WO2020076075A1 - Qualitative and quantitative analysis method for high molecular weight additive by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometry - Google Patents

Qualitative and quantitative analysis method for high molecular weight additive by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometry Download PDF

Info

Publication number
WO2020076075A1
WO2020076075A1 PCT/KR2019/013248 KR2019013248W WO2020076075A1 WO 2020076075 A1 WO2020076075 A1 WO 2020076075A1 KR 2019013248 W KR2019013248 W KR 2019013248W WO 2020076075 A1 WO2020076075 A1 WO 2020076075A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
high molecular
weight additive
chimasorb
sec
Prior art date
Application number
PCT/KR2019/013248
Other languages
French (fr)
Korean (ko)
Inventor
제갈선영
김병현
김동현
이유라
유현식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190124406A external-priority patent/KR102512578B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/963,685 priority Critical patent/US11408864B2/en
Publication of WO2020076075A1 publication Critical patent/WO2020076075A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a qualitative and quantitative analysis method of a high molecular weight additive in a polymer resin, and an analytical system used therein, more specifically, continuously connected size exclusion chromatography (SEC) -pyrolysis-gas chromatography / mass spectrometer ( Py-GC / MS) relates to a method for obtaining qualitative and quantitative information of a high molecular weight additive in a polymer resin and an analysis system used therein.
  • SEC size exclusion chromatography
  • Py-GC / MS mass spectrometer
  • additives in polymer resins are further separated by gas or liquid chromatography after pretreatment such as solvent extraction, soxhlet extraction, and reprecipitation, and structured through spectral analysis. Conduct the analysis.
  • solvent extraction method it takes a lot of time and manpower to use an excessive amount of solvent and to determine an appropriate analytical process for each polymer material.
  • An object of the present invention is to provide a qualitative and quantitative analysis method of a high molecular weight additive that was not easy to perform qualitative and quantitative analysis by conventional chromatography, MALDI-TOF MS, NMR spectroscopy, and the like.
  • the present invention is a high molecular weight additive, specifically, piperidine (piperidine), morpholine (morpholine), such as a high molecular weight additive containing a high molecular weight additive having a residue (moiety) chromatography chromatography (SEC) is introduced to separate high molecular weight additives, and the separated high molecular weight additives are introduced into a pyrolysis-gas chromatography / mass spectrometer (Py-GC / MS) to decompose into relatively low molecular weight compounds.
  • piperidine piperidine
  • morpholine such as a high molecular weight additive containing a high molecular weight additive having a residue (moiety) chromatography chromatography (SEC) is introduced to separate high molecular weight additives, and the separated high molecular weight additives are introduced into a pyrolysis-gas chromatography / mass spectrometer (Py-GC / MS) to decompose into relatively low molecular weight
  • the present invention provides an analysis system used for qualitative and quantitative analysis of high molecular weight additives in polymer resins, including size exclusion chromatography, sample collection and automatic injectors, pyrolysis, and gas chromatography / mass spectrometry. .
  • Figure 1 shows the total ion chromatogram (TIC) (b) and mass spectrum (MS) (c) as SEC data (a) and Py-GC / MS data of Chimasorb R 2020 standard and Nylon-6 sample.
  • FIG. 3 is SEC data (a) of Chimasorb R 119 standard, total ion chromatography (TIC) (b) and mass spectrum (MS) (c) as Py-GC / MS data, and structure (d) of Chimasorb R 119 It shows.
  • FIG. 4 is SEC data (a) of the Cyasorb R UV 3345 standard, total ion chromatography (TIC) (b) and mass spectrum (MS) (c) as Py-GC / MS data, and the structure of Cyasorb R UV 3345 ( d).
  • FIG. 5 shows Py-GC / MS selected ion monitoring (SIM) data (a) and characteristic peak mass spectrometry spectrum (b) of the Chimasorb R 2020 standard and Nylon-6 samples by concentration.
  • SIM selected ion monitoring
  • Figure 7 shows the mass spectrometry obtained with MALDI-TOF MS for the Nylon-6 sample.
  • FIG. 8 shows the 1 H NMR spectrum (a) and the 2D 1 H- 13 C heteronuclear single quantum correlation (HSQC) spectrum (b) obtained for the Nylon-6 sample and the additive standard.
  • HSQC heteronuclear single quantum correlation
  • the present invention is intended to exemplify certain embodiments, as various transformations can be applied and various embodiments can be applied. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In the description of the present invention, when it is determined that a detailed description of known technologies related to the present invention may obscure the subject matter of the present invention, the detailed description will be omitted.
  • the high molecular weight additive in the polymer resin was difficult to obtain composition information easily by chromatography due to its large molecular weight and macromolecular structure, and it was also analyzed through additional experiments using MALDI-TOF MS or 2D nuclear magnetic resonance spectroscopy. It was not easy to secure. Accordingly, there is a need for an analysis method capable of securing qualitative and quantitative analysis results of high molecular weight additives in a polymer resin.
  • SEC-Py-GC / MS system is used to secure SEC-Py-GC / MS data of high molecular weight additives among polymer resins, and based on this, polymer resins containing high molecular weight additives to be analyzed are of low molecular weight. It provides an analytical method and an analytical system that can be used to secure qualitative and quantitative analysis results of the high molecular weight additive by detecting it by pyrolysis with a compound.
  • the present invention relates to a method for analyzing a high molecular weight additive containing a moiety such as piperidine, morpholine, etc. in a polymer resin sample, wherein the analysis method includes the following steps do:
  • a specific fraction corresponding to the high molecular weight additive among fractions generated by introducing a high molecular weight additive containing residues such as piperidine and morpholine into SEC in the polymer resin sample is Py-GC / Introduced to Microsoft.
  • the thermally decomposed fraction shows a large number of peaks as a result of GC, and among them, characteristic peaks are detected to obtain a mass spectrometry spectrum.
  • the characteristic fragment peaks identified in the mass spectrometry spectrum are derived from residues such as piperidine and morpholine of the high molecular weight additive, and the m / z value of each peak is compared with the characteristic m / z value of a standard product.
  • the structure of the additive can be confirmed.
  • the area of the fragment peaks in the mass spectrometry spectrum is summed and quantitatively analyzed by substituting it into a calibration line representing the peak area for the concentration of the standard product.
  • the molecular weight of the high molecular weight additive may be 1,000 to 4,000 g / mol, in particular 1,300 to 3,500 g / mol.
  • the high molecular weight additive is a hindered amine light stabilizer (HALS).
  • HALS hindered amine light stabilizer
  • the hindered amine light stabilizer may be Chimasorb R 2020, Chimasorb R 119 and Cyasorb R UV 3345.
  • the high molecular weight additive is Chimasorb R 2020, and characteristic fragment peaks comprising its piperidine residue appear at m / z 58, 98, 124 and 140.
  • the high molecular weight additive is Chimasorb R 119, and characteristic fragment peaks comprising its piperidine residue appear at m / z 58, 98, 124, 140 and 152.
  • the high molecular weight additive is Cyasorb R UV 3345, and characteristic fragment peaks comprising its morpholine residues appear at m / z 58, 98, 124, 138, 267, 279 and 336.
  • the high molecular weight additive may be contained in an amount of 0.3 to 0.7% by weight based on the weight of the polymer resin.
  • the polymer resin may be a water-insoluble resin.
  • a non-polar solvent such as water, methanol, acetonitrile (AN), tetrahydrofuran (THF) or the like may be used.
  • the mobile phase is tetrahydrofuran (THF).
  • step (1) the size exclusion chromatography (SEC) automatically separates the polymer sample at 0.5 to 1 minute intervals, for example, at 0.7 minute intervals, in a 15 to 30 minute interval after the start of separation. .
  • SEC size exclusion chromatography
  • Ar or He is used as the carrier gas for pyrolysis in step (2) above.
  • the pyrolysis in step (2) is carried out by raising the temperature from 100 to 800 ° C at a rate of 50 to 80 ° C / sec.
  • pyrolysis may be performed by heating at a rate of 100 ° C to 60 ° C / sec and maintaining it at 600 ° C for 60 seconds.
  • the components separated out through size exclusion chromatography (SEC) in step (1) above are automatically captured in a vial and injected into a subsequent analyzer connected in series.
  • SEC size exclusion chromatography
  • the present invention provides an analysis system used for qualitative and quantitative analysis of high molecular weight additives in polymer resins, including size exclusion chromatography, sample collection and automatic injectors, pyrolysis, and gas chromatography and mass spectrometry. do.
  • -Chimasorb R 2020 standard was completely dissolved in tetrahydrofuran (THF) at concentrations of 1, 10, 20 and 40 mg / mL, respectively.
  • GC / MS-QP2020 was analyzed using GC / MS-QP2020 from Shimadzu.
  • a GC column an RTX TM -5MS column (length 30 m, I.D. 0.25 mm, thickness 0.25 ⁇ m, capillary) was used, and helium (He) was flowed at 1.0 mL / min as a carrier gas of the pyrolysis device.
  • the oven temperature was maintained at 50 ° C. for 5 minutes, and then heated to 320 ° C. at 10 ° C. per minute and maintained for 10 minutes.
  • the temperature condition of the pyrolyzer was increased from 100 ° C. (0 min) at a rate of 60 ° C. per second and maintained at 600 ° C. for 60 seconds.
  • the solvent vent time was 300 seconds.
  • Chimasorb R 2020 has a molecular weight of 2600 to 3400 g / mol and confirmed characteristic m / z values of 58, 98, 124 and 140 (see FIG. 1).
  • Chimasorb R 119 has a molecular weight of 2285.68 g / mol and characteristic m / z values of 58, 98, 124, 140, and 152 (see FIG. 3).
  • Cyasorb R UV 3345 has a molecular weight of 1600 g / mol% and characteristic m / z values of 58, 98, 124, 138, 267, 279, and 336 (see FIG. 4).
  • Example 1 Chimasorb using SEC-Py-GC / MS continuously connected R Qualitative analysis of 2020
  • Chimasorb R 2020 molecular weight 2600 to 3400 g / mol
  • pretreated Nylon-6 sample into SEC to separate Chimasorb R 2020
  • the separated Chimasorb R 2020 was introduced into Py-GC / MS.
  • Chimasorb R in the same manner as that identified as 2020 standard, with a retention time (retention time) by the detecting the 28.2 min peak was analyzed by mass it. Characteristic peaks from residues containing piperidine in the mass spectrometry spectrum were identified at m / z 58, 98, 124 and 140.
  • the Py-GC / MS SIM data and characteristic peak mass spectra of the Chimasorb R 2020 standard and Nylon-6 samples by concentration are shown in FIG. 5.
  • the black line of the peak area (count) for the concentration of the Chimasorb R 2020 standard is shown in FIG. 6.
  • Comparative Example 1 Analysis of high molecular weight additive using MALDI-TOF MS
  • Example 1 in the same manner as Chimasorb R 2020 in a (molecular weight of 2600 to 3400g / mol) of Chimasorb R 2020 by using a MALDI-TOF MS according to the prior art intended for Nylon-6 sample containing 0.4 wt.% Qualitative analysis.
  • Comparative Example 2 Analysis of high molecular weight additive using 2D nuclear magnetic resonance spectroscopy (2D NMR spectroscopy)
  • Example 2 the same procedure as in Example 1 was performed on the Nylon-6 sample containing 0.4% by weight of Chimasorb R 2020 (molecular weight 2600 to 3400 g / mol), followed by pretreatment with a solvent extraction method according to the prior art and two-dimensional nuclear magnetic resonance spectroscopy. Chimasorb R 2020 was analyzed using.
  • a polymer resin containing a high molecular weight additive having a specific residue such as pyrimidine and morpholine is used as a low molecular weight compound using a continuously connected size exclusion chromatography-pyrolysis-gas chromatography / mass spectrometer. By decomposition, it was possible to confirm the structure of the high molecular weight additive and analyze its content.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention relates to a method for securing qualitative and quantitative information of a high molecular weight additive in a polymer resin by using consecutively connected size-exclusion chromatography (SEC)-pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS), and an analysis system used therefor. By analyzing a high molecular weight additive having a specific residue by pyrolyzing the high molecular weight additive into a low molecular weight compound, the present invention can secure the structure and content analysis information of the high molecular weight additive, which were difficult to secure by means of conventional analysis methods.

