WO2020077248A1 - Ensemble suspension double face pour roue de cycle - Google Patents

Ensemble suspension double face pour roue de cycle Download PDF

Info

Publication number
WO2020077248A1
WO2020077248A1 PCT/US2019/055915 US2019055915W WO2020077248A1 WO 2020077248 A1 WO2020077248 A1 WO 2020077248A1 US 2019055915 W US2019055915 W US 2019055915W WO 2020077248 A1 WO2020077248 A1 WO 2020077248A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock
pivot
spring
arm
suspension assembly
Prior art date
Application number
PCT/US2019/055915
Other languages
English (en)
Inventor
David Weagle
Original Assignee
Trvstper, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/159,169 external-priority patent/US20200079462A1/en
Application filed by Trvstper, Inc. filed Critical Trvstper, Inc.
Publication of WO2020077248A1 publication Critical patent/WO2020077248A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/12Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg
    • B62K25/22Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with more than one arm on each fork leg
    • B62K25/24Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with more than one arm on each fork leg for front wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2201/00Springs used in cycle frames or parts thereof
    • B62K2201/08Fluid springs

Definitions

  • the disclosure is generally directed to wheel suspension assemblies for cycles, and more specifically directed to wheel suspension assemblies for cycles that improve stability and that have a shock absorber with an inline configuration on a first arm of a steering fork, and a spring unit on a second arm of the steering fork.
  • a telescopic fork includes sliding stantions connected in a steerable manner to a cycle frame, the sliding stanchions forming a telescoping mechanism for shock absorption during riding over rough terrain. Sliding stantions require very tight
  • Front suspension for a cycle is subject to large bending forces fore and aft and less significant lateral forces.
  • the round stantions in a telescopic fork must be sized to support the greatest loads, in the fore/aft direction. This requires the use of large diameter stantions.
  • Telescopic forks compress in a linear fashion in response to bumps.
  • the wheel, spring, and/or damper all move together at the same rate because they are directly attached to each other. Because the fork compresses linearly, and because the spring and damper are connected directly to the wheel, the leverage ratio of wheel to damper and spring travel is a constant 1:1.
  • a further drawback of telescopic forks is called front suspension dive.
  • front brake When a rider applies the front brake, deceleration begins and the rider’s weight transfers towards the front wheel, increasing load on the fork.
  • the suspension stiffens, and traction reduces.
  • This same load transfer phenomenon happens in most automobiles as well, but there is a distinction with a cycle telescopic fork in that the undesirable braking reaction in a cycle telescopic fork is made up of two components, load transfer and braking squat.
  • Load transfer occurs when the rider’s weight transfers forward during deceleration. That weight transfer causes an increased load on the front wheel, which compresses the front suspension.
  • Braking squat is measured in the front suspension kinematics, and can have a positive, negative, or zero value. This value is independent of load transfer, and can have an additive or subtractive effect to the amount of fork dive present during braking.
  • a positive value (known as pro-dive) forcibly compresses the front suspension when the brakes are applied, cumulative to the already present force from load transfer.
  • a zero value has no braking reaction at all; the front suspension is free to respond naturally to the effects of load transfer (for better or worse).
  • a negative value (known as anti-dive) counteracts the front suspension’s tendency to dive by balancing out the force of load transfer with a counteracting force.
  • Angular wheel displacement relative to the ground during vertical suspension compression is an important characteristic to limit in a front suspension.
  • a front wheel plane is constrained perpendicularly to the front axle, and symmetric to the front wheel when measured in an unladen state.
  • the front wheel can exhibit a transient steering response or provide vague steering feedback for the rider, causing difficulty in control of the steering.
  • Telescopic forks are usually available in one of two layouts, called conventional and inverted.
  • a conventional layout typically has two fixed inner stantions attached to a steering head, and an outer unitized lower leg assembly with a brace sometimes called an arch that connects two sliding members together and maintains relative common displacement between the two sliding members as the suspension compresses and extends.
  • the arch is a structural member connecting the two sliding members and that the arch typically extends around the outer circumference of the wheel.
  • the conventional telescopic fork can use conventional and universal hubs, along with quick release style axles, which are less costly and more convenient for the user than custom designs or clamped axles.
  • Inverted telescopic fork layouts have the inner stantions connected to the wheel axle, and two outer sliding members connected to a steering assembly. Because the two sliding stantions are only connected to each other by a wheel axle, this axle and the hub connection is used to maintain relative common displacement between the two sliding members as the suspension compresses and extends.
  • the axle needs to be oversized in diameter and requires a secure connection to the stantions so that the axle is limited in both rotation and bending, to provide the stiffness required to limit angular wheel displacement.
  • This oversized axle and clamping in turn requires oversized and heavy bearings and hub parts and requires the user to spend more time during assembly and disassembly of the front wheel from the inverted fork.
  • the custom hubs required to work with the oversized axles are not typically universally mountable, are more costly than conventional hubs.
  • Linkage front suspensions have been attempted in the past as an alternative to telescopic forks, yet they have failed to overcome the inherent disadvantages of telescopic forks.
  • Past linkage front suspensions have also failed to achieve prolonged market acceptance due to issues including difficult fitment to frames, limited access to adjustments, the exposure of critical parts to the weather, accelerated wear characteristics, difficulty of maintenance, undesirable ride and handling characteristics, and undesirable aesthetics.
  • shock absorbers including dampers and springs.
  • shock absorber designs using a gas spring normal practice is to attach a gas spring piston to the damper body, such that the gas spring is situated outboard and concentric to the damper.
  • This outboard and concentric arrangement of the gas spring with relation to the damper is referred to as a concentric shock absorber or shock absorber having a concentric configuration, and forces compromises in suspension design.
  • These compromises can include a necessarily large overall diameter of the shock absorber which results in a large size and difficult fitment, or can require extremely small diameter damper pistons which impart detrimental damper performance, or can require extremely small area gas spring pistons which impart detrimental gas spring performance.
  • Linkage front suspensions have the challenge of controlling angular wheel displacement relative to the fixed portions of the frame.
  • Linkage front suspensions having linkage assemblies that are located on opposite sides of a wheel also have used a structural member otherwise known as an arch that connects the linkage assemblies by extending around a circumference of the wheel. This connection helps to maintain relative common displacement between the linkage members as the suspension compresses and extends.
  • this type of arch design requires the linkages to be placed close to the outside diameter of the wheel to use a shorter and stiffer arch, or alternatively use a very long, flexible, and heavy arch to connect all the way around the wheel.
  • Locating linkage members as close to the wheel contact point is desirable because this helps to give the links a mechanical advantage in controlling internal chassis forces with as lightweight of a structure as possible. Moving the linkages far away from the contact point is undesirable because presents an issue where angular wheel displacement and lateral wheel displacement can be magnified due to the amplification of unwanted linkage movement or flex.
  • a suspension assembly for a cycle includes a steering fork having a steering axis, a first arm, and a second arm.
  • One or both of the first arm and the second arm may include a first end and a second end, and one or both of the first arm and the second arm further may include a fixed pivot and a shock pivot, the space between first arm and second arm defining a wheel opening.
  • the suspension assembly also includes a shock link having a shock link fixed pivot and a shock link floating pivot spaced apart from one another.
  • the shock link is operably connected to the first arm fixed pivot at the shock link fixed pivot such that the shock link is rotatable, pivotable, or bendable about the shock link fixed pivot and the shock link fixed pivot remains in a fixed location relative to the first arm while the shock link floating pivot is movable relative to the first arm.
  • the suspension assembly also includes a shock absorber having an inline configuration, a gas spring, a first shock mount, and a second shock mount, the shock absorber being located substantially on one of the first arm or second arm, the first shock mount being operably connected to the first arm shock pivot and the second shock mount being operably connected to a shock connection pivot located between the shock link fixed pivot and the shock link floating pivot along a length of the shock link.
