WO2020077671A1 - 一种硅晶圆减薄亚表面损伤深度快速评估方法 - Google Patents

一种硅晶圆减薄亚表面损伤深度快速评估方法 Download PDF

Info

Publication number
WO2020077671A1
WO2020077671A1 PCT/CN2018/112612 CN2018112612W WO2020077671A1 WO 2020077671 A1 WO2020077671 A1 WO 2020077671A1 CN 2018112612 W CN2018112612 W CN 2018112612W WO 2020077671 A1 WO2020077671 A1 WO 2020077671A1
Authority
WO
WIPO (PCT)
Prior art keywords
depth
grinding
wafer
subsurface damage
silicon wafer
Prior art date
Application number
PCT/CN2018/112612
Other languages
English (en)
French (fr)
Inventor
秦飞
张理想
赵帅
陈沛
安彤
代岩伟
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2020077671A1 publication Critical patent/WO2020077671A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation

Definitions

  • the invention belongs to the field of ultra-precision processing of semiconductor wafer materials, and relates to a rapid evaluation method for silicon wafer thinning subsurface damage depth.
  • Semiconductor wafer grinding is an indispensable process in the field of integrated circuit (IC) manufacturing.
  • IC integrated circuit
  • ultra-thin (thickness less than 100 ⁇ m) wafers are used in more and more packaging forms, such as: 3D integrated packaging, MEMS packaging.
  • the thickness of a 12-inch wafer is 775 ⁇ m, so about 700 ⁇ m thick wafer material will be removed during the grinding stage.
  • Wafer thinning based on the wafer spin grinding method is the current mainstream silicon wafer grinding technology. However, during the grinding process, it is inevitable to cause damage to the subsurface of the silicon wafer, such as phase transformation, dislocations, and micro-cracks.
  • Etching and chemical mechanical polishing are the main methods to eliminate subsurface damage. However, these methods are costly and inefficient. Therefore, it is necessary to evaluate the subsurface damage depth and reduce the subsurface damage depth by controlling the grinding parameters.
  • the prediction of silicon wafer thinning subsurface damage depth is mainly carried out by the method of wafer surface roughness measurement. It is an empirical formula, which is summarized based on experiments.
  • the surface roughness measurement is performed after wafer grinding, and cannot be predicted in advance during the wafer grinding parameter design stage; on the other hand, the wafer surface roughness with the number of wafer grinding wheels, grinding parameters (Spindle feed rate, spindle speed, wafer speed), the wafer position distribution changes.
  • the method of surface roughness measurement cannot meet the needs of the grinding process. Therefore, a rapid evaluation method for directly predicting the depth of the subsurface damage layer through the grinding wheel mesh number and grinding parameters is needed, and can also reflect the distribution of the subsurface damage depth at different positions of the wafer.
  • the present invention proposes a rapid evaluation method of silicon wafer thinning subsurface damage depth.
  • the steps include: Step 1, determining wafer grinding parameters, the grinding parameters include: grinding wheel diameter, grinding tooth width, wafer diameter, abrasive grain size, spindle feed rate, spindle speed, wafer Rotation speed, elastic recovery coefficient of silicon wafer material, elastic modulus of wafer and spindle bond material, fracture toughness of silicon wafer; Step two, calculate the cutting depth of single abrasive grain; Step three, establish subsurface damage depth The relationship with the cutting depth; Step four, the single particle cutting depth is substituted into the relationship between the subsurface damage depth and the cutting depth to obtain the relationship between the grinding parameters and the subsurface damage depth; Step five, the obtained grinding parameters and the subsurface damage depth
  • the relationship writing program is integrated into the grinding machine system, and the depth of the subsurface damage of the wafer is quickly evaluated according to the grinding parameters set by the grinding machine.