Description

크기 배제 크로마토그래피-열분해-가스 크로마토그래피/질량분석기를 이용한 고분자량 첨가제의 정성 및 정량 분석방법Qualitative and quantitative analysis of high molecular weight additives using size exclusion chromatography-pyrolysis-gas chromatography / mass spectrometry
본 출원은 2018년 10월 11일자로 출원된 한국특허출원 10-2018-0120966호 및 2019년 10월 8일자로 출원된 한국특허출원 10-2019-0124406호에 기초한 우선권의 이익을 주장하며, 상기 특허문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0120966 filed on October 11, 2018 and Korean Patent Application No. 10-2019-0124406 filed on October 8, 2019, above All contents disclosed in the patent document are included as part of the present specification.
본 발명은 고분자 수지 중 고분자량 첨가제의 정성 및 정량 분석방법, 및 이에 사용되는 분석 시스템에 관한 것으로, 보다 구체적으로는 연속적으로 연결된 크기 배제 크로마토그래피(SEC)-열분해-가스 크로마토그래피/질량분석기(Py-GC/MS)를 이용해 고분자 수지 중 고분자량 첨가제의 정성적 및 정량적 정보를 확보하는 방법 및 이에 사용되는 분석 시스템에 관한 것이다.The present invention relates to a qualitative and quantitative analysis method of a high molecular weight additive in a polymer resin, and an analytical system used therein, more specifically, continuously connected size exclusion chromatography (SEC) -pyrolysis-gas chromatography / mass spectrometer ( Py-GC / MS) relates to a method for obtaining qualitative and quantitative information of a high molecular weight additive in a polymer resin and an analysis system used therein.
일반적으로 고분자 수지 중의 첨가제는 용매 추출법(solvent extraction), 속실렛 추출법(soxhlet extraction), 재침전법(reprecipitation) 등과 같은 전처리 과정 후, 기체 또는 액체 크로마토그래피를 이용하여 추가로 분리하고 분광분석을 통해 구조분석을 진행한다. 그런데, 용매 추출법의 경우 과량의 용매를 사용하고 고분자 재료별로 적합한 분석 공정을 결정하기 까지 많은 시간과 인력이 요구된다. 또한, 고분자량 첨가제의 경우, 이의 큰 분자량과 거대 분자구조로 인해 크로마토그래피법으로 용이하게 조성 정보를 확보하기 어려운 경우가 있고, 그러한 경우 MALDI-TOF MS(matrix assisted laser desorption ionization-time of flight mass spectrometry) 또는 2차원 핵자기공명 분광법(2-dimentional nuclear magnetic resonance(NMR) spectroscopy) 등을 이용한 추가 실험을 통해 조성 정보의 확보를 시도하기도 하나, 첨가제의 함량이 적거나 혼합물의 경우 조성 정보 확보가 어렵고 정량적 정보의 정확도가 떨어진다.In general, additives in polymer resins are further separated by gas or liquid chromatography after pretreatment such as solvent extraction, soxhlet extraction, and reprecipitation, and structured through spectral analysis. Conduct the analysis. However, in the case of the solvent extraction method, it takes a lot of time and manpower to use an excessive amount of solvent and to determine an appropriate analytical process for each polymer material. In addition, in the case of a high molecular weight additive, due to its large molecular weight and large molecular structure, it is sometimes difficult to easily obtain composition information by chromatography, and in such a case, MALDI-TOF MS (matrix assisted laser desorption ionization-time of flight mass) Although additional experiments using spectrometry or 2-dimensional nuclear magnetic resonance (NMR) spectroscopy are attempted to secure compositional information, it is difficult to obtain compositional information in case of low additive content or mixture It is difficult and the accuracy of quantitative information is poor.
따라서, 기존의 크로마토그래피법, MALDI-TOF MS, NMR 분광법 등의 분석에 의해 분석 정보의 확보가 용이하지 않았던 고분자량 첨가제의 구조분석 결과를 확보하고 고분자 수지 중 고분자량 첨가제의 함량을 측정할 수 있는 방법의 개발이 요구되고 있다.Therefore, it is possible to secure structural analysis results of high molecular weight additives that were not easy to secure analysis information by analyzing conventional chromatography, MALDI-TOF MS, NMR spectroscopy, etc., and measure the content of high molecular weight additives in polymer resins. There is a need to develop an existing method.
본 발명의 목적은 기존의 크로마토그래피법, MALDI-TOF MS, NMR 분광법 등으로 정성 및 정량 분석이 용이하지 않았던 고분자량 첨가제의 정성 및 정량 분석방법을 제공하는 것이다.An object of the present invention is to provide a qualitative and quantitative analysis method of a high molecular weight additive that was not easy to perform qualitative and quantitative analysis by conventional chromatography, MALDI-TOF MS, NMR spectroscopy, and the like.
상기 목적을 달성하기 위하여, 본 발명은 고분자량 첨가제, 구체적으로 피페리딘(piperidine), 모르포린(morpholine) 등의 잔기(moiety)를 갖는 고분자량 첨가제를 포함하는 고분자 수지 시료를 크기 배제 크로마토그래피(SEC)에 도입하여 고분자량 첨가제를 분리하고, 분리된 고분자량 첨가제를 열분해-가스 크로마토그래피/질량분석기(Py-GC/MS)에 도입하여 상대적으로 낮은 분자량의 화합물들로 분해시켜 이들 구조 중의 피페리딘, 모르포린 등의 잔기에서 유래되는 프래그먼트 피크들(fragment peaks)을 검출함으로써 고분자량 첨가제의 정성적 정보를 얻고, 상기 프래그먼트 피크들의 면적의 합을 기초로 고분자량 첨가제의 정량적 정보를 얻는 방법을 제공한다.To achieve the above object, the present invention is a high molecular weight additive, specifically, piperidine (piperidine), morpholine (morpholine), such as a high molecular weight additive containing a high molecular weight additive having a residue (moiety) chromatography chromatography (SEC) is introduced to separate high molecular weight additives, and the separated high molecular weight additives are introduced into a pyrolysis-gas chromatography / mass spectrometer (Py-GC / MS) to decompose into relatively low molecular weight compounds. By detecting fragment peaks derived from residues such as piperidine and morpholine, qualitative information of a high molecular weight additive is obtained, and quantitative information of a high molecular weight additive is obtained based on the sum of the areas of the fragment peaks. Provides a method.
또한, 본 발명은 크기 배제 크로마토그래피, 시료 분취 및 자동 주입기, 열분해기, 및 가스 크로마토그래피/질량분석기를 포함하는, 고분자 수지 중 고분자량 첨가제의 정성 및 정량 분석방법에 사용되는 분석 시스템을 제공한다.In addition, the present invention provides an analysis system used for qualitative and quantitative analysis of high molecular weight additives in polymer resins, including size exclusion chromatography, sample collection and automatic injectors, pyrolysis, and gas chromatography / mass spectrometry. .
본 발명에 따르면, 피페리딘, 모르포린 등의 잔기를 갖는 고분자량 첨가제를 포함하는 고분자 수지를 낮은 분자량의 화합물로 열분해시켜 얻은 질량분석 스펙트럼에서 상기 잔기로부터 유래되는 프래그먼트 피크들을 검출하고 이를 이용함으로써 상기 고분자량 첨가제의 정성분석 및 정량분석이 가능하다.According to the present invention, by detecting and using fragment peaks derived from the residue in the mass spectrometry spectrum obtained by thermally decomposing a polymer resin containing a high molecular weight additive having a residue such as piperidine, morpholine, etc. with a low molecular weight compound Qualitative and quantitative analysis of the high molecular weight additive is possible.
