变化和化学侵蚀情况而定。人们通常不会将连接光伏组件和逆变器的布线系统视为关键部件,但是在光伏系统中使用光伏线是十分必要的,所用光伏线的质量与整个光伏系统的寿命紧紧相关,传统光伏线在使用中不仅容易带来安全隐患,而且由于光伏线的损坏对整个光伏系统的工作会产生直接影响,因此,传统光伏线寿命短、易损坏的问题还会直接导致光伏系统的使用寿命下降。
由于光伏系统的运行条件恶劣,光伏线的设计及选型需要考虑到耐高温、防紫外线辐射、耐风雨、耐腐蚀、耐高低温变化以及防鼠蚁啃咬等因素。如果在该种环境下使用传统光伏线,将导致光伏线护套易碎,甚至会分解光伏线绝缘层,这会直接增加光伏系统损失,同时光伏系统工作中发生短路的风险也会增大,从中长期看,发生火灾或人员伤害的可能性也更高。
目前光伏线设计主要考虑耐高温、防紫外线和防机械冲击等方面,并通过增加绝缘层和护套层的厚度来提高其安全可靠性能;然而,外径的增大限制了光伏线的适用范围,比如无法应用于需要穿洞或者成束布置的场合,同时还降低了光伏线的柔韧性。
发明内容
本公开提供了一种双绝缘光伏线及光伏系统,双绝缘光伏线具有壁厚较薄、防鼠蚁以及阻燃等优良性能,应用于光伏系统,提高光伏系统工作安全性以及使用寿命。
本公开是这样实现的:
本公开实施例的一方面,提供了一种双绝缘光伏线,应用于低于或者等于2000V的直 流或者交流电路,双绝缘光伏线自内向外依次包括线芯、绕包层、内绝缘层、外绝缘层和尼龙层,所述绕包层的厚度小于或等于0.14mm,所述绕包层的重叠搭盖率为10-20%,所述尼龙层的厚度0.2-0.6mm。
在本公开可选的实施例中,线芯为导电芯,导电芯的材质包括铜、铝或者铝合金的至少一种。
在本公开可选的实施例中,线芯为多层导电芯包覆结构。
在本公开可选的实施例中,线芯为多根铜单线绞合结构。
在本公开可选的实施例中,绕包层为云母带层。
在本公开可选的实施例中,绕包层为陶瓷化防火耐火复合层。
在本公开可选的实施例中,内绝缘层为阻燃辐照交联聚烯烃绝缘层。
在本公开可选的实施例中,外绝缘层为阻燃辐照交联聚烯烃绝缘层,阻燃等级为UL标准VW-1级别。
在本公开可选的实施例中,内绝缘层和外绝缘层通过双层共挤工艺加工。
在本公开可选的实施例中,尼龙层的外表面设有多个凸起,多个凸起沿双绝缘光伏线的长度方向布置,并沿双绝缘光伏线的周向均匀分布。
在本公开可选的实施例中,周向设置的多个凸起中,相邻两周的凸起之间相互交错。
在本公开可选的实施例中,凸起为楔形凸起。
在本公开可选的实施例中,双绝缘光伏线还包括设于外绝缘层与尼龙层之间的防水层。
在本公开可选的实施例中,防水层为易碎无纺布层。
在本公开可选的实施例中,双绝缘光伏线还包括撕裂绳,撕裂绳设于防水层的外表面并沿双绝缘光伏线的长度方向布置。
本公开实施例的另一方面,还提供了一种光伏系统,包括上述任意一项所述的双绝缘光伏线。
本公开的有益效果包括:本公开提出的双绝缘光伏线包括自内向外依次包设的线芯、绕包层、内绝缘层、外绝缘层和尼龙层,绕包层的厚度小于或等于0.14mm,绕包层的重叠搭盖率为10-20%,尼龙层的厚度0.2-0.6mm。与现有的同类光伏线相比,该双绝缘光伏线具有薄壁、防鼠蚁、阻燃等优良性能,能够安全可靠地应用于光伏系统,以提高整个光伏系统的寿命。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范 围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开第一实施例提供的双绝缘光伏线的第一截面结构示意图;
图2为本公开第一实施例提供的双绝缘光伏线的第二截面结构示意图;
图3为本公开第二实施例提供的双绝缘光伏线的第一截面结构示意图;
图4为本公开第三实施例提供的双绝缘光伏线的第一截面结构示意图。
图标:10-双绝缘光伏线;11-线芯;12-绕包层;13-内绝缘层;14-外绝缘层;15-尼龙层;20-双绝缘光伏线;21-线芯;22-绕包层;23-内绝缘层;24-外绝缘层;25-尼龙层;26-凸起;30-双绝缘光伏线;31-线芯;32-绕包层;33-内绝缘层;34-外绝缘层;35-防水层;36-尼龙层;37-撕裂绳。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该实用新型产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
图1为本公开第一实施例提供的双绝缘光伏线的横截面结构示意图,体现双绝缘光伏线的横截面结构;图2为本公开第一实施例提供的双绝缘光伏线沿其长度方向的纵切截面结构示意图,配合图1共同体现双绝缘光伏线的结构;图3为本公开第二实施例提供的双绝缘光伏线的横截面结构示意图,体现另一种形式的双绝缘光伏线的横截面结构;图4为本公开第三实施例提供的双绝缘光伏线的横截面结构示意图,体现另一种形式的双绝缘光伏线的横截面结构。
第一实施例
请参照图1和图2,本实施例提供一种双绝缘光伏线10,包括自内向外依次包设的线芯11、绕包层12、内绝缘层13、外绝缘层14和尼龙层15绕包层12的厚度小于或等于0.14mm,绕包层12的重叠搭盖率为10-20%,尼龙层15的厚度0.2-0.6mm。
与现有的同类光伏线相比,双绝缘光伏线10具有薄壁、防鼠蚁、阻燃等优良性能,能够安全可靠地应用于光伏系统,以提高整个光伏系统的寿命。
可选地,双绝缘光伏线10应用于低于或者等于2000V的直流或者交流电路。在本实施例中,双绝缘光伏线10可以应用于光伏发电系统中变压器之前的电路系统,即双绝缘光伏线10可以用作现有光伏系统中模块至汇流箱、汇流箱至逆变器,逆变器至变压器间的电路系统中的光伏线。
可选地,线芯11为导电芯,导电芯的材质包括铜、铝或者铝合金的至少一种。铜、铝或者铝合金的导电性能好,且柔软性好,用作双绝缘光伏线10的线芯11,能够提高双绝缘光伏线10的导电性能和柔韧性能。
在本实施例中,示例的,线芯11可以选用铜芯,在此基础上,还可以在铜芯的表面镀锡、镍或银材料层。
可选地,线芯11为多层导电芯包覆结构。
示例的,在本实施例的其他可选方式中,线芯11还可以为AA8000系列的铝合金或者铜包铝等。
可选地,线芯11为多根铜单线绞合结构。
采用多根铜单线绞合的形式,能够使线芯11具有较好的耐扭性能和抗拉性能。在本实施例中,线芯11的绞合形式为规则绞合,线芯11采用多根铜单线经退火、束丝、绞合而成,导体直流电阻及结构尺寸等性能要求符合ASTM B8及UL 1581规定的Class B绞合铜导体;线芯11表面应光洁、无油污、无损伤绝缘的毛刺、锐边以及凸起或断裂的单线。
绕包层12包设于线芯11外,绕包层12用于耐火防火、包覆导体以防止内绝缘层13嵌入线芯11,绕包层12具有良好的耐高温性能和耐燃烧性能;设置绕包层12,使交直流复合双绝缘光伏线10在工程运行中安全可靠。
可选地,绕包层12可以为云母带层;云母带具有优良的耐高温性能、耐燃烧性能和绝缘性能,常态云母带具有良好的柔软性,应用于制作绕包层12,能够保证线芯11不受外部环境高温影响,在线芯11外部保护材料损坏的情况下仍具有绝缘性能。
可选地,绕包层12可以为陶瓷化防火耐火复合层;陶瓷化防火耐火复合层能够替代云母带层作为双绝缘光伏线10的防火耐火层,陶瓷化防火耐火复合材料的密度要低于云母带,能够减轻双绝缘光伏线10的重量,而且具有强度高、机械性能优良、高绝缘性能的优点。
申请人经大量研究得出,绕包层12的厚度小于或者等于0.14mm时,双绝缘光伏线10具有较好的防火耐火性能和较好的柔韧性,且外径尺寸较小,适用于穿洞环境以及其他对双绝缘光伏线10的外径尺寸有限制的场合,且符合现有绕包技术工艺。
申请人经大量研究得出,绕包层12的重叠搭盖率为10-20%范围时,既能保证绕包层12的牢固封闭功能和较好的柔韧性,且外径尺寸较小,适用于穿洞环境以及其他对双绝缘光伏线10的外径尺寸有限制的场合。
可选地,内绝缘层13为阻燃辐照交联聚烯烃绝缘层。
在本实施例中,示例的,内绝缘层13采用符合UL4703-2014标准的90℃规格的光伏线用阻燃辐照交联聚烯烃层,经过辐照交联后聚烯烃绝缘料的强度、弹性、硬度都得到提高,耐溶剂性、耐环境应力开裂性能也有极大的提高,耐热性及耐短路温度也明显提高。
可选地,外绝缘层14为阻燃辐照交联聚烯烃绝缘层,阻燃等级VW-1。
在本实施例中,示例的,外绝缘层14采用符合UL4703-2014标准的90℃规格且阻燃等级VW-1的光伏线用阻燃辐照交联聚烯烃层;外绝缘层14的设置能够提高双绝缘光伏线10的阻燃性能,双绝缘光伏线10可以通过UL 1581-2017(1080)规定的垂直燃烧试验。
内绝缘层13和外绝缘层14能够实现复合绝缘的功能,与常用的绝缘层外绕包护套层的布置方式相比,复合绝缘的布置方式更加安全可靠,能够提高双绝缘光伏线10的绝缘性能、耐高温性能、防紫外线辐射以及安全阻燃性能。
可选地,在本实施例中,内绝缘层13和外绝缘层14通过双层共挤工艺加工生产。
相对于传统的挤出工艺,采用双层共挤工艺,在确保生产过程中不出现卡模现象的前提下,减小模具内尺寸,调整对模距离,增加绝缘材料挤出时的压力,使内绝缘层13和外绝缘层14更加紧密的包覆在线芯11表面,以使共挤过程中绝缘截面无杂质,从而控制内绝缘层13和外绝缘层14的界面质量和精确的结构尺寸,进一步提高了双绝缘光伏线10的耐电压特性。为保证内绝缘层13和外绝缘层14的紧密、匀称,需对生产模具进行优化。
尼龙层15套设于外绝缘层14的外部,尼龙层15设于双绝缘光伏线10的最外层,由于尼龙材料具有较高的机械强度和优异的耐磨性、耐寒性、表面硬度、抗弯强度、冲击强 度、耐化学性、耐油性,便于穿管敷设的同时,还能够防白蚁防鼠啮,尼龙层15的布置能够提高双绝缘光伏线10的耐磨擦性、防鼠蚁性、耐油性等防护性能。
尼龙层15的厚度为0.2-0.6mm,该厚度范围为双绝缘光伏线10的尼龙层15的合理设计范围。试验结果表明,尼龙层15的厚度超过0.2mm时能够保证双绝缘光伏线10的外层防护以及防鼠蚁功能;尼龙层15的厚度小于等于0.6mm,能够保证双绝缘光伏线10的良好的柔韧性和散热性,并使双绝缘光伏线10的外径尺寸得到控制。
本实施例提出的双绝缘光伏线10自内向外依次包设线芯11、绕包层12、内绝缘层13、外绝缘层14和尼龙层15,绕包层12的厚度小于或等于0.14mm,绕包层12的重叠搭盖率为10-20%,尼龙层15的厚度0.2-0.6mm。与现有的同类光伏线相比,本实施例提出的双绝缘光伏线10的内绝缘层13和外绝缘层14采用双层共挤工艺生产以实现复合绝缘,双绝缘光伏线10具有薄壁、防鼠蚁、阻燃等优良性能,能够安全可靠地应用于光伏系统,以提高整个光伏系统的寿命。
第二实施例
请参照图3,本实施例提出另一种形式的双绝缘光伏线20,包括自内向外依次包设的线芯21、绕包层22、内绝缘层23、外绝缘层24和尼龙层25。与第一实施例提出的双绝缘光伏线10相比,本实施例提出的双绝缘光伏线20的尼龙层25外布置有多个凸起26,多个凸起25沿双绝缘光伏线10的长度方向布置,并沿双绝缘光伏线10的周向均匀分布。
多个凸起26能够进一步提高双绝缘光伏线20的粗糙度,从而提高了双绝缘光伏线20的防拖拽性能和扛风性能。
可选地,在本实施例中,周向设置的多个凸起26中,相邻两周的凸起26之间相互交错。
在本实施例中,多个凸起26为多个楔形凸起。
多个凸起26沿双绝缘光伏线10的长度方向布置,并沿双绝缘光伏线20的周向均匀的交错排列于尼龙层25外表面,这种设置方式能够使得多个凸起26分布均匀、受力平衡,能够提高双绝缘光伏线20的粗糙度和延长使用寿命。
在本实施例的其他可选方式中,多个凸起26也可以为其他的形状和其他的布置形式。
本实施例提出另一种形式的双绝缘光伏线20,自内向外依次包设线芯21、绕包层22、内绝缘层23、外绝缘层24和尼龙层25,尼龙层25外布置有多个凸起26,能够提高双绝缘光伏线20的粗糙度,从而提高了双绝缘光伏线20的防拖拽性能,为第一实施例提出的双绝缘光伏线10的的基础上增设防拖拽性能的一种技术方案。
第三实施例
请参照图4,本实施例提出另一种形式的双绝缘光伏线30,包括自内向外依次包设的 线芯31、绕包层32、内绝缘层33、外绝缘层34、防水层35和尼龙层36。与第一实施例提出的双绝缘光伏线10相比,本实施例提出的双绝缘光伏线30在外绝缘层34的外表面增设了防水层35。
可选地,在本实施例中,防水层35为易碎无纺布层。防水层35能够防止在尼龙层36开裂的情况下,水分渗入外绝缘层35和内绝缘层34,进而渗入线芯11,引发安全事故。
可选地,双绝缘光伏线30还设有撕裂绳37,撕裂绳37设于防水层35外,沿双绝缘光伏线30的长度方向布置,便于沿双绝缘光伏线30的长度方向撕开双绝缘光伏线30。
本实施例提出另一种形式的双绝缘光伏线30,自内向外依次包设线芯31、绕包层32、内绝缘层33、外绝缘层34、防水层35和尼龙层36和沿双绝缘光伏线30的长度方向设于防水层35外的撕裂绳37,从而提高了双绝缘光伏线30的防水性能,为第一实施例提出的双绝缘光伏线10的基础上进一步提高防水性能的一种技术方案。
本公开实施例的另一方面,还提出一种光伏系统,包括上述任意一种双绝缘光伏线。
应用上述任意一种双绝缘光伏线的光伏系统,示例的,如光伏发电系统中变压器之前的电路系统,即现有光伏系统中模块至汇流箱、汇流箱至逆变器,逆变器至变压器间的电路系统等,提高光伏系统的使用安全性以及使用寿命。
需要说明的是,在不冲突的情况下,本公开中的实施例中的特征可以相互结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供了一种双绝缘光伏线及光伏系统,采用自内向外依次包设线芯、绕包层、内绝缘层、外绝缘层和尼龙层的设置结构,具有薄壁、防鼠蚁、阻燃等优良性能,提高使用寿命,可应用于多种光伏系统。

Claims (16)

  1. 一种双绝缘光伏线,应用于低于或者等于2000V的直流或者交流电路,其特征在于,所述双绝缘光伏线自内向外依次包括线芯、绕包层、内绝缘层、外绝缘层和尼龙层,所述绕包层的厚度小于或等于0.14mm,所述绕包层的重叠搭盖率为10-20%,所述尼龙层的厚度0.2-0.6mm。
  2. 根据权利要求1所述的双绝缘光伏线,其特征在于,所述线芯为导电芯,所述导电芯的材质包括铜、铝或者铝合金的至少一种。
  3. 根据权利要求1或2所述的双绝缘光伏线,其特征在于,所述线芯为多层导电芯包覆结构。
  4. 根据权利要求1所述的双绝缘光伏线,其特征在于,所述线芯为多根铜单线绞合结构。
  5. 根据权利要求1-4任一项所述的双绝缘光伏线,其特征在于,所述绕包层为云母带层。
  6. 根据权利要求1-4任一项所述的双绝缘光伏线,其特征在于,所述绕包层为陶瓷化防火耐火复合层。
  7. 根据权利要求1-4任一项所述的双绝缘光伏线,其特征在于,所述内绝缘层为阻燃辐照交联聚烯烃绝缘层。
  8. 根据权利要求1-7任一项所述的双绝缘光伏线,其特征在于,所述外绝缘层为阻燃辐照交联聚烯烃绝缘层,阻燃等级为UL标准VW-1级别。
  9. 根据权利要求1-8任一项所述的双绝缘光伏线,其特征在于,所述内绝缘层和所述外绝缘层通过双层共挤工艺加工。
  10. 根据权利要求1所述的双绝缘光伏线,其特征在于,所述尼龙层的外表面设有多个凸起,所述多个凸起沿所述双绝缘光伏线的长度方向布置,并沿所述双绝缘光伏线的周向均匀分布。
  11. 根据权利要求10所述的双绝缘光伏线,其特征在于,周向设置的所述多个凸起中,相邻两周的所述凸起之间相互交错。
  12. 根据权利要求10或11所述的双绝缘光伏线,其特征在于,所述凸起为楔形凸起。
  13. 根据权利要求1所述的双绝缘光伏线,其特征在于,所述双绝缘光伏线还包括设于所述外绝缘层与所述尼龙层之间的防水层。
  14. 根据权利要求13所述的双绝缘光伏线,其特征在于,所述防水层为易碎无纺布 层。
  15. 根据权利要求13所述的双绝缘光伏线,其特征在于,所述双绝缘光伏线还包括撕裂绳,所述撕裂绳设于所述防水层的外表面并沿所述双绝缘光伏线的长度方向布置。
  16. 一种光伏系统,其特征在于,包括如权利要求1-15任一项所述的双绝缘光伏线。
PCT/CN2018/116024 2018-10-16 2018-11-16 双绝缘光伏线及光伏系统 WO2020077720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2019/01347A ZA201901347B (en) 2018-10-16 2019-03-04 Double insulated photovoltaic wire and photovoltaic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821679116.2U CN208767050U (zh) 2018-10-16 2018-10-16 交直流复合双绝缘光伏线
CN201821679116.2 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020077720A1 true WO2020077720A1 (zh) 2020-04-23

Family

ID=66137394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116024 WO2020077720A1 (zh) 2018-10-16 2018-11-16 双绝缘光伏线及光伏系统

Country Status (3)

Country Link
CN (1) CN208767050U (zh)
WO (1) WO2020077720A1 (zh)
ZA (1) ZA201901347B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203325553U (zh) * 2013-06-14 2013-12-04 河南华泰特种电缆有限公司 高阻燃环保型电线
US20150034359A1 (en) * 2013-07-30 2015-02-05 Hitachi Metals, Ltd. Electric insulation cable with shield
CN204596460U (zh) * 2015-04-27 2015-08-26 云南云缆电缆(集团)有限公司 耐高温电线
CN107301888A (zh) * 2017-08-15 2017-10-27 上海起帆电缆股份有限公司 一种新型耐超高温柔性电缆
CN206893353U (zh) * 2017-07-19 2018-01-16 西隆电缆有限公司 一种电力电缆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203325553U (zh) * 2013-06-14 2013-12-04 河南华泰特种电缆有限公司 高阻燃环保型电线
US20150034359A1 (en) * 2013-07-30 2015-02-05 Hitachi Metals, Ltd. Electric insulation cable with shield
CN204596460U (zh) * 2015-04-27 2015-08-26 云南云缆电缆(集团)有限公司 耐高温电线
CN206893353U (zh) * 2017-07-19 2018-01-16 西隆电缆有限公司 一种电力电缆
CN107301888A (zh) * 2017-08-15 2017-10-27 上海起帆电缆股份有限公司 一种新型耐超高温柔性电缆

Also Published As

Publication number Publication date
CN208767050U (zh) 2019-04-19
ZA201901347B (en) 2021-05-26

Similar Documents

Publication Publication Date Title
CN204808955U (zh) 对称阻燃电缆
CN214671968U (zh) 一种耐火防水型中压交联聚乙烯绝缘环保电力电缆
CN115171968B (zh) 一种高效节能型中压防火电缆
CN203338836U (zh) 建筑用高性能铝合金电缆
WO2020077720A1 (zh) 双绝缘光伏线及光伏系统
CN212587238U (zh) 一种铜护套无机矿物绝缘柔性防火电缆
CN204029432U (zh) 阻燃防火光电复合缆
CN210443320U (zh) 一种阻燃耐热电缆
CN210606749U (zh) 一种低烟环保、无卤阻燃的耐火电缆
CN103337290A (zh) 建筑用高性能铝合金电缆
CN210627935U (zh) 一种新型光伏发电用电缆
CN212990718U (zh) 一种环保型绝缘无护套电缆
CN111081418A (zh) 一种高性能抗拉抗撕裂阻燃电缆及其制造方法
CN210110410U (zh) 中压安全清洁电缆
CN212365590U (zh) 一种同轴柔性电力电缆
CN214152537U (zh) 一种船舱用防水效果好的电缆
CN219553297U (zh) 一种防火电缆
CN219370638U (zh) 一种高柔性耐油防水耐火电缆
CN220252857U (zh) 一种抗老化防油软体线缆
CN216928169U (zh) 一种无卤阻燃高寿命耐磨电力电缆
CN220290510U (zh) 一种智能探测系统用对绞线缆
CN210516296U (zh) 耐火阻燃陶瓷化控制电缆
CN214796796U (zh) 一种大载流量的中压电力电缆
CN213781625U (zh) 一种复合型绝缘柔性防火电缆
CN219105815U (zh) 一种低烟阻燃耐火电力电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937072

Country of ref document: EP

Kind code of ref document: A1