WO2020075841A1 - Cell culturing substrate containing collagen derived from barramundi scales - Google Patents

Cell culturing substrate containing collagen derived from barramundi scales Download PDF

Info

Publication number
WO2020075841A1
WO2020075841A1 PCT/JP2019/040219 JP2019040219W WO2020075841A1 WO 2020075841 A1 WO2020075841 A1 WO 2020075841A1 JP 2019040219 W JP2019040219 W JP 2019040219W WO 2020075841 A1 WO2020075841 A1 WO 2020075841A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
derived
barramundi
gel
scales
Prior art date
Application number
PCT/JP2019/040219
Other languages
French (fr)
Japanese (ja)
Inventor
松田 博幸
雅莉 門
俊志 本元
務 長谷阪
俊二 山森
田口 秀典
Original Assignee
日本電熱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電熱株式会社 filed Critical 日本電熱株式会社
Priority to CN201980067027.3A priority Critical patent/CN112840013A/en
Publication of WO2020075841A1 publication Critical patent/WO2020075841A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]

Definitions

  • the present invention broadly relates to a cell culture substrate containing collagen fibers derived from barramundy scales.
  • collagen gel is widely used as a raw material for cell culture substrates. Most of its raw materials depend on the dermis of vertebrates such as cattle and pigs, which have high resource abundance and high yield, but the use of these collagens is not without problems. For example, in some parts of Southeast Asia, there is a problem that culturally restricted handling of products of mammalian origin.
  • BSE bovine spongiform encephalopathy
  • JP-A-2014-218453 and JP-A-2012-126681 disclose collagen fiber gels made from collagen extracted from the skins and scales of tilapia and its use as a cell culture substrate. ing.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cell culture substrate containing fish-derived collagen that enables three-dimensional cell culture at 37 ° C.
  • the present invention includes the following inventions.
  • [1] A cell culture substrate containing collagen derived from barramundi scale.
  • [2] The cell culture substrate according to [1], wherein in the collagen derived from barramundi scale, hydroxyproline per 1000 amino acid residues is 80 residues or more.
  • [3] The cell culture substrate according to [1] or [2], wherein the collagen derived from the barramundi scale has a difference in molecular weight between the ⁇ 1 chain and the ⁇ 2 chain of 5 kDa or less.
  • a kit for cell culture comprising the cell culture substrate according to any one of [1] to [3].
  • Collagen fiber gel prepared from barramundi scale has characteristics comparable to the cell culture substrate that was conventionally made from bovine or porcine dermis collagen, so it is a substitute material for culture substrate particularly suitable for three-dimensional culture environment. Can be.
  • collagen derived from barramundi collagen derived from its skin is known (Japanese Unexamined Patent Publication No. 2015-180622).
  • collagen derived from barramundi skin differs from that derived from scale in that the publication suggests that the hydroxyproline content is too low to be detected, and the thermal stability of collagen fiber gel prepared therefrom is also high.
  • gelatin prepared from barramundi scale is disclosed, but gelatin is different from collagen fiber gel in that the three-dimensional structure and molecular weight of collagen are changed by heat denaturation.
  • gelatin gel has a structure in which gelatin molecules having a random coil structure are cross-linked between molecules, whereas collagen fiber gel has inter-molecular cross-linking in which collagen fibers having a triple helix structure are self-assembled. Having that structure.
  • the collagen fiber gel derived from barramundy scale is different from the gelatin described in WO2017 / 002767 in that G'shows a value of 90 Pa or more even after fibrosis at 37 ° C and after heating to 50 ° C. ing.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary, but the present invention is limited to the present embodiment described below. Not a thing.
  • the present invention can be variously modified without departing from the gist thereof.
  • the present invention provides a cell culture substrate containing collagen derived from barramundi scales.
  • Collagen at least partially has a helical structure (collagen helix) composed of three ⁇ chains having a molecular weight of about 100,000.
  • ⁇ 1 chain and ⁇ 2 chain are roughly classified according to slight differences in amino acid composition.
  • Most of the collagen present in the body forms a heterotrimer ( ⁇ 1 ⁇ 2, ⁇ 2 ⁇ 1), but inside it is a homotrimer composed of 3 ⁇ 1 chains.
  • a glycine residue appears every 3rd monomer in each monomer, and a proline residue and a hydroxyproline residue as other amino acid residues appear frequently.
  • proline and hydroxyproline are known to contribute to the thermal stability of the triple helix structure.
  • type I, II, III and type IV collagen are mainly used as raw materials for biomaterials.
  • Type I is present in most connective tissues and constitutes the extracellular matrix. It is the most abundant collagen type in the body. Especially in tendons, dermis and bone, industrially collagen is often extracted from these sites.
  • Type II is collagen that forms cartilage.
  • Type III is often present at a similar site as type I, albeit in small amounts.
  • Type IV is collagen that forms the basement membrane.
  • the types I, II and III exist in the body as collagen fibers and mainly play a role of maintaining the strength of tissues or organs. Type IV does not have a fibrogenic ability, but forms a mesh-like aggregate composed of four molecules and is considered to be involved in cell differentiation in basement membrane.
  • the collagen derived from the scales of Barramundi (lates calcarifer) used in the present invention has a molecular weight distribution similar to that of type III collagen, but may contain any type of collagen unless otherwise specified.
  • collagen fiber means a fiber of collagen that can be extracted from scales of barramundi and has at least a triple helix structure.
  • the collagen fiber preferably has 80 or more hydroxyproline residues per 1000 amino acid residues.
  • the content of hydroxyproline in collagen derived from barramundi scale is as high as 8% or more, which is preferable. Although this value does not reach the hydroxyproline content of collagen derived from pig skin, it can be said that the content is extremely high for fish collagen.
  • collagen When measured by SDS-PAGE, collagen usually shows one ⁇ chain band around 200 kDa and two bands of ⁇ 1 chain and ⁇ 2 chain around 100 kDa. On the other hand, gelatin shows a wide distribution below 300 kDa. In addition, gelatin has many low molecular weight components in which the ⁇ chain is decomposed.
  • the collagen in the present embodiment is characterized in that the difference in molecular weight between the ⁇ 1 chain and the ⁇ 2 chain constituting the fiber is 5 kDa or less. While the molecular weight of ⁇ 1 chain and ⁇ 2 chain in general type I collagen such as type I collagen derived from pig skin is 10 kDa or more, collagen derived from barramundy scales has the same results as shown in Examples. , ⁇ 1 chain and ⁇ 2 chain have a molecular weight close to about 3.9 kDa.
  • collagen derived from barramundy scales in which the ⁇ 1 and ⁇ 2 chains have similar molecular weights, is a type III in which fibrosis is more active than type I of the heterotrimer. It is considered to have a structure close to a homozygote such as collagen.
  • the difference in molecular weight between ⁇ 1 chain and ⁇ 2 chain can be confirmed by using a method suitable for protein separation based on molecular weight, such as SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Specifically, the difference in molecular weight can be calculated by creating a calibration curve from the relationship between the mobility of each band of the molecular weight marker and the molecular weight, and applying the mobility of each ⁇ chain to the calibration curve.
  • SDS-PAGE SDS-polyacrylamide gel electrophoresis
  • the gel in the present embodiment is characterized in that the denaturation temperature as a monomer constituting the gel is high, that is, the collagen fibers maintain a triple helix structure at 37.0 ° C.
  • the denaturation temperature of Tilapia scale-derived collagen is about 35.7
  • the denaturation temperature of Barramundi scale-derived collagen is about 36.1 ° C.
  • the denaturation temperature can be confirmed by means known to those skilled in the art such as circular dichroism spectrum (CD).
  • the gel of the present embodiment is superior to that derived from tilapia scale in terms of storage elastic modulus (G ′).
  • the storage elastic modulus can be determined using a device capable of evaluating dynamic viscoelastic properties such as a rheometer.
  • the storage modulus (G ′) is 10 on a rotary rheometer MCR302 (manufactured by Anton-Paar) with an aqueous solution of pH 7 containing 0.27% by weight of collagen unless otherwise specified. It means the value when the temperature is raised from 37 ° C to 37 ° C.
  • the storage elastic modulus G'of the collagen gel made of barramundi scale as a raw material is 90 Pa or more.
  • the softening temperature in the denaturation process due to temperature increase is 45 ° C. or higher.
  • the "softening temperature” is the temperature at which the average value of G'reached for the last 10 minutes when the temperature was kept constant at 37 ° C. decreased by 5% as the temperature increased.
  • the concentration of collagen derived from barramundi scale can be appropriately changed depending on the application.
  • the concentration of collagen may be in the range of 0.20% to 0.53%.
  • the collagen concentration is less than 0.20%, it is difficult to obtain the hardness that resists the traction force of cells.
  • the collagen concentration is 0.53% or more, the viscosity of the collagen aqueous solution used for gel preparation is high, so that mixing with a buffer solution or the like is insufficient and the homogeneity of the gel is impaired. Since the hardness of the gel affects the differentiation of stem cells (Even-Ram et al., Cell, 126, 645-647 (2006)), nonuniform gel hardness is not preferable as a cell culture substrate.
  • Collagen fiber gel derived from barramundi scale can be produced by a method of cross-linking collagen molecules constituting collagen fiber, and collagen can be effectively increased in elastic modulus of collagen fiber gel.
  • the method of causing a cross-linking reaction during the fibrosis of is preferably used.
  • a collagen aqueous solution having a concentration of 3% or less and having a pH of 1 to 5, preferably about 3, and a sodium phosphate buffer having a pH of 6 to 10, preferably about 7, is used as a raw material for denaturing collagen.
  • Examples include a method of mixing at the following temperature (for example, about 10 ° C.) to obtain a solution having a predetermined collagen concentration, and then allowing it to stand.
  • the buffer may optionally contain a cross-linking agent.
  • the aqueous collagen solution can be produced, for example, from scales by a known extraction method using an acid such as acetic acid and an enzyme such as pepsin.
  • concentration of the aqueous collagen solution can be adjusted by the weight ratio of collagen / solvent when dissolving the once-precipitated or dried collagen. If the collagen concentration exceeds 3%, the viscosity becomes high, and a non-uniform gel may occur due to insufficient mixing with the sodium hydrogen phosphate buffer solution, which is not preferable.
  • the preferred concentration is 1% or less.
  • the concentration of the cross-linking agent in the buffer solution is not particularly limited. However, the concentration of the cross-linking agent, rather than the concentration in the sodium hydrogen phosphate buffer, influences the success or failure of gel formation and the physical properties of the gel after being mixed with the aqueous collagen solution (concentration in gel).
  • concentration in gel influences the success or failure of gel formation and the physical properties of the gel after being mixed with the aqueous collagen solution (concentration in gel).
  • concentration of the cross-linking agent in the collagen fiber gel is preferably in the range of 5-80 mM. When the concentration of the cross-linking agent in the collagen fiber gel is less than 5 mM, cross-linking is difficult to be introduced into collagen molecules, and the elastic modulus of the gel may be insufficient, which is not preferable.
  • the concentration of the cross-linking agent exceeds 80 mM, the gelation rate after mixing the collagen aqueous solution and the sodium phosphate buffer is too fast, which may deteriorate the moldability, which is not preferable. More preferably, it is in the range of 10 to 30 mM.
  • an inorganic salt such as sodium chloride can be added as a fibrosis inhibitor, if necessary.
  • the concentration of the added inorganic salt is preferably in the range of 30 to 150 mM as the concentration in the collagen fiber gel.
  • concentration of the inorganic salt in the gel is less than 30 mM, the fibrosis of collagen is too fast, the collagen fiber network does not develop, and the gel may become weak.
  • concentration of the inorganic salt in the gel exceeds 150 mM, collagen fibrosis is suppressed and the gel may become weak. More preferably, it is in the range of 50 to 130 mM.
  • the cross-linking agent used for cross-linking collagen molecules is not particularly limited as long as it can cross-link proteins and has water solubility.
  • the protein cross-linking agent is described in detail in the literature (Biomaterials, 18, p.95-105 (1997)).
  • aldehyde-based crosslinking agents such as glutaraldehyde
  • carbodiimide-based crosslinking agents such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide / hydrochloride (EDC)
  • isocyanate-based crosslinking agents such as hexamethylene diisocyanate, ethylene glycol
  • a polyepoxy-based crosslinking agent such as diethyl ether is preferably used from the viewpoints of economy, safety and operability.
  • a solution of a water-soluble carbodiimide such as EDC or 1-cyclohexyl-3- (2-morpholinyl-4-ethyl) carbodiimide sulfonate in a phosphate buffer having a pH of 6 to 10.
  • gelatin molecules change due to thermal denaturation to form a random coil structure, but upon cooling, the helical structure recovers, and neighboring molecules share a helical structure portion and associate / aggregate to form a crosslinked gel.
  • the cell culture substrate containing the above collagen fiber gel serves as a scaffold for cultured cells and can be used in any medium.
  • Collagen fiber gel is preferably used as a medium for three-dimensional culture.
  • the cell culture substrate may be provided alone, or may be provided as a medium or a kit containing components such as serum necessary for cell culture.
  • the cell culture substrate and medium can be contained in the cell culture container.
  • the type of cell culture container is not particularly limited, but a plastic dish or plate that is widely used as a consumable product for cell culture is preferably used. Plastic has a low affinity for collagen and is easier to peel off gel than glass.
  • Cell can be adhered / proliferated or differentiated as needed in a medium containing collagen fiber gel derived from barramundi scale.
  • the cultured cells are not particularly limited and can be used, for example, somatic cells, germ cells, stem cells and the like.
  • stem cells include stem cell embryonic stem cells, induced pluripotent stem cells, and somatic stem cells such as mesenchymal stem cells.
  • Collagen fiber gel derived from barramundi scale is particularly suitable for culturing cells, such as chondrocytes, which are easily dedifferentiated in flat culture and difficult to be subcultured for a long time.
  • the collagen can be extracted from barramundi scales using a known method.
  • a method of solubilizing collagen with an enzyme using fish scales as a raw material is known to those skilled in the art, and is described in, for example, Japanese Patent Nos. 4863433 and 5692770.
  • an enzyme capable of hydrolyzing scales to extract collagen such as pepsin
  • the amount of enzyme added is not particularly limited, but is preferably 1 to 15% by weight based on the dry weight of the fish scale.
  • the scales Prior to the extraction step, it is preferable to remove inorganic substances such as calcium phosphate contained in fish scales, and then perform deashing treatment to improve extraction efficiency.
  • the scales may be washed with an aqueous solution containing a specific acid or an organic solvent in order to remove unnecessary proteins and lipids contained in the scales.
  • the method for obtaining fish scale-derived collagen includes a step of decalcifying fish scale, a step of treating the decalcified fish scale with an protease in an acidic aqueous solution in a temperature range of 15 ° C to 35 ° C, and recovering solubilized collagen. It may include a step of It is preferable that the fish scale used as a raw material is refrigerated or frozen after collection to prevent spoilage.
  • the collected fish scales have a considerable amount of contaminants attached, for example, dorsal fins, caudal fins, etc., or surplus proteins attached to the surface thereof. Therefore, for the purpose of removing these before storage, it is preferable to wash the raw fish scales as a pretreatment after they are collected.
  • the contaminants may be removed by washing with water, and the surplus protein adhering to the surface is, for example, 1 to 15% by weight, preferably 5 to 10% by weight of an aqueous sodium chloride solution, or 0.01 to It may be removed by washing with 0.5 M, preferably 0.05 to 0.2 M aqueous sodium hydroxide solution for 10 to 72 hours, preferably 24 to 48 hours (alkali treatment).
  • the washing is preferably repeated by exchanging the washing solution.
  • the washing solution is washed to such an extent that the waste solution does not become cloudy, preferably about 3 to 5 times. It is good to replace the product and wash it repeatedly.
  • the solvent of the aqueous protease solution used for the protease treatment is not particularly limited as long as the pH is in the range of 2 to 5, but inexpensive, easy-to-handle hydrochloric acid, acetic acid, and phosphoric acid are preferably used.
  • the acid concentration is defined by the pH.
  • the protease treatment may be performed in an acidic aqueous solution in the temperature range of 15 ° C to 35 ° C.
  • the temperature range of 15 ° C to 35 ° C As a result, the extraction efficiency of collagen can be improved without causing denaturation of collagen, and a high yield can be realized.
  • the temperature is lower than 15 ° C., the protease activity may decrease and the collagen extraction efficiency may decrease, which is not preferable.
  • the temperature is 35 ° C. or higher, protease activity increases, but collagen degeneration may occur, which is not preferable. Therefore, the protease treatment is carried out in a temperature range of 15 ° C to 35 ° C, more preferably 20 ° C to 30 ° C.
  • the protease treatment may be completed when the collagen solubilizing ability is reduced due to protease inactivation, and for example, the treatment time may be about 12 to 48 hours. Further, the treatment liquid may be stirred using a stirring blade or the like for the purpose of enhancing the extraction efficiency.
  • the collagen dissolved in the acidic aqueous solution may be recovered by, for example, an ordinary physical separation means conventionally used for preparing collagen derived from mammals, etc., and the method is not particularly limited.
  • sodium chloride or the like is added to the collagen aqueous solution separated from the fish scale residue by means such as centrifugation or filtration to increase the salt concentration, or sodium hydroxide or the like is added to adjust the pH to near neutral.
  • the collagen may be fibrillated, and the fibrillated collagen may be separated and collected by, for example, a centrifugation method.
  • the cell culture substrate is provided as a cell culture kit.
  • the cell culture substrate can be contained in a container.
  • the type of such container is not particularly limited, but a widely used plastic dish or plate is preferable.
  • Plastic has a low affinity with collagen and has the advantage that it is easier to peel off the gel than glass.
  • the container may contain a medium suitable for the cells to be cultured.
  • the composition of the medium is not intended to be limited because it varies depending on the composition to be cultured, but usually it includes inorganic salts, various amino acids, sugars, vitamins, and further serum.
  • the fish scales were filtered with a wire mesh and washed repeatedly with water until the pH became neutral.
  • This aqueous solution was centrifuged (10000 ⁇ g, 20 minutes) to precipitate fish scales. The supernatant was collected, suction filtered using a glass fiber filter (Merck KK) and a membrane filter (Merck KK, 0.65 ⁇ m followed by 0.45 ⁇ m), and treated with pepsin.
  • the ingredients were recovered.
  • the yield of collagen extraction was calculated from the weight of the freeze-dried product after extraction with respect to the dry weight of decalcified scale.
  • the freeze-dried product was dissolved in dilute hydrochloric acid having a pH of 3 at an arbitrary concentration to prepare acid-soluble collagen and pepsin-extracted collagen.
  • BC-S barramundi skin collagen
  • TC cell campus AQ-03LE
  • CMT Cellmatrix Type IP
  • Spectra Multicolor High Range Protein Ladder (Thermo Fisher Scientific) was used as the molecular weight marker, and Quick-CBB plus (Fujifilm Wako Pure Chemical Co., Ltd.) was used as the gel after electrophoresis.
  • the collagen derived from pig skin (PC-S), the collagen derived from barramundi scale (BC), and the collagen derived from barramundi skin (BC-S) were ⁇ chains near 120 kDa and ⁇ near 120 kDa.
  • a band, a ⁇ -chain near 240 kDa, and a migration band showing a ⁇ -chain at a position of 270 kDa or more were obtained.
  • the migration patterns of the ⁇ chains of BC and BC-S were suggested to have a heterotrimer structure in which the distance between the ⁇ 1 chain and the ⁇ 2 chain is close in both scale and skin.
  • the close molecular weight band distance between the ⁇ 1 chain and the ⁇ 2 chain suggests that collagen derived from barramundy scales has a structure close to a homozygote such as type III collagen.
  • the molecular weight difference shown in FIG. 1 is about 4.0 kDa for barramundi scale-derived collagen (BC), about 5.5 kDa for barramandi skin-derived collagen (BC-S), and about 5.5 for tilapia scale-derived collagen (TC).
  • the collagen derived from pig skin was about 10.0 kDa.
  • the collagen derived from barramundi scale has a molecular weight difference of 10 kDa or more as compared with general type I collagen derived from pig skin or tilapia scale, regardless of the treatment method, while the molecular weight difference is 5.0 kDa or less.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention pertains to a cell culturing substrate containing collagen derived from barramundi scales.

Description

バラマンディ鱗由来コラーゲンを含む細胞培養基材Cell culture substrate containing collagen from barramundi scale
 本発明は、広くバラマンディの鱗由来のコラーゲン線維を含む細胞培養基材等に関する。 The present invention broadly relates to a cell culture substrate containing collagen fibers derived from barramundy scales.
 再生医療分野においては、細胞培養基材の原料としてコラーゲンゲルが広く使用されている。その原料の大半は、資源量が多く、収率が高い牛や豚などの脊椎動物の真皮に依存しているが、これらのコラーゲンの使用に問題がないわけではない。例えば、東南アジアの一部地域では、文化的に哺乳類由来の製品の取り扱いが制限されているという問題がある。 In the field of regenerative medicine, collagen gel is widely used as a raw material for cell culture substrates. Most of its raw materials depend on the dermis of vertebrates such as cattle and pigs, which have high resource abundance and high yield, but the use of these collagens is not without problems. For example, in some parts of Southeast Asia, there is a problem that culturally restricted handling of products of mammalian origin.
 また、2000年代初頭に問題となったBSE(bovine spongiform encephalopathy)等の病原体からの感染症を回避する必要もあり、牛や豚に変わるコラーゲン原料の探索が産業上の課題となっている。 Also, it is necessary to avoid infectious diseases from pathogens such as BSE (bovine spongiform encephalopathy), which became a problem in the early 2000s, and the search for collagen raw materials to replace cattle and pigs has become an industrial issue.
 そこで、養殖によって量産体制を築きやすく、尚且脊椎動物よりも感染リスクが低い魚由来コラーゲンの利用が検討されているが、従来の魚由来のコラーゲンから調製された線維ゲルの多くは、恒温動物由来のものとの比較で熱安定性の観点で不十分なものであり、牛や豚由来のコラーゲンゲルのような力学的安定な線維ゲルを形成することができない。 Therefore, the use of fish-derived collagen, which is easier to build a mass production system by aquaculture and has a lower risk of infection than vertebrates, has been investigated.However, most fibrous gels prepared from conventional fish-derived collagen are derived from homeothermic animals. It is insufficient from the viewpoint of heat stability in comparison with the above-mentioned one, and cannot form a mechanically stable fibrous gel such as collagen gel derived from cattle or pigs.
 近年では、魚類コラーゲンを細胞培養へ利用した例も出てきている。例えば、東南アジア等の温暖な地域に生息するティラピア(日本名イズミダイ)から抽出されるコラーゲンモノマーは、変性温度が高いことが報告されている。 In recent years, there are examples of using fish collagen for cell culture. For example, it has been reported that collagen monomers extracted from tilapia (Japanese name Izumidai) living in warm regions such as Southeast Asia have a high denaturation temperature.
 ティラピアについては、特開2014-218453号公報や特開2012-126681号公報において、ティラピアの皮や鱗から抽出したコラーゲンを原料とするコラーゲン線維ゲルと、その細胞培養基材としての用途が開示されている。 Regarding tilapia, JP-A-2014-218453 and JP-A-2012-126681 disclose collagen fiber gels made from collagen extracted from the skins and scales of tilapia and its use as a cell culture substrate. ing.
特開2014-218453号公報JP, 2014-218453, A 特開2012-126681号公報JP 2012-126681 A
 しかしながら、ティラピアの鱗由来のコラーゲンのように、モノマー状態での温度安定性が高くても、線維形成を起こしたコラーゲン会合体が37℃においても熱的に安定であるかは不明である。実際、特開2014-218453号公報においては、魚鱗由来のコラーゲンが線維形成速度の速さや細胞との良好な接着性から好ましい旨が記載されているものの、ティラピアの鱗から調製したコラーゲンゲルの細胞培養基材としての適正は検討されていない。 However, it is unclear whether the collagen aggregates that have undergone fibril formation are thermally stable even at 37 ° C, even if the temperature stability in the monomer state is high, such as collagen derived from Tilapia scales. In fact, Japanese Patent Laid-Open No. 2014-218453 describes that collagen derived from fish scales is preferable because of its fast fiber formation rate and good adhesiveness to cells, but cells of collagen gel prepared from scales of tilapia The suitability as a culture substrate has not been investigated.
 本発明は、上記事情に鑑みてなされたものであり、37℃で三次元的に細胞培養が可能な魚由来のコラーゲンを含む細胞培養基材を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cell culture substrate containing fish-derived collagen that enables three-dimensional cell culture at 37 ° C.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、バラマンディの鱗由来のコラーゲンがティラピアの鱗由来のものと比較して顕著に細胞培養基材として適していることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that collagen derived from barramundy scales is remarkably suitable as a cell culture substrate compared to that derived from tilapia scales. The present invention has been completed.
 すなわち、本発明は以下の発明を包含する。
[1] バラマンディの