도 1은 Chimasorb R 2020 표준품과 Nylon-6 시료의 SEC 데이터(a), 그리고 Py-GC/MS 데이터로서 토탈이온크로마토그램(TIC)(b) 및 질량 스펙트럼(MS)(c)를 나타낸 것이다.Figure 1 shows the total ion chromatogram (TIC) (b) and mass spectrum (MS) (c) as SEC data (a) and Py-GC / MS data of Chimasorb R 2020 standard and Nylon-6 sample.
도 2는 특징적인 m/z 값에 근거한 Chimasorb R 2020의 추정 구조를 나타낸 것이다.2 shows an estimated structure of Chimasorb R 2020 based on characteristic m / z values.
도 3은 Chimasorb R 119 표준품의 SEC 데이터(a), Py-GC/MS 데이터로서 토탈이온크로마토그램(TIC)(b) 및 질량 스펙트럼(MS)(c), 및 Chimasorb R 119의 구조(d)를 나타낸 것이다.Figure 3 is SEC data (a) of Chimasorb R 119 standard, total ion chromatography (TIC) (b) and mass spectrum (MS) (c) as Py-GC / MS data, and structure (d) of Chimasorb R 119 It shows.
도 4는 Cyasorb R UV 3345 표준품의 SEC 데이터(a), Py-GC/MS 데이터로서 토탈이온크로마토그램(TIC)(b) 및 질량 스펙트럼(MS)(c), 및 Cyasorb R UV 3345의 구조(d)를 나타낸 것이다.Figure 4 is SEC data (a) of the Cyasorb R UV 3345 standard, total ion chromatography (TIC) (b) and mass spectrum (MS) (c) as Py-GC / MS data, and the structure of Cyasorb R UV 3345 ( d).
도 5는 농도별 Chimasorb R 2020 표준품과 Nylon-6 시료의 Py-GC/MS SIM(selected ion monitoring) 데이터(a) 및 특징적 피크 질량분석 스펙트럼(b)을 나타낸 것이다.FIG. 5 shows Py-GC / MS selected ion monitoring (SIM) data (a) and characteristic peak mass spectrometry spectrum (b) of the Chimasorb R 2020 standard and Nylon-6 samples by concentration.
도 6은 Chimasorb R 2020 표준품의 농도에 대한 피크 면적(count)을 나타낸 검정선이다.6 is a calibration line showing the peak area (count) for the concentration of Chimasorb R 2020 standard.
도 7은 Nylon-6 시료에 대해 MALDI-TOF MS로 수득한 질량분석 스펙트럼을 나타낸 것이다.Figure 7 shows the mass spectrometry obtained with MALDI-TOF MS for the Nylon-6 sample.
도 8은 Nylon-6 시료와 첨가제 표준품에 대해 수득한 1H NMR 스펙트럼(a) 및 2차원 1H- 13C HSQC(heteronuclear single quantum correlation) 스펙트럼(b)을 나타낸 것이다.FIG. 8 shows the 1 H NMR spectrum (a) and the 2D 1 H- 13 C heteronuclear single quantum correlation (HSQC) spectrum (b) obtained for the Nylon-6 sample and the additive standard.
이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시양태를 가질 수 있는 바, 특정 실시양태들을 예시하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention is intended to exemplify certain embodiments, as various transformations can be applied and various embodiments can be applied. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In the description of the present invention, when it is determined that a detailed description of known technologies related to the present invention may obscure the subject matter of the present invention, the detailed description will be omitted.
종래 기술에서는 고분자 수지 중 고분자량 첨가제는 이의 큰 분자량과 거대 분자구조로 인해 크로마토그래피법으로 용이하게 조성 정보를 확보하기 어려웠고 MALDI-TOF MS 또는 2차원 핵자기공명 분광법을 이용한 추가 실험을 통해서도 분석 정보 확보가 용이하지 않았다. 이에, 고분자 수지 내 고분자량 첨가제의 정성 및 정량 분석 결과의 확보가 가능한 분석방법이 요구되고 있는 실정이다.In the prior art, the high molecular weight additive in the polymer resin was difficult to obtain composition information easily by chromatography due to its large molecular weight and macromolecular structure, and it was also analyzed through additional experiments using MALDI-TOF MS or 2D nuclear magnetic resonance spectroscopy. It was not easy to secure. Accordingly, there is a need for an analysis method capable of securing qualitative and quantitative analysis results of high molecular weight additives in a polymer resin.
본 발명에서는 SEC-Py-GC/MS 시스템을 이용하여 고분자 수지 중 고분자량 첨가제의 SEC-Py-GC/MS 데이터를 확보하고 이를 바탕으로 분석하고자 하는 고분자량 첨가제를 포함하는 고분자 수지를 낮은 분자량의 화합물로 열분해시켜 검출함으로써 해당 고분자량 첨가제의 정성 및 정량분석 결과를 확보할 수 있는 분석방법 및 이에 사용되는 분석 시스템을 제공한다. In the present invention, SEC-Py-GC / MS system is used to secure SEC-Py-GC / MS data of high molecular weight additives among polymer resins, and based on this, polymer resins containing high molecular weight additives to be analyzed are of low molecular weight. It provides an analytical method and an analytical system that can be used to secure qualitative and quantitative analysis results of the high molecular weight additive by detecting it by pyrolysis with a compound.
구체적으로, 본 발명은 고분자 수지 시료 중 피페리딘(piperidine), 모르포린(morpholine) 등의 잔기(moiety)를 포함하는 고분자량 첨가제의 분석방법에 관한 것이며, 상기 분석방법은 하기의 단계들을 포함한다:Specifically, the present invention relates to a method for analyzing a high molecular weight additive containing a moiety such as piperidine, morpholine, etc. in a polymer resin sample, wherein the analysis method includes the following steps do:
(1) 상기 시료를 크기 배제 크로마토그래피(SEC)에 도입하여 고분자량 첨가제를 분리하는 단계;(1) separating the high molecular weight additive by introducing the sample into size exclusion chromatography (SEC);
(2) 분리된 고분자량 첨가제를열분해-가스 크로마토그래피/질량 분석기(Py-GC/MS)에 도입하여 질량분석 스펙트럼을 수득하는 단계;(2) introducing the separated high molecular weight additive to pyrolysis-gas chromatography / mass spectrometry (Py-GC / MS) to obtain a mass spectrometry spectrum;
(3) 상기 질량분석 스펙트럼에서 피페리딘, 모르포린 등의 잔기에서 유래되는 프래그먼트 피크들(fragment peaks)을 검출함으로써 정성분석하는 단계; 및(3) qualitative analysis by detecting fragment peaks derived from residues such as piperidine and morpholine in the mass spectrometry spectrum; And
(4) 상기 프래그먼트 피크들의 면적의 합을 기초로 정량분석하는 단계.(4) Quantitative analysis based on the sum of the areas of the fragment peaks.
