WO2020075967A1 - Dodecyl sulfate-doped poly(3,4-ethylenedioxythiophene) film and manufacturing method therefor - Google Patents

Dodecyl sulfate-doped poly(3,4-ethylenedioxythiophene) film and manufacturing method therefor Download PDF

Info

Publication number
WO2020075967A1
WO2020075967A1 PCT/KR2019/010583 KR2019010583W WO2020075967A1 WO 2020075967 A1 WO2020075967 A1 WO 2020075967A1 KR 2019010583 W KR2019010583 W KR 2019010583W WO 2020075967 A1 WO2020075967 A1 WO 2020075967A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedot
dodecyl sulfate
film
pedot film
metal salt
Prior art date
Application number
PCT/KR2019/010583
Other languages
French (fr)
Korean (ko)
Inventor
이정원
김성수
마펑
Original Assignee
(주)플렉솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)플렉솔루션 filed Critical (주)플렉솔루션
Priority to US17/284,069 priority Critical patent/US20210317277A1/en
Priority to JP2021520422A priority patent/JP7148719B2/en
Publication of WO2020075967A1 publication Critical patent/WO2020075967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • B05D2701/30Coatings being able to withstand changes in the shape of the substrate or to withstand welding withstanding bending
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a PEDOT film having excellent properties and a method for manufacturing the same, and more particularly, to a PEDOT film doped with dodecyl sulfate and a method for manufacturing the same.
  • Organic conductive materials (organic conductive material) is attracting attention as an electrode material of various electronic devices, including flexible devices (flexible device) due to the characteristics of flexibility, light weight, low cost.
  • organic conductive material In order for the organic conductive material to be used as an electrode material, high electrical conductivity is required.
  • 'PEDOT' poly (3,4-ethylenedioxythiophene)
  • PEDOT has a small band gap energy of about 1.5 to 1.7 eV, is transparent, and has excellent thermal stability and stability in the air, so organic transistors, photovoltaic devices, displays, and organic light emitting diodes (OLEDs) It is attracting attention as a transparent flexible electrode of various devices.
  • the methods of forming the PEDOT film include electropolymerization (EP), vapor-phase polymerization (VP), and solution casting polymerization (SCP).
  • EP electropolymerization
  • VP vapor-phase polymerization
  • SCP solution casting polymerization
  • the electropolymerization method has a limitation that it can be coated only on a conductive surface, and the solution-casting polymerization method requires a high level of technology to obtain a homogeneous film, and the pot life of the polymerization mixture is short, so that it is 10 to 20 minutes. Later, there is a problem that insoluble PEDOT aggregates are formed in the solution.
  • the gas phase polymerization method is a method of polymerizing on a substrate coated with an oxidizing agent by vaporizing EDOT, a monomer of PEDOT, and has the advantage of being able to obtain a high purity homogeneous PEDOT film relatively easily.
  • the PEDOT film obtained by the gas phase polymerization method is generally superior to the case of using other methods.
  • the electrical conductivity of the PEDOT film reported to date is not enough to replace the metal electrode, and it is recognized as an important task to further improve the electrical conductivity of the PEDOT film. Further, in order to apply the PEDOT film to a flexible device, a display, a bio device, etc., mechanical durability, visible light transmittance, aqueous solution resistance, etc. must also be secured.
  • the oxidizing agent plays a very important role as a polymerization initiator, and anion of the oxidizing agent is a key material acting as a dopant for the polymer.
  • oxidizing agents include FeCl 3 , H 2 O 2 , CuCl 2 , HAuCl 4 , Fe (III) Tosylate (Fe (Tos) 3 ), iron (III) fluoromethanesulfonate (Fe (OTf) 3 ), iron (III) There are fluride (FeF 3 ), etc., but these oxidizing agents are highly reactive and crystallize easily, making it difficult to efficiently control the polymerization and reaction of PEDOT and generate defects in the film, making it unsuitable as an oxidizing agent for forming a high-quality PEDOT film. In addition, easily crystallized oxidizing agents have limitations in synthesizing a high-conductivity polymer film because they prevent efficient doping of oxidant anions when the polymer film is grown.
  • Inhibitors such as diurethanediol (DUDO), poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol) (PEG-PPG-PEG), to lower the high acidity and control reactivity Is usually used, but in this case, there is a problem that the inhibitor remains in the PEDOT film, adversely affecting the electrical conductivity and film stability. Therefore, there is a need for a new oxidizing agent capable of forming a highly stable PEDOT film with a high electrical conductivity by gas phase polymerization without additives such as inhibitors.
  • DUDO diurethanediol
  • PEG-PPG-PEG poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol)
  • the present invention aims to solve the conventional problems as described above, and an object of the present invention is to provide a PEDOT film having excellent electrical conductivity to replace a metal electrode.
  • Another object of the present invention is to provide a PEDOT film having excellent mechanical durability, flexibility, visible light transmittance, and aqueous solution resistance.
  • Another object of the present invention is to provide a method capable of forming a high quality PEDOT film.
  • Another object of the present invention is to provide a novel oxidizing agent and a method for synthesizing the PEDOT film suitable for gas phase polymerization without adding an inhibitor.
  • PEDOT film according to an embodiment of the present invention is characterized in that the dodecyl sulfate (Dodecyl Sulfate) is a PEDOT film contained as a dopant.
  • the PEDOT film may be formed by a gas phase polymerization method using a dodecyl sulfate metal salt as an oxidizing agent, and the dodecyl sulfate metal salt may be Fe (DS) 3 .
  • the PEDOT film may be formed as an electrode of an electronic device.
  • the content of dodecyl sulfate dopant may be in the range of 5-50%.
  • the PEDOT film may be a lamellar structure in which one or more, preferably two dodecyl sulfate molecules are doped between PEDOT molecular layers.
  • the PEDOT film according to an embodiment of the present invention may have an electrical conductivity of 5,500 S / cm or more, preferably 10,000 S / cm or more.
  • the PEDOT film according to an embodiment of the present invention may exhibit a light transmittance of 90% or more for a wavelength of 550 nm at a thickness of 20 nm.
  • the PEDOT film according to an embodiment of the present invention may have an electrical resistance change of 9% after 300,000 bending cycles, or a change in electrical resistance of 10% or less after 30% stretching.
  • the PEDOT film according to an embodiment of the present invention may have a change in electrical resistance of 5% or less even after being immersed in deionized water for 20 days or more.
  • PEDOT film production method coating an oxidant film containing a dodecyl sulfate metal salt on a substrate, forming a PEDOT film by a gas phase polymerization method on the substrate coated with the oxidizer film, the PEDOT And washing and drying the film.
  • the dodecyl sulfate metal salt may include Fe (DS) 3 .
  • the PEDOT film production method according to an embodiment of the present invention may be that does not use an inhibitor.
  • An oxidizing agent production method for use in preparing a PEDOT film by a gas phase polymerization method comprises the steps of depositing a dodecyl sulfate metal salt by a recrystallization method, washing the precipitated dodecyl sulfate metal salt and vacuum freeze It characterized in that it comprises a step of drying.
  • the dodecyl sulfate metal salt may include Fe (DS) 3 .
  • the step of depositing the dodecyl sulfate metal salt by the recrystallization method may further include removing impurities by a centrifugation method.
  • the step of depositing the dodecyl sulfate metal salt by the recrystallization method may include preparing a sodium dodecyl sulfate solution and adding FeCl 3 to the sodium dodecyl sulfate solution.
  • the present invention there is that by using the Fe (DS) Synthesis of 3 freeze-drying, to provide an available high-purity, high-quality Fe (DS) 3 oxidizing agent used in the gas-phase polymerization PEDOT film effect.
  • FIG. 1 is a view for explaining a method of forming a dopedyl sulfate doped PEDOT film according to the present invention.
  • FIG. 2 is a flowchart of a method for forming a PEDOT film doped with dodecyl sulfate according to the present invention.
  • FIG. 3 is a flow chart showing a method for preparing a dodecyl sulfate metal salt oxidizing agent according to the present invention.
  • FIG. 4 is a flow chart showing a method of manufacturing a FeCl 3 oxidizing agent according to an embodiment of the present invention.
  • FIG. 10 is a graph of light transmittance at a wavelength of 550 nm according to the thickness of a PEDOT film formed on a PET substrate.
  • FIG. 15 shows the crystal structure of a dodecyl sulfate doped PEDOT film according to an embodiment of the present invention.
  • the present inventor found that in the process of conducting a study for forming a PEDOT film having a high electrical conductivity that can replace a metal electrode, a very high electrical conductivity is obtained when dopedyl sulfate is doped on the PEDOT film. It came to the invention.
  • the dodecyl sulfate-doped PEDOT film according to the present invention is not only excellent in electrical conductivity, but also in mechanical durability, visible light transmittance, and aqueous solution resistance, and thus can be successfully applied to various flexible devices and bio devices such as flexible displays.
  • the present invention discloses a manufacturing method for forming a PEDOT film having such excellent properties.
  • the PEDOT film production method according to the present invention includes a method for forming a film by a gas phase polymerization method using a dodecyl sulfate metal salt as an oxidizing agent, and a method for manufacturing an excellent quality dodecyl sulfate metal salt oxidizing agent.
  • Formula 1 below is a chemical formula of PEDOT and dodecyl sulfate dopant constituting the PEDOT film dopedyl sulfate doped according to the present invention.
  • the dodecyl sulfate content in the dodecyl sulfate doped PEDOT film according to the present invention may range from 5 to 50%, preferably from 20 to 45%, more preferably from 30 to 40% have.
  • the dodecyl sulfate-doped PEDOT film according to the present invention has excellent electrical conductivity properties that can be applied as an electrode of an electronic device, may be 5,500 S / cm or more, preferably 9,000 S / cm or more, and more preferably It can be 10,000S / cm or more.
  • the dodecyl sulfate-doped PEDOT film according to the present invention has a light transmittance excellent enough to be applied to a display, and may have a light transmittance of 90% or more at a thickness of about 20 nm for a wavelength of 550 nm.
  • the dodecyl sulfate-doped PEDOT film according to the present invention has excellent mechanical properties to be applicable to flexible electronic devices. For example, even after performing 300,000 bending cycles, the electrical resistance change may be 9% or less. In addition, the electrical resistance increase may be less than 10% even after pulling the PEDOT film on both sides to increase it by about 30%.
  • the dodecyl sulfate-doped PEDOT film according to the present invention may have excellent water-resistant properties such that it can be applied to bio devices. For example, when measuring sheet resistance in a state of being immersed in deionized water for a long time, an increase in electrical resistance may be 5% or less even after immersion for 20 days.
  • FIGS. 1 and 2 are diagrams and flowcharts for explaining a method of forming a dopedyl sulfate doped PEDOT film according to the present invention, respectively.
  • dodecyl sulfate doped PEDOT film forming method according to the present invention, the step of coating the oxide film on the substrate (S11), forming a PEDOT film by a gas phase polymerization method (S12) and a washing / drying step (S13).
  • the step of coating the oxidant film on the substrate (S11) is a step of coating the oxidizing agent acting as a catalyst for forming the PEDOT film on the substrate.
  • the oxidizing agent coating may be performed by a spin coating method in which a solution containing an oxidizing agent is discharged on a surface of a substrate supported on a spin head, and a uniform oxidizing film is formed by rotating the spin head at high speed.
  • a dodecyl sulfate metal salt of the formula M x (DS) y can be used as the oxidizing agent.
  • DS is dodecyl sulfate
  • M is a metal, and may be Fe, Cr, Co, Ni, Mn, V, Rh, Au, Cu, Mo, but is not limited thereto.
  • Fe (DS) 3 may be used as the oxidizing agent.
  • the present invention can form a PEDOT film dopedyl sulfate doped by forming a PEDOT film by a gas phase polymerization method using a dodecyl sulfate metal salt as an oxidizing agent.
  • dodecyl sulfate metal salt as an oxidizing agent, it is possible to form a high-quality PEDOT film with few defects without using an inhibitor.
  • step S12 the substrate coated with the oxidizing film is mounted in the gas phase polymerization chamber.
  • the oxidant film may be mounted on the upper side of the chamber so that it faces downward.
  • a container containing EDOT monomer and water is disposed at the bottom of the chamber, and vaporized EDOT monomer and water are configured to reach the substrate.
  • a PEDOT film is formed on the substrate by a gas phase polymerization method having such a configuration.
  • the temperature inside the chamber may be controlled by circulating temperature-controlled hot water through a flow path formed in the chamber wall, and a temperature sensor for measuring the temperature may be installed inside the chamber.
  • the substrate may be mounted on the bottom of the chamber.
  • the substrate on which the PEDOT film is formed is unloaded in the gas phase polymerization chamber to proceed with washing and drying (step S13).
  • the washing may be to remove excess oxidizing agent and EDOT monomer remaining on the film surface, and may proceed with ethanol. After washing, it can be dried at about 70 ° C. for 1-2 hours to remove the washing solution.
  • FIG. 3 is a flowchart illustrating a method for preparing a dodecyl sulfate metal salt oxidizing agent according to an embodiment of the present invention.
  • a dodecyl sulfate metal salt is precipitated by a recrystallization method (step S21).
  • the recrystallization method may be a method of depositing a dodecyl sulfate metal salt by adding a metal compound (eg, metal chloride) to a solution in which dodecyl sulfate is dissolved.
  • a metal compound eg, metal chloride
  • the metal compound may be added to the solution in which the dodecyl sulfate is dissolved in the form of an aqueous solution, and the solution may be added while stirring to uniformly mix.
  • Step S21 may further include a step of removing impurities by a centrifugation method.
  • a centrifugation method For example, precipitates obtained by adding a metal compound to a dodecyl sulfate solution may contain impurities. Dissolve the precipitates by dissolving these precipitates in methanol or the like and centrifuging to remove undissolved impurities. The final dodecyl sulfate metal salt precipitate can be obtained from the solution from which impurities have been removed.
  • step S22 The following is a step of washing the precipitated dodecyl sulfate metal salt (step S22) and vacuum freeze drying (step S23). Washing may be repeatedly performed using deionized water, and vacuum freeze drying may be performed under a reduced pressure atmosphere.
  • FIG. 4 is a flowchart illustrating in more detail a method of manufacturing a Fe (DS) 3 oxidizing agent according to an embodiment of the present invention.
  • SDS sodium dodecyl sulfate
  • DI water deionized water
  • FeCl 3 can be added to the SDS solution in the form of an aqueous solution.
  • the precipitate generated in the SDS solution by adding FeCl 3 is dissolved in methanol to prepare a methanol solution (step S33).
  • the precipitate can be dissolved in methanol once repeatedly washed with deionized water, and the methanol solution can be centrifuged at high speed to remove undissolved impurities.
  • Deionized water is added to the methanol solution from which impurities have been removed to precipitate Fe (DS) 3 recrystallization (step S34).
  • the precipitated Fe (DS) 3 is repeatedly washed and then dried by a vacuum freeze-drying method, and drying is preferably performed for 2 days or more.
  • a solution containing 10 wt% to 60 wt% of the oxidizer was spin coated to form an oxidant film on the substrate.
  • the oxidant-coated substrate was mounted on the gas phase polymerization chamber with the oxidant film facing downward, the EDED monomer and water provided in the chamber were vaporized to form a PEDOT film on the substrate.
  • the temperature of the chamber was adjusted to 50 ° C by circulating hot water on the chamber wall, and the chamber temperature was monitored by a temperature sensor provided inside the chamber. After washing with ethanol to remove excess oxidizing agent and EDOT monomer, ethanol was removed by drying under reduced pressure at 70 ° C. for 1 hour.
  • the thermal stability of Fe (DS) 3 was analyzed by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA).
  • the morphology of the PEDOT film was analyzed using a field emission scanning electron microscope (FE-SEM) and an atomic force microscope (AFM).
  • FE-SEM field emission scanning electron microscope
  • AFM atomic force microscope
  • the sheet resistance (R) of the PEDOT film was measured using a four-point probe, and then the electrical conductivity was calculated using the film thickness measured with FE-SEM.
  • Table 1 shows the results of XPS analysis of the prepared Fe (DS) 3 oxidizing agent.
  • the concentration of Cl (2p) was shown as 0%, and it was confirmed that a high-purity oxidant was obtained in which Cl ions were completely removed by the method for preparing an oxidant according to the present invention.
  • the first weight loss in the first region (Region 1) in the range of 30 to 126 ° C is due to the release of water molecules contained in the oxidizing agent, and based on the weight loss (10.2%) in the temperature range, the present invention
  • the exact chemical formula of the oxidizing agent prepared according to the example is calculated as Fe (DS) 3 ⁇ 5.3H 2 O.
  • FIG. 6 is a DSC analysis result of the oxidizing agent prepared according to an embodiment of the present invention. It is confirmed that an endothermic peak related to water molecule release appears at about 48 ° C. The peak appearing at about 76 ° C is due to the formation of a typical intermediate liquid crystalline phase, and the endothermic reaction starting at about 97 ° C and showing a peak at 116 ° C is chemical transformation of Fe (DS) 3 It is estimated to be due to. The results of observing the effect of these chemical changes are shown in FIG. 7.
  • the Fe (DS) 3 oxidizing agent prepared according to the embodiment of the present invention is heat treated at 100 ° C. for 10 minutes, it changes from brown to black, and is dissolved in methanol before heat treatment to become a transparent brown solution, while an opaque suspension after heat treatment It was observed that this was formed.
  • the strong endothermic peak shown at 140 ° C is judged to be due to chemical decomposition of the compound.
  • the Fe (DS) 3 oxidizing agent is chemically stable at a temperature of about 76 ° C. or less, which is controlled so that the manufacturing process temperature of the Fe (DS) 3 oxidizing agent does not exceed about 76 ° C. It means that it is desirable.
  • vacuum freeze-drying is performed without the usual high-temperature heat treatment for drying the Fe (DS) 3 oxidizing agent, and it is related to this, and finally, through vacuum freeze-drying, a PEDOT film is formed by gas phase polymerization. It was possible to manufacture a high-quality Fe (DS) 3 oxidizing agent that could be utilized.
  • FIG. 8A to 8D are results of forming a PEDOT film on a PET substrate, FIG. 8E a PI substrate, and FIG. 8F a SiO 2 substrate.
  • the surface roughness of the PEDOT film was a root-mean-square (RMS) roughness, and a flat surface of about 1.87 nm was obtained.
  • RMS root-mean-square
  • a high-density smooth surface was observed regardless of the substrate type, and it was confirmed that uniform PEDOT films were grown on all the substrates.
  • 9 is a result of measuring the electrical conductivity of a PEDOT film formed by a gas phase polymerization method using Fe (DS) 3 oxidizing agent according to an embodiment of the present invention.
  • 9 shows the results of using a PET substrate as a substrate, but similar electrical conductivity characteristics were obtained regardless of the substrate type.
  • 9A to 9C show changes in electrical conductivity according to polymerization time, polymerization temperature, and oxidizer concentration, respectively.
  • 9A shows a change in electrical conductivity according to polymerization time at a polymerization temperature of 40 ° C. and an oxidizer concentration of 50 wt%. As the polymerization time increases, the film thickness increases, but the electrical conductivity decreases. Therefore, within the experimental range, 30 minutes of polymerization time can be optimally selected.
  • 9B shows the change in electrical conductivity according to the polymerization temperature at a polymerization time of 30 minutes and an oxidizer concentration of 50%.
  • the film thickness continuously increases, especially at 50 ° C or more.
  • the electrical conductivity has a maximum value at 50 ° C. That is, the polymerization temperature within the experimental range can be selected to 50 °C.
  • 9C shows the results of experiments of electrical conductivity according to the concentration of the oxidant at an optimally selected polymerization time of 30 minutes and a polymerization temperature of 50 ° C.
  • concentration of the oxidizing agent increases from 10% to 30%, the electrical conductivity also continued to increase, but at 30% or more, it was found to start decreasing again. Therefore, the optimal oxidant concentration can be selected as 30%, and the electrical conductivity at this time was 10,307 ⁇ 500S / cm. Since the highest electrical conductivity of the PEDOT film by the gas phase polymerization method reported so far is 5,400S / cm of the tosylate-doped PEDOT film, the electrical conductivity of the PEDOT film formed according to the embodiment of the present invention is the electrical conductivity of the prior art.
  • the high electrical conductivity property of the PEDOT film according to the embodiment of the present invention can be said to be the effect of dodecyl sulfate doping using Fe (DS) 3 oxidizing agent.
  • the light transmittance is a level that can be sufficiently utilized as a transparent electrode in a display device.
  • Table 2 shows the electrical and optical properties of the PEDOT film according to the substrate. Regardless of the substrate type, it exhibited high electrical conductivity up to about 10,000 S / cm and high light transmittance of over 90%.
  • FIG. 11 is a result of XPS analysis of the Fe (DS) 3 oxidizer film (FIG. 11A) and the PEDOT film (FIG. 11B) formed thereon.
  • the two XPS bands appearing between 166eV and 172eV in FIG. 11B are the S2p band of the sulfur atom of the dodecyl sulfate (DS) component, and the two XPS bands appearing between 162eV and 166eV in FIG. 11B. It is the S2p band of the sulfur atom in PEDOT.
  • S2p peaks by dodecyl sulfate (DS) appear at 167.65 eV and 169.13 eV in PEDOT, and are different from 169.5 eV and 170.5 eV in Fe (DS) 3 .
  • the doping level of dodecyl sulfate (DS) calculated from the ratio of XPS peaks in FIG. 11B was about 37%.
  • FIG. 12 (c) shows the results of stretching test after forming the PEDOT film on the polyurethane substrate. According to FIG. 12 (c), even when the PEDOT film was pulled on both sides to increase about 30%, the increase in electrical resistance was only 10%.
  • the PEDOT film according to the embodiment of the present invention can be applied to various flexible devices such as wearable electronic devices, flexible displays, and foldable batteries due to slight changes in electrical resistance due to bending or stretch.
  • the water-resistant property was analyzed by measuring the change in sheet resistance over time by immersing the PEDOT film according to an embodiment of the present invention in deionized water, and the results are shown in FIG. 13. 50 ohm / sq after initial immersion in deionized water for 20 days at 46.1 ohm / sq. Maintained below, it was confirmed that the water resistance of the PEDOT film according to the embodiment of the present invention is very excellent.
  • In-plane XRD X-ray diffraction
  • out-of-plane GIWAXS Grazing incidence wide angle x-ray scattering
  • the structure of the PEDOT film dopedyl sulfate doped according to an embodiment of the present invention is shown in FIG. 15.
  • FIG. 15 (a) is x The sectional view of the film as viewed in the axial direction
  • FIG. 15 (b) is a perspective view of the film as viewed in the x-axis direction
  • FIG. 15 (c) is the perspective view of the film as viewed in the y-axis direction.
  • 15 may be a structure inside one grain (grain) in the film.
  • the PEDOT molecules are made of a lamellar structure, and the lamellar interlayer distance (the distance between the PEDOT main chain axes) is 1.32 nm. This is supported by the out-of-plane GIWAXS results of Fig. 14 (b).
  • the effective space between the PEDOT molecular layers is calculated to be 0.57 nm, which is almost identical to the theoretical width of 0.56 nm with two dodecyl sulfate molecules stacked. That is, the PEDOT film according to an embodiment of the present invention may have a lamellar structure in which two dodecyl sulfate molecules are doped between PEDOT molecular layers.
  • hydrophobic ethylene (-CH2CH2-) groups periodically exposed above and below the PEDOT lamellar layer have a very close van der Waals interaction with the dodecyl group of the dopant molecule. As it can, it is also advantageous in terms of energy.
  • FIG. 15 (b) is a perspective view of the film as viewed in the x-axis direction, while FIG. 15 (a) shows only one layer in the x-axis direction, while FIG. 15 (b) shows two layers in the x-axis direction ( It is a drawing where two layers are overlapped.
  • two PEDOT main chains form two lamellar layers, and each lamellar layer includes a total of 12 EDOTs. That is, there are a total of 24 EDOT molecules on FIG. 15 (b), and 8 of the dodecyl sulfate molecules are arranged between the lamellar layers. This is in good agreement with the dodecyl sulfate doping level calculated from XPS analysis, about 37%.
  • FIG. 15 (c) is a perspective view of the film as viewed from the y-axis direction, showing a crystal structure in which a total of six PEDOT main chains are stacked ⁇ - ⁇ to form two lamella layers at the top and bottom.
  • the distance of ⁇ - ⁇ stacking between PEDOT main chains is 0.34 nm
  • the distance between hydrocarbon chains of dodecyl sulfate dopant molecules is regularly placed at 0.47 nm. This is supported by the in-plane XRD results of Fig. 14 (a).
  • the dodecyl sulfate located above and below the PEDOT crystal layer is very efficiently doped, and at the same time, a long hydrocarbon chain has a structure that densely surrounds the crystal layer.
  • a structure well describes the high electrical conductivity of the PEDOT film dopedyl sulfate doped according to an embodiment of the present invention, very flexible elasticity, and excellent mechanical durability.
  • a hydrocarbon chain having high hydrophobicity surrounds each PEDOT crystal layer densely, it is expected to be able to maintain a very good film quality and electrical conductivity in an aqueous solution or even at high humidity, according to an embodiment of the present invention. It is also in good agreement with the excellent aqueous solution stability results of the dodecyl sulfate doped PEDOT film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Non-Insulated Conductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The present invention relates to a dodecyl sulfate-doped PEDOT film and a manufacturing method therefor, the method comprising: coating, on a substrate, an oxidizing agent film comprising a dodecyl sulfate metal salt such as Fe(DS)3; and forming a PEDOT film by a vapor phase polymerization method. The dodecyl sulfate-doped PEDOT film according to the present invention has excellent electrical conductivity so as to be capable of replacing a metal, and has excellent mechanical durability, light transmittance and aqueous solution stability.