  • this method can predict the depth of silicon wafer subsurface damage for different grinding parameters (grinding wheel mesh number, spindle feed rate, spindle speed, wafer speed) in the grinding design stage, and guide the design of grinding parameters.
  • the subsurface crack depth is determined according to the grinding parameters, and the degree of damage caused by grinding is determined to provide guidance for the amount of grinding removal and process control in the future.
  • the grinding parameters include: grinding wheel diameter, grinding tooth width, wafer diameter, abrasive grain size, spindle feed rate, spindle speed, wafer speed, silicon wafer material Elastic recovery coefficient, elastic modulus of wafer and spindle bond material, fracture toughness of silicon wafer.
  • the abrasive particles continuously remove the silicon wafer surface material along the grinding trajectory.
  • the material removal volume obtained by the two methods is the same, and the maximum cutting depth d c of the wafer is obtained:
  • the elastic deformation of the grinding wheel and the silicon wafer during the grinding process should also be considered, so the maximum cutting depth of the abrasive particles can be further written as:
  • the index n is a constant, and the value is 0.548, and E 1 and E 0 are the elastic modulus of the abrasive bond material and the silicon wafer material, respectively;
  • the subsurface damage depth model can be calculated according to the theory of nano scratch fracture mechanics, expressed as,
  • the c is the depth of subsurface damage
  • is half the angle of the tip of the indenter.
  • E, K c and H s are respectively the elastic modulus, fracture toughness and scratch hardness of the silicon wafer.
  • is the elastic recovery coefficient; for diamond abrasive grains, tan ⁇ is expressed as: Therefore, the depth of the subsurface damage layer can be expressed as:
  • Silicon wafers are anisotropic materials.
  • the scratch direction is ⁇ 110> crystal direction
  • the crack is more likely to fracture along the ⁇ 111 ⁇ plane ⁇ 112> crystal direction.
  • the trace direction is the ⁇ 100> crystal direction
  • the cracks tend to be along the ⁇ 110 ⁇ plane ⁇ 110> crystal direction, so the subsurface damage depth needs to be expressed as:
  • the subscript ⁇ > indicates the radial direction of the wafer, and the subscript ⁇ indicates the crystal plane of the wafer.
  • the single particle cutting depth d c is substituted into the relationship between subsurface damage depth and cutting depth to obtain the relationship between grinding parameters and subsurface damage depth;
  • the relationship between the obtained grinding parameters and the depth of subsurface damage is written into the program and integrated into the grinding machine system. According to the grinding parameters set by the grinding machine, the subsurface damage depth of the wafer is quickly evaluated.
  • the invention can be used to predict different grinding wheel meshes, grinding parameters (spindle feed rate, spindle rotation speed, wafer rotation speed), wafer crystal subsurface damage depth during the grinding design stage, and guide the grinding parameters design.
  • the method can be integrated on the grinding machine, and the subsurface crack depth can be directly calculated according to the grinding parameters to determine the degree of damage caused by grinding, and provide guidance for the amount of grinding removal and process control in the future.
  • FIG. 1 is a flowchart of the present invention.
  • Figure 2 shows the comparison between the experimental and theoretical results of the subsurface damage depth.
  • Fig. 2 (a) is the result of subsurface damage depth along the ⁇ 110> crystal direction
  • Fig. 2 (b) is the result of subsurface damage layer depth along the ⁇ 100> crystal direction.
  • the wafer grinding parameters are first determined.