본 발명에 따르면, 먼저 고분자 수지 시료 중 피페리딘, 모르포린 등의 잔기를 포함하는 고분자량 첨가제를 SEC에 도입하여 나오는 분획들(fractions) 중 고분자량 첨가제에 해당하는 특정 분획을 Py-GC/MS에 도입한다. 열분해된 상기 분획은 GC 결과 다수의 피크들을 나타내는데, 이들 중 특징적인 피크를 검출하여 이에 대한 질량분석 스펙트럼을 수득한다. 상기 질량분석 스펙트럼에서 확인되는 특징적인 프래그먼트 피크들은 고분자량 첨가제의 피페리딘, 모르포린 등의 잔기에서 유래되는 것으로 각 피크의 m/z 값을 표준품의 특징적인 m/z 값과 비교함으로써 고분자량 첨가제의 구조를 확인할 수 있다. 이어서, 상기 질량분석 스펙트럼에서의 프래그먼트 피크들의 면적을 합하고 이를 표준품의 농도에 대한 피크 면적을 나타내는 검정선에 대입하여 정량분석한다.According to the present invention, first, a specific fraction corresponding to the high molecular weight additive among fractions generated by introducing a high molecular weight additive containing residues such as piperidine and morpholine into SEC in the polymer resin sample is Py-GC / Introduced to Microsoft. The thermally decomposed fraction shows a large number of peaks as a result of GC, and among them, characteristic peaks are detected to obtain a mass spectrometry spectrum. The characteristic fragment peaks identified in the mass spectrometry spectrum are derived from residues such as piperidine and morpholine of the high molecular weight additive, and the m / z value of each peak is compared with the characteristic m / z value of a standard product. The structure of the additive can be confirmed. Subsequently, the area of the fragment peaks in the mass spectrometry spectrum is summed and quantitatively analyzed by substituting it into a calibration line representing the peak area for the concentration of the standard product.
한 실시양태에서, 상기 고분자량 첨가제의 분자량은 1,000 내지 4,000 g/mol, 상세하게는 1,300 내지 3,500 g/mol 일 수 있다.In one embodiment, the molecular weight of the high molecular weight additive may be 1,000 to 4,000 g / mol, in particular 1,300 to 3,500 g / mol.
한 실시양태에서, 상기 고분자량 첨가제는 힌더드 아민 광안정화제(hindered amine light stabilizer, HALS)이다. In one embodiment, the high molecular weight additive is a hindered amine light stabilizer (HALS).
한 실시양태에서, 상기 힌더드 아민 광안정화제는 Chimasorb R 2020, Chimasorb R 119 및 Cyasorb R UV 3345일 수 있다.In one embodiment, the hindered amine light stabilizer may be Chimasorb R 2020, Chimasorb R 119 and Cyasorb R UV 3345.
한 실시양태에서, 상기 고분자량 첨가제는 Chimasorb R 2020이고, 이의 피페리딘 잔기를 포함하는 특징적인 프래그먼트 피크들이 m/z 58, 98, 124 및 140에서 나타난다.In one embodiment, the high molecular weight additive is Chimasorb R 2020, and characteristic fragment peaks comprising its piperidine residue appear at m / z 58, 98, 124 and 140.
한 실시양태에서, 상기 고분자량 첨가제는 Chimasorb R 119이고, 이의 피페리딘 잔기를 포함하는 특징적인 프래그먼트 피크들이 m/z 58, 98, 124, 140 및 152에서 나타난다.In one embodiment, the high molecular weight additive is Chimasorb R 119, and characteristic fragment peaks comprising its piperidine residue appear at m / z 58, 98, 124, 140 and 152.
한 실시양태에서, 상기 고분자량 첨가제는 Cyasorb R UV 3345이고, 이의 모르포린 잔기를 포함하는 특징적인 프래그먼트 피크들이 m/z 58, 98, 124, 138, 267, 279 및 336에서 나타난다.In one embodiment, the high molecular weight additive is Cyasorb R UV 3345, and characteristic fragment peaks comprising its morpholine residues appear at m / z 58, 98, 124, 138, 267, 279 and 336.
한 실시양태에서, 상기 고분자량 첨가제는 고분자 수지의 중량을 기준으로 하여 0.3 내지 0.7 중량%의 양으로 함유될 수 있다.In one embodiment, the high molecular weight additive may be contained in an amount of 0.3 to 0.7% by weight based on the weight of the polymer resin.
한 실시양태에서, 상기 고분자 수지는 수불용성 수지일 수 있다.In one embodiment, the polymer resin may be a water-insoluble resin.
한 실시양태에서, 상기 단계 (1)에서 크기 배제 크로마토그래피의 이동상으로는 비극성 용매, 예를 들어, 물, 메탄올, 아세토니트릴(AN), 테트라하이드로푸란(THF) 등으로부터 선택된 것을 사용할 수 있다. 다른 실시양태에서, 상기 이동상은 테트라하이드로푸란(THF)이다.In one embodiment, as the mobile phase of the size exclusion chromatography in step (1), a non-polar solvent such as water, methanol, acetonitrile (AN), tetrahydrofuran (THF) or the like may be used. In other embodiments, the mobile phase is tetrahydrofuran (THF).
한 실시양태에서, 상기 단계 (1)에서 상기 크기 배제 크로마토그래피(SEC)는 고분자 시료를 분리 시작 후 15 내지 30분 구간에서 0.5 내지 1분 간격으로, 예를 들어, 0.7분 간격으로 자동분취한다.In one embodiment, in step (1), the size exclusion chromatography (SEC) automatically separates the polymer sample at 0.5 to 1 minute intervals, for example, at 0.7 minute intervals, in a 15 to 30 minute interval after the start of separation. .
한 실시양태에서, 상기 단계 (2)에서 열분해용 캐리어 가스로서 Ar 또는 He가 사용된다.In one embodiment, Ar or He is used as the carrier gas for pyrolysis in step (2) above.
한 실시양태에서, 상기 단계 (2)에서 열분해는 100 내지 800℃에서 50 내지 80℃/sec의 속도로 승온시켜 수행한다. 예컨대, 열분해는 100℃에서부터 60℃/sec의 속도로 승온하여 600℃에서 60초 동안 유지함으로써 수행될 수 있다.In one embodiment, the pyrolysis in step (2) is carried out by raising the temperature from 100 to 800 ° C at a rate of 50 to 80 ° C / sec. For example, pyrolysis may be performed by heating at a rate of 100 ° C to 60 ° C / sec and maintaining it at 600 ° C for 60 seconds.
한 실시양태에서, 상기 단계 (1)에서 크기 배제 크로마토그래피(SEC)를 통해 분리되어 나온 성분들은 바이알에 자동으로 포집되고 연속적으로 연결된 후속 분석기기에 주입된다.In one embodiment, the components separated out through size exclusion chromatography (SEC) in step (1) above are automatically captured in a vial and injected into a subsequent analyzer connected in series.
추가로, 본 발명은 크기 배제 크로마토그래피, 시료 분취 및 자동 주입기, 열분해기, 및 가스 크로마토그래피 및 질량분석기를 포함하는, 고분자 수지 중 고분자량 첨가제의 정성 및 정량 분석방법에 사용되는 분석 시스템을 제공한다.In addition, the present invention provides an analysis system used for qualitative and quantitative analysis of high molecular weight additives in polymer resins, including size exclusion chromatography, sample collection and automatic injectors, pyrolysis, and gas chromatography and mass spectrometry. do.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it is apparent to those skilled in the art that various changes and modifications are possible within the scope and technical scope of the present invention. It is natural that such changes and modifications fall within the scope of the appended claims.
실시예Example
1. 시료 및 표준품의 전처리1. Preparation of samples and standards
1.1 표준품의 전처리1.1 Pretreatment of standard products
- Chimasorb R 2020 표준품을 테트라하이드로푸란(THF)에 각각 1, 10, 20 및 40mg/mL의 농도로 완전히 용해시켰다.-Chimasorb R 2020 standard was completely dissolved in tetrahydrofuran (THF) at concentrations of 1, 10, 20 and 40 mg / mL, respectively.
- Chimasorb R 119 표준품 및 Cyasorb UV 3345 표준품을 THF에 10mg/mL의 농도로 완전히 용해시켰다.-Chimasorb R 119 standard and Cyasorb UV 3345 standard were completely dissolved in THF at a concentration of 10 mg / mL.
1.2 시료의 전처리1.2 Sample preparation