Description

도데실 설페이트 도핑된 폴리(3,4-에틸렌디옥시티오펜) 필름 및 그 제조방법Dodecyl sulfate doped poly (3,4-ethylenedioxythiophene) film and method for manufacturing the same
본 출원은 2018년 10월 10일자 한국 특허 출원 제2018-0120286호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다This application claims the benefit of priority based on Korean Patent Application No. 2018-0120286 filed on October 10, 2018, and all contents disclosed in the literature of the Korean patent application are included as part of this specification.
본 발명은 우수한 특성의 PEDOT 필름 및 그 제조방법에 관한 것으로, 특히 도데실 설페이트가 도핑된 PEDOT 필름 및 그 제조방법에 관한 것이다.The present invention relates to a PEDOT film having excellent properties and a method for manufacturing the same, and more particularly, to a PEDOT film doped with dodecyl sulfate and a method for manufacturing the same.
유기 전도성 물질(organic conductive material)은 유연성, 경량, 저비용 등의 특성으로 인해 유연 소자(flexible device)를 비롯한 다양한 전자소자의 전극 물질로 주목받고 있다. 유기 전도성 물질이 전극 물질로 사용되기 위해서는 높은 전기전도도가 요구된다. 그러나 여러 전도성 고분자 중에서 활발히 연구되고 있는 물질은 극히 소수에 지나지 않으며, poly(3,4-ethylenedioxythiophene) (이하 'PEDOT'이라 함)이 대표적인 물질이다.Organic conductive materials (organic conductive material) is attracting attention as an electrode material of various electronic devices, including flexible devices (flexible device) due to the characteristics of flexibility, light weight, low cost. In order for the organic conductive material to be used as an electrode material, high electrical conductivity is required. However, among the conductive polymers, only a few are actively studied, and poly (3,4-ethylenedioxythiophene) (hereinafter referred to as 'PEDOT') is a representative material.
PEDOT은 밴드갭 에너지가 1.5~1.7eV 정도로 작고, 투명하며, 열적 안정성 및 대기중 안정성도 우수하여, 유기 트랜지스터, 광전 변환 소자(photovoltaic device), 디스플레이, 유기발광소자(OLED: organic light emitting diode) 등 다양한 소자의 투명 유연 전극으로 주목받고 있다.PEDOT has a small band gap energy of about 1.5 to 1.7 eV, is transparent, and has excellent thermal stability and stability in the air, so organic transistors, photovoltaic devices, displays, and organic light emitting diodes (OLEDs) It is attracting attention as a transparent flexible electrode of various devices.
PEDOT 필름을 형성하는 방법으로는 전기중합법(EP: electropolymerization), 기상중합법(VP: vapor-phase polymerization), 용액캐스팅중합법(SCP: solution casting polymerization)이 있다. 이중에서 전기중합법은 전도성 표면에만 코팅이 가능하다는 한계가 있고, 용액캐스팅중합법은 균질한 필름을 얻기 위해서는 고도의 기술이 필요할 뿐만 아니라 중합 혼합물의 가사 시간(pot life)이 짧아 10~20분 후에는 용액 내에 불용성의 PEDOT 응집물이 형성되는 문제가 있다. 반면, 기상중합법은 PEDOT의 단량체인 EDOT을 기화시켜 산화제(oxidizing agent)가 코팅된 기판 위에서 중합시키는 방법으로서, 상대적으로 쉽게 고순도의 균질한 PEDOT 필름을 얻을 수 있는 장점이 있다. 또한 기상중합법으로 얻어진 PEDOT 필름은 전기전도도가 다른 방법을 사용한 경우에 비해 일반적으로 우수하다는 결과가 보고되고 있다. The methods of forming the PEDOT film include electropolymerization (EP), vapor-phase polymerization (VP), and solution casting polymerization (SCP). Among them, the electropolymerization method has a limitation that it can be coated only on a conductive surface, and the solution-casting polymerization method requires a high level of technology to obtain a homogeneous film, and the pot life of the polymerization mixture is short, so that it is 10 to 20 minutes. Later, there is a problem that insoluble PEDOT aggregates are formed in the solution. On the other hand, the gas phase polymerization method is a method of polymerizing on a substrate coated with an oxidizing agent by vaporizing EDOT, a monomer of PEDOT, and has the advantage of being able to obtain a high purity homogeneous PEDOT film relatively easily. In addition, it has been reported that the PEDOT film obtained by the gas phase polymerization method is generally superior to the case of using other methods.
그러나 현재까지 보고된 PEDOT 필름의 전기전도도는 금속 전극을 대체할 정도는 아니어서, PEDOT 필름의 전기전도도를 더욱 향상시키는 것이 중요한 과제로 인식되고 있다. 또한, PEDOT 필름을 유연소자, 디스플레이, 바이오 소자 등에 적용하기 위해서는 기계적 내구성, 가시광 투과도, 수용액 저항성 등도 확보되어야 하므로, 이러한 필름 특성들에 대해서도 많은 개선이 요구되고 있다. However, the electrical conductivity of the PEDOT film reported to date is not enough to replace the metal electrode, and it is recognized as an important task to further improve the electrical conductivity of the PEDOT film. Further, in order to apply the PEDOT film to a flexible device, a display, a bio device, etc., mechanical durability, visible light transmittance, aqueous solution resistance, etc. must also be secured.
한편, 기상중합법에 의한 PEDOT 필름 형성에 있어서, 산화제는 중합개시제로서 매우 중요한 역할을 할 뿐 아니라 또한 산화제의 음이온이 고분자의 도판트로 작용하는 핵심적인 물질이다. 알려져 있는 산화제로는, FeCl3, H2O2, CuCl2, HAuCl4, Fe(III) Tosylate (Fe(Tos)3), iron(Ⅲ) fluoromethanesulfonate (Fe(OTf)3), iron(III) fluride (FeF3) 등이 있으나, 이러한 산화제들은 반응성이 크고 쉽게 결정화되어, PEDOT의 효율적인 중합과 반응 제어가 어렵고 필름 내에 결함을 발생시켜 고품질 PEDOT 필름 형성을 위한 산화제로는 적합하지 않다. 또한 쉽게 결정화된 산화제들은 고분자막이 성장할 시 산화제 음이온들의 효율적인 도핑을 막으므로 높은 전기전도도의 고분자막을 합성하는데 한계가 있다.On the other hand, in the formation of a PEDOT film by a gas phase polymerization method, the oxidizing agent plays a very important role as a polymerization initiator, and anion of the oxidizing agent is a key material acting as a dopant for the polymer. Known oxidizing agents include FeCl 3 , H 2 O 2 , CuCl 2 , HAuCl 4 , Fe (III) Tosylate (Fe (Tos) 3 ), iron (III) fluoromethanesulfonate (Fe (OTf) 3 ), iron (III) There are fluride (FeF 3 ), etc., but these oxidizing agents are highly reactive and crystallize easily, making it difficult to efficiently control the polymerization and reaction of PEDOT and generate defects in the film, making it unsuitable as an oxidizing agent for forming a high-quality PEDOT film. In addition, easily crystallized oxidizing agents have limitations in synthesizing a high-conductivity polymer film because they prevent efficient doping of oxidant anions when the polymer film is grown.
산화제의 높은 산도를 낮추고 반응성을 조절하기 위해 diurethanediol (DUDO), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) 등의 억제제(inhibitor)가 보통 사용되나, 이 경우 억제제가 PEDOT 필름 내에 잔류하여 전기전도도와 필름 안정성에 악영향을 주는 문제가 있다. 따라서, 억제제 등의 첨가제 없이 기상중합법으로 고전기전도도이면서 매우 안정한 PEDOT 필름을 형성할 수 있도록 하는 새로운 산화제가 요구되고 있다.Inhibitors, such as diurethanediol (DUDO), poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol) (PEG-PPG-PEG), to lower the high acidity and control reactivity Is usually used, but in this case, there is a problem that the inhibitor remains in the PEDOT film, adversely affecting the electrical conductivity and film stability. Therefore, there is a need for a new oxidizing agent capable of forming a highly stable PEDOT film with a high electrical conductivity by gas phase polymerization without additives such as inhibitors.
본 발명은 상기와 같은 종래의 문제점을 해결하는 것을 목적으로 하는 것으로, 금속 전극을 대체할 수 있을 정도로 우수한 전기전도도를 갖는 PEDOT 필름을 제공하는 것을 목적으로 한다.The present invention aims to solve the conventional problems as described above, and an object of the present invention is to provide a PEDOT film having excellent electrical conductivity to replace a metal electrode.
또한 본 발명은, 기계적 내구성, 유연성, 가시광 투과도, 수용액 저항성이 우수한 PEDOT 필름을 제공하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide a PEDOT film having excellent mechanical durability, flexibility, visible light transmittance, and aqueous solution resistance.
또한 본 발명은, 고품질의 PEDOT 필름을 형성할 수 있는 방법을 제공하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide a method capable of forming a high quality PEDOT film.
또한 본 발명은, PEDOT 필름을 억제제 첨가 없이 기상중합법으로 형성하는데 적합한 새로운 산화제 및 그 합성 방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a novel oxidizing agent and a method for synthesizing the PEDOT film suitable for gas phase polymerization without adding an inhibitor.
본 발명의 실시예에 따른 PEDOT 필름은 도데실 설페이트(Dodecyl Sulfate)가 도판트로 함유된 PEDOT 필름인 것을 특징으로 한다. 상기 PEDOT 필름은 도데실 설페이트 금속염을 산화제로 사용하는 기상중합법에 의해 형성된 것일 수 있고, 상기 도데실 설페이트 금속염은 Fe(DS)3일 수 있다. 상기 PEDOT 필름은 전자소자의 전극으로 형성될 수 있다.PEDOT film according to an embodiment of the present invention is characterized in that the dodecyl sulfate (Dodecyl Sulfate) is a PEDOT film contained as a dopant. The PEDOT film may be formed by a gas phase polymerization method using a dodecyl sulfate metal salt as an oxidizing agent, and the dodecyl sulfate metal salt may be Fe (DS) 3 . The PEDOT film may be formed as an electrode of an electronic device.
상기 도데실 설페이트 도판트의 함유량은 5~50% 범위 내일 수 있다. 여기서, PEDOT 필름은 하나 이상, 바람직하게는 2개의 도데실 설페이트 분자가 PEDOT 분자층 사이에 도핑된 라멜라 구조일 수 있다.The content of dodecyl sulfate dopant may be in the range of 5-50%. Here, the PEDOT film may be a lamellar structure in which one or more, preferably two dodecyl sulfate molecules are doped between PEDOT molecular layers.
또한, 본 발명의 실시예에 따른 PEDOT 필름은 전기전도도가 5,500S/cm 이상, 바람직하게는 10,000S/cm 이상일 수 있다.In addition, the PEDOT film according to an embodiment of the present invention may have an electrical conductivity of 5,500 S / cm or more, preferably 10,000 S / cm or more.
또한, 본 발명의 실시예에 따른 PEDOT 필름은 20nm의 두께에서 550nm 파장에 대해 90% 이상의 광 투과율을 나타낼 수 있다.In addition, the PEDOT film according to an embodiment of the present invention may exhibit a light transmittance of 90% or more for a wavelength of 550 nm at a thickness of 20 nm.
또한, 본 발명의 실시예에 따른 PEDOT 필름은 300,000회의 밴딩 사이클 후 전기저항 변화가 9%, 또는 30% 인장 후 전기저항 변화가 10% 이하일 수 있다.In addition, the PEDOT film according to an embodiment of the present invention may have an electrical resistance change of 9% after 300,000 bending cycles, or a change in electrical resistance of 10% or less after 30% stretching.
또한, 본 발명의 실시예에 따른 PEDOT 필름은 탈이온수에 20일 이상 침지한 후에도 전기저항 변화가 5% 이하일 수 있다.In addition, the PEDOT film according to an embodiment of the present invention may have a change in electrical resistance of 5% or less even after being immersed in deionized water for 20 days or more.
본 발명의 실시예에 따른 PEDOT 필름 제조 방법은, 기판 상에 도데실 설페이트 금속염을 포함하는 산화제막을 코팅하는 단계, 상기 산화제막이 코팅된 기판 상에 기상중합법으로 PEDOT 필름을 형성하는 단계, 상기 PEDOT 필름을 세척 및 건조하는 단계를 포함하는 것을 특징으로 한다. 상기 도데실 설페이트 금속염은 Fe(DS)3를 포함할 수 있다. 또한, 본 발명의 실시예에 따른 PEDOT 필름 제조 방법은 억제제를 사용하지 않는 것일 수 있다.PEDOT film production method according to an embodiment of the present invention, coating an oxidant film containing a dodecyl sulfate metal salt on a substrate, forming a PEDOT film by a gas phase polymerization method on the substrate coated with the oxidizer film, the PEDOT And washing and drying the film. The dodecyl sulfate metal salt may include Fe (DS) 3 . In addition, the PEDOT film production method according to an embodiment of the present invention may be that does not use an inhibitor.
본 발명의 실시예에 따른 기상중합법으로 PEDOT 필름을 제조하는데 사용하기 위한 산화제 제조방법은, 재결정법으로 도데실 설페이트 금속염을 석출시키는 단계, 상기 석출된 도데실 설페이트 금속염을 세척하는 단계 및 진공 동결 건조하는 단계를 포함하는 것을 특징으로 한다. 상기 도데실 설페이트 금속염은 Fe(DS)3를 포함하는 것일 수 있다.An oxidizing agent production method for use in preparing a PEDOT film by a gas phase polymerization method according to an embodiment of the present invention comprises the steps of depositing a dodecyl sulfate metal salt by a recrystallization method, washing the precipitated dodecyl sulfate metal salt and vacuum freeze It characterized in that it comprises a step of drying. The dodecyl sulfate metal salt may include Fe (DS) 3 .
여기서 상기 재결정법으로 도데실 설페이트 금속염을 석출시키는 단계는, 원심분리법으로 불순물을 제거하는 단계를 더 포함할 수 있다.Here, the step of depositing the dodecyl sulfate metal salt by the recrystallization method may further include removing impurities by a centrifugation method.