  • the grinding parameters include: grinding wheel diameter, grinding tooth width, wafer diameter, abrasive grain size, spindle feed rate, spindle speed, Wafer speed, elastic recovery coefficient of silicon wafer material, elastic modulus of wafer and spindle bond material, fracture toughness of silicon wafer.
  • the abrasive particles continuously remove the silicon wafer surface material along the grinding trajectory.
  • the material removal volume obtained by the two methods is the same, and the maximum cutting depth d c of the wafer is obtained:
  • the elastic deformation of the grinding wheel and the silicon wafer during the grinding process should also be considered, so the maximum cutting depth of the abrasive particles can be further written as:
  • the index n is a constant, which takes a value of 0.548, and E 1 and E 0 are the elastic modulus of the abrasive bond material and the silicon wafer material, respectively;
  • the subsurface damage depth model can be calculated according to the theory of nano scratch fracture mechanics, expressed as,
  • the c is the depth of subsurface damage
  • is half the angle of the tip of the indenter.
  • E, K c and H s are respectively the elastic modulus, fracture toughness and scratch hardness of the silicon wafer.
  • is the elastic recovery coefficient; for diamond abrasive grains, tan ⁇ is expressed as: Therefore, the depth of the subsurface damage layer can be expressed as:
  • Silicon wafers are anisotropic materials.
  • the scratch direction is ⁇ 110> crystal direction
  • the crack is more likely to fracture along the ⁇ 111 ⁇ plane ⁇ 112> crystal direction.
  • the trace direction is the ⁇ 100> crystal direction
  • the cracks tend to be along the ⁇ 110 ⁇ plane ⁇ 110> crystal direction, so the subsurface damage depth needs to be expressed as:
  • the subscript ⁇ > indicates the radial direction of the wafer, and the subscript ⁇ indicates the crystal plane of the wafer.
  • the single particle cutting depth d c is substituted into the relationship between subsurface damage depth and cutting depth to obtain the relationship between grinding parameters and subsurface damage depth;
  • the cross-sectional microscopic observation method was used to observe the depth of cracks on the subsurface of the silicon wafer under the conditions of 9 grinding processes.
  • a laser was used to cut the silicon wafer to prepare a sample with a sample size of 10 mm ⁇ 8 mm.
  • Figure 2 shows a comparison between the method proposed by this patent and experimental observations, where Figure 2 (a) is the crack depth along the ⁇ 110> crystal direction.
  • the 101a is a prediction result according to the prediction method proposed by this patent.
  • the 102a is the # 320 grinding wheel experiment result
  • the 103a is the # 600 grinding wheel experiment result
  • the 104a is the # 2000 grinding wheel experiment result.
  • the average error between experimental results and theoretical predictions is 8.09%.
  • Figure 2 (b) shows the depth of subsurface damage along the ⁇ 100> crystal direction.
  • the 101b is a prediction result according to the prediction method proposed by this patent.
  • the 102b is the experimental result of the # 320 grinding wheel
  • the 103b is the experimental result of the # 600 grinding wheel
  • the 104b is the experimental result of the # 2000 grinding wheel.
  • the average error between experimental results and theoretical predictions is 10.45%.
  • the relationship between the obtained grinding parameters and the depth of subsurface damage is written into the program and integrated into the grinding machine system. According to the grinding parameters set by the grinding machine, the subsurface damage depth of the wafer is quickly evaluated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明提供了一种硅晶圆减薄亚表面损伤深度快速评估方法,属于半导体晶圆材料超精密加工领域。该方法包括确定晶圆磨削参数,计算单颗磨粒切削深度的建立,建立亚表面损伤深度与切削深度的关系,将单颗磨粒切削深度代入亚表面损伤深度与切削深度关系,得到磨削参数与亚表面损伤深度的关系,亚表面损伤深度快速评估。利用本发明提供的亚表面损伤深度快速评估方法,可以在磨削设计阶段针对不同磨削参数(磨轮目数、主轴进给速率、主轴转速、晶圆转速)硅晶圆亚表面损伤深度进行预测,提高晶圆磨削质量,降低晶圆磨削成本。