냉동 분쇄된 Nylon-6 수지 2g을 10mL의 클로로포름에 첨가하고 4시간 동안 쉐이킹(shaking)하였다. 이 용액을 원심분리하여 상기 수지 부분을 침전시킨 후 용액 부분을 분취하였다. 분취한 용액을 상온에서 N 2 퍼징(purging)을 통해 용매를 제거하였다. 이어서, 1mL의 THF를 첨가하여 완전히 용해시킨 후 시료 용액으로서 사용하였다. 이 시료는 Chimasorb R 2020을 0.4중량%의 양으로 포함한 것이다.2 g of freeze-crushed Nylon-6 resin was added to 10 mL of chloroform and shaken for 4 hours. After centrifuging the solution to precipitate the resin portion, the solution portion was fractionated. The aliquot was removed at room temperature through N 2 purging. Subsequently, 1 mL of THF was added to completely dissolve and used as a sample solution. This sample contains Chimasorb R 2020 in an amount of 0.4% by weight.
2. SEC 분석 조건2. SEC analysis conditions
Shimadzu사의 Prominence HPLC 시스템을 이용하여 분석하였다. 컬럼은 Agilent사의 PLgel MIXED-B(길이 300mm, I.D. 7.5mm, 입자 크기: 10μm)와 PLgel MIXED-C(길이 300mm, I.D. 7.5mm, 입자 크기: 5μm)를 사용하였다. 이동상으로 테트라하이드로푸란(tetrahydrofuran, HPLC용) 100%를 사용하였고, 주입량(injection volume)은 50μL, 유속(flow rate)은 1mL/min으로 조절하였다. 분획(fraction)은 분리 시작 후 15.8분 내지 20.0분 구간에서 0.7분 간격으로 6개를 분취하였다.It was analyzed using Shimadzu's Prominence HPLC system. For the column, Agilent's PLgel MIXED-B (length 300 mm, I.D. 7.5 mm, particle size: 10 μm) and PLgel MIXED-C (length 300 mm, I.D. 7.5 mm, particle size: 5 μm) were used. Tetrahydrofuran (tetrahydrofuran, HPLC) 100% was used as the mobile phase, the injection volume was adjusted to 50 μL, and the flow rate was adjusted to 1 mL / min. Six fractions were collected at 0.7 minute intervals in the 15.8 to 20.0 minute section after the start of separation.
3. Py-GC/MS 분석 조건3. Py-GC / MS analysis conditions
Shimadzu사의 GC/MS-QP2020을 사용하여 분석하였다. GC 컬럼으로는 RTX™-5MS 컬럼(길이 30m, I.D. 0.25mm, 두께 0.25μm, capillary)을 사용하였고, 열분해기의 캐리어 가스로는 헬륨(He)을 1.0mL/min으로 흘려 주었다. 오븐 온도는 50℃에서 5분 유지한 후 분당 10℃씩 320℃까지 승온시킨 후 10분 동안 유지하였다. 열분해기(pyrolyzer)의 온도 조건은 100℃(0min)에서부터 초당 60℃의 속도로 상승시켜 600℃에서 60초 동안 유지하였다. 용매 배출 시간(solvent vent time)은 300초였다.It was analyzed using GC / MS-QP2020 from Shimadzu. As a GC column, an RTX ™ -5MS column (length 30 m, I.D. 0.25 mm, thickness 0.25 μm, capillary) was used, and helium (He) was flowed at 1.0 mL / min as a carrier gas of the pyrolysis device. The oven temperature was maintained at 50 ° C. for 5 minutes, and then heated to 320 ° C. at 10 ° C. per minute and maintained for 10 minutes. The temperature condition of the pyrolyzer was increased from 100 ° C. (0 min) at a rate of 60 ° C. per second and maintained at 600 ° C. for 60 seconds. The solvent vent time was 300 seconds.
4. HALS계 고분자량 첨가제의 데이터베이스화4. HALS-based high molecular weight additive database
Chimasorb R 2020, Chimasorb R 119 및 Cyasorb R UV 3345 각각의 표준품의 LC-Py-GC/MS 데이터를 확보하여 데이터베이스(D/B)화하였다. Chimasorb R 2020은 분자량이 2600 내지 3400g/mol이며 특징적인 m/z 값인 58, 98, 124 및 140을 확인하였다(도 1 참조). 참고로, Chimasorb R 119는 분자량이 2285.68g/mol이며 특징적인 m/z 값인 58, 98, 124, 140 및 152을 확인하였다(도 3 참조). Cyasorb R UV 3345는 분자량이 1600g/mol%이며 특징적인 m/z 값인 58, 98, 124, 138, 267, 279 및 336을 확인하였다(도 4 참조). LC-Py-GC / MS data of each standard product of Chimasorb R 2020, Chimasorb R 119 and Cyasorb R UV 3345 was obtained and database (D / B) was made. Chimasorb R 2020 has a molecular weight of 2600 to 3400 g / mol and confirmed characteristic m / z values of 58, 98, 124 and 140 (see FIG. 1). For reference, Chimasorb R 119 has a molecular weight of 2285.68 g / mol and characteristic m / z values of 58, 98, 124, 140, and 152 (see FIG. 3). Cyasorb R UV 3345 has a molecular weight of 1600 g / mol% and characteristic m / z values of 58, 98, 124, 138, 267, 279, and 336 (see FIG. 4).
한편, Chimasorb R 2020에 대한 SEC 및 Py-GC/MS 데이터는 아래 실시예 1과 관련하여 기술한다.Meanwhile, SEC and Py-GC / MS data for Chimasorb R 2020 are described in connection with Example 1 below.
실시예 1: 연속적으로 연결된 SEC-Py-GC/MS를 이용한 ChimasorbExample 1: Chimasorb using SEC-Py-GC / MS continuously connected RR 2020의 정성분석 Qualitative analysis of 2020
시료로서 Chimasorb R 2020(분자량 2600 내지 3400g/mol) 0.4중량%를 포함하는, 위의 "1.2 시료의 전처리"에 기재한 바와 같이 전처리된 Nylon-6 시료를 SEC에 도입하여 Chimasorb R 2020을 분리한 후, 분리된 Chimasorb R 2020을 Py-GC/MS에 도입하였다. Chimasorb R 2020의 GC로부터, Chimasorb R 2020 표준품으로 확인되는 것과 동일하게, 머무름 시간(retention time)이 28.2분인 피크를 검출하여 이를 질량분석하였다. 질량분석 스펙트럼에서 피페리딘을 포함하는 잔기로부터의 특징적인 피크들이 m/z 58, 98, 124 및 140에서 확인되었다. As a sample, 0.4% by weight of Chimasorb R 2020 (molecular weight 2600 to 3400 g / mol), as described in "Pretreatment of 1.2 Sample" above, introduced pretreated Nylon-6 sample into SEC to separate Chimasorb R 2020 Then, the separated Chimasorb R 2020 was introduced into Py-GC / MS. From GC of Chimasorb R 2020, Chimasorb R in the same manner as that identified as 2020 standard, with a retention time (retention time) by the detecting the 28.2 min peak was analyzed by mass it. Characteristic peaks from residues containing piperidine in the mass spectrometry spectrum were identified at m / z 58, 98, 124 and 140.
Chimasorb R 2020 표준품과 상기 시료의 SEC 데이터를 도 1a에, Py-GC/MS 데이터로서 열분해에서 발생된 가스의 TIC(total ion chromatogram) 및 질량 스펙트럼(mass spectrum)을 각각 도 1b 및 도 1c에 나타내었다. 또한, 상기 질량 스펙트럼의 m/z 값에 근거한 Chimasorb R 2020의 추정 구조를 도 2에 나타냈다.The SEC data of the Chimasorb R 2020 standard and the sample are shown in Fig. 1A, and the total ion chromatogram (TIC) and mass spectrum of the gas generated in pyrolysis as Py-GC / MS data are shown in Figs. 1B and 1C, respectively. Did. In addition, the estimated structure of Chimasorb R 2020 based on the m / z value of the mass spectrum is shown in FIG. 2.
실시예 2: ChimasorbExample 2: Chimasorb RR 2020의 정량분석 Quantitative analysis of 2020
농도별(1, 10, 20 및 40mg/mL THF) Chimasorb R 2020 표준품과 Nylon-6 시료의 SEC의 분획 3, 4 및 5에 대한 Py-GC/MS에서 질량값(m/z)을 SIM(selected ion monitoring)으로 140에서 추출하였다. 분획 3, 4 및 5에서 검출되는 Chimasorb R 2020 표준품에 대해 농도와 피크 면적(count) 간의 직선성(linearity)을 확인하였다(R 2=0.963).Simulate the mass value (m / z) in Py-GC / MS for fractions 3, 4 and 5 of SEC of Chimasorb R 2020 standard and Nylon-6 samples by concentration (1, 10, 20 and 40 mg / mL THF) selected ion monitoring). Linearity between concentration and peak area was confirmed for the Chimasorb R 2020 standard detected in fractions 3, 4 and 5 (R 2 = 0.963).