또한, 상기 재결정법으로 도데실 설페이트 금속염을 석출시키는 단계는, 도데실 황산 나트륨(sodium dodecyl sulfate) 용액을 제조하는 단계 및 상기 도데실 황산 나트륨 용액에 FeCl3를 첨가하는 단계를 포함할 수 있다. 또한, 상기 FeCl3 첨가로 상기 도데실 황산 나트륨 용액에 발생된 석출물을 메탄올에 용해시켜 메탄올 용액을 제조하는 단계 및 상기 메탄올 용액에 탈이온수를 첨가하여 Fe(DS)3 재결정을 석출시키는 단계를 더 포함할 수 있다.In addition, the step of depositing the dodecyl sulfate metal salt by the recrystallization method may include preparing a sodium dodecyl sulfate solution and adding FeCl 3 to the sodium dodecyl sulfate solution. In addition, the step of preparing a methanol solution by dissolving the precipitate generated in the sodium dodecyl sulfate solution in methanol by the addition of FeCl 3 and precipitation of Fe (DS) 3 recrystallization by adding deionized water to the methanol solution It can contain.
본 발명의 다른 실시예에 따른 PEDOT 필름은, PEDOT 분자층 사이에 음이온 분자가 하나 이상 도핑된 라멜라 구조의 PEDOT 필름으로서, 상기 음이온 분자는 탄화수소사슬 길이가 8C 내지 18C인 CH3(CH2)nSO4 (n = 7~17) 도판트 음이온인 것을 특징으로 한다. 여기서, 상기 PEDOT 분자층 사이에 도핑된 음이온 분자는 두개일 수 있다.The PEDOT film according to another embodiment of the present invention is a PEDOT film having a lamellar structure in which at least one anion molecule is doped between PEDOT molecular layers, wherein the anion molecule is CH 3 (CH 2 ) n having a hydrocarbon chain length of 8C to 18C. SO 4 (n = 7 to 17) is characterized by being a dopant anion. Here, there may be two anion molecules doped between the PEDOT molecular layers.
본 발명에 의하면, PEDOT 필름에 도데실 설페이트를 도핑함으로써, 금속 전극을 대체할 수 있을 정도로 우수한 전기전도도를 갖는 PEDOT 필름을 제공할 수 있는 효과가 있다.According to the present invention, by doping dodecyl sulfate on the PEDOT film, there is an effect that can provide a PEDOT film having excellent electrical conductivity to replace the metal electrode.
또한 본 발명에 의하면, 기계적 내구성, 유연성, 가시광 투과도, 수용액 저항성이 우수한 PEDOT 필름을 제공할 수 있는 효과가 있다.In addition, according to the present invention, there is an effect that can provide a PEDOT film excellent in mechanical durability, flexibility, visible light transmittance, aqueous solution resistance.
또한 본 발명에 의하면, Fe(DS)3 등 도데실 설페이트 금속염을 산화제로 사용하는 기상중합법을 사용함으로써, 억제제 사용 없이 고품질의 PEDOT 필름을 형성할 수 있는 방법을 제공할 수 있는 효과 있다.In addition, according to the present invention, by using a gas phase polymerization method using a dodecyl sulfate metal salt such as Fe (DS) 3 as an oxidizing agent, it is possible to provide a method capable of forming a high-quality PEDOT film without using an inhibitor.
또한 본 발명은, Fe(DS)3 합성 시 동결건조법을 사용함으로써, PEDOT 필름 기상중합에 사용 가능한 고순도, 고품질의 Fe(DS)3 산화제를 제공할 수 있는 효과가 있다.In another aspect, the present invention, there is that by using the Fe (DS) Synthesis of 3 freeze-drying, to provide an available high-purity, high-quality Fe (DS) 3 oxidizing agent used in the gas-phase polymerization PEDOT film effect.
도 1은 본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름을 형성하는 방법을 설명하기 위한 도면이다.1 is a view for explaining a method of forming a dopedyl sulfate doped PEDOT film according to the present invention.
도 2는 본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름 형성 방법의 순서도이다.2 is a flowchart of a method for forming a PEDOT film doped with dodecyl sulfate according to the present invention.
도 3은 본 발명에 따른 도데실 설페이트 금속염 산화제를 제조하는 방법을 도시한 순서도이다.3 is a flow chart showing a method for preparing a dodecyl sulfate metal salt oxidizing agent according to the present invention.
도 4는 본 발명의 실시예에 따른 FeCl3 산화제를 제조하는 방법을 도시한 순서도이다.4 is a flow chart showing a method of manufacturing a FeCl 3 oxidizing agent according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따라 제조된 Fe(DS)3 산화제의 TGA 분석 결과이다.5 is a TGA analysis result of Fe (DS) 3 oxidizing agent prepared according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 제조된 Fe(DS)3 산화제의 DSC 분석 결과이다.6 is a DSC analysis result of Fe (DS) 3 oxidizing agent prepared according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따라 제조된 Fe(DS)3 산화제를 100℃에서 열처리한결과이다.7 is a result of heat treatment at 100 ° C Fe (DS) 3 oxidizing agent prepared according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따라 형성한 PEDOT 필름의 모폴로지 관찰 결과이다.8 is a morphology observation result of a PEDOT film formed according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따라 형성한 PEDOT 필름의 전기전도도 측정 결과이다.9 is a result of measuring the electrical conductivity of the PEDOT film formed according to an embodiment of the present invention.
도 10은 PET 기판 위에 형성한 PEDOT 필름 두께에 따른 550nm 파장에서의 광 투과율 그래프이다.10 is a graph of light transmittance at a wavelength of 550 nm according to the thickness of a PEDOT film formed on a PET substrate.
도 11은 (a) Fe(DS)3 산화제 필름 및 (b) PEDOT 필름의 XPS 분석 결과이다.11 is a result of XPS analysis of (a) Fe (DS) 3 oxidizer film and (b) PEDOT film.
도 12는 본 발명의 실시예에 따른 PEDOT 필름의 기계적 특성을 측정한 결과이다.12 is a result of measuring the mechanical properties of the PEDOT film according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 PEDOT 필름을 탈이온수에 침지하여 시간에 따른 면저항 변화를 측정한 결과이다.13 is a result of measuring the change in sheet resistance over time by immersing the PEDOT film in accordance with an embodiment of the present invention in deionized water.
도 14는 본 발명의 실시예에 따른 도데실 설페이트가 도핑된 PEDOT 박막의 in-plane XRD 및 out-of-plane GIWAXS 분석 결과이다.14 is an in-plane XRD and out-of-plane GIWAXS analysis results of a dodecyl sulfate doped PEDOT thin film according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 도데실 설페이트가 도핑된 PEDOT 필름의 결정 구조를 나타낸 것이다.15 shows the crystal structure of a dodecyl sulfate doped PEDOT film according to an embodiment of the present invention.
이하 첨부된 도면들을 참조하여 본 발명을 상세히 설명한다. 이하의 설명은 구체적인 실시예들을 포함하지만, 본 발명이 설명된 실시예들에 의해 한정되거나 제한되는 것은 아니다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. The following description includes specific embodiments, but the invention is not limited or limited by the described embodiments. In the description of the present invention, when it is determined that a detailed description of known technologies related to the present invention may obscure the subject matter of the present invention, the detailed description will be omitted.
본 발명자는 금속 전극을 대체할 수 있을 정도의 높은 전기전도도를 갖는 PEDOT 필름을 형성하기 위한 연구를 진행하는 과정에서, PEDOT 필름에 도데실 설페이트를 도핑하는 경우 매우 높은 전기전도도가 얻어짐을 발견하여 본 발명에 이르게 되었다. 특히 본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름은 우수한 전기전도도 뿐만 아니라 기계적 내구성, 가시광 투과도, 수용액 저항성도 우수하여 플렉서블 디스플레이 등의 각종 유연소자 및 바이오 소자에도 성공적으로 적용될 수 있다. The present inventor found that in the process of conducting a study for forming a PEDOT film having a high electrical conductivity that can replace a metal electrode, a very high electrical conductivity is obtained when dopedyl sulfate is doped on the PEDOT film. It came to the invention. In particular, the dodecyl sulfate-doped PEDOT film according to the present invention is not only excellent in electrical conductivity, but also in mechanical durability, visible light transmittance, and aqueous solution resistance, and thus can be successfully applied to various flexible devices and bio devices such as flexible displays.
또한 본 발명은, 이러한 우수한 특성을 갖는 PEDOT 필름을 형성하기 위한 제조방법을 개시한다. 본 발명에 따른 PEDOT 필름 제조방법은, 도데실 설페이트 금속염을 산화제로 사용하는 기상중합법에 의한 필름 형성 방법과, 우수한 품질의 도데실 설페이트 금속염 산화제 제조방법을 포함한다.In addition, the present invention discloses a manufacturing method for forming a PEDOT film having such excellent properties. The PEDOT film production method according to the present invention includes a method for forming a film by a gas phase polymerization method using a dodecyl sulfate metal salt as an oxidizing agent, and a method for manufacturing an excellent quality dodecyl sulfate metal salt oxidizing agent.
아래의 화학식 1은 본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름을 구성하는 PEDOT과 도데실 설페이트 도판트의 화학식이다. Formula 1 below is a chemical formula of PEDOT and dodecyl sulfate dopant constituting the PEDOT film dopedyl sulfate doped according to the present invention.
Figure PCTKR2019010583-appb-C000001
Figure PCTKR2019010583-appb-C000001
본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름 내의 도데실 설페이트 함유량은 5 내지 50% 범위일 수 있고, 바람직하게는 20 내지 45% 범위일 수 있고, 더욱 바람직하게는 30 내지 40% 범위일 수 있다.The dodecyl sulfate content in the dodecyl sulfate doped PEDOT film according to the present invention may range from 5 to 50%, preferably from 20 to 45%, more preferably from 30 to 40% have.
본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름은 전자소자의 전극으로 적용될 수 있을 정도로 우수한 전기전도도 특성을 가지며, 5,500S/cm 이상일 수 있고, 바람직하게는 9,000S/cm 이상일 수 있고, 더욱 바람직하게는 10,000S/cm 이상일 수 있다.The dodecyl sulfate-doped PEDOT film according to the present invention has excellent electrical conductivity properties that can be applied as an electrode of an electronic device, may be 5,500 S / cm or more, preferably 9,000 S / cm or more, and more preferably It can be 10,000S / cm or more.
본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름은 디스플레이에 적용될 수 있을 정도로 우수한 광투과율을 가지며, 550nm 파장에 대해 약 20nm의 두께에서 90% 이상의 광 투과율을 가질 수 있다.The dodecyl sulfate-doped PEDOT film according to the present invention has a light transmittance excellent enough to be applied to a display, and may have a light transmittance of 90% or more at a thickness of about 20 nm for a wavelength of 550 nm.
본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름은 유연전자소자에 적용될 수 있을 정도로 우수한 기계적 특성을 가진다. 예를 들어, 30만회의 밴딩 사이클(bending cycle) 수행 후에도 전기저항 변화는 9% 이하일 수 있다. 또한 PEDOT 필름을 양쪽으로 잡아당겨 약 30% 늘인 후에도 전기저항 증가가 10% 이하일 수 있다.The dodecyl sulfate-doped PEDOT film according to the present invention has excellent mechanical properties to be applicable to flexible electronic devices. For example, even after performing 300,000 bending cycles, the electrical resistance change may be 9% or less. In addition, the electrical resistance increase may be less than 10% even after pulling the PEDOT film on both sides to increase it by about 30%.
또한, 본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름은 바이오 소자에 적용될 수 있을 정도로 우수한 내수성(water-resistant property)을 가질 수 있다. 예를 들어, 탈이온수에 장기간 침지한 상태에서 면저항을 측정하는 경우, 20일 동안 침지한 후에도 전기저항 증가가 5% 이하일 수 있다.In addition, the dodecyl sulfate-doped PEDOT film according to the present invention may have excellent water-resistant properties such that it can be applied to bio devices. For example, when measuring sheet resistance in a state of being immersed in deionized water for a long time, an increase in electrical resistance may be 5% or less even after immersion for 20 days.
도 1과 도 2는 각각 본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름을 형성하는 방법을 설명하기 위한 도면 및 순서도이다.1 and 2 are diagrams and flowcharts for explaining a method of forming a dopedyl sulfate doped PEDOT film according to the present invention, respectively.
도 1 및 도 2를 참조하여 설명하면, 본 발명에 따른 도데실 설페이트가 도핑된 PEDOT 필름 형성 방법은, 기판 상에 산화제막을 코팅하는 단계(S11), 기상중합법에 의해 PEDOT 필름을 형성하는 단계(S12) 및 세척/건조 단계(S13)를 포함한다.Referring to Figures 1 and 2, dodecyl sulfate doped PEDOT film forming method according to the present invention, the step of coating the oxide film on the substrate (S11), forming a PEDOT film by a gas phase polymerization method (S12) and a washing / drying step (S13).
먼저 기판 상에 산화제막을 코팅하는 단계(S11)는, PEDOT 필름 형성을 위한 촉매로 작용하는 산화제를 기판 상에 코팅하는 단계이다. 산화제 코팅은 스핀 헤드(spin head) 상에 지지된 기판 표면에 산화제가 포함된 용액을 토출하고, 스핀 헤드를 고속으로 회전시켜 균일한 산화제막이 형성되도록 하는 스핀코팅법으로 수행될 수 있다. First, the step of coating the oxidant film on the substrate (S11) is a step of coating the oxidizing agent acting as a catalyst for forming the PEDOT film on the substrate. The oxidizing agent coating may be performed by a spin coating method in which a solution containing an oxidizing agent is discharged on a surface of a substrate supported on a spin head, and a uniform oxidizing film is formed by rotating the spin head at high speed.