Description

一种硅晶圆减薄亚表面损伤深度快速评估方法 技术领域
本发明属于半导体晶圆材料超精密加工领域,涉及一种硅晶圆减薄亚表面损伤深度快速评估方法。
背景
半导体晶圆磨削加工是集成电路(IC)制造领域不可缺少的工艺。随着高密度、小型化电子器件的增加,超薄(厚度小于100μm)晶圆在越来越多的封装形式中被用到,如:3D集成封装,MEMS封装。通常情况下,12寸晶圆的厚度为775μm,因此约700μm厚的晶圆材料将在磨削阶段去除。基于晶圆自旋转磨削方法的晶圆减薄是当前主流的硅晶圆磨削技术。然而磨削过程中不可避免地造成硅晶圆亚表面损伤,如相变、位错、微裂纹等。这些损伤会降低晶圆强度,影响后续加工良率和封装产品可靠性。刻蚀、化学机械抛光(CMP)是消除亚表面损伤的主要方法,然而这些方法成本高,效率低。因此,评估亚表面损伤深度并通过控制磨削参数来降低亚表面损伤深度十分必要。
目前,硅晶圆减薄亚表面损伤深度预测主要采用晶圆表面粗糙度测量的方法进行,它是一种经验公式,是根据实验总结出来的。但是,一方面表面粗糙度的测量是在晶圆磨削之后进行,不能在晶圆磨削参数设计阶段提前预测;另一方面,晶圆表面粗糙度随着晶圆砂轮目数,磨削参数(主轴进给速率、主轴转速、晶圆转速),晶圆位置分布的变化而变化。利用表面粗糙度测量的方法不能满足磨削工艺的需求。因此需要一种直接通过磨轮目数,磨削参数直接预测亚表面损伤层深度快速评估方法,并且还可以反应晶圆不同位置的亚表面损伤深度分布。
发明内容
为了解决上述问题,本发明提出了一种硅晶圆减薄亚表面损伤深度快速评估方法。其步骤包括:步骤一,确定晶圆磨削参数,所述磨削参数包括:磨削机台磨轮直径,磨齿宽度,晶圆直径,磨粒尺寸, 主轴进给速率,主轴转速,晶圆转速,硅晶圆材料的弹性恢复系数,晶圆、主轴结合剂材料的弹性模量,硅晶圆的断裂韧性;步骤二,计算单颗磨粒的切削深度;步骤三,建立亚表面损伤深度与切削深度的关系;步骤四,将单颗粒切削深度代入亚表面损伤深度与切削深度关系,得到磨削参数与亚表面损伤深度的关系;步骤五,将得到的磨削参数与亚表面损伤深度的关系写入程序集成于磨削机台系统,根据磨削机台设定的磨削参数,对晶圆亚表面损伤深度进行快速评估。该方法一方面可以在磨削设计阶段针对不同磨削参数(磨轮目数、主轴进给速率、主轴转速、晶圆转速)硅晶圆亚表面损伤深度进行预测,指导磨削参数的设计。另一方面,根据磨削参数确定亚表面裂纹深度,确定磨削带来的损伤程度,为以后磨削去除量和工艺控制提供指导。
本发明技术方案如下:
确定晶圆磨削参数,所述磨削参数包括:磨削机台磨轮直径,磨齿宽度,晶圆直径,磨粒尺寸,主轴进给速率,主轴转速,晶圆转速,硅晶圆材料的弹性恢复系数,晶圆、主轴结合剂材料的弹性模量,硅晶圆的断裂韧性。
计算单颗磨粒的切削深度。磨削过程中,磨粒沿着磨削轨迹连续去除硅晶圆表面材料。在硅晶圆表面任意位置r处,单颗磨粒去除的材料体积为磨粒的去除面积与磨痕长度的乘积,dV=A r·dS(r)·N·β,所述,dV为材料去除体积,A r为单颗磨粒的去除面积,N为有效磨粒数,dS(r)为半径r处磨痕轨迹长度,β为磨粒的重叠系数,其中A r表达式为:
Figure PCTCN2018112612-appb-000001
;所述R e为磨轮磨粒半径,μ为残余深度与切削深度的比值,R e-Y w为最大切削深度;N表达式为:
Figure PCTCN2018112612-appb-000002
所述L为磨轮的周长,W为磨齿的宽度,γ磨粒体积分数;dS(r)表达式为
Figure PCTCN2018112612-appb-000003
所述R s为主轴半径,r为距离晶圆中心的距离将单颗磨粒的去除面积A r和磨粒数量N代入dV得到总的材料去除体积,