Chimasorb R 2020 표준품과 Nylon-6 시료 모두 SEC의 특징적인 분획 5에 대한 Py-GC/MS에서 특징적인 피크 3개가 머무름 시간(retention time) 24.1분, 26.6분 및 28.2분에서 m/z 140으로 확인되었다. 검출된 각 피크의 면적과 농도간의 상관관계를 확인하고 Nylon-6 시료를 적용하여 시료 중 Chimasorb R 2020의 함량을 계산한 결과, 0.49중량%로 확인되었다.Three characteristic peaks in Py-GC / MS for characteristic fraction 5 of SEC for both the Chimasorb R 2020 standard and Nylon-6 samples were confirmed to be m / z 140 at retention times of 24.1 minutes, 26.6 minutes and 28.2 minutes. Became. After confirming the correlation between the area and concentration of each detected peak and applying the Nylon-6 sample, the content of Chimasorb R 2020 in the sample was calculated, which was confirmed to be 0.49% by weight.
농도별 Chimasorb R 2020 표준품과 Nylon-6 시료의 Py-GC/MS SIM 데이터 및 특징적 피크 질량분석 스펙트럼을 도 5에 나타냈다. 또한, Chimasorb R 2020 표준품의 농도에 대한 피크 면적(count)의 검정선을 도 6에 나타냈다.The Py-GC / MS SIM data and characteristic peak mass spectra of the Chimasorb R 2020 standard and Nylon-6 samples by concentration are shown in FIG. 5. In addition, the black line of the peak area (count) for the concentration of the Chimasorb R 2020 standard is shown in FIG. 6.
비교예 1: MALDI-TOF MS를 이용한 고분자량 첨가제의 분석Comparative Example 1: Analysis of high molecular weight additive using MALDI-TOF MS
본 비교예에서는 실시예 1에서와 동일하게 Chimasorb R 2020(분자량 2600 내지 3400g/mol) 0.4중량%를 포함하는 Nylon-6 시료를 대상으로 종래 기술에 따라 MALDI-TOF MS를 이용하여 Chimasorb R 2020을 정성분석하였다.This comparative example, Example 1 in the same manner as Chimasorb R 2020 in a (molecular weight of 2600 to 3400g / mol) of Chimasorb R 2020 by using a MALDI-TOF MS according to the prior art intended for Nylon-6 sample containing 0.4 wt.% Qualitative analysis.
Nylon-6 시료에 대해 MALDI-TOF MS로 수득한 질량분석 스펙트럼에서 1363Da 간격의 2개의 피크([M+H] +=1062, 2425)가 생성되었고 이는 Chimasorb R 2020에 해당하는 것으로 추정할 수 있었다. 상기 질량 스펙트럼을 도 7에 나타냈으며, [M+H] +=1062 및 2425에서 검출된 Chimasorb R 2020의 구조식은 아래와 같다:Two peaks ([M + H] + = 1062, 2425) at 1363 Da intervals were generated in the mass spectrometry spectrum obtained with MALDI-TOF MS for Nylon-6 samples, which could be estimated to correspond to Chimasorb R 2020. . The mass spectrum is shown in FIG. 7, and the structural formula of Chimasorb R 2020 detected at [M + H] + = 1062 and 2425 is as follows:
Figure PCTKR2019013248-appb-img-000001
Figure PCTKR2019013248-appb-img-000001
비교예 2: 2차원 핵자기공명 분광법(2D NMR spectroscopy)을 이용한 고분자량 첨가제의 분석Comparative Example 2: Analysis of high molecular weight additive using 2D nuclear magnetic resonance spectroscopy (2D NMR spectroscopy)
본 비교예에서는 실시예 1에서와 동일하게 Chimasorb R 2020(분자량 2600 내지 3400g/mol) 0.4중량%를 포함하는 Nylon-6 시료를 대상으로 종래 기술에 따라 용매 추출법으로 전처리하고 2차원 핵자기공명 분광법을 이용하여 Chimasorb R 2020을 분석하였다.In this comparative example, the same procedure as in Example 1 was performed on the Nylon-6 sample containing 0.4% by weight of Chimasorb R 2020 (molecular weight 2600 to 3400 g / mol), followed by pretreatment with a solvent extraction method according to the prior art and two-dimensional nuclear magnetic resonance spectroscopy. Chimasorb R 2020 was analyzed using.
Nylon-6 시료와 첨가제 표준품에 대해 수득한 1H NMR 스펙트럼 및 2차원 1H- 13C HSQC(heteronuclear single quantum correlation) 스펙트럼에서는 고분자 수지 시료 내 고분자량 첨가제와 관련된 피크는 확인되지 않았고, 용매 추출법 적용 시 사용한 용매 내 첨가제에서 비롯한 성분들의 존재가 확인되었다. 상기 1H NMR 스펙트럼 및 2차원 1H- 13C HSQC 스펙트럼을 도 8에 나타냈다.In the 1 H NMR spectrum and 2D 1 H- 13 C HSQC (heteronuclear single quantum correlation) spectrum obtained for the Nylon-6 sample and the additive standard, peaks related to the high molecular weight additive in the polymer resin sample were not identified, and solvent extraction was applied. The presence of components, including additives in the solvent used, was confirmed. The 1 H NMR spectrum and the 2D 1 H- 13 C HSQC spectrum are shown in FIG. 8.
본 비교예에서는 정성 및 정량 결과 확보가 불가능하였는데, 이는 첨가제의 양이 1중량% 미만으로 적고 용매추출법에 사용된 용매 등과의 혼합물로 인해 피크 어싸인먼트(peak assignment)가 어려웠기 때문인 것으로 보여진다.In this comparative example, it was impossible to secure qualitative and quantitative results, because the amount of the additive was less than 1% by weight and the peak assignment was difficult due to the mixture with the solvent used in the solvent extraction method. .
상기 실시예 및 비교예로부터 알 수 있듯이, 종래 MALDI-TOF MS에 의한 고분자 시료 중 고분자량 첨가제의 정량분석 및 2D NMR 분광법에 의한 고분자 시료 중 고분자량 첨가제의 정성 및 정량 분석은 정확한 결과를 얻기 어렵다. 반면, 본 발명에 따르면 연속적으로 연결된 크기 배제 크로마토그래피-열분해-가스 크로마토그래피/질량분석기를 이용하여 피리미딘, 모르포린 등의 특정 잔기를 갖는 고분자량 첨가제를 포함하는 고분자 수지를 낮은 분자량의 화합물로 분해시킴으로써 고분자량 첨가제의 구조를 확인하고 함량을 분석하는 것이 가능하였다.As can be seen from the above examples and comparative examples, quantitative analysis of high molecular weight additives in polymer samples by conventional MALDI-TOF MS and qualitative and quantitative analysis of high molecular weight additives in polymer samples by 2D NMR spectroscopy are difficult to obtain accurate results. . On the other hand, according to the present invention, a polymer resin containing a high molecular weight additive having a specific residue such as pyrimidine and morpholine is used as a low molecular weight compound using a continuously connected size exclusion chromatography-pyrolysis-gas chromatography / mass spectrometer. By decomposition, it was possible to confirm the structure of the high molecular weight additive and analyze its content.
이상으로 본 발명 내용의 특정한 부분을 실시예를 통해 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention are described in detail through examples. For those skilled in the art, these specific techniques are only preferred embodiments, and the scope of the present invention is limited thereby. No, it will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

  1. 고분자 수지 시료 중 피페리딘(piperidine) 또는 모르포린(morpholine) 잔기(moiety)를 포함하는 고분자량 첨가제의 분석방법으로서, As a method for analyzing a high molecular weight additive containing a piperidine or morpholine residue in a polymer resin sample,
    (1) 상기 시료를 크기 배제 크로마토그래피(SEC)에 도입하여 고분자량 첨가제에 해당되는 분획(fraction)을 분리하는 단계;(1) separating a fraction corresponding to a high molecular weight additive by introducing the sample into size exclusion chromatography (SEC);
    (2) 상기 분리된 고분자량 첨가제의 분획을 열분해-가스 크로마토그래피/질량 분석기(Py-GC/MS)에 도입하여 열분해하고, 열분해된 화합물에 대한 질량분석 스펙트럼을 수득하는 단계;(2) pyrolyzing the fraction of the separated high molecular weight additive by pyrolysis-gas chromatography / mass spectrometry (Py-GC / MS) to obtain a mass spectrometry spectrum for the pyrolized compound;
    (3) 상기 질량분석 스펙트럼에서 피페리딘 또는 모르포린 잔기에서 유래되는 프래그먼트 피크들(fragment peaks)의 m/z 값을 표준폼의 m/z 값과 비교하여 고분자량 첨가제의 구조를 확인함으로써 정성분석하는 단계; 및(3) Qualitative by confirming the structure of the high molecular weight additive by comparing the m / z value of fragment peaks derived from piperidine or morpholine residues in the mass spectrometry spectrum with the m / z value of the standard foam. Analyzing; And
    (4) 상기 프래그먼트 피크들의 면적을 합하고, 이를 표준폼의 농도에 대한 피크 면적을 나타내는 검정선에 대입하여 정량분석하는 단계를 포함하는 분석방법.(4) The analysis method including the step of adding the areas of the fragment peaks and quantitatively analyzing them by substituting them into a black line representing the peak area for the concentration of the standard foam.
  2. 제1항에 있어서, 상기 고분자량 첨가제의 분자량이 1,000 내지 4,000 g/mol인 분석방법.The method of claim 1, wherein the molecular weight of the high molecular weight additive is 1,000 to 4,000 g / mol.
  3. 제1항에 있어서, 상기 고분자량 첨가제가 Chimasorb R 2020, Chimasorb R 119, Cyasorb R UV 3345 또는 이들의 혼합물로부터 선택되는 힌더드 아민 광안정화제(hindered amine light stabilizer, HALS)인 것인 분석방법.The method according to claim 1, wherein the high molecular weight additive is a hindered amine light stabilizer (HALS) selected from Chimasorb R 2020, Chimasorb R 119, Cyasorb R UV 3345 or mixtures thereof.
  4. 제3항에 있어서, 상기 힌더드 아민 광안정화제가 Chimasorb R 2020인 것인 분석방법.The method according to claim 3, wherein the hindered amine light stabilizer is Chimasorb R 2020.
  5. 제1항에 있어서, 상기 고분자량 첨가제가 Chimasorb R 2020이고, 이의 프래그먼트 피크들이 m/z 58, 98, 124 및 140에서 나타나는 것인 분석방법.The method according to claim 1, wherein the high molecular weight additive is Chimasorb R 2020, and its fragment peaks appear at m / z 58, 98, 124 and 140.
  6. 제1항에 있어서, 상기 고분자량 첨가제는 고분자 수지의 중량을 기준으로 하여 0.3 내지 0.7중량%의 양으로 함유되는 것인 분석방법. The method of claim 1, wherein the high molecular weight additive is contained in an amount of 0.3 to 0.7% by weight based on the weight of the polymer resin.
  7. 제1항에 있어서, 상기 고분자 수지는 수불용성 수지인 것인 분석방법.The method of claim 1, wherein the polymer resin is a water-insoluble resin.
  8. 제1항에 있어서, 상기 단계 (1)에서 크기 배제 크로마토그래피(SEC)는 이동상으로 물, 메탄올, 아세토니트릴(AN) 및 테트라하이드로푸란(THF)으로 이루어진 군에서 선택된 용매를 사용하는 것인 분석방법.The analysis of claim 1, wherein in step (1), size exclusion chromatography (SEC) uses a solvent selected from the group consisting of water, methanol, acetonitrile (AN) and tetrahydrofuran (THF) as the mobile phase. Way.
  9. 제1항에 있어서, 상기 단계 (1)에서 크기 배제 크로마토그래피(SEC)는 고분자 시료를 분리 시작 후 15 내지 30분의 구간에서 0.5 내지 1분 간격으로 자동분취하는 것인 분석방법.The method of claim 1, wherein in step (1), size exclusion chromatography (SEC) automatically separates the polymer sample at intervals of 0.5 to 1 minute in a period of 15 to 30 minutes after separation starts.
  10. 제1항에 있어서, 상기 단계 (2)에서 열분해는 100 내지 800℃에서 50 내지 80℃/sec의 속도로 승온시켜 수행하는 것인 분석방법.The method according to claim 1, wherein the thermal decomposition in step (2) is performed by raising the temperature at a rate of 50 to 80 ° C / sec at 100 to 800 ° C.
  11. 제10항에 있어서, 상기 단계 (2)에 열분해는 100℃에서부터 60℃/sec의 속도로 승온하여 600℃에서 60초 동안 유지함으로써 수행되는 분석방법.11. The method according to claim 10, wherein the thermal decomposition in step (2) is performed by raising the temperature from 100 ° C. to 60 ° C./sec at 600 ° C. for 60 seconds.
  12. 크기 배제 크로마토그래피;Size exclusion chromatography;
    시료 분취 및 자동 주입기;Sample collection and automatic injector;
    열분해기; 및 Pyrolysis machine; And
    가스 크로마토그래피/질량분석기를 포함하는, 제1항에 따른 분석방법에 사용되는 분석 시스템.An analytical system used in the analytical method according to claim 1, comprising a gas chromatography / mass spectrometer.
PCT/KR2019/013248 2018-10-11 2019-10-10 Qualitative and quantitative analysis method for high molecular weight additive by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometry WO2020076075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/963,685 US11408864B2 (en) 2018-10-11 2019-10-10 Qualitative and quantitative analysis method for high molecular weight additive by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometry

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0120966 2018-10-11
KR20180120966 2018-10-11
KR1020190124406A KR102512578B1 (en) 2018-10-11 2019-10-08 Qualitative-quantitative analysis methods of high molecular weight additives by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometer
KR10-2019-0124406 2019-10-08

Publications (1)

Publication Number Publication Date
WO2020076075A1 true WO2020076075A1 (en) 2020-04-16

Family

ID=70164147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013248 WO2020076075A1 (en) 2018-10-11 2019-10-10 Qualitative and quantitative analysis method for high molecular weight additive by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometry

Country Status (1)

Country Link
WO (1) WO2020076075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526040A (en) * 2020-12-16 2021-03-19 杭州汇健科技有限公司 Saliva or urine metabolism spectrum molecular weight calibrator kit and preparation method and use method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208081A (en) * 2011-03-30 2012-10-25 Shimadzu Corp Quantitative method of additive in resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208081A (en) * 2011-03-30 2012-10-25 Shimadzu Corp Quantitative method of additive in resin

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRANDER, ERIC: "The identification and quantification of a high molecular weight light stabilizer in polycarbonate by application of an online coupling of size exclusion chromatography in stopped flow mode with pyrolysis gas chromatography time of flight mass spectroscopy", JOURNAL OF CHROMATOGRAPYH A, pages 309 - 312, XP055704447 *
COILIER, L.: "Identification and quantification of (polymeric) hindered-amine light stabilizers in polymers using pyrolysis-gas chromatography-mass spectrometry and liquid chromatography-ultraviolet absorbance detection- evaporative light scattering detection", JOURNAL OF CHROMATOGRAPHY A, 2005, pages 227 - 238, XP055704443 *
JANSSON, KAREN D.: "Determination of polymer additives using analytical pyrolysis", JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, pages 353 - 361, XP022062381 *
KAAL, ERWIN R.: "On-line size exclusion chromatography-pyrolysis-gas chromatography-mass spectrometry for copolymer characterization and additive analysis", JOURNAL OF CHROMATOGRAPHY A, 2007, pages 182 - 189, XP005879727 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526040A (en) * 2020-12-16 2021-03-19 杭州汇健科技有限公司 Saliva or urine metabolism spectrum molecular weight calibrator kit and preparation method and use method thereof
CN112526040B (en) * 2020-12-16 2022-07-26 杭州汇健科技有限公司 Saliva or urine metabolism spectrum molecular weight calibrator kit and preparation method and use method thereof

Similar Documents

Publication Publication Date Title
US5191211A (en) Thermal desorption method for separating volatile additives from vulcanizable rubber
WO2020076075A1 (en) Qualitative and quantitative analysis method for high molecular weight additive by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometry
Moore et al. Determination of manufacturing impurities in heroin by capillary gas chromatography with electron capture detection after derivatization with heptafluorobutyric anhydride
Smittenberg et al. Rapid isolation of biomarkers for compound specific radiocarbon dating using high-performance liquid chromatography and flow injection analysis–atmospheric pressure chemical ionisation mass spectrometry
Morello et al. Signature profiling and classification of illicit heroin by GC‐MS analysis of acidic and neutral manufacturing impurities
Barnfield et al. The routine profiling of forensic heroin samples
Ludlow et al. Size-exclusion chromatography with on-line ultraviolet, proton nuclear magnetic resonance and mass spectrometric detection and on-line collection for off-line Fourier transform infrared spectroscopy
WO2019240349A1 (en) Method for detecting aldehyde and ketone by using thin layer chromatography
Thompson et al. Carbon and nitrogen isotopic analysis of morphine from opium and heroin samples originating in the four major heroin producing regions
WO2016200099A2 (en) Method for examining human saliva by using sugar chains specific to human saliva
WO2010140774A2 (en) Protein analysis method in which a data-independent analysis method and a data-dependent analysis method are combined
KR102401907B1 (en) Analysis method of molecular weight by component of polymer compounds and analysis system used in the method
WO2020055207A1 (en) Method for analyzing molecular weight of each component of polymer compound, and analysis system used therefor
WO2011081329A2 (en) Method for discovering pharmacologically active substance of natural products using high resolution mass spectrometry and pharmacological activity test
Phillips Jr et al. Tandem mass spectrometry (MS/MS) utilizing electron impact ionization and multiple reaction monitoring for the rapid, sensitive, and specific identification and quantitation of morphine in whole blood
KR102512578B1 (en) Qualitative-quantitative analysis methods of high molecular weight additives by using size-exclusion chromatography-pyrolysis-gas chromatography/mass spectrometer
Valentour et al. Cocaine and benzoylecgonine determinations in postmortem samples by gas chromatography
Nakamura et al. Forensic identification of heroin in illicit preparations using integrated gas chromatography and mass spectrometry
WO2020204373A2 (en) Apparatus for diagnosing solid cancers and method for providing information on solid cancer diagnosis
Le Pogam et al. Implementation of an MS/MS Spectral Library for Monoterpene Indole Alkaloids
CN108490085B (en) Rapid fingerprint identification detection method for distinguishing lignite
CN105675789A (en) LC-Q-TOF/MS detection technology for 544 pesticide residues in melon vegetables
CN109298123A (en) A kind of novel thin layer chromatogram scanner and the analysis method using the scanner
CN114062557B (en) Detection method for degradation impurities in mizoribine bulk drug
Rasanen et al. Comparison of four homologous retention index standard series for gas chromatography of basic drugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870790

Country of ref document: EP

Kind code of ref document: A1