산화제로는 화학식 Mx(DS)y의 도데실 설페이트 금속염을 사용할 수 있다. 여기서 DS는 도데실 설페이트이고, M은 금속으로 Fe, Cr, Co, Ni, Mn, V, Rh, Au, Cu, Mo일 수 있으나 이에 한정하는 것은 아니다. 예를 들어, 산화제로는 Fe(DS)3를 사용할 수 있다. 본 발명은 산화제로 도데실 설페이트 금속염을 사용하는 기상중합법으로 PEDOT 필름을 형성함으로써, 도데실 설페이트가 도핑된 PEDOT 필름을 형성할 수 있다. 또한 도데실 설페이트 금속염을 산화제로 사용하는 것에 의해 억제제를 사용하지 않아도 결함이 적은 고품질의 PEDOT 필름을 형성할 수 있다.As the oxidizing agent, a dodecyl sulfate metal salt of the formula M x (DS) y can be used. Here, DS is dodecyl sulfate, M is a metal, and may be Fe, Cr, Co, Ni, Mn, V, Rh, Au, Cu, Mo, but is not limited thereto. For example, Fe (DS) 3 may be used as the oxidizing agent. The present invention can form a PEDOT film dopedyl sulfate doped by forming a PEDOT film by a gas phase polymerization method using a dodecyl sulfate metal salt as an oxidizing agent. In addition, by using dodecyl sulfate metal salt as an oxidizing agent, it is possible to form a high-quality PEDOT film with few defects without using an inhibitor.
다음으로 S12 단계에서는, 산화제막이 코팅된 기판을 기상중합 챔버 내에 장착한다. 이때 도 1에 도시된 것처럼 산화제막이 하방을 향하도록 챔버 상부에 장착할 수 있다. 챔버 하부에는 각각 EDOT 단량체 및 물이 수용된 용기가 배치되고, 기화된 EDOT 단량체와 물이 기판 상에 도달하도록 구성된다. 이러한 구성에 의한 기상중합법에 의해 기판 상에는 PEDOT 필름이 형성된다. 이때 챔버 벽에 형성된 유로를 통해 온도 조절된 고온수(hot water)를 순환시킴으로써 챔버 내부 온도를 조절할 수 있으며, 온도 측정을 위한 온도 센서가 챔버 내부에 설치될 수 있다. 도 1에는 기판이 챔버 상부에 장착되는 것으로 도시하였으나, 기판을 챔버 바닥에 장착할 수도 있다.Next, in step S12, the substrate coated with the oxidizing film is mounted in the gas phase polymerization chamber. In this case, as shown in FIG. 1, the oxidant film may be mounted on the upper side of the chamber so that it faces downward. A container containing EDOT monomer and water is disposed at the bottom of the chamber, and vaporized EDOT monomer and water are configured to reach the substrate. A PEDOT film is formed on the substrate by a gas phase polymerization method having such a configuration. At this time, the temperature inside the chamber may be controlled by circulating temperature-controlled hot water through a flow path formed in the chamber wall, and a temperature sensor for measuring the temperature may be installed inside the chamber. In FIG. 1, although the substrate is shown mounted on the top of the chamber, the substrate may be mounted on the bottom of the chamber.
PEDOT 필름이 형성된 기판은 기상중합 챔버에서 언로딩되어 세척 및 건조를 진행한다(S13 단계). 세척은 필름 표면에 잔존하는 과잉 산화제 및 EDOT 단량체를 제거하기 위한 것일 수 있으며, 에탄올로 진행할 수 있다. 세척 후에는 약 70℃에서 1~2시간 동안 건조하여 세척액을 제거할 수 있다.The substrate on which the PEDOT film is formed is unloaded in the gas phase polymerization chamber to proceed with washing and drying (step S13). The washing may be to remove excess oxidizing agent and EDOT monomer remaining on the film surface, and may proceed with ethanol. After washing, it can be dried at about 70 ° C. for 1-2 hours to remove the washing solution.
도 3은 본 발명의 실시예에 따른 도데실 설페이트 금속염 산화제를 제조하는 방법을 도시한 순서도이다.3 is a flowchart illustrating a method for preparing a dodecyl sulfate metal salt oxidizing agent according to an embodiment of the present invention.
도 3을 참조하여 설명하면, 먼저 재결정법으로 도데실 설페이트 금속염을 석출시킨다(S21 단계). 여기서 재결정법은 도데실 설페이트가 용해된 용액에 금속 화합물(예를 들어, 염화 금속)을 첨가하여 도데실 설페이트 금속염을 석출시키는 방법일 수 있다. 이때 금속 화합물은 수용액 형태로 도데실 설페이트가 용해된 용액에 첨가될 수 있으며, 균일하게 혼합되도록 용액을 교반하면서 첨가할 수 있다.Referring to FIG. 3, first, a dodecyl sulfate metal salt is precipitated by a recrystallization method (step S21). Here, the recrystallization method may be a method of depositing a dodecyl sulfate metal salt by adding a metal compound (eg, metal chloride) to a solution in which dodecyl sulfate is dissolved. At this time, the metal compound may be added to the solution in which the dodecyl sulfate is dissolved in the form of an aqueous solution, and the solution may be added while stirring to uniformly mix.
S21 단계는 원심분리법으로 불순물을 제거하는 단계를 더 포함할 수 있다. 예를 들어, 도데실 설페이트 용액에 금속 화합물을 첨가하여 얻어진 석출물에는 불순물이 포함되어 있을 수 있는데, 이러한 석출물을 메탄올 등에 용해시킨 후 원심분리함으로써 용해되지 않은 불순물을 제거할 수 있다. 이렇게 불순물이 제거된 용액으로부터 최종 도데실 설페이트 금속염 석출물을 얻을 수 있다.Step S21 may further include a step of removing impurities by a centrifugation method. For example, precipitates obtained by adding a metal compound to a dodecyl sulfate solution may contain impurities. Dissolve the precipitates by dissolving these precipitates in methanol or the like and centrifuging to remove undissolved impurities. The final dodecyl sulfate metal salt precipitate can be obtained from the solution from which impurities have been removed.
다음은 석출된 도데실 설페이트 금속염을 세척하고(S22 단계) 진공 동결 건조(vacuum freeze drying)하는 단계이다(S23 단계). 세척은 탈이온수를 이용하여 반복 수행될 수 있으며, 진공 동결 건조는 감압 분위기 하에서 수행될 수 있다.The following is a step of washing the precipitated dodecyl sulfate metal salt (step S22) and vacuum freeze drying (step S23). Washing may be repeatedly performed using deionized water, and vacuum freeze drying may be performed under a reduced pressure atmosphere.
도 4는 본 발명의 실시예에 따른 Fe(DS)3 산화제를 제조하는 방법을 보다 구체적으로 도시한 순서도이다.4 is a flowchart illustrating in more detail a method of manufacturing a Fe (DS) 3 oxidizing agent according to an embodiment of the present invention.
도 4를 참조하면, 우선 도데실 황산 나트륨(sodium dodecyl sulfate, SDS)을 탈이온수(DI water)에 용해시켜 SDS 용액을 제조한다(S31 단계). 이때 투명한 SDS 용액이 얻어질 때까지 교반하면서 용해시킬 수 있다. Referring to FIG. 4, first, sodium dodecyl sulfate (SDS) is dissolved in deionized water (DI water) to prepare an SDS solution (step S31). At this time, it can be dissolved while stirring until a transparent SDS solution is obtained.
다음으로는 상기 SDS 용액에 FeCl3를 첨가하는 단계이다(S32 단계). FeCl3은 수용액 상태로 SDS 용액에 첨가할 수 있다. Next is the step of adding FeCl 3 to the SDS solution (step S32). FeCl 3 can be added to the SDS solution in the form of an aqueous solution.
다음으로는 FeCl3 첨가로 SDS 용액에 발생된 석출물을 메탄올에 용해시켜 메탄올 용액을 제조한다(S33 단계). 석출물은 일단 탈이온수로 반복 세척한 후 메탄올에 용해시킬 수 있으며, 메탄올 용액은 고속으로 원심 분리하여 용해되지 않은 불순물을 제거할 수 있다. Next, the precipitate generated in the SDS solution by adding FeCl 3 is dissolved in methanol to prepare a methanol solution (step S33). The precipitate can be dissolved in methanol once repeatedly washed with deionized water, and the methanol solution can be centrifuged at high speed to remove undissolved impurities.
불순물을 제거한 메탄올 용액에 탈이온수를 첨가하여 Fe(DS)3 재결정을 석출시킨다(S34 단계). 석출된 Fe(DS)3는 반복 세척한 후 진공 동결 건조법으로 건조하며, 이때 건조는 2일 이상 진행하는 것이 바람직하다.Deionized water is added to the methanol solution from which impurities have been removed to precipitate Fe (DS) 3 recrystallization (step S34). The precipitated Fe (DS) 3 is repeatedly washed and then dried by a vacuum freeze-drying method, and drying is preferably performed for 2 days or more.
이하 구체적인 실시예를 바탕으로, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail based on specific examples.
1. 실험 방법1. Experimental method
(1) Fe(DS)3 산화제 제조(1) Preparation of Fe (DS) 3 oxidizing agent
10.2520g의 sodium dodecyl sulfate (SDS)를 40℃의 탈이온수(DI water)에 용해시키고 투명해질 때까지 교반하여 0.148mol/L의 SDS 용액을 얻었다. 상기 SDS 용액을 교반하면서 SDS와 FeCl3의 몰비가 3:1이 되도록 0.197mol/L FeCl3 수용액을 천천히 첨가하였다. 발생된 석출물을 탈이온수로 10회 이상 반복 세척한 후 45ml 메탄올에 용해시키고 5000rpm으로 원심 분리하여 용해되지 않은 불순물을 제거하였다. 불순물을 제거한 메탄올 용액을 천천히 교반하면서 200ml 탈이온수를 첨가하였다. 용액으로부터 재결정화되어 석출된 Fe(DS)3는 5회 이상 반복 세척한 후 2일 이상 진공 동결 건조하였다.10.2520 g of sodium dodecyl sulfate (SDS) was dissolved in DI water at 40 ° C. and stirred until it became transparent to obtain a 0.148 mol / L SDS solution. While stirring the SDS solution, 0.197 mol / L FeCl 3 aqueous solution was slowly added so that the molar ratio between SDS and FeCl 3 was 3: 1. The generated precipitate was repeatedly washed 10 times or more with deionized water, dissolved in 45 ml methanol, and centrifuged at 5000 rpm to remove undissolved impurities. 200 ml deionized water was added while slowly stirring the methanol solution from which impurities had been removed. Fe (DS) 3 precipitated by recrystallization from the solution was repeatedly washed 5 or more times, and then vacuum freeze-dried for 2 days or more.
(2) PEDOT 필름 형성(2) PEDOT film formation
열산화막이 형성된 실리콘 기판, PET 기판 등의 다양한 기판을 에탄올 내에서 30분간 초음파 세정한 후, 산화제가 10wt% 내지 60wt% 포함된 용액을 스핀 코팅하여 기판 위에 산화제 필름을 형성하였다. After various types of substrates such as a silicon substrate and a PET substrate on which a thermal oxide film was formed were ultrasonically cleaned in ethanol for 30 minutes, a solution containing 10 wt% to 60 wt% of the oxidizer was spin coated to form an oxidant film on the substrate.
산화제가 코팅된 기판을 산화제막이 아래를 향하도록 기상중합 챔버에 장착한 후, 챔버 내에 구비된 EDOT 단량체와 물을 기화시켜 기판 상에서 PEDOT 필름을 형성하였다. 이때 챔버 벽에 고온수를 순환시켜 챔버 온도를 50℃로 조절하였으며, 챔버 내부에 구비된 온도 센서로 챔버 온도를 모니터링하였다. 에탄올로 세척하여 과잉 산화제 및 EDOT 단량체를 제거한 후 70℃에서 1시간 동안 감압 하에 건조하여 에탄올을 제거하였다.After the oxidant-coated substrate was mounted on the gas phase polymerization chamber with the oxidant film facing downward, the EDED monomer and water provided in the chamber were vaporized to form a PEDOT film on the substrate. At this time, the temperature of the chamber was adjusted to 50 ° C by circulating hot water on the chamber wall, and the chamber temperature was monitored by a temperature sensor provided inside the chamber. After washing with ethanol to remove excess oxidizing agent and EDOT monomer, ethanol was removed by drying under reduced pressure at 70 ° C. for 1 hour.
(3) 특성 분석(3) Characterization
Fe(DS)3의 열안정성을 시차주사열량계(DSC; differential scanning calorimeter)와 열중량분석(TGA; thermogravimetric analysis)으로 분석하였다. The thermal stability of Fe (DS) 3 was analyzed by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA).
전계방출 주사전자현미경(FE-SEM; Field emission scanning electron microscope)과 원자력 현미경(AFM: atomic force microscope)을 이용하여 PEDOT 필름의 모폴로지(morphology)를 분석하였다. PEDOT 필름의 면저항(Sheet resistance, R)을 4-점 프로브(four-point probe)를 이용하여 측정한 후 FE-SEM으로 측정한 필름 두께를 이용하여 전기전도도를 계산하였다.The morphology of the PEDOT film was analyzed using a field emission scanning electron microscope (FE-SEM) and an atomic force microscope (AFM). The sheet resistance (R) of the PEDOT film was measured using a four-point probe, and then the electrical conductivity was calculated using the film thickness measured with FE-SEM.
그 외, X선 광전자 분광법(XPS; X-ray photoelectron spectroscopy), 라만 분광법(The Raman spectroscopy), 스침각 X선 회절법(Grazing incidence X-ray diffraction) 등을 이용한 PEDOT 필름 분석을 수행하였다. In addition, PEDOT film analysis using X-ray photoelectron spectroscopy (XPS), The Raman spectroscopy, Grazing incidence X-ray diffraction, etc. was performed.
2. Fe(DS)3 산화제 특성 분석 결과2. Fe (DS) 3 oxidizer properties analysis results
제조된 Fe(DS)3 산화제의 XPS 분석 결과를 표 1에 나타내었다. Cl (2p)의 농도가 0%로 나타나, 본 발명에 의한 산화제 제조방법에 의해 Cl 이온이 완전히 제거된 고순도의 산화제가 얻어졌음이 확인되었다.Table 1 shows the results of XPS analysis of the prepared Fe (DS) 3 oxidizing agent. The concentration of Cl (2p) was shown as 0%, and it was confirmed that a high-purity oxidant was obtained in which Cl ions were completely removed by the method for preparing an oxidant according to the present invention.
성분ingredient 함량 (atomic %)Content (atomic%)
C (1s)C (1s) 66.4166.41
Cl (2p)Cl (2p) 0.000.00
Fe (2p)Fe (2p) 1.981.98