  • the suspension assembly also includes a spring unit having a gas spring, a first spring mount, and a second spring mount, the spring unit being substantially located on the other of the first arm or second arm , opposite the shock absorber.
  • the suspension assembly also includes a wheel carrier having a wheel carrier first pivot and a wheel carrier second pivot spaced apart from one another along a length of the wheel carrier.
  • a wheel mount on the wheel carrier is adapted to be connected to a front wheel and the wheel carrier first pivot is operably connected to the shock link floating pivot so that the wheel carrier second pivot is rotatable, pivotable, flexible or bendable about the wheel carrier first pivot relative to the shock link floating pivot.
  • the suspension assembly also includes a control link having a control link floating pivot and a control link fixed pivot.
  • the control link floating pivot is operably connected to the wheel carrier second pivot
  • the control link fixed pivot is operably connected to the first arm control pivot such that the control link floating pivot is rotatable, pivotable, flexible, or bendable about the control link fixed pivot, which remains in a fixed location relative to the first arm control pivot.
  • the fixed pivots and the floating pivots are arranged in a trailing configuration where each of the fixed pivots is forward of the corresponding floating pivot in the forward direction of travel.
  • FIG. 1A is a side view of a cycle including a front wheel suspension assembly constructed according to the teachings of the disclosure.
  • FIG. 1B is a side view of an alternate embodiment of a cycle including a front wheel suspension assembly constructed according to the teachings of the disclosure, the cycle of FIG. 1B including a rear wheel suspension assembly.
  • FIG. 2A is a close up side view of a first arm of the front wheel suspension assembly of FIG. 1.
  • FIG. 2B is a close up side view of a second arm of the front wheel suspension assembly of FIG. 1.
  • FIG. 3A is a side exploded view of the front wheel suspension assembly of FIG.
  • FIG. 3B is a side exploded view of the front wheel suspension assembly of FIG.
  • FIG. 4A is a side cut-away view of a first embodiment of a shock absorber of the wheel suspension assembly of FIG. 2A.
  • FIG. 4B is a side cut-away view of a second embodiment of a shock absorber of the wheel suspension assembly of FIG. 2A.
  • FIG. 4C is a side cut-away view of a third embodiment of a shock absorber of the wheel suspension assembly of FIG. 2A.
  • FIG. 4D is a side cut-away view of a fourth embodiment of a shock absorber of the wheel suspension assembly of FIG. 2A.
  • FIG. 4E is a side cut-away view of a first embodiment of a gas spring of the wheel suspension assembly of FIG. 2B.
  • FIG. 5A is a side schematic view of the embodiment of a wheel suspension assembly of FIG. 2A, having the shock absorber of FIG. 4A or 4B.
  • FIG. 5B is a side schematic view of the embodiment of a wheel suspension assembly of FIG. 2A, having the shock absorber of FIG. 4C or 4D.
  • FIG. 5C is a side schematic view of the embodiment of a wheel suspension assembly of FIG. 2B, having the gas spring of FIG. 4E.
  • FIG. 6 A is a perspective view of a first embodiment of a pivot of the wheel suspension assembly of FIG. 2A.
  • FIG. 6B is a side view of a second embodiment of a pivot of the wheel suspension assembly of FIG. 2A.
  • FIG. 6C is an exploded view of a third embodiment of a pivot of the wheel suspension assembly of FIG. 2A.
  • FIG. 6D is a side view of a fourth embodiment of a pivot of the wheel suspension assembly of FIG. 2A.
  • FIG. 7A is a front cut-away view of the embodiment of the wheel suspension assembly of FIGS. 2A and 2B.
  • FIG. 7B is a front cut-away schematic view of the embodiment of the wheel suspension assembly of FIGS. 2A and 2B.
  • FIG. 8 is a side schematic view showing certain embodiments of wheel carriers of the suspension assembly.
  • FIG. 9 is a close up side view of the first arm of the front wheel suspension assembly of FIG. 2A in a fully extended state.
  • FIG. 10 is a close up side view of the first arm of the front wheel assembly of FIG. 2A in a partially compressed intermediate state.
  • FIG. 11 is a close up side view of the first arm of the front wheel suspension assembly of FIG. 2A in a further compressed state.
  • FIG. 12 is a close up side view of a first arm of an alternate embodiment of a front wheel suspension assembly in a fully extended state.
  • FIG. 13 is a close up side view of the first arm of the front wheel assembly of FIG. 12 in a partially compressed intermediate state.
  • FIG. 14 is a close up side view of the first arm of the front wheel suspension assembly of FIG. 12 in a further compressed state.
  • the terms“suspension assembly compression” and“suspension assembly displacement” are used interchangeably.
  • the terms“suspension assembly compression” and“suspension assembly displacement” refer to movement and articulation of the suspension assembly during compression and extension of the shock absorber. More specifically, these terms refer to the component of movement, in a direction parallel to a steering axis, of the individual links and pivots of the suspension assembly. Even more specifically, these terms refer to the movement of the wheel mount, on a wheel carrier of the suspension assembly, in a direction parallel to the steering axis.
  • suspension assemblies described below are illustrated in fully extended, partially compressed, and further compressed states, which also refer to corresponding relative displacements of the suspension assembly (e.g., no displacement, partial displacement, and further displacement beyond the partial displacement state). It should be understood that a rider would only experience riding a cycle that is in a fully compressed state for a very short period of time (on the order of milliseconds) as the suspension assembly will naturally and substantially instantaneously equilibrates to a state with less compression than the fully compressed state as the suspension assembly responds to changing riding conditions.
  • a cycle 10 includes a frame 12, a front wheel 14, which in certain embodiments can include a rim and a tire, rotatably connected to a fork 30, and a rear wheel 16 rotatably connected to the frame 12.
  • the rear wheel 16 is drivable by a drive mechanism, such as a chain 18 connected to a wheel sprocket 20 and to a chainring 22, so that driving force may be imparted to the rear wheel 16.
  • the fork 30, allows the front wheel 14 to deflect relative to the frame 12 in response to ground conditions as a rider rides the cycle and to improve handling and control during riding. To improve handling
  • a cycle 10 includes a frame 12, a front wheel 14, which in certain embodiments can include a rim and a tire, rotatably connected to a fork 30, and a rear wheel 16 rotatably connected to the frame 12.
  • the fork 30 and the front wheel 14 may be operably connected to a suspension assembly or linkage 46.
  • the rear wheel 16 is drivable by a drive mechanism, such as a chain 18 connected to a wheel sprocket 20 and to a chainring 22, so that driving force may be imparted to the rear wheel 16.
  • the fork 30, allows the front wheel 14 to deflect relative to the frame 12 in response to ground conditions as a rider rides the cycle and to improve handling and control during riding.
  • the frame 12 may optionally include a rear wheel suspension assembly 24, which may allow the rear wheel 16 relative to the frame 12 to deflect in response to ground conditions as a rider rides the cycle and to improve handling and control during riding.
  • the fork 30 includes a first arm 32 and a second arm 33, each of which are operably connected to a steering shaft 34.
  • the steering shaft 34 includes a steering axis S that is formed by a central axis of the steering shaft 34.
  • the first arm 32 has a first end 36 a second end 38, the first arm 32 including a first arm fixed pivot 40 and a first arm shock pivot 42.
  • the second arm 33 has a first end 37 and a second end 39, the second arm 33 including a second arm fixed pivot 140 and a second arm spring pivot 142.
  • the first arm shock pivot 42 operably connects a suspension device, such as a shock absorber 44 to the first arm 32.
  • a suspension device such as a shock absorber 44
  • the first arm shock pivot 42 allows relative motion, in this case rotation, between the shock absorber 44 and the first arm 32.
  • other types of relative motion such as flexure or translation, between the shock absorber 44 and the first arm 32 may be employed.
  • the first arm fixed pivot 40 pivotably connects one element of the linkage 46, as discussed further below, to the first arm
  • the second arm spring pivot 142 operably connects a suspension device, such as a spring unit 48 to the second arm 33.
  • a suspension device such as a spring unit 48
  • the second arm spring pivot 142 allows relative motion, in this case rotation, between the spring unit 48 and the second arm
  • a shock link 50 is pivotably connected to the first arm fixed pivot 40.
  • the shock link 50 includes a shock link fixed pivot 52 and a shock link floating pivot 54 spaced apart from one another along a length of the shock link 50.
  • the shock link 50 is pivotably connected to the first arm fixed pivot 40 at the shock link fixed pivot 52 such that the shock link 50 is rotatable about the shock link fixed pivot 52 and the shock link fixed pivot 52 remains in a fixed location relative to the first arm 32, while the shock link floating pivot 54 is movable relative to the first arm 32.
  • a spring link 150 is pivotably connected to the second arm fixed pivot 140.
  • the spring link 150 includes a spring link fixed pivot 152 and a spring link floating pivot 154 spaced apart from one another along a length of the spring link 150.
  • the spring link 150 is pivotably connected to the second arm fixed pivot 140 at the spring link fixed pivot 152 such that the spring link 150 is rotatable about the spring link fixed pivot 152 and the spring link fixed pivot 152 remains in a fixed location relative to the second arm 33, while the spring link floating pivot 154 is movable relative to the second arm 33.
  • a pivot includes any connection structure that may be used to operably connect one element to another element.
  • An operative connection may allow for one component to move in relation to another while constraining movement in one or more degrees of freedom.
  • the one degree of freedom may be pivoting about an axis.
  • a pivot may be formed from a journal or through hole in one component and an axle in another component.
  • pivots may include ball and socket joints.
  • Yet other examples of pivots include, but are not limited to singular embodiments and combinations of, compliant mounts, sandwich style mounts, post mounts, bushings, bearings, ball bearings, plain bearings, flexible couplings, flexure pivots, journals, holes, pins, bolts, and other fasteners.
  • a fixed pivot is defined as a pivotable structure that does not change position relative the first arm 32.
  • a floating pivot is defined as a pivot that is movable (or changes position) relative to another element, and in this case, is movable relative to first arm 32.
  • the suspension assembly or linkage 46, 146 is configured in a trailing orientation.
  • a trailing orientation is defined herein as a linkage that includes a fixed pivot that is forward of the corresponding floating pivot when the cycle is traveling in the forward direction of travel as represented by arrow A in FIGS. 1A and 1B.
  • the floating pivot trails the fixed pivot when the cycle is traveling in the forward direction of travel.
  • the shock link fixed pivot 52 is forward of the shock link floating pivot 54.
  • the disclosed suspension assembly or linkage 46 is also characterized as a multi link suspension assembly.
  • a multi-link suspension assembly is defined herein as a suspension assembly having a plurality of interconnected links in which any part of the front wheel 14 is directly connected to a link in the plurality of interconnected links that is not directly connected to the fork 30.
  • the front wheel is directly connected to the wheel carrier 62, which is not directly connected to the fork 30.
  • the shock absorber 44 includes a first shock mount 56 and a second shock mount 58, the first shock mount 56 being pivotably connected to the first arm shock pivot 42, the second shock mount 58 being pivotably connected to a shock connection pivot 60 located between the shock link fixed pivot 52 and the shock link floating pivot 54 along a length of the shock link 50.
  • the shock absorber 44 can also include a gas spring 92 having a spring body 88, a damper 94 having a damper body 89, an inshaft 80, and outshaft 90, a damper piston 83, a gas piston 81, and a shaft seal 85.
  • a damper may also be referred to as a dashpot and a gas spring may also be referred to as a mechanical spring.
  • the first shock mount 56 can be located at any point along the length of the spring body 88 or damper body 89. For example, the first shock mount 56 can be located closer to the inshaft 80 than a first end 87of the spring body 88.
  • the first shock mount 56 can comprise various types of pivot designs and layouts, such as through bolt pivots, trunnion mounts, clevises, or other types of pivots.
  • the second shock mount 58 can be located at any point along the length of the inshaft 80. For example, the second shock mount 58 can be located closer to the damper 94 than a second end 97 of the inshaft 80.
  • the second shock mount 58 can comprise various types of pivot designs and layouts, such as through bolt pivots, trunnion mounts, clevises, or other types of pivots.
  • the shock absorber 44 can be mounted with the first shock mount 56 attached to either the first arm 32 or the shock link 50 and/or with the second shock mount 58 attached to either the first arm 32 or the shock link 50.
  • Shock absorber 44 mounting is not limited to the first shock mount 56 being attached to the first arm 32 and the second shock mount 58 being attached to the shock link 50 as illustrated in the accompanying figures.
  • the spring unit 48 includes a first spring mount 57 and a second spring mount 59, the first spring mount 57 being pivotably connected to the second arm spring pivot 142, the second spring mount 59 being pivotably connected to a spring connection pivot 160 located between the spring link fixed pivot 152 and the spring link floating pivot 154 along a length of the spring link 150.
  • the spring unit 48 can also include a gas spring 192 having a spring body 188, an inshaft 180, a gas piston 181, a gas piston seal 191, and a shaft seal 185.
  • a gas spring may also be referred to as a mechanical spring.
  • the first spring mount 57 can be located at any point along the length of the spring body 188.
  • first spring mount 57 can be located closer to the inshaft 180 than a first end 187 of the spring body 188.
  • the first spring mount 57 can comprise various types of pivot designs and layouts, such as through bolt pivots, trunnion mounts, clevises, or other types of pivots.
  • the second spring mount 59 can be located at any point along the length of the inshaft 180.
  • the second spring mount 59 can be located closer to the spring body 188 than a second end 197 of the inshaft 180.
  • the second spring mount 59 can comprise various types of pivot designs and layouts, such as through bolt pivots, trunnion mounts, clevises, or other types of pivots.
  • the spring unit 48 can be mounted with the first spring mount 57 attached to either the second arm 33 or the spring link 150 and/or with the second spring mount 59 attached to either the second arm 33 or the spring link 150.
  • the spring unit 48 mounting is not limited to the first spring mount 57 being attached to the second arm 33 and the second spring mount 59 being attached to the spring link 150 as illustrated in the accompanying figures.
  • the inshafts 80, 180 and the outshaft 90 can comprise a singular component or plurality of components, and may be combined with other components. In some
  • the damper piston 83 may be connected to or include a portion or the entirety of the inshaft 80 or outshaft 90. In some embodiments, the damper piston 83 has a greater radial cross-sectional area than the inshaft 80 or the outshaft 90.
  • the inshafts 80, 180 and the outshaft 90 can extend between and through a shaft seal 85, 185 to operably connect a gas spring 92 with a damper and/or to provide concurrent movement of any combination of the inshafts 80, 180, the outshaft 90, the gas pistons 81, 181, and the damper piston 83 during suspension compression and extension.
  • the damper piston mates to or includes a damper piston seal 93.
  • the damper piston seal 93 may comprise; multiple, or combinations of glide ring, wear band, o-ring. X-ring, Q ring, quad ring, Teflon seal, cap seal, piston ring, solid piston, T seal, V ring, U cup, urethane seal, PSQ seal, preloaded piston band, or other type of band or seal.
  • the damper piston seal 93 is intended to seal damping fluid between each side of the damper piston 83, while allowing axial movement of the damper piston 83 and therefore axial movement of the inshaft 80 and/or outshaft 90.
  • the gas spring 92 has certain advantages over other types of springs.
  • the gas spring 92 uses a pressurized gas such as air, nitrogen, or other gases to act on the area of a gas piston 81, which outputs a force at the gas piston 81.
  • a user can change the gas pressure and therefore the force output at the gas piston 81. This allows the user to tailor output force based on their preference or to meet the requirements of varying road conditions.
  • a gas spring 92 may comprise pressures that can act on both sides of the gas piston 81.
  • the gas piston 81, 181 can be connected to or include a portion or the entirety of the inshaft 80, 180 or the outshaft 90.
  • the gas piston 81, 181 has a greater radial cross-sectional area than the inshaft 80, 180 or the outshaft 90.
  • the gas piston 81 has a greater radial cross-sectional area than the damper piston 83.
  • the gas piston 81, 181 mates to or includes a gas piston seal 91, 191.
  • the gas piston seal 91, 191 may comprise; singular, multiple, or combinations of glide ring, wear band, o-ring.
  • the gas piston seal 91, 191 is intended to seal gas between each side of the gas piston 81, 181, while allowing axial movement of the gas piston 81, 181 and therefore axial movement of the inshaft 80, 180 and/or outshaft 90.
  • the shock absorber 44 includes a shaft seal 85.
  • the shaft seal 45 is used to seal damping fluid or gas inside the damper body 89 or spring body 88 while allowing axial movement of an inshaft 80 and/or outshaft 90.
  • the shaft seal 85 can be located at one end of a spring body 88, while sealing gas inside the spring body 88 and allowing axial movement of an inshaft 80 or outshaft 90.
  • a shaft seal 45 can be located at one or more ends of a damper body 89, while sealing damping fluid inside the damper body 89 and allowing axial movement of an inshaft 80 or outshaft 90.
  • the spring unit 48 includes a shaft seal 185.
  • the shaft seal 185 is used to seal fluid or gas inside the spring body 188 while allowing axial movement of the inshaft 180.
  • the shaft seal 185 can be located at one end of a spring body 188, while sealing gas inside the spring body 188 and allowing axial movement of an inshaft 180.
  • the shaft seal 185 can be located at one or more ends of the spring body 188, while sealing damping fluid inside the spring body 188 and allowing axial movement of the inshaft 180.
  • a first wheel carrier 62 includes a wheel carrier first pivot 64 and a wheel carrier second pivot 66 spaced apart from one another along a length of the wheel carrier 62. Both the wheel carrier first pivot 64 and the wheel carrier second pivot 66 are floating pivots, as they both move relative to the first arm 32.
  • a wheel mount 68 is adapted to be connected to a center of a wheel, for example the front wheel 14. In the disclosed embodiment, a center of the front wheel 14 is rotatably connected to the wheel mount 68.
  • the wheel carrier first pivot 64 is pivotably connected to the shock link floating pivot 54 so that the wheel carrier second pivot 66 is pivotable about the wheel carrier first pivot 64 relative to the shock link floating pivot 54.
  • a wheel carrier in some embodiments, can include one or more brake mounts 63.
  • a second wheel carrier 162 includes a wheel carrier first pivot 164 and a wheel carrier second pivot 166 spaced apart from one another along a length of the wheel carrier 162. Both the wheel carrier first pivot 164 and the wheel carrier second pivot 166 are floating pivots, as they both move relative to the first arm 32.
  • a wheel mount 168 is adapted to be connected to a center of a wheel, for example the front wheel 14. In the disclosed embodiment, a center of the front wheel 14 is rotatably connected to the wheel mount 168.
  • the wheel carrier first pivot 164 is pivotably connected to the spring link floating pivot 154 so that the wheel carrier second pivot 166 is pivotable about the wheel carrier first pivot 164 relative to the spring link floating pivot 154.
  • a wheel carrier in some embodiments, can include one or more brake mounts 163.
  • a first control link 70 includes a control link floating pivot 72 and a control link fixed pivot 74.
  • the control link floating pivot 72 is pivotably connected to the wheel carrier second pivot 66
  • the control link fixed pivot 74 is pivotably connected to a first arm control pivot 76 located on the first arm 32 such that the control link floating pivot 72 is pivotable about the control link fixed pivot 74, which remains in a fixed location relative to the first arm control pivot 76.
  • a second control link 170 includes a control link floating pivot 172 and a control link fixed pivot 174.
  • the control link floating pivot 172 is pivotably connected to the wheel carrier second pivot 166, and the control link fixed pivot 174 is pivotably connected to a second arm control pivot 176 located on the second arm 33 such that the control link floating pivot 172 is pivotable about the control link fixed pivot 174, which remains in a fixed location relative to the second arm control pivot 176.
  • the shock connection pivot 60 is closer to the shock link fixed pivot 52 than to the shock link floating pivot 54, as illustrated in FIG. 2A.
  • a perpendicular distance D between a central axis I of an inshaft 80 of the shock absorber 44 or spring unit 48 and a center of the shock link fixed pivot 52 varies as the shock absorber 44 is compressed and extended, as the shock absorber pivots about the first shock mount 56. This pivoting and varying of the
  • perpendicular distance D allows the leverage ratio and motion ratio to vary as the shock absorber 44 compresses and extends.
  • a mechanical trail distance T varies as the shock absorber 44 compresses and extends.
  • the mechanical trail distance T is defined as the perpendicular distance between the steering axis S and the contact point 82 of the front wheel 14 with the ground 84. More specifically, as the suspension compresses, beginning at a state of full extension, the mechanical trail distance T increases, thus increasing stability during compression.
  • Compression is usually experienced during braking, cornering, and shock absorbing, all of which benefit from increased stability that results from the mechanical trail distance increase.
  • Mechanical trail (or“trail”, or“caster”) is an important metric relating to handling characteristics of two-wheeled cycles.
  • Mechanical trail is a configuration in which the wheel is rotatably attached to a fork, which has a steering axis that is offset from the contact point of the wheel with the ground.
  • the steering axis is forward of the contact point, as in the case of a shopping cart, this configuration allows the caster wheel to follow the direction of cart travel. If the contact point moves forward of the steering axis (for example when reversing direction of a shopping cart), the directional control becomes unstable and the wheel spins around to the original position in which the contact point trails the steering axis.
  • the friction between the ground and the wheel causes a self-righting torque that tends to force the wheel to trail the steering axis.
  • the greater the distance between the contact point and perpendicular to the steering axis the more torque is generated, and the greater the stability of the system.
  • the longer the distance between the cycle wheel contact point and perpendicular to the steering axis the more torque is generated, and the greater the stability of the system.
  • the shorter the distance between the cycle wheel contact point and perpendicular to the steering axis the less torque is generated, and the lower the stability of the system.
  • This caster effect is an important design characteristic in cycles. Generally, the caster effect describes the cycle rider’ s perception of stability resulting from the mechanical trail distance described above. If the wheel gets out of line, a self-aligning torque
  • a shock absorber can be compressed at a constant or variable rate as the suspension moves at a constant rate towards a state of full compression.
  • incremental suspension compression distance measurements are taken. Incremental suspension compression distance is measured from the center of the wheel at the wheel rotation axis and parallel with the steering axis, starting from a state of full suspension extension, and moving towards a state of full suspension compression. These incremental measurements are called the incremental suspension compression distance.
  • a shock absorber length can be changed by wheel link, and/or brake link, and/or control link movements as the suspension compresses. At each incremental suspension compression distance measurement, a shock absorber length measurement is taken.
  • leverage ratio The relationship between incremental suspension compression distance change and shock absorber length change for correlating measurements of the suspension’s compression is called leverage ratio or motion ratio.
  • Leverage ratio and motion ratio are effectively equivalent but mathematically different methods of quantifying the effects of variable suspension compression distance versus shock compression distance.
  • Overall leverage ratio is the average leverage ratio across the entire range of compression.
  • Overall leverage ratio can be calculated by dividing the total suspension compression distance by the total shock absorber compression distance.
  • Overall motion ratio is the average motion ratio across the entire range of compression.
  • Overall motion ratio can be calculated by dividing the total shock absorber compression distance by the total suspension compression distance.
  • a suspended wheel has a compressible wheel suspension travel distance that features a beginning travel state where the suspension is completely uncompressed to a state where no further suspension extension can take place, and an end travel state where a suspension is completely compressed to a state where no further suspension compression can take place.
  • the shock absorber is in a state of least compression, and the suspension is easily compressed.
  • a leverage ratio is defined as the ratio of compressive wheel travel change divided by shock absorber measured length change over an identical and correlating given wheel travel distance.
  • a motion ratio is defined as the ratio of shock absorber measured length change divided by compressive wheel travel change over an identical and correlating given wheel travel distance.
  • a leverage ratio curve is a graphed quantifiable representation of leverage ratio versus wheel compression distance or percentage of full compression distance. Wheel compression distance, suspension compression, or wheel travel is measured from the center of the wheel at the wheel rotation axis and parallel with the steering axis, with the initial 0 percent measurement taken at full suspension extension with the vehicle unladen. As a suspension is compressed from a state of full extension to a state of full compression at a constant rate, measurements of shock absorber length are taken as the shortest distance between a first shock pivot and a second shock pivot at equal increments of suspension compression.
  • a motion ratio curve is a graphed quantifiable representation of motion ratio versus wheel compression distance or percentage of full compression distance. Wheel compression distance, suspension compression, or wheel travel is measured from the center of the wheel at the wheel rotation axis and parallel with the steering axis, with the initial 0 percent measurement taken at full suspension extension with the vehicle unladen.
  • shock absorber length As a suspension is compressed from a state of full extension to a state of full compression, measurements of shock absorber length are taken as the shortest distance between a first shock pivot and a second shock pivot at equal increments of suspension compression.
  • motion ratio is shown on the Y axis escalating from the x axis in a positive direction
  • vertical wheel travel is shown on the X axis escalating from the Y axis in a positive direction.
  • a leverage ratio or motion ratio curve can be broken down into three equal parts in relation to wheel compression distance or vertical wheel travel, a beginning 1/3 (third), a middle 1/3, and an end 1/3.
  • a beginning 1/3 can comprise a positive slope, zero slope, and or a negative slope.
  • a middle 1/3 can comprise a positive slope, zero slope, and or a negative slope.
  • an end 1/3 can comprise a positive slope, zero slope, and or a negative slope.
  • Certain preferred leverage ratio embodiments can comprise a beginning 1/3 with a positive slope, a middle 1/3 with a less positive slope, and an end 1/3 with a more positive slope.
  • Certain preferred leverage ratio embodiments can comprise a beginning 1/3 with a negative slope, a middle 1/3 with negative and zero slope, and an end 1/3 with a positive slope.
  • Certain preferred leverage ratio embodiments can comprise a beginning 1/3 with a positive and negative slope, a middle 1/3 with negative and zero slope, and an end 1/3 with a positive slope. Certain preferred leverage ratio embodiments can comprise a beginning 1/3 with a positive and negative slope, a middle 1/3 with negative and zero slope, and an end 1/3 with a more negative slope. Certain preferred motion ratio embodiments can comprise a beginning 1/3 with a negative slope, a middle 1/3 with a less negative slope, and an end 1/3 with a more negative slope. Certain preferred motion ratio embodiments can comprise a beginning 1/3 with a positive slope, a middle 1/3 with positive and zero slope, and an end 1/3 with a negative slope.
  • Certain preferred motion ratio embodiments can comprise a beginning 1/3 with a negative and positive slope, a middle 1/3 with positive and zero slope, and an end 1/3 with a negative slope. Certain preferred motion ratio embodiments can comprise a beginning 1/3 with a negative and positive slope, a middle 1/3 with positive and zero slope, and an end 1/3 with a more positive slope.
  • the disclosed wheel suspension assembly provides a greater than 1:1 overall leverage ratio between the shock absorber 44 and the shock link 50, due to the indirect coupling (through the linkage 46) of the wheel 14 and the shock absorber 44.
  • the disclosed wheel suspension assembly provides a less than 1:1 overall motion ratio between the shock absorber 44 and the shock link 50, due to the indirect coupling (through the linkage 46) of the wheel 14 and the shock absorber 44.
  • the central axis I of the inshaft 80 of the shock absorber 44 is arranged to form an angle B of between 0° and 20° relative to a central axis F of the first arm 32, the central axis F of the first arm 32 being defined by a line formed between the first arm shock pivot 42 and the first arm fixed pivot 40.
  • the central axis I of the inshaft 80 of the shock absorber 44 forms an angle with the central axis F of the first arm 32 of between 0° and 15°.
  • the central axis I of the inshaft 80 of the shock absorber 44 forms an angle with the central axis F of the first arm 32 of between 0° and 30°.
  • the angle B may vary within these ranges during compression and extension.
  • the first arm 32 includes a hollow portion 86 and the shock absorber 44 is located at least partially within the hollow portion 86 of the first arm 32.
  • the shock link fixed pivot 52 is offset forward of the central axis I of the inshaft 80 of the shock absorber 44.
  • the central axis I of the inshaft 80 of the shock absorber 44 is positioned between the shock link fixed pivot 52 and the shock link floating pivot 54 in a plane defined by the central axis I of the inshaft 80, the shock link fixed pivot 52 and the shock link floating pivot 54 ( i.e ., the plane defined by the view of FIGS. 2A and 2B).
  • a line between the wheel carrier first pivot 64 and the wheel carrier second pivot 66 defines a wheel carrier axis WC
  • the wheel mount 68 is offset from the wheel carrier axis WC in a plane defined by the wheel carrier axis WC and the wheel mount 68 (i.e., the plane defined by the views of FIG. 3A and 3B).
  • the wheel mount 68 is offset from the wheel carrier axis WC towards the first arm 32, for example the embodiment illustrated in FIGS. 2 and 3.
  • the wheel mount 68 may be offset from the wheel carrier axis WC away from the first arm 32.
  • the wheel mount 68, 168 is located aft of the shock link fixed pivot 52, or of the spring link fixed pivot 152, such that the central axis I of the inshaft 80, 180 of the shock absorber 44 or of the spring unit 48 is located between the wheel mount 68, 168 and the shock link fixed pivot 52, or the spring link fixed pivot 152 in a plane defined by the central axis I of the inshaft 80, 188, the wheel mount 68, 168 and the shock link fixed pivot 52, or the spring link fixed pivot 152 ( i.e the plane defined by the views of FIG. 2A and 2B).
  • the shock absorber 44 may include an inline shock absorber having a damper body 89 and a spring body 88 that are sequentially arranged along a substantially common central axis.
  • the damper body 89 and the spring body 88 shall be considered to be inline and arranged sequentially along a substantially common central axis when a central axis of the spring body 88 and a central axis of the damper body 89 are offset from one another by a maximum of 100% of the outside diameter of an inshaft 80. In other embodiments, the damper body 89 and the spring body 88 are offset from one another by a maximum of 50% of the outside diameter of the inshaft 80. In other embodiments, the damper body 89 and the spring body 88 are offset from one another by a maximum of 33% of the outside diameter of the inshaft 80.
  • the damper body 89 and the spring body 88 are offset from one another by a maximum of 25% of the outside diameter of the inshaft 80. In a preferred embodiment, the damper body 89 and the spring body 88 share a common central axis.
  • the inshaft 80 extends from the damper body 89, and an outshaft 90 extends into the damper body 89 and into the spring body 88.
  • the second shock mount 58 is formed at one end of the inshaft 80, and the inshaft 80 is pivotably connected to the shock connection pivot 60 by the second shock mount 58 such that the inshaft 80 and the outshaft 90 are compressible and extendable relative to the damper body 89 as the shock link 50 pivots about the shock link fixed pivot 52.
  • the damper body 89 is located between the spring body 88 and the second shock mount 58.
  • the shock absorber 44 includes a gas piston 81 with a larger radial cross-sectional area than a damper piston 83.
  • the shock absorber 44 includes a shaft seal 85.
  • the shaft seal 85 is used to seal damping fluid or gas inside the damper body 89 and/or inside the spring body 88 while allowing axial movement of an inshaft 80 and/or outshaft 90.
  • the shaft seal 85 can be located at one end of a spring body 88, while sealing gas inside the spring body 88 and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a damper body 89, while sealing damping fluid inside the damper body 89 and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a damper body 89, while sealing damping fluid inside the damper body 89 and allowing axial movement of an inshaft 80.
  • the shock absorber 44 may include one or any combination of shaft seals 85 at the locations described above.
  • the shock absorber 44 may include an inline shock absorber having a damper body 89 and a spring body 88 that are sequentially arranged along a substantially common central axis.
  • the shock absorber may further include an inshaft 80 that extends from the damper body 89, and an outshaft 90 that extends into the damper body 89 and into the spring body 88.
  • the second shock mount 58 is formed at one end of the inshaft 80, and the inshaft 80 is pivotably connected to the shock connection pivot 60 by the second shock mount 58 such that the inshaft 80 and the outshaft 90 are compressible and extendable relative to the damper body 89 as the shock link 50 pivots about the shock link fixed pivot 52.
  • the damper body 89 is located between the spring body 88 and the second shock mount 58.
  • the shock absorber 44 includes a gas piston 81 with a larger radial cross-sectional area than a damper piston 83.
  • the shock absorber 44 includes a shaft seal 85.
  • the shaft seal 85 is used to seal damping fluid or gas inside the damper body 89 and/or the spring body 88 while allowing axial movement of an inshaft 80 and/or outshaft 90.
  • the shaft seal 85 can be located at one end of a spring body 88, while sealing gas inside the spring body 88 and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a spring body 88, while sealing gas inside the spring body 88, and additionally sealing damping fluid inside the damper body 89, and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a damper body 89, while sealing damping fluid inside damper body 89 and allowing axial movement of an inshaft 80.
  • the shock absorber 44 may include one or any combination of shaft seals 85 at the locations described above.
  • the shock absorber 44 may include an inline shock absorber having a spring body 88 and a damper body 89 that are sequentially arranged along a substantially common central axis.
  • the shock absorber may further include an inshaft 80 that extends from the spring body 88, and an outshaft 90 that extends into the damper body 89 and into the spring body 88.
  • the second shock mount 58 is formed at one end of the inshaft 80, and the inshaft 80 is pivotably connected to the shock connection pivot 60 by the second shock mount 58 such that the inshaft 80 and the outshaft 90 are compressible and extendable relative to the spring body 88 as the shock link 50 pivots about the shock link fixed pivot 52.
  • FIG. 4C differs from the embodiment of FIG. 4A in that the spring body 88 is between the damper body 89 and the second shock mount 58.
  • the damper body 89 was located between the spring body 88 and the second shock mount 58.
  • the shock absorber 44 includes a gas piston 81 with a larger radial cross-sectional area than a damper piston 83.
  • the shock absorber 44 includes a shaft seal 85.
  • the shaft seal 85 is used to seal damping fluid or gas inside the spring body 88 and/or the damper body 89 while allowing axial movement of an inshaft 80 and/or outshaft 90.
  • the shaft seal 85 can be located at one end of a damper body 89, while sealing damping fluid or gas inside the damper body 89 and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a spring body 88, while sealing gas inside the spring body 88 and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a spring body 88, while sealing gas inside the spring body 88 and allowing axial movement of an inshaft 80.
  • the shock absorber 44 may include an inline shock absorber having a spring body 88 and a damper body 89 that are sequentially arranged along a substantially common central axis.
  • the shock absorber may further include the inshaft 80 that extends from the spring body 88, and an outshaft 90 that extends into the damper body 89 and into the spring body 88.
  • the second shock mount 58 is formed at one end of the inshaft 80, and the inshaft 80 is pivotably connected to the shock connection pivot 60 by the second shock mount 58 such that the inshaft 80 and the outshaft 90 are compressible and extendable relative to the spring body 88 as the shock link 50 pivots about the shock link fixed pivot 52.
  • FIG. 4D differs from the embodiments of FIG. 4B in that the spring body 88 is between the damper body 89 and the second shock mount 58.
  • the damper body 89 was located between the spring body 88 and the second shock mount 58.
  • the shock absorber 44 includes a shaft seal 85.
  • the shaft seal 85 is used to seal damping fluid or gas inside the spring body 88 and/or damper body 89 while allowing axial movement of an inshaft 80 and/or outshaft 90.
  • the shaft seal 85 can be located at one end of a damper body 89, while sealing damping fluid or gas inside the damper body 89 and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a damper body 89, while sealing damping fluid or gas inside the damper body 89, and additionally sealing gas inside the spring body 88, and allowing axial movement of an outshaft 90.
  • the shaft seal 85 can be located at one end of a spring body 88, while sealing gas inside spring body 88 and allowing axial movement of an inshaft 80.
  • the spring unit 48 may include an inshaft 180 that extends from the spring body 188.
  • the first spring mount 57 is located in close proximity to the spring body 188.
  • the second spring mount 59 is located in close proximity to one end of the inshaft 180, and the inshaft 180 is pivotably connected to the spring connection pivot 160 by the second spring mount 59 such that the inshaft 180 is compressible and extendable relative to the spring body 188 as the spring link 150 pivots about the spring link fixed pivot 152.
  • the embodiment of FIG. 4E differs from the embodiments of FIGS. 4A,B,C, and D in that there is no outshaft 90 or damper 94.
  • the spring unit 48 includes the shaft seal 185.
  • the shaft seal 185 is used to seal gas inside the spring body 188 while allowing axial movement of the inshaft 180.
  • the shaft seal 185 can be located at one end of a spring body 188, while sealing gas inside spring body 188 and allowing axial movement of an inshaft 180.
  • FIG. 5A illustrates the wheel suspension assembly of FIG. 2A, with the shock absorber of FIGS. 4A or 4B, in engineering symbols that distinguish a mechanical spring 47 (in this case a gas spring) and dashpot 49 (or damper) of the shock absorber 44.
  • the body of the dashpot 49 and one end of the mechanical spring 47 are connected to the first shock mount 56 to operably connect a gas spring with a damper to provide concurrent movement of spring and damper components during suspension compression and extension.
  • the mechanical spring 47 is located above the dashpot 49 in an inline configuration in this embodiment.
  • FIG. 5B illustrates the wheel suspension assembly of FIG. 2A, with the shock absorber of FIGS. 4C or 4D, in engineering symbols that distinguish a mechanical spring 47 and dashpot 49 of the shock absorber 44.
  • the body of the dashpot 49 and one end of the mechanical spring 47 are connected to the first shock mount 56 to operably connect a gas spring with a damper to provide concurrent movement of spring and damper components during suspension compression and extension.
  • the dashpot 49 is located above the mechanical spring 47 in an inline configuration in this embodiment.
  • FIG. 5C illustrates the wheel suspension assembly of FIG. 2B, with the spring unit 48 of FIG. 4E, in engineering symbols that distinguish a mechanical spring 47 of the spring unit 48.
  • the body of the mechanical spring 47 is connected to the first spring mount 57 to operably provide movement of spring components during suspension compression and extension.
  • control link 70 is pivotably mounted to the first arm 32 at the first arm control pivot 76 that is located between the first arm fixed pivot 40 and the first arm shock pivot 42, along a length of the first arm 32.
  • FIGS. 6A-6D several embodiments of structures are illustrated that may be used as the pivots (fixed and/or floating) described herein.
  • FIG. 6A illustrates a cardan pivot 100.
  • the cardan pivot includes a first member 101 and a second member 102 that are pivotably connected to one another by yoke 105 which comprises a first pin 103 and a second pin 104.
  • yoke 105 which comprises a first pin 103 and a second pin 104.
  • the first member 101 and the second member 102 may move relative to one another about an axis of the first pin 103 and/or about an axis of the second pin 104.
  • FIG. 6B illustrates a flexure pivot 200.
  • the flexure pivot 200 includes a flexible portion 203 disposed between a first member 201 and a second member 202.
  • the first member 201, the second member 202, and the flexible portion 203 may be integrally formed.
  • the first member 201, the second member 202, and the flexible portion 203 may be separate elements that are connected to one another.
  • the flexible portion 203 allows relative motion between the first member 201 and the second member 202 about the flexible portion 203.
  • the flexible portion 203 is more flexible than the members 201 and 202, permitting localized flexure at the flexible portion 203.
  • the flexible portion 203 is formed by a thinner portion of the overall structure.
  • the flexible portion 203 is thinned sufficiently to allow flexibility in the overall structure.
  • the flexible portion 203 is shorter than lOOmm.
  • the flexible portion 203 is shorter than 70mm.
  • the flexible portion 203 is shorter than 50mm.
  • the flexible portion 203 is shorter than 40mm.
  • the flexible portion 203 is shorter than 30mm. In certain other preferred embodiments, the flexible portion 203 is shorter than 25mm.
  • FIG 6C illustrates a bar pin pivot 300.
  • the bar pin pivot includes a first bar arm 301 and a second bar arm 302 that are rotatably connected to a central hub 303.
  • the central hub 303 allows the first bar arm 301 and the second bar arm 302 to rotate around a common axis.
  • FIG. 6D illustrates a post mount pivot 400.
  • the post mount pivot 400 includes a mounting stem 401 that extends from a first shock member 402.
  • the mounting stem 401 is connected to a structure 407 by a nut 404, one or more retainers 405, and one or more grommets 406.
  • the first shock member 402 is allowed relative movement by displacement of the grommets 406, which allows the mounting stem 401 to move relative to a structure 407 in at least one degree of freedom.
  • FIG. 7A illustrates a certain embodiment of the wheel suspension assembly in a front view, where a space between the first arm 32 and the second arm 33 of the steering fork 30, in part, defines a wheel opening 61.
  • the front wheel 14 moves within an envelope 15, during suspension compression and extension.
  • the wheel opening 61 allows clearance for the front wheel 14 so that the front wheel 14 does not contact the steering fork 30 during suspension compression and extension.
  • the shock absorber 44 is shown positioned on the first arm 32
  • the spring unit 48 is shown positioned on the second arm 33.
  • the shock link 50 (or the spring link 150) is pivotably connected to the first arm fixed pivot 40 or to the second arm fixed pivot 140 at the shock link fixed pivot 52, or at the spring link fixed pivot 152 such that the shock link 50(or the spring link 150) is rotatable about a first pivot axis 53a of the shock link fixed pivot 52(or of the spring link fixed pivot 152) and the shock link fixed pivot 52( or the spring link fixed pivot 152) remains in a fixed location relative to the first arm 32, or to the second arm 33, while the shock link 50 (or the spring link 150) is movable relative to the first arm 32, or to the second arm 33.
  • the shock absorber 44 includes the first shock mount 56 and the second shock mount 58, the first shock mount 56 being pivotably connected to the first arm 32 about a pivot axis 53c.
  • the second shock mount 58 is formed at one end of the inshaft 80, and the inshaft 80 is pivotably connected about the pivot axis 53a to the shock connection pivot 60 by the second shock mount 58 such that the inshaft 80 is compressible and extendable relative to the damper body 89 and spring body 88 as the shock link 50 pivots about the shock link fixed pivot 52.
  • the spring unit 48 includes the first spring mount 57 and the second spring mount 59, the first spring mount 57 being pivotably connected to the second arm 33 about a pivot axis 53b.
  • the second the second spring mount 59 is formed at one end of the inshaft 180, and the inshaft 180 is pivotably connected about the pivot axis 53a to the shock connection pivot 60 by the second spring mount 59 such that the inshaft 180 is compressible and extendable relative to the spring body 188 as the shock link 150 pivots about the spring link fixed pivot 152.
  • FIG. 7B illustrates the wheel suspension assembly of FIG. 7A, in a front view, with the shock absorber of FIGS. A-D, in engineering symbols that distinguish a mechanical spring 47 and dashpot 49 of the shock absorber 44.
  • the body of the dashpot 49 and one end of the mechanical spring 47 are connected to the first shock mount 56 to operably connect a gas spring with a damper to provide concurrent movement of spring and damper components during suspension compression and extension.
  • the dashpot 49 is located below the mechanical spring 47 in an inline configuration in this embodiment, but the dashpot 49 could be located above or concentric to the mechanical spring 47 in other configurations.
  • the front wheel 14 moves within the envelope 15, during suspension compression and extension.
  • the wheel opening 61 allows clearance for the front wheel 14 so that the front wheel 14 does not contact the steering fork 30 during suspension compression and extension.
  • the shock absorber 44 includes the mechanical spring 47 and the dashpot 49 is shown positioned on the first arm 32, and the spring unit 48 including a mechanical spring 47 is shown positioned on the second arm 33.
  • the shock absorber 44 could be positioned on the second arm 33, and a spring unit 48 could be positioned on the first arm 32.
  • the shock link 50 is pivotably connected to the first arm fixed pivot 40 at the shock link fixed pivot 52 such that the shock link 50 is rotatable about pivot axis 53d of the shock link fixed pivot 52 and the shock link fixed pivot 52 remains in a fixed location relative to the first arm 32, while the shock link 50 is movable relative to the first arm 32.
  • FIG. 8 illustrates in a side schematic view certain embodiments of wheel carriers of the suspension assembly.
  • a first wheel carrier 62 is illustrated, and it should be understood that the features of the first wheel carrier 62 can be similar or equivalent to the features of a second wheel carrier 162 as illustrated in other figures herein.
  • the wheel mount 68 can be located at any point attached to the first wheel carrier 62.
  • the wheel mount 68 can be located on either side of, or in-line with a line wheel carrier axis WC.
  • the wheel mount 68 can be located between a wheel carrier first pivot 64 and a wheel carrier second pivot 66 or the wheel mount 68 can be located not between a wheel carrier first pivot 64 and a wheel carrier second pivot 66.
  • a mechanical trail distance T initially increases due to the angular change in the steering axis S, which projects a bottom of the steering axis forward, relative to the wheel contact point 82 with the ground 84.
  • This increase in mechanical trail distance T also increases the caster effect by creating a larger moment arm, between the steering axis 82 and the wheel contact point 82, to correct off-center deflections of the wheel 14.
  • the wheel 14 becomes more statically and dynamically stable as the suspension assembly 46 compresses and the mechanical trail distance T increases.
  • mechanical trail distance T may increase, for example continuously increase, from a minimum value in the uncompressed state of the suspension assembly to a maximum value in the fully compressed state of the suspension assembly.
  • mechanical trail distance T may increase initially from the uncompressed state of the suspension assembly to a maximum value at a partially compressed intermediate state of the suspension assembly, and then mechanical trail distance T may decrease from the maximum value as the suspension assembly 46 continues compression from the partially compressed intermediate state to the fully compressed state.
  • suspension assembly 46 When the disclosed suspension assembly 46 is at a fully extended state (e.g., uncompressed), as illustrated in FIG. 9, for example, the steering axis S projects ahead of the contact point 82, where the wheel 14 contacts the ground 84. In various states of compression between uncompressed and fully compressed, suspension assembly compression can be measured as a component of linear distance that the wheel mount 68 moves in a travel direction 510 aligned with and parallel to the steering axis S. [00120] As the suspension assembly 46 initially begins to compress, the suspension assembly 46 moves through a partially compressed intermediate state, as illustrated in FIG.
  • the steering axis S projects farther ahead of the contact point 82 than in the fully extended state of FIG. 9, which results in a decrease of an offset distance 515 of the wheel mount and a corresponding increase in the mechanical trail distance T.
  • the offset distance 515 which is defined as the perpendicular distance between the steering axis S and a center of the wheel mount 68 of the front wheel 14, decreases as the suspension assembly 46 compresses.
  • the offset distance 515 generally decreases during suspension assembly compression because the wheel mount 68 moves in the aft direction, to the left in FIGS. 9-11.
  • FIGS. 9-11 In other embodiments, for example in the embodiments of FIGS.
  • the offset distance 515 can increase or decrease (e.g., move forward or aft (right or left respectively in FIGS. 12-14)), during suspension compression, depending on variables including wheel 14 diameter, steering angle 520, and initial mechanical trail distance T.
  • the mechanical trail distance T is larger in the partially compressed intermediate state of FIG. 10 than in the fully extended state of FIG. 9. This increase in mechanical trail distance T results in increased stability, as described above. This increased mechanical trail distance T, and corresponding increase in stability, is the opposite result of what happens when telescopic fork suspension assemblies compress, which is a reduced mechanical trail distance and thus, a reduction in stability. Increasing mechanical trail distance as the suspension assembly compresses is a significant performance advantage over existing suspension assemblies.
  • the increase in mechanical trail distance T as the suspension assembly 46 compresses advantageously increases wheel stability due to the increased caster effect. Compression is usually experienced during challenging riding conditions, such as braking, cornering, and shock absorbing, all of which benefit from the advantageously increased stability that results from the mechanical trail distance increase observed in the disclosed front wheel suspension assemblies.
  • the steering axis S projects even farther ahead of the contact point 82, which results in a further decrease of a wheel carrier displacement distance 515 and a corresponding further increase in the mechanical trail distance T.
  • the mechanical trail distance T is larger in the further compressed state of FIG. 11 than in the fully extended state of FIG. 9 or than in the partially compressed intermediate state of FIG. 10. This increase in mechanical trail distance T results in further increased stability.
  • increased mechanical trail distance T and thus increased stability, occur when the suspension assembly is in the further compressed state (FIG. 11).
  • the mechanical trail distance T may decrease between the further compressed state (FIG. 11) and a fully compressed state (not shown). In yet other embodiments, the mechanical trail distance T may continue to increase from the further compressed state (FIG. 11) to the fully compressed state (not shown).
  • the mechanical trail distance T As a function of suspension compression and link movement, the mechanical trail distance T, and the offset distance 515, vary as the suspension assembly compresses and extends. In some embodiments, the mechanical trail distance T may increase, for example continuously increase, from full extension to full compression. In some embodiments, the increase in mechanical trail distance T may occur at a non constant (e.g., increasing or decreasing) rate.
  • the mechanical trail distance T may increase initially as the suspension assembly compresses to the partially compressed intermediate state (FIG. 13), which results in an increased mechanical trail distance T.
  • the partially compressed intermediate state (FIG. 13) is a state of suspension assembly compression between the fully extended state (FIG. 12) and the fully compressed state (FIG. 14).
  • the wheel carrier 62 includes a wheel mount 68 that is located close to an axis drawn between the wheel carrier floating pivots 64, 66.
  • This location for the wheel mount 68 results in the wheel mount 68 crossing the steering axis during compression of the suspension assembly 46.
  • the wheel mount 68 is located on a first side (to the front or right side in FIG. 12) of the steering axis S and the offset distance 515 is positive (to the front or right of the steering axis S).
  • the mechanical trail distance T is correspondingly at a minimum value.
  • the wheel mount 68 moves aft (left in FIG. 13) and crosses the steering axis S to a second side (to the aft or left side in FIG. 13) and the offset distance 515 is reduced to the point that it becomes negative (to the aft or left of the steering axis S).
  • the front wheel displacement of the suspension assemblies described herein does not include any effects of a rear wheel suspension assembly.
  • a rear suspension assembly when present, will alter the various relative changes of the offset 515, mechanical trail distance T, the steering angle 520 as shown and described during compression of the suspension assembly.
  • the displacement of the suspension assemblies is shown and described herein as excluding any effects of a rear wheel suspension assembly.
  • the cycle can be described as being capable of front wheel suspension assembly displacement as described herein and/or as demonstrating the front wheel suspension assembly compression characteristics described herein when the rear suspension assembly characteristics and effects are subtracted from the overall performance of the cycle.
  • the disclosed wheel suspension assemblies can be designed to be lighter in weight, lower in friction, more compliant, safer, and perform better than traditional wheel suspension assemblies. [00131] The disclosed wheel suspension assemblies also reduce stiction and increase stability during braking, cornering, and shock absorption, when compared to traditional wheel suspension assemblies.
  • the disclosed wheel suspension assemblies are particularly well suited to E-bikes.
  • E-bikes are heavier and faster than typical mountain bikes. They are usually piloted by less skilled and less fit riders, and require a stronger front suspension to handle normal riding conditions.
  • E-bikes are difficult to build, requiring the challenging integration of motors and batteries into frame designs. In many cases, the electric parts are large and unsightly.
  • E-bikes are typically cost prohibitive to build as well, requiring special fittings to adapt motors and batteries.
  • the additional cost to the manufacturer is about double the price of a common bicycle frame. That cost is multiplied and passed onto the consumer.
  • the disclosed wheel suspension assemblies are easily retrofittable to traditional cycles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

L'invention concerne un ensemble suspension multibras à bras tirés (46) pour un cycle à stabilité améliorée, ledit ensemble suspension comprenant une fourche de direction (30) présentant un axe de direction (S), un premier bras (32) et un deuxième bras (33). Un amortisseur (44) présente une configuration en ligne, un ressort à gaz (92), un premier support amortisseur (56) et un deuxième support amortisseur (58). Un ensemble ressort (48) présente un ressort à gaz (192) comprenant un corps de ressort (188), un premier support de ressort (57) et un deuxième support de ressort (59). Une distance de chasse mécanique (T) augmente lorsque l'ensemble suspension se comprime par rapport à un état complètement étendu.
PCT/US2019/055915 2018-10-12 2019-10-11 Ensemble suspension double face pour roue de cycle WO2020077248A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/159,169 US20200079462A1 (en) 2018-09-07 2018-10-12 Dual sided suspension assembly for a cycle wheel
US16/159,169 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020077248A1 true WO2020077248A1 (fr) 2020-04-16

Family

ID=68425312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/055915 WO2020077248A1 (fr) 2018-10-12 2019-10-11 Ensemble suspension double face pour roue de cycle

Country Status (1)

Country Link
WO (1) WO2020077248A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110588A (ja) * 1983-11-22 1985-06-17 ヤマハ発動機株式会社 自動二輪車の前輪懸架装置
JPS61160380A (ja) * 1984-12-29 1986-07-21 本田技研工業株式会社 ボトムリンクトレ−リング式サスペンシヨン装置
JPS62187608A (ja) * 1986-02-13 1987-08-17 Honda Motor Co Ltd 車両の車輪懸架装置
JPS63112191U (fr) * 1987-01-16 1988-07-19
JPS649887U (fr) * 1987-07-07 1989-01-19
US5431426A (en) * 1993-09-16 1995-07-11 Ijams; Dav Anti-dive apparatus for bicycles
WO2002038437A1 (fr) * 2000-11-09 2002-05-16 Kendall Torry Peter Systeme de suspension
US20020079670A1 (en) * 2000-12-22 2002-06-27 Johnson Yih Shock absorbing device used in a bicycle to reduce shock transmitted to a handlebar

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110588A (ja) * 1983-11-22 1985-06-17 ヤマハ発動機株式会社 自動二輪車の前輪懸架装置
JPS61160380A (ja) * 1984-12-29 1986-07-21 本田技研工業株式会社 ボトムリンクトレ−リング式サスペンシヨン装置
JPS62187608A (ja) * 1986-02-13 1987-08-17 Honda Motor Co Ltd 車両の車輪懸架装置
JPS63112191U (fr) * 1987-01-16 1988-07-19
JPS649887U (fr) * 1987-07-07 1989-01-19
US5431426A (en) * 1993-09-16 1995-07-11 Ijams; Dav Anti-dive apparatus for bicycles
WO2002038437A1 (fr) * 2000-11-09 2002-05-16 Kendall Torry Peter Systeme de suspension
US20020079670A1 (en) * 2000-12-22 2002-06-27 Johnson Yih Shock absorbing device used in a bicycle to reduce shock transmitted to a handlebar

Similar Documents

Publication Publication Date Title
US10549812B2 (en) Inline shock absorber with gas spring for a cycle wheel suspension assembly
US10526040B2 (en) Inline shock absorber with gas spring for a cycle wheel suspension assembly
US10549813B2 (en) Inline shock absorber with coil spring for a cycle wheel suspension assembly
US10526039B2 (en) Suspension assembly for a cycle
US10549815B2 (en) Suspension assembly for a bicycle
US10518839B2 (en) Inline shock absorber with coil spring for a cycle wheel suspension assembly
US10518836B2 (en) Suspension assembly for a cycle
US10689061B2 (en) Suspension assembly for a cycle
US20210323632A1 (en) Dual sided suspension assembly for a cycle wheel
US11945539B2 (en) Dual sided suspension assembly for a cycle wheel
EP3856624B1 (fr) Ensemble de suspension de roue de cycle présentant des pistons à gaz dotés de zones de piston à gaz inégales
US10308312B2 (en) Suspension assembly for a cycle
US11230347B2 (en) Cycle wheel suspension assembly having gas pistons with unequal gas piston areas
US11230348B2 (en) Trailing link cycle wheel suspension assembly having gas pistons with unequal gas piston areas
US20200094908A1 (en) Simplified gas spring setup for a cycle wheel suspension
US20200094910A1 (en) Simplified gas spring setup for a cycle wheel suspension
US11084552B2 (en) Simplified gas spring setup for a trailing link cycle wheel suspension
US20200115001A1 (en) Suspension Assembly For A Cycle Having A Fork Arm With Dual Opposing Tapers
US20220204123A1 (en) Trailing link cycle wheel suspension assembly having gas pistons with unequal gas piston areas
WO2020077248A1 (fr) Ensemble suspension double face pour roue de cycle
WO2020077253A1 (fr) Amortisseur en ligne avec ressort à gaz pour ensemble suspension de roue de cycle
WO2020077205A1 (fr) Ensemble suspension pour cycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19797469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19797469

Country of ref document: EP

Kind code of ref document: A1