Figure PCTCN2018112612-appb-000004
另一方面,在硅晶圆表面任意位置r处,材料瞬时去除体积还可以用磨削参数表示:
Figure PCTCN2018112612-appb-000005
所述,B为去除材料的截面积,f为砂轮进给速率,N w为晶圆转速,N s为砂轮转速。根据质量守恒原则,两种方法得到的材料去除体积相同,得到晶圆的最大切削深度d c
Figure PCTCN2018112612-appb-000006
此外,磨削过程中磨轮与硅晶圆的弹性变形也应该考虑,因此磨粒的最大切削深度可以进一步写成:
Figure PCTCN2018112612-appb-000007
所述指数n为常数,取值0.548,E 1和E 0分别为磨粒结合剂材料和硅晶圆材料的弹性模量;
建立亚表面损伤深度与切削深度的关系。亚表面损伤深度模型可以根据纳米划痕断裂力学理论进行计算,表示为,
Figure PCTCN2018112612-appb-000008
所述c为亚表面损伤深度,ψ为压头尖端角度的一半。E,K c和H s分别为硅晶圆的弹性模量,断裂韧性,划痕硬度。δ为弹性恢复系数;对于金刚石磨粒来说,tanψ表示为:
Figure PCTCN2018112612-appb-000009
因此,亚表面损伤层深度可以表示为:
Figure PCTCN2018112612-appb-000010
硅晶圆是各向异性材料,对于Si(100)晶圆来说,当划痕方向为<110>晶向时,裂纹更倾向于沿着{111}面<112>晶向断裂,当划痕方向为 <100>晶向时,裂纹更倾向于沿着{110}面<110>晶向,因此亚表面损伤深度需要分别表示为:
Figure PCTCN2018112612-appb-000011
所述下标<>表示晶圆的径向,下标{}表示晶圆的晶面。
进一步地,将单颗粒切削深度d c代入亚表面损伤深度与切削深度关系中,得到磨削参数与亚表面损伤深度的关系;
最后,将得到的磨削参数与亚表面损伤深度的关系写入程序集成于磨削机台系统,根据磨削机台设定的磨削参数,对晶圆亚表面损伤深度进行快速评估。
有益效果
利用本发明一方面可以在磨削设计阶段针对不同磨轮目数、磨削参数(主轴进给速率、主轴转速、晶圆转速)、晶圆晶向亚表面损伤深度进行预测,指导磨削参数的设计。另一方面可以将该方法集成于磨削机台上,根据磨削参数直接计算出亚表面裂纹深度,确定磨削带来的损伤程度,为以后磨削去除量和工艺控制提供指导。
附图说明
图1为本发明的流程图。
图2为亚表面损伤深度实验结果与理论结果对比。其中图2(a)为亚表面损伤深度沿<110>晶向的结果,图2(b)为亚表面损伤层深度沿<100>晶向的结果。
具体实施方式
为使本发明能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明:
如图1流程图所示,首先确定晶圆磨削参数,所述磨削参数包括:磨削机台磨轮直径,磨齿宽度,晶圆直径,磨粒尺寸,主轴进给速率, 主轴转速,晶圆转速,硅晶圆材料的弹性恢复系数,晶圆、主轴结合剂材料的弹性模量,硅晶圆的断裂韧性。
计算单颗磨粒的切削深度。磨削过程中,磨粒沿着磨削轨迹连续去除硅晶圆表面材料。在硅晶圆表面任意位置r处,单颗磨粒去除的材料体积为磨粒的去除面积与磨痕长度的乘积,dV=A r·dS(r)·N·β,所述,dV为材料去除体积,A r为单颗磨粒的去除面积,N为有效磨粒数,dS(r)为半径r处磨痕轨迹长度,β为磨粒的重叠系数,其中A r表达式为:
Figure PCTCN2018112612-appb-000012
所述R e为磨轮磨粒半径,μ为残余深度与切削深度的比值,R e-Y w为最大切削深度;N表达式为:
Figure PCTCN2018112612-appb-000013
所述L为磨轮的周长,W为磨齿的宽度,γ磨粒体积分数;dS(r)表达式为
Figure PCTCN2018112612-appb-000014
所述R s为主轴半径,r为距离晶圆中心的距离将单颗磨粒的去除面积A r和磨粒数量N代入dV得到总的材料去除体积,
Figure PCTCN2018112612-appb-000015
另一方面,在硅晶圆表面任意位置r处,材料瞬时去除体积还可以用磨削参数表示:
Figure PCTCN2018112612-appb-000016
所述,B为去除材料的截面积,f为砂轮进给速率,N w为晶圆转速,N s为砂轮转速。根据质量守恒原则,两种方法得到的材料去除体积相同,得到晶圆的最大切削深度d c
Figure PCTCN2018112612-appb-000017
此外,磨削过程中磨轮与硅晶圆的弹性变形也应该考虑,因此磨粒的最大切削深度可以进一步写成:
Figure PCTCN2018112612-appb-000018
所述指数n为常数, 取值0.548,E 1和E 0分别为磨粒结合剂材料和硅晶圆材料的弹性模量;
建立亚表面损伤深度与切削深度的关系。亚表面损伤深度模型可以根据纳米划痕断裂力学理论进行计算,表示为,
Figure PCTCN2018112612-appb-000019
所述c为亚表面损伤深度,ψ为压头尖端角度的一半。E,K c和H s分别为硅晶圆的弹性模量,断裂韧性,划痕硬度。δ为弹性恢复系数;对于金刚石磨粒来说,tanψ表示为:
Figure PCTCN2018112612-appb-000020
因此,亚表面损伤层深度可以表示为:
Figure PCTCN2018112612-appb-000021
硅晶圆是各向异性材料,对于Si(100)晶圆来说,当划痕方向为<110>晶向时,裂纹更倾向于沿着{111}面<112>晶向断裂,当划痕方向为<100>晶向时,裂纹更倾向于沿着{110}面<110>晶向,因此亚表面损伤深度需要分别表示为:
Figure PCTCN2018112612-appb-000022
所述下标<>表示晶圆的径向,下标{}表示晶圆的晶面。
进一步地,将单颗粒切削深度d c代入亚表面损伤深度与切削深度关系中,得到磨削参数与亚表面损伤深度的关系;
亚表面损伤深度的试验测量:
采用截面显微观测法,观测了9种磨削工艺条件下硅晶圆亚表面裂纹深度。首先,利用激光对硅晶圆进行切割,制作试样,试样尺寸为10mm×8mm。将切割后试样通过热熔胶粘贴在薄钢板上,并使观 测截面与钢板边缘保持平齐。先后用#2000、#5000砂纸打磨,用0.25μm金刚石抛光液抛光,直至待观测截面无磨痕。采用超声波设备对试样进行清洗,待其自然干燥,采用“杨氏”溶液(H 2O:HF49%:Cr 2O 3=500ml:500ml:75g)对截面进行腐蚀,然后用清水冲洗并自然干燥。在扫描电子显微镜下观测,并测量裂纹的最大垂直深度c。
图2所述为本专利提出的方法和实验观测对比,其中图2(a)为沿<110>晶向的裂纹深度。所述101a为根据本专利提出的预测方法预测的结果。所述102a为#320磨轮实验结果,103a为#600磨轮实验结果,104a为#2000磨轮实验结果。实验结果与理论预测结果平均误差8.09%。图2(b)为沿<100>晶向的亚表面损伤深度。所述101b为根据本专利提出的预测方法预测的结果。所述102b为#320磨轮实验结果,103b为#600磨轮实验结果,104b为#2000磨轮实验结果。实验结果与理论预测结果平均误差10.45%。
最后,将得到的磨削参数与亚表面损伤深度的关系写入程序集成于磨削机台系统,根据磨削机台设定的磨削参数,对晶圆亚表面损伤深度进行快速评估。

Claims (3)

  1. 一种硅晶圆减薄亚表面损伤深度快速评估方法,其特征在于包括如下步骤:步骤一,确定晶圆磨削参数,所述磨削参数包括:磨削机台磨轮直径,磨齿宽度,晶圆直径,磨粒尺寸,主轴进给速率,主轴转速,晶圆转速,硅晶圆材料的弹性恢复系数,晶圆、主轴结合剂材料的弹性模量,硅晶圆的断裂韧性;步骤二,计算单颗磨粒的切削深度;步骤三,建立亚表面损伤深度与切削深度的关系;步骤四,将单颗粒切削深度代入亚表面损伤深度与切削深度关系,得到磨削参数与亚表面损伤深度的关系;步骤五,将得到的磨削参数与亚表面损伤深度的关系写入程序集成于磨削机台系统,根据磨削机台设定的磨削参数,对晶圆亚表面损伤深度进行评估。
  2. 根据权利要求1所述的硅晶圆减薄亚表面损伤深度快速评估方法,其特征在于,计算单颗磨粒的切削深度;磨削过程中,磨粒沿着磨削轨迹连续去除硅晶圆表面材料;在硅晶圆表面任意位置r处,单颗磨粒去除的材料体积为磨粒的去除面积与磨痕长度的乘积,dV=A r·dS(r)·N·β所述,dV为材料去除体积,A r为单颗磨粒的去除面积,N为有效磨粒数,dS(r)为半径r处磨痕轨迹长度,β为磨粒的重叠系数,其中A r表达式为:
    Figure PCTCN2018112612-appb-100001
    所述R e为磨轮磨粒半径,μ为残余深度与切削深度的比值,R e-Y w为最大切削深度;
    N表达式为:
    Figure PCTCN2018112612-appb-100002
    所述L为磨轮的周长,W为磨齿的宽度,γ磨粒体积分数;
    将单颗磨粒的去除面积A r和磨粒数量N代入dV得到总的材料去除体积,
    Figure PCTCN2018112612-appb-100003
    所述R s为主轴半径,r为距离晶圆中心的距离;
    另一方面,在硅晶圆表面任意位置r处,材料瞬时去除体积还用磨削参数 表示:
    Figure PCTCN2018112612-appb-100004
    所述,B为去除材料的截面积,f为砂轮进给速率,N w为晶圆转速,N s为砂轮转速;
    根据质量守恒原则,两种方法得到的材料去除体积相同,得到晶圆的最大切削深度d c
    Figure PCTCN2018112612-appb-100005
    此外,磨削过程中磨轮与硅晶圆的弹性变形也应该考虑,因此磨粒的最大切削深度进一步写成:
    Figure PCTCN2018112612-appb-100006
    所述指数n为常数,取值0.548,E 1和E 0分别为磨粒结合剂材料和硅晶圆材料的弹性模量。
  3. 根据权利要求1所述的硅晶圆减薄亚表面损伤深度快速评估方法,其特征在于,亚表面损伤深度模型根据纳米划痕断裂力学理论进行计算,表示为,
    Figure PCTCN2018112612-appb-100007
    所述c为亚表面损伤深度,ψ为压头尖端角度的一半;E,K c和H s分别为硅晶圆的弹性模量,断裂韧性,划痕硬度;δ为弹性恢复系数;
    tanψ表示为:
    Figure PCTCN2018112612-appb-100008
    因此,亚表面损伤层深度表示为:
    Figure PCTCN2018112612-appb-100009
    硅晶圆是各向异性材料,对于Si(100)晶圆来说,当划痕方向为<110>晶向时,裂纹更倾向于沿着{111}面<112>晶向断裂,当划痕方向为<100>晶向时,裂纹更倾向于沿着{110}面<110>晶向,因此亚表面损伤深度需要分别表示为:
    Figure PCTCN2018112612-appb-100010
    所述下标<>表示晶圆的径向,下标{}表示晶圆的晶面。
PCT/CN2018/112612 2018-10-15 2018-10-30 一种硅晶圆减薄亚表面损伤深度快速评估方法 WO2020077671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811194808.2A CN109093454B (zh) 2018-10-15 2018-10-15 一种硅晶圆减薄亚表面损伤深度快速评估方法
CN201811194808.2 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020077671A1 true WO2020077671A1 (zh) 2020-04-23

Family

ID=64868742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112612 WO2020077671A1 (zh) 2018-10-15 2018-10-30 一种硅晶圆减薄亚表面损伤深度快速评估方法

Country Status (2)

Country Link
CN (1) CN109093454B (zh)
WO (1) WO2020077671A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110480429B (zh) * 2019-10-17 2020-02-28 中国科学院宁波材料技术与工程研究所 车用硬脆材料旋转超声加工亚表层损伤深度在线预测方法
CN112270078B (zh) * 2020-10-16 2022-02-15 西南科技大学 一种脆性材料多道次纳米划痕深度预测的方法
CN112289700A (zh) * 2020-12-08 2021-01-29 西安奕斯伟硅片技术有限公司 一种硅片检测方法
CN114161240B (zh) * 2021-12-15 2023-03-24 清华大学 一种磨削面形预测方法、磨削系统及终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597578A (zh) * 2011-05-27 2014-02-19 康宁股份有限公司 非抛光玻璃晶片、使用非抛光玻璃晶片减薄半导体晶片的减薄系统和方法
CN108340214A (zh) * 2018-01-10 2018-07-31 上海理工大学 超声振动辅助磨削的材料亚表面裂纹深度预测方法
CN108515460A (zh) * 2018-04-10 2018-09-11 湖南工学院 平面光学元件亚表面损伤检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099389A (en) * 1998-10-05 2000-08-08 The United States Of America As Represented By The United States Department Of Energy Fabrication of an optical component
CN107378687B (zh) * 2017-08-09 2019-03-12 哈尔滨理工大学 基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法
CN108287955B (zh) * 2018-01-10 2021-08-03 南京理工大学 一种超声振动辅助磨削氧化锆陶瓷表面形貌的预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597578A (zh) * 2011-05-27 2014-02-19 康宁股份有限公司 非抛光玻璃晶片、使用非抛光玻璃晶片减薄半导体晶片的减薄系统和方法
CN108340214A (zh) * 2018-01-10 2018-07-31 上海理工大学 超声振动辅助磨削的材料亚表面裂纹深度预测方法
CN108515460A (zh) * 2018-04-10 2018-09-11 湖南工学院 平面光学元件亚表面损伤检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGLONG SUN ET AL: "A predictive model of grinding force in silicon wafer seIf-rotating grinding", INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, vol. 109, October 2016 (2016-10-01), pages 74 - 86, XP055703227, ISSN: 0890-6955 *

Also Published As

Publication number Publication date
CN109093454B (zh) 2020-09-25
CN109093454A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2020077671A1 (zh) 一种硅晶圆减薄亚表面损伤深度快速评估方法
JP6550173B2 (ja) ガラスエッジ仕上方法
Li et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics
Wu et al. Surface roughness modeling for grinding of silicon carbide ceramics considering co-existence of brittleness and ductility
Zhang et al. Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process
Sun et al. A predictive model of grinding force in silicon wafer self-rotating grinding
Li et al. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes
Gu et al. Investigation of grinding modes in horizontal surface grinding of optical glass BK7
JP5571409B2 (ja) 半導体装置の製造方法
Zhang et al. Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material
CN107378654B (zh) 一种钽酸锂晶片的抛光方法
CN101211773B (zh) 防止芯片背面金属剥落的方法
Solhtalab et al. Cup wheel grinding-induced subsurface damage in optical glass BK7: an experimental, theoretical and numerical investigation
Sun et al. Modelling and experimental study of roughness in silicon wafer self-rotating grinding
Tao et al. Undeformed chip width non-uniformity modeling and surface roughness prediction in wafer self-rotational grinding process
JP2002126998A (ja) 研磨方法および研磨装置
CN103688344A (zh) Cmp 垫调整器
Lin et al. Mechanism of material removal by fixed abrasive lapping of fused quartz glass
Li et al. An experimental investigation of silicon wafer thinning by sequentially using constant-pressure diamond grinding and fixed-abrasive chemical mechanical polishing
Tao et al. Prediction and measurement for grinding force in wafer self-rotational grinding
Li et al. Theoretical model of warping deformation during self-rotating grinding of YAG wafers
Jiang et al. Experimental investigation of brittle material removal fraction on an optical glass surface during ultrasound-assisted grinding
US7775856B2 (en) Method for removal of surface films from reclaim substrates
Chen et al. Study on the affecting factors of material removal mechanism and damage behavior of shear rheological polishing of single crystal silicon carbide
JP6484468B2 (ja) ガラス板製造方法およびガラス板製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937400

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18937400

Country of ref document: EP

Kind code of ref document: A1