S (2p)S (2p) 8.178.17
O (1s)O (1s) 23.4323.43
도 5는 TGA 분석 결과이다. 도 5의 중량 감소(weight loss) 그래프에서 확인되는 것처럼 30~350℃ 범위에서 몇몇 다른 기울기가 관찰된다. 이중 30~126℃ 범위의 제1 영역(Region 1)에서 나타나는 첫번째 중량 감소는 산화제에 포함된 물 분자의 방출에 기인하는 것으로서, 해당 온도 범위에서의 중량 감소(10.2%)에 기초하면 본 발명의 실시예에 따라 제조된 산화제의 정확한 화학식은 Fe(DS)3·5.3H2O로 계산된다. 5 is a result of TGA analysis. As can be seen from the weight loss graph of FIG. 5, several different gradients are observed in the range of 30-350 ° C. The first weight loss in the first region (Region 1) in the range of 30 to 126 ° C is due to the release of water molecules contained in the oxidizing agent, and based on the weight loss (10.2%) in the temperature range, the present invention The exact chemical formula of the oxidizing agent prepared according to the example is calculated as Fe (DS) 3 · 5.3H 2 O.
도 6은 본 발명의 실시예에 따라 제조된 산화제의 DSC 분석 결과이다. 물 분자 방출과 관련한 흡열 피크가 약 48℃에서 나타나는 것이 확인된다. 약 76℃에서 나타나는 피크는 전형적인 중간 액정상(intermediate liquid crystalline phase)의 형성에 기인하고, 약 97℃에서 시작되어 116℃에서 피크가 나타나는 흡열 반응은 Fe(DS)3의 화학적 변화(chemical transformation)에 기인하는 것으로 추정된다. 이러한 화학적 변화의 영향을 관찰한 결과를 도 7에 나타내었다. 본 발명의 실시예에 의해 제조된 Fe(DS)3 산화제를 100℃에서 10분간 열처리하면 브라운 색에서 검정색으로 변화하고, 열처리 전에는 메탄올에 용해되어 투명한 브라운색의 용액이 되는 반면 열처리 후에는 불투명한 현탁액이 형성되는 것이 관찰되었다.6 is a DSC analysis result of the oxidizing agent prepared according to an embodiment of the present invention. It is confirmed that an endothermic peak related to water molecule release appears at about 48 ° C. The peak appearing at about 76 ° C is due to the formation of a typical intermediate liquid crystalline phase, and the endothermic reaction starting at about 97 ° C and showing a peak at 116 ° C is chemical transformation of Fe (DS) 3 It is estimated to be due to. The results of observing the effect of these chemical changes are shown in FIG. 7. When the Fe (DS) 3 oxidizing agent prepared according to the embodiment of the present invention is heat treated at 100 ° C. for 10 minutes, it changes from brown to black, and is dissolved in methanol before heat treatment to become a transparent brown solution, while an opaque suspension after heat treatment It was observed that this was formed.
140℃에서 나타내는 강한 흡열 피크는 화합물의 화학 분해(chemical decomposition)에 의한 것으로 판단된다.The strong endothermic peak shown at 140 ° C is judged to be due to chemical decomposition of the compound.
이러한 열분석 결과에 의하면, Fe(DS)3 산화제는 약 76℃ 이하의 온도에서 화학적으로 안정한 상태라는 것을 알 수 있으며, 이는 Fe(DS)3 산화제의 제조 공정 온도가 약 76℃를 넘지 않도록 조절하는 것이 바람직하다는 것을 의미한다. 본 발명의 실시예에서 Fe(DS)3 산화제의 건조를 위해 통상적인 고온 열처리를 하지 않고 진공 동결 건조를 수행한 것도 이와 관련이 있으며, 진공 동결 건조를 통해서 비로소 기상중합법으로 PEDOT 필름을 형성하는데 활용 가능한 고품질의 Fe(DS)3 산화제 제조가 가능하였다.According to the results of the thermal analysis, it can be seen that the Fe (DS) 3 oxidizing agent is chemically stable at a temperature of about 76 ° C. or less, which is controlled so that the manufacturing process temperature of the Fe (DS) 3 oxidizing agent does not exceed about 76 ° C. It means that it is desirable. In the embodiment of the present invention, vacuum freeze-drying is performed without the usual high-temperature heat treatment for drying the Fe (DS) 3 oxidizing agent, and it is related to this, and finally, through vacuum freeze-drying, a PEDOT film is formed by gas phase polymerization. It was possible to manufacture a high-quality Fe (DS) 3 oxidizing agent that could be utilized.
3. PEDOT 필름 분석 결과3. PEDOT film analysis results
(1) 모폴로지 분석 결과(1) Morphology analysis result
본 발명의 실시예에 따른 Fe(DS)3 산화제를 이용하여 기상중합법으로 형성한 PEDOT 필름의 모폴로지를 AFM 및 FE-SEM으로 분석한 결과를 도 8에 나타내었다. 도 8a 내지 도 8d는 PET 기판, 도 8e는 PI 기판, 도 8f는 SiO2 기판 위에 PEDOT 필름을 형성한 결과이다. The results of analyzing the morphology of the PEDOT film formed by the gas phase polymerization method using Fe (DS) 3 oxidizing agent according to an embodiment of the present invention by AFM and FE-SEM are shown in FIG. 8. 8A to 8D are results of forming a PEDOT film on a PET substrate, FIG. 8E a PI substrate, and FIG. 8F a SiO 2 substrate.
도 8a의 AFM 분석 결과에 의하면 PEDOT 필름의 표면 거칠기는 RMS(root-mean-square) 거칠기로 약 1.87nm의 평평한 표면이 얻어졌다. 또한 FE-SEM 사진에 의하면 기판 종류에 관계없이 고밀도의 매끄러운 표면이 관찰되어, 모든 기판에서 균일한 PEDOT 필름이 성장되었음이 확인되었다.According to the AFM analysis result of FIG. 8A, the surface roughness of the PEDOT film was a root-mean-square (RMS) roughness, and a flat surface of about 1.87 nm was obtained. In addition, according to the FE-SEM photograph, a high-density smooth surface was observed regardless of the substrate type, and it was confirmed that uniform PEDOT films were grown on all the substrates.
(2) 전기적 특성 및 광학적 특성 분석 결과(2) Analysis of electrical and optical properties
도 9는 본 발명의 실시예에 따른 Fe(DS)3 산화제를 이용하여 기상중합법에 의해 형성한 PEDOT 필름의 전기전도도 측정 결과이다. 도 9는 기판으로 PET 기판을 사용한 결과이나, 기판 종류와 무관하게 유사한 전기전도도 특성이 얻어졌다. 도 9a 내지 도 9c는 각각 중합 시간(polymerization time), 중합 온도(polymerization temperature), 산화제 농도에 따른 전기전도도 변화를 나타낸다.9 is a result of measuring the electrical conductivity of a PEDOT film formed by a gas phase polymerization method using Fe (DS) 3 oxidizing agent according to an embodiment of the present invention. 9 shows the results of using a PET substrate as a substrate, but similar electrical conductivity characteristics were obtained regardless of the substrate type. 9A to 9C show changes in electrical conductivity according to polymerization time, polymerization temperature, and oxidizer concentration, respectively.
도 9a는 중합 온도 40℃, 산화제 농도 50wt%에서 중합 시간에 따른 전기전도도 변화를 나타낸 것으로, 중합 시간이 증가할수록 필름 두께가 증가함에도 불구하고 전기전도도는 떨어지는 것으로 나타났다. 따라서 실험 범위 내에서 중합 시간은 30분이 최적으로 선택될 수 있다.9A shows a change in electrical conductivity according to polymerization time at a polymerization temperature of 40 ° C. and an oxidizer concentration of 50 wt%. As the polymerization time increases, the film thickness increases, but the electrical conductivity decreases. Therefore, within the experimental range, 30 minutes of polymerization time can be optimally selected.
도 9b는 중합 시간 30분, 산화제 농도 50%에서 중합 온도에 따른 전기전도도 변화를 나타낸 것으로, 중합 온도가 30℃에서 60℃까지 증가함에 따라 필름 두께는 지속적으로 증가하고, 특히 50℃ 이상에서 급격한 증가가 나타나나, 전기전도도는 50℃에서 최대값이 나타남을 알 수 있다. 즉, 실험 범위 내에서 중합 온도는 50℃로 선택될 수 있다.9B shows the change in electrical conductivity according to the polymerization temperature at a polymerization time of 30 minutes and an oxidizer concentration of 50%. As the polymerization temperature increases from 30 ° C to 60 ° C, the film thickness continuously increases, especially at 50 ° C or more. Although an increase appears, it can be seen that the electrical conductivity has a maximum value at 50 ° C. That is, the polymerization temperature within the experimental range can be selected to 50 ℃.
도 9c는 최적으로 선택된 중합 시간 30분, 중합 온도 50℃에서 산화제 농도에 따른 전기전도도를 실험한 결과이다. 산화제 농도가 10%에서 30%까지 증가함에 따라 전기전도도도 지속적으로 증가하나, 30% 이상에서는 다시 감소하기 시작하는 것으로 나타났다. 따라서 최적의 산화제 농도는 30%로 선택될 수 있으며, 이때의 전기전도도는 10,307±500S/cm이었다. 지금까지 보고된 기상중합법에 의한 PEDOT 필름의 최고 전기전도도가 tosylate 도핑된 PEDOT 필름의 5,400S/cm이라는 점에서, 본 발명의 실시예에 따라 형성된 PEDOT 필름의 전기전도도는 종래기술의 전기전도도를 거의 두 배 증가시킨 것이다. 또한, 30%의 산화제 농도뿐만 아니라 도 9c의 대부분의 산화제 농도 범위에서 종래의 전기전도도보다 우수한 전기전도도 특성이 얻어졌다. 따라서 본 발명의 실시예에 따른 PEDOT 필름의 높은 전기전도도 특성은 Fe(DS)3 산화제를 사용하여 도데실 설페이트가 도핑된 효과라고 할 수 있다.9C shows the results of experiments of electrical conductivity according to the concentration of the oxidant at an optimally selected polymerization time of 30 minutes and a polymerization temperature of 50 ° C. As the concentration of the oxidizing agent increased from 10% to 30%, the electrical conductivity also continued to increase, but at 30% or more, it was found to start decreasing again. Therefore, the optimal oxidant concentration can be selected as 30%, and the electrical conductivity at this time was 10,307 ± 500S / cm. Since the highest electrical conductivity of the PEDOT film by the gas phase polymerization method reported so far is 5,400S / cm of the tosylate-doped PEDOT film, the electrical conductivity of the PEDOT film formed according to the embodiment of the present invention is the electrical conductivity of the prior art. It was almost doubled. In addition, 30% of the oxidizing agent concentration, as well as most of the oxidizing agent concentration range of FIG. 9C, electrical conductivity characteristics superior to conventional electrical conductivity were obtained. Therefore, the high electrical conductivity property of the PEDOT film according to the embodiment of the present invention can be said to be the effect of dodecyl sulfate doping using Fe (DS) 3 oxidizing agent.
도 10은 PET 기판 위에 형성한 PEDOT 필름 두께에 따른 550nm 파장에서의 광 투과율 그래프이다. 47nm 이하의 두께에서 87% 이상의 광 투과율을 보였으며, 21.3nm 두께에서는 90% 이상의 광 투과율을 보였다. 이러한 광 투과율은 디스플레이 장치 등의 투명 전극으로 충분히 활용 가능한 수준이다. 10 is a graph of light transmittance at a wavelength of 550 nm according to the thickness of a PEDOT film formed on a PET substrate. It showed a light transmittance of 87% or more at a thickness of 47 nm or less, and a light transmittance of 90% or more at a thickness of 21.3 nm. The light transmittance is a level that can be sufficiently utilized as a transparent electrode in a display device.
표 2는 기판에 따른 PEDOT 필름의 전기적, 광학적 특성을 나타낸 것이다. 기판 종류에 상관없이 약 10,000S/cm에 이르는 높은 전기전도도 및 90% 이상의 높은 광 투과율 특성을 보였다.Table 2 shows the electrical and optical properties of the PEDOT film according to the substrate. Regardless of the substrate type, it exhibited high electrical conductivity up to about 10,000 S / cm and high light transmittance of over 90%.
기판Board 두께(nm)Thickness (nm) 전기전도도(Scm-1)Electrical conductivity (Scm -1 ) 550nm 파장에서의 광 투과율(%)Light transmittance at 550nm wavelength (%)
PETPET 21.321.3 10,110±50010,110 ± 500 90.890.8
PIPI 22.822.8 9,856±5009,856 ± 500 90.690.6
SiO2-waferSiO 2 -wafer 21.021.0 10,307±50010,307 ± 500 NANA
(3) 도핑 레벨 분석 결과(3) Doping level analysis result
도 11은 Fe(DS)3 산화제 필름(도 11a) 및 그 위에 형성된 PEDOT 필름(도 11b)의 XPS 분석 결과이다. 도 11a 결과와 비교하면, 도 11b에서 166eV와 172eV 사이에 나타나는 두개의 XPS 밴드는 도데실 설페이트(DS) 성분의 황 원자의 S2p 밴드이고, 도 11b의 162eV와 166eV 사이에 나타나는 두개의 XPS 밴드는 PEDOT 내의 황 원자의 S2p 밴드이다. 도데실 설페이트(DS)에 의한 S2p 피크가 PEDOT 내에서는 167.65eV와 169.13eV에서 나타나, Fe(DS)3 내에서의 169.5eV와 170.5eV와는 차이가 있다. 도 11b에서 XPS 피크의 비율로부터 계산한 도데실 설페이트(DS)의 도핑 레벨은 약 37%였다.11 is a result of XPS analysis of the Fe (DS) 3 oxidizer film (FIG. 11A) and the PEDOT film (FIG. 11B) formed thereon. 11A, the two XPS bands appearing between 166eV and 172eV in FIG. 11B are the S2p band of the sulfur atom of the dodecyl sulfate (DS) component, and the two XPS bands appearing between 162eV and 166eV in FIG. 11B. It is the S2p band of the sulfur atom in PEDOT. S2p peaks by dodecyl sulfate (DS) appear at 167.65 eV and 169.13 eV in PEDOT, and are different from 169.5 eV and 170.5 eV in Fe (DS) 3 . The doping level of dodecyl sulfate (DS) calculated from the ratio of XPS peaks in FIG. 11B was about 37%.
(4) 기계적 특성 분석 결과(4) Results of mechanical properties analysis
도 12(a)는 PET 기판 위에 형성한 PEDOT 필름 샘플을 밴딩시킨 후 전기저항의 변화를 측정한 결과이다. 밴딩 곡률 반경이 0mm에 이를 때까지도 전기저항 변화가 거의 없음을 알 수 있다.12 (a) is a result of measuring a change in electrical resistance after bending a PEDOT film sample formed on a PET substrate. It can be seen that even when the bending radius of bending reaches 0 mm, there is little change in electrical resistance.
도 12(b)는 밴딩 사이클을 반복하면서 전기저항 변화를 측정한 결과로, 밴딩 주파수는 0.5Hz와 2Hz를 사용하였다. 주파수에 관계없이 10,000회의 밴딩 사이클 후에도 전기저항 변화가 거의 없음을 확인하였다. 또한 200,000회 밴딩 사이클 수행 후에도 전기저항 변화는 7~10% 수준에 불과하였으며, 구체적으로 30만회의 밴딩 사이클 수행 후에도 전기저항 변화는 9% 이하임을 확인하였다.12 (b) shows the results of measuring the electrical resistance change while repeating the bending cycle, and the banding frequencies were 0.5 Hz and 2 Hz. It was confirmed that there was little change in electrical resistance even after 10,000 bending cycles regardless of frequency. In addition, it was confirmed that even after 200,000 bending cycles, the electrical resistance change was only 7 to 10%, and specifically, even after 300,000 bending cycles, the electrical resistance change was less than 9%.
도 12(c)는 폴리우레탄 기판 위에 PEDOT 필름을 형성한 후 스트레치 테스트를 진행한 결과이다. 도 12(c)에 의하면, PEDOT 필름을 양쪽으로 잡아당겨 약 30% 늘인 경우에도 전기저항 증가는 10% 수준에 불과하였다.12 (c) shows the results of stretching test after forming the PEDOT film on the polyurethane substrate. According to FIG. 12 (c), even when the PEDOT film was pulled on both sides to increase about 30%, the increase in electrical resistance was only 10%.
이처럼 본 발명의 실시예에 따른 PEDOT 필름은 밴딩이나 스트레치에 의해서도 전기저항의 변화가 미미하여 웨어러블 전자소자, 플렉서블 디스플레이, 폴더블 전지 등 다양한 유연소자에 적용이 가능함을 알 수 있다.As described above, it can be seen that the PEDOT film according to the embodiment of the present invention can be applied to various flexible devices such as wearable electronic devices, flexible displays, and foldable batteries due to slight changes in electrical resistance due to bending or stretch.
(5) 수용액 내에서의 안정성(5) Stability in aqueous solution
본 발명의 실시예에 따른 PEDOT 필름을 탈이온수에 침지하여 시간에 따른 면저항 변화를 측정함으로써 내수성(water-resistant property)을 분석하였으며, 그 결과를 도 13에 나타내었다. 초기 면저항인 46.1ohm/sq.에서 20일 동안 탈이온수에 침지한 후에도 50ohm/sq. 이하로 유지되어, 본 발명의 실시예에 따른 PEDOT 필름의 내수성이 매우 우수함을 확인하였다.The water-resistant property was analyzed by measuring the change in sheet resistance over time by immersing the PEDOT film according to an embodiment of the present invention in deionized water, and the results are shown in FIG. 13. 50 ohm / sq after initial immersion in deionized water for 20 days at 46.1 ohm / sq. Maintained below, it was confirmed that the water resistance of the PEDOT film according to the embodiment of the present invention is very excellent.
(6) 결정구조 분석(6) Crystal structure analysis
본 발명의 실시예에 따른 도데실 설페이트가 도핑된 PEDOT 박막의 결정구조를 분석하기 위해 in-plane XRD (X-ray diffraction)와 out-of-plane GIWAXS (Grazing incidence wide angle x-ray scattering) 분석을 실시하였으며, 그 결과를 각각 도 14(a) 및 도 14(b)에 나타내었다.In-plane XRD (X-ray diffraction) and out-of-plane GIWAXS (Grazing incidence wide angle x-ray scattering) analysis to analyze the crystal structure of the dodecyl sulfate doped PEDOT thin film according to an embodiment of the present invention And the results are shown in FIGS. 14 (a) and 14 (b), respectively.
도 14(a)의 in-plane XRD 결과는 PEDOT 필름의 표면에 평행한 x-y 평면상의 결정성을 보여주는 것으로, 2θ=26.72°에 존재하는 피크는 PEDOT 주쇄들 간의 π-π 스택킹(π-π stacking)의 거리가 0.34nm라는 것을 의미한다. 또한, 2θ=19.792°와 36.256°의 피크는 각각 0.45nm와 0.49nm의 주기성을 갖는 010과 020 방향 피크들로, 도데실 설페이트 음이온 도판트 분자들의 x-y 방향 팩킹 거리(packing distance)가 평균 약 0.47nm 임을 의미한다.The in-plane XRD of FIG. 14 (a) shows the crystallinity on the xy plane parallel to the surface of the PEDOT film, and the peak present at 2θ = 26.72 ° is the π-π stacking between the PEDOT backbones (π-π stacking) means that the distance is 0.34nm. In addition, peaks at 2θ = 19.792 ° and 36.256 ° are peaks in the 010 and 020 directions with periodicities of 0.45 nm and 0.49 nm, respectively, and the average xy direction packing distance of dodecyl sulfate anion dopant molecules is about 0.47. nm.
도 14(b)의 out-of-plane GIWAXS 결과는 PEDOT 필름의 두께 방향인 z축 방향의 결정성을 보여주는 것으로, 2θ=6.7°의 피크는 100 면 방향을 따라 PEDOT 결정 라멜라 층간 거리가 1.32 nm라는 것을 보여준다.The out-of-plane GIWAXS result of FIG. 14 (b) shows crystallinity in the z-axis direction, which is the thickness direction of the PEDOT film, and a peak of 2θ = 6.7 ° has a PEDOT crystal lamellar interlayer distance along the 100 plane direction of 1.32 nm. Shows that
이상의 결정구조 분석 결과에 기초한 구조 예측에 의하면, 본 발명의 실시예에 따른 도데실 설페이트가 도핑된 PEDOT 필름의 구조는 도 15와 같다. According to the structure prediction based on the above crystal structure analysis result, the structure of the PEDOT film dopedyl sulfate doped according to an embodiment of the present invention is shown in FIG. 15.
PEDOT 필름의 표면에 평행한 x-y 평면 중 PEDOT 주쇄가 늘어선 방향을 x축 방향, 이와 수직한 방향을 y축 방향으로 하고, PEDOT 필름의 두께 방향을 z축 방향이라고 하면, 도 15(a)는 x축 방향에서 바라본 필름 단면도, 도 15(b)는 x축 방향에서 바라본 필름 투시도, 도 15(c)는 y축 방향에서 바라본 필름 투시도이다. 도 15는 필름 내의 하나의 입자(grain) 내부의 구조일 수 있다. 도 15(a)는 PEDOT 분자들이 라멜라 구조(lamella structure)로 이루어지고, 라멜라 층간 거리(PEDOT 주쇄축 간 거리)는 1.32nm임을 보여준다. 이는 도 14(b)의 out-of-plane GIWAXS 결과에 의해 뒷받침된다. 여기서 PEDOT 분자의 너비를 고려하면, PEDOT 분자층 간의 유효한 공간은 0.57 nm인 것으로 계산되는데, 이 공간은 도데실 설페이트 분자가 2개 적층된 이론상 너비인 0.56nm와 거의 일치한다. 즉, 본 발명의 실시예에 따른 PEDOT 필름은 PEDOT 분자층 사이에 도데실 설페이트 분자가 2개 도핑된 라멜라 구조일 수 있다.In the xy plane parallel to the surface of the PEDOT film, the direction in which the PEDOT main chain is lined is the x-axis direction and the direction perpendicular thereto is the y-axis direction, and the thickness direction of the PEDOT film is the z-axis direction, FIG. 15 (a) is x The sectional view of the film as viewed in the axial direction, FIG. 15 (b) is a perspective view of the film as viewed in the x-axis direction, and FIG. 15 (c) is the perspective view of the film as viewed in the y-axis direction. 15 may be a structure inside one grain (grain) in the film. 15 (a) shows that the PEDOT molecules are made of a lamellar structure, and the lamellar interlayer distance (the distance between the PEDOT main chain axes) is 1.32 nm. This is supported by the out-of-plane GIWAXS results of Fig. 14 (b). Considering the width of the PEDOT molecule here, the effective space between the PEDOT molecular layers is calculated to be 0.57 nm, which is almost identical to the theoretical width of 0.56 nm with two dodecyl sulfate molecules stacked. That is, the PEDOT film according to an embodiment of the present invention may have a lamellar structure in which two dodecyl sulfate molecules are doped between PEDOT molecular layers.
이와 같이 2개의 도데실 설페이트 분자들이 도핑된 구조의 경우, PEDOT 라멜라 층 위아래에 주기적으로 노출되어있는 소수성의 에틸렌(-CH2CH2-) 그룹들이 도펀트 분자의 도데실 그룹과 매우 긴밀한 반데르발스 상호작용을 할 수 있으므로 에너지 면에서도 유리하다.In the case of a structure doped with two dodecyl sulfate molecules, hydrophobic ethylene (-CH2CH2-) groups periodically exposed above and below the PEDOT lamellar layer have a very close van der Waals interaction with the dodecyl group of the dopant molecule. As it can, it is also advantageous in terms of energy.
도 15(b)는 x축 방향에서 바라본 필름 투시도로, 도 15(a)가 x축 방향으로 한 레이어(one layer)만 도시한 것인 반면 도 15(b)는 x축 방향으로 두 레이어(two layer)가 겹쳐서 보이는 도면이다. 도 15(b)에 의하면, 두 개의 PEDOT 주쇄가 두 개의 라멜라 층을 형성하고 있으며 각각의 라멜라 층은 총 12개의 EDOT을 포함하고 있다. 즉, 도 15(b) 상에 총 24개의 EDOT 분자들이 있으며, 도데실 설페이트 분자는 8개가 라멜라 층간에 배치되어 있다. 이는 XPS 분석으로부터 계산한 도데실 설페이트 도핑 레벨인 약 37%와 잘 일치하는 결과이다.15 (b) is a perspective view of the film as viewed in the x-axis direction, while FIG. 15 (a) shows only one layer in the x-axis direction, while FIG. 15 (b) shows two layers in the x-axis direction ( It is a drawing where two layers are overlapped. According to FIG. 15 (b), two PEDOT main chains form two lamellar layers, and each lamellar layer includes a total of 12 EDOTs. That is, there are a total of 24 EDOT molecules on FIG. 15 (b), and 8 of the dodecyl sulfate molecules are arranged between the lamellar layers. This is in good agreement with the dodecyl sulfate doping level calculated from XPS analysis, about 37%.
도 15(c)는 y축 방향에서 바라본 필름 투시도로, 총 6개의 PEDOT 주쇄가 π-π stacking하여 위아래에 2 개의 라멜라 층을 형성한 결정구조를 보이고 있다. 여기서 PEDOT 주쇄들 간의 π-π 스택킹(π-π stacking)의 거리는 0.34nm이고, 도데실 설페이트 도펀트 분자들의 탄화수소사슬 간 거리는 0.47nm로 일정하게 주기적으로 놓여있다. 이는 도 14(a)의 in-plane XRD 결과에 의해 뒷받침된다.FIG. 15 (c) is a perspective view of the film as viewed from the y-axis direction, showing a crystal structure in which a total of six PEDOT main chains are stacked π-π to form two lamella layers at the top and bottom. Here, the distance of π-π stacking between PEDOT main chains is 0.34 nm, and the distance between hydrocarbon chains of dodecyl sulfate dopant molecules is regularly placed at 0.47 nm. This is supported by the in-plane XRD results of Fig. 14 (a).
이와 같은 결정 구조에 의하면, PEDOT 결정층의 위아래에 위치한 도데실 설페이트가 매우 효율적으로 도핑되어 있으면서 동시에 긴 탄화수소사슬이 조밀하게 결정 층을 에워싸고 있는 구조를 가졌음을 알 수 있다. 이러한 구조는 본 발명의 실시예에 따른 도데실 설페이트가 도핑된 PEDOT 필름의 높은 전기전도도, 매우 유연한 탄력성, 뛰어난 기계적인 내구성를 잘 설명한다. 또한 높은 소수성을 띄는 탄화수소사슬이 각 PEDOT 결정 층을 조밀하게 에워싼 결정 구조에 의하면 수용액 내에서 혹은 높은 습도에서도 매우 좋은 막질과 전기전도도를 유지할 수 있을 것으로 예상되며, 이는 본 발명의 실시예에 따른 도데실 설페이트가 도핑된 PEDOT 필름의 우수한 수용액 안정성 결과와도 잘 일치되는 것이다.According to such a crystal structure, it can be seen that the dodecyl sulfate located above and below the PEDOT crystal layer is very efficiently doped, and at the same time, a long hydrocarbon chain has a structure that densely surrounds the crystal layer. Such a structure well describes the high electrical conductivity of the PEDOT film dopedyl sulfate doped according to an embodiment of the present invention, very flexible elasticity, and excellent mechanical durability. In addition, according to a crystal structure in which a hydrocarbon chain having high hydrophobicity surrounds each PEDOT crystal layer densely, it is expected to be able to maintain a very good film quality and electrical conductivity in an aqueous solution or even at high humidity, according to an embodiment of the present invention. It is also in good agreement with the excellent aqueous solution stability results of the dodecyl sulfate doped PEDOT film.
본 발명의 실시예에서는 도판트 음이온으로 도데실 설페이트에 한정하여 설명하였으나, 도 15와 같은 결정구조에 의하면 도판트 음이온은 도데실 설페이트보다 탄화수소길이가 다소 짧거나 다소 길어도 무방할 것으로 예상할 수 있다. 실제로, 본 발명자의 실험에 의하면, 탄화수소사슬의 길이가 8C 내지 18C 범위인 도판트 음이온들을 적용한 결과 정도의 차이는 있지만 종래에 보고된 PEDOT 필름보다 우수한 특성들을 얻을 수 있었다. 즉, CH3(CH2)nSO4 (n = 7~17)의 도판트 음이온이 도핑된 PEDOT 필름도 본 발명의 범위 내에 포함되는 것으로 이해되어야 한다.In the embodiment of the present invention, the dopant anion is limited to dodecyl sulfate, but according to the crystal structure of FIG. 15, it can be expected that the dopant anion may be slightly shorter or slightly longer in hydrocarbon length than dodecyl sulfate. . Indeed, according to the experiment of the present inventors, as a result of applying dopant anions having a hydrocarbon chain length of 8C to 18C, there was a difference in degree, but it was possible to obtain properties superior to the PEDOT film reported in the related art. That is, it should be understood that a PEDOT film doped with a dopant anion of CH 3 (CH 2 ) n SO 4 (n = 7 to 17) is also included within the scope of the present invention.
이상 한정된 실시예 및 도면을 참조하여 설명하였으나, 이는 실시예일뿐이며, 본 발명의 기술사상의 범위 내에서 다양한 변형 실시가 가능하다는 점은 통상의 기술자에게 자명할 것이다. Although described above with reference to the limited embodiments and drawings, it is only an embodiment, it will be apparent to those skilled in the art that various modifications can be implemented within the scope of the technical idea of the present invention.
따라서, 본 발명의 보호범위는 특허청구범위의 기재 및 그 균등 범위에 의해 정해져야 한다.Therefore, the protection scope of the present invention should be defined by the description of the claims and their equivalents.

Claims (24)

  1. 도데실 설페이트(Dodecyl Sulfate)가 도판트로 함유된 PEDOT 필름.PEDOT film containing dodecyl sulfate as dopant.
  2. 제1항에 있어서,According to claim 1,
    상기 PEDOT 필름은 도데실 설페이트 금속염을 산화제로 사용하는 기상중합법에 의해 형성된 것을 특징으로 하는 PEDOT 필름.The PEDOT film is a PEDOT film, characterized in that formed by a gas phase polymerization method using a dodecyl sulfate metal salt as an oxidizing agent.
  3. 제2항에 있어서,According to claim 2,
    상기 도데실 설페이트 금속염은 Fe(DS)3인 것을 특징으로 하는 PEDOT 필름.The dodecyl sulfate metal salt is a PEDOT film, characterized in that Fe (DS) 3 .
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 도데실 설페이트 도판트의 함유량은 5~50% 범위 내인 것을 특징으로 하는 PEDOT 필름. PEDOT film, characterized in that the content of the dodecyl sulfate dopant is in the range of 5 to 50%.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    전기전도도가 5,500S/cm 이상인 것을 특징으로 하는 PEDOT 필름. PEDOT film characterized in that the electrical conductivity of 5,500S / cm or more.
  6. 제5항에 있어서,The method of claim 5,
    전기전도도가 10,000S/cm 이상인 것을 특징으로 하는 PEDOT 필름. PEDOT film, characterized in that the electrical conductivity of 10,000S / cm or more.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    20nm의 두께에서 550nm 파장에 대해 90% 이상의 광 투과율을 나타내는 것을 특징으로 하는 PEDOT 필름.PEDOT film characterized in that it exhibits a light transmittance of 90% or more for a wavelength of 550nm at a thickness of 20nm.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    300,000회의 밴딩 사이클 후 전기저항 변화가 9% 이하이거나, 또는 30% 인장 후 전기저항 변화가 10% 이하인 것을 특징으로 하는 PEDOT 필름.PEDOT film characterized in that the electrical resistance change after 300,000 bending cycles is 9% or less, or the electrical resistance change after 30% tensile is 10% or less.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    탈이온수에 20일 이상 침지한 후에도 전기저항 변화가 5% 이하인 것을 특징으로 하는 PEDOT 필름.PEDOT film characterized in that the change in electrical resistance is 5% or less even after immersion in deionized water for 20 days or more.
  10. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    PEDOT 분자층 사이에 도데실 설페이트 분자가 도핑된 라멜라 구조인 것을 특징으로 하는 PEDOT 필름.PEDOT film, characterized in that the lamellar structure dopedyl sulfate molecule doped between the PEDOT molecular layer.
  11. 제10항에 있어서,The method of claim 10,
    상기 PEDOT 분자층 사이에 2개의 도데실 설페이트 분자가 도핑된 것을 특징으로 하는 PEDOT 필름.PEDOT film, characterized in that two dodecyl sulfate molecules are doped between the PEDOT molecular layer.
  12. 제1항 내지 제3항 중 어느 한 항에 따른 PEDOT 필름을 포함하는 전자소자.An electronic device comprising the PEDOT film according to any one of claims 1 to 3.
  13. 제12항에 있어서,The method of claim 12,
    상기 PEDOT 필름은 전극으로 포함되는 것을 특징으로 하는 전자소자.The PEDOT film is an electronic device characterized in that it is included as an electrode.
  14. 기판 상에 도데실 설페이트 금속염을 포함하는 산화제막을 코팅하는 단계;Coating an oxidant film containing dodecyl sulfate metal salt on a substrate;
    상기 산화제막이 코팅된 기판 상에 기상중합법으로 PEDOT 필름을 형성하는 단계;Forming a PEDOT film on the substrate coated with the oxidizer film by gas phase polymerization;
    상기 PEDOT 필름을 세척 및 건조하는 단계;Washing and drying the PEDOT film;
    를 포함하는 PEDOT 필름 제조방법.PEDOT film manufacturing method comprising a.
  15. 제14항에 있어서,The method of claim 14,
    상기 도데실 설페이트 금속염은 Fe(DS)3를 포함하는 것을 특징으로 하는 PEDOT 필름 제조방법.The dodecyl sulfate metal salt PEDOT film production method characterized in that it comprises Fe (DS) 3 .
  16. 제14항 또는 제15항에 있어서,The method of claim 14 or 15,
    억제제를 사용하지 않는 것을 특징으로 하는 PEDOT 필름 제조방법.PEDOT film production method characterized in that the inhibitor is not used.
  17. 기상중합법으로 PEDOT 필름을 제조하는데 사용하기 위한 산화제 제조방법으로서,As a method for producing an oxidizing agent for use in preparing a PEDOT film by a gas phase polymerization method,
    재결정법으로 도데실 설페이트 금속염을 석출시키는 단계;Depositing a metal salt of dodecyl sulfate by a recrystallization method;
    상기 석출된 도데실 설페이트 금속염을 세척하는 단계; 및 Washing the precipitated dodecyl sulfate metal salt; And
    진공 동결 건조하는 단계;Vacuum freeze-drying;
    를 포함하는 산화제 제조방법.Oxidizing agent production method comprising a.
  18. 제17항에 있어서,The method of claim 17,
    상기 도데실 설페이트 금속염은 Fe(DS)3를 포함하는 것을 특징으로 하는 산화제 제조방법. The dodecyl sulfate metal salt is a method of manufacturing an oxidizing agent comprising Fe (DS) 3 .
  19. 제18항에 있어서,The method of claim 18,
    상기 재결정법으로 도데실 설페이트 금속염을 석출시키는 단계는,The step of depositing the dodecyl sulfate metal salt by the recrystallization method,
    원심분리법으로 불순물을 제거하는 단계를 더 포함하는 것을 특징으로 하는 산화제 제조방법.A method of manufacturing an oxidizing agent further comprising the step of removing impurities by centrifugation.
  20. 제18항에 있어서,The method of claim 18,
    상기 재결정법으로 도데실 설페이트 금속염을 석출시키는 단계는,The step of depositing the dodecyl sulfate metal salt by the recrystallization method,
    도데실 황산 나트륨(sodium dodecyl sulfate) 용액을 제조하는 단계;Preparing a sodium dodecyl sulfate solution;
    상기 도데실 황산 나트륨 용액에 FeCl3를 첨가하는 단계;Adding FeCl 3 to the sodium dodecyl sulfate solution;
    를 포함하는 것을 특징으로 하는 산화제 제조방법.Method for producing an oxidizing agent comprising a.
  21. 제20항에 있어서,The method of claim 20,
    상기 FeCl3 첨가로 상기 도데실 황산 나트륨 용액에 발생된 석출물을 메탄올에 용해시켜 메탄올 용액을 제조하는 단계;Preparing a methanol solution by dissolving the precipitate generated in the sodium dodecyl sulfate solution in methanol by adding FeCl 3 ;
    상기 메탄올 용액에 탈이온수를 첨가하여 Fe(DS)3 재결정을 석출시키는 단계를 더 포함하는 것을 특징으로 하는 산화제 제조방법.The method of claim 1, further comprising the step of depositing recrystallization of Fe (DS) 3 by adding deionized water to the methanol solution.
  22. PEDOT 분자층 사이에 음이온 분자가 하나 이상 도핑된 라멜라 구조의 PEDOT 필름으로서,A PEDOT film having a lamellar structure in which one or more anionic molecules are doped between PEDOT molecular layers,
    상기 음이온 분자는 탄화수소사슬 길이가 8C 내지 18C인 CH3(CH2)nSO4 - (n = 7~17) 도판트 음이온인 것을 특징으로 하는 PEDOT 필름.The anionic molecule is a CH 3 a hydrocarbon chain length 8C to 18C (CH 2) n SO 4 - (n = 7 ~ 17) PEDOT film, characterized in that the dopant anion.
  23. 제22항에 있어서,The method of claim 22,
    상기 PEDOT 분자층 사이에 도핑된 음이온 분자는 두개인 것을 특징으로 하는 PEDOT 필름.PEDOT film, characterized in that there are two anionic molecules doped between the PEDOT molecular layer.
  24. 제22항에 있어서,The method of claim 22,
    PEDOT 주쇄가 늘어선 방향을 x축 방향, 이와 수직한 방향을 y축 방향이라고 할 때,When the direction in which the PEDOT main chain is lined is the x-axis direction and the direction perpendicular to this is the y-axis direction
    상기 PEDOT 분자들은 y축 방향으로 π-π 스택킹되어 있으며,The PEDOT molecules are π-π stacked in the y-axis direction,
    상기 도핑된 음이온 분자들은 상기 π-π 스택킹된 PEDOT 분자들의 상하부에 주기적으로 배치된 것을 특징으로 하는 PEDOT 필름.The doped anion molecules are PEDOT film, characterized in that periodically arranged in the upper and lower parts of the π-π stacked PEDOT molecules.
PCT/KR2019/010583 2018-10-10 2019-08-20 Dodecyl sulfate-doped poly(3,4-ethylenedioxythiophene) film and manufacturing method therefor WO2020075967A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/284,069 US20210317277A1 (en) 2018-10-10 2019-08-20 Dodecyl sulfate-doped poly(3,4-ethylenedioxythiophene) film and manufacturing method therefor
JP2021520422A JP7148719B2 (en) 2018-10-10 2019-08-20 Poly(3,4-ethylenedioxythiophene) film doped with dodecyl sulfate and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0120286 2018-10-10
KR1020180120286A KR102224357B1 (en) 2018-10-10 2018-10-10 Dodecyl sulfate doped pedot film and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2020075967A1 true WO2020075967A1 (en) 2020-04-16

Family

ID=70163994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010583 WO2020075967A1 (en) 2018-10-10 2019-08-20 Dodecyl sulfate-doped poly(3,4-ethylenedioxythiophene) film and manufacturing method therefor

Country Status (4)

Country Link
US (1) US20210317277A1 (en)
JP (1) JP7148719B2 (en)
KR (1) KR102224357B1 (en)
WO (1) WO2020075967A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240669B1 (en) * 2019-05-08 2021-04-16 (주)플렉솔루션 Organic electrochemical transistor device and method for preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140067237A (en) * 2012-11-26 2014-06-05 (주)플렉솔루션 Pedot film and electronic device having the same and method for manufacturing the pedot film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930003715B1 (en) * 1990-02-17 1993-05-08 한국과학기술연구원 Produce for preparation of hetero 5-membered ring polymer
FR2666443A1 (en) * 1990-08-31 1992-03-06 Commissariat Energie Atomique ELECTRONIC CONDUCTIVE POLYMER MATERIAL COMPRISING MAGNETIC PARTICLES AND PROCESS FOR PRODUCING THE SAME.
WO2008130326A1 (en) * 2007-04-20 2008-10-30 Agency For Science, Technology And Research Polymeric films
KR20080104531A (en) 2007-05-28 2008-12-03 삼성전자주식회사 A conductive polymer thin film for an organic light emitting device(oled) and a manufacturing method thereof
WO2009054814A1 (en) * 2007-10-25 2009-04-30 Agency For Science, Technology And Research Functionalized poly (3,4-alkylenebridgedthiophene) (pabt)
JP2011192688A (en) * 2010-03-12 2011-09-29 Sumitomo Metal Mining Co Ltd Solid electrolytic capacitor and method of manufacturing the same
WO2014201471A1 (en) * 2013-06-14 2014-12-18 University Of Washington Conjugated polymers for conductive coatings and devices
TWI511349B (en) * 2013-10-28 2015-12-01 Univ Nat Cheng Kung Conductive composition and applications thereof
CN105527757B (en) * 2016-02-01 2018-03-06 深圳市华星光电技术有限公司 The preparation method of liquid crystal display panel
JP7081161B2 (en) * 2017-01-13 2022-06-07 日本ケミコン株式会社 Polymerization solution for electrolytic capacitors, cathode for electrolytic capacitors using this polymerization solution, and method for manufacturing electrolytic capacitors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140067237A (en) * 2012-11-26 2014-06-05 (주)플렉솔루션 Pedot film and electronic device having the same and method for manufacturing the pedot film

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KIM, TAE-YON ET AL.: "Imidazolium Iodide-Doped PEDOT Nanofibers as Conductive Catalysts for Highly Efficient Solid-State Dye-Sensitized Solar Cells Employing Polymer Electrolyte", APPLIED MATERIALS&INTERFACES, vol. 10, no. 3, 27 December 2017 (2017-12-27), pages 2537 - 2545, XP055701019 *
MA, FENG ET AL.: "We-B1-5. A Glass Capillary-written and then Vapor Phase-Polymerized PEDOT Conductor with stability in Water", IUMRS-ICEM 2018, 22 August 2018 (2018-08-22), Daejeon , Korea *
PRADHAN, KOYEL ET ET AL.: "Fe(DS)3, an efficient Lewis acid-surfactant-combined catalyst (LASC) for the one pot synthesis of chromeno[4,3-b]chromene derivatives by assembling the basic building blocks", TETRAHEDRON LETTERS, vol. 54, no. 24, 2013, pages 3105 - 3110, XP028584272, DOI: 10.1016/j.tetlet.2013.04.001 *
SAKMECHE, NACER ET AL.: "Improvement of the Electrosynthesis and Physicochemical Properties of Poly(3,4-ethylenedioxythiophene) Using a Sodium Dodecyl Sulfate Micellar Aqueous Medium", LANGMUIR, vol. 1, no. 15, 1999, pages 2566 - 2574, XP055233926 *

Also Published As

Publication number Publication date
KR20200040950A (en) 2020-04-21
KR102224357B1 (en) 2021-03-10
JP7148719B2 (en) 2022-10-05
JP2022504918A (en) 2022-01-13
US20210317277A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2012064102A2 (en) Graphene-coated steel sheet, and method for manufacturing same
WO2018143611A1 (en) Method for manufacturing large-area metal chalcogenide thin film, and method for manufacturing electronic device comprising metal chalcogenide thin film manufactured thereby
KR20120036898A (en) Conjugated polymers and their use as organic semiconductors
KR100438888B1 (en) Compounds capable of transporting/injecting hole and organic electroluminescence device having self-assembled monolayer comprising the same
WO2016006818A1 (en) Method for producing graphene with controlled number of layers, and method for manufacturing electronic device using same
WO2018004259A2 (en) Method for manufacturing ion-conducting membrane
WO2020075967A1 (en) Dodecyl sulfate-doped poly(3,4-ethylenedioxythiophene) film and manufacturing method therefor
EP1557440A1 (en) Article formed of polybenzazole and production method for the same
WO2020105926A1 (en) Sulfur-doped reduced graphene oxide, manufacturing method therefor, and polyimide nanocomposite containing sulfur-doped reduced graphene oxide
WO2020226232A1 (en) Organic electrochemical transistor device and manufacturing method for same
CN112969741B (en) Polyimide precursor composition and polyimide film produced using same
KR101705625B1 (en) The Modified Graphene Material Having Dispersible Groups in Polymers and Process the Same
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
KR20210111265A (en) Substrate, selective film deposition method, organic material deposition film and organic material
KR20090056120A (en) Thiazole based semiconduct compounds and organic thin film transistors there use of
Huzyak et al. Fused arene-functionalized polyhedral oligomeric silsesquioxanes as thermoelectric materials
WO2021054632A1 (en) Compound for release agent and method for producing same
WO2013002564A2 (en) Anti-releasing composition, graphene laminate including the composition, and preparation method thereof
WO2013009056A2 (en) Transparent electrode containing graphene and ito
WO2012141535A2 (en) Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same
KR20200094696A (en) Fluorinated amphiphilic polymer and organic thin-film transistor using same
WO2017191931A1 (en) Method for preparing perfluorinated acid-treated conductive polymer thin film and use of same
WO2022085903A1 (en) Method for manufacturing modified conductive polymer thin film, and modified conductive polymer thin film manufactured using same
TW202030180A (en) Diamine compound and preparation method thereof, polyimide precursor, polyimide film, flexible device and preparation process thereof
WO2021006712A1 (en) Organic-inorganic hybrid layer, organic-inorganic laminate comprising same layer, and organic electronic element comprising same laminate as gas barrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870267

Country of ref document: EP

Kind code of ref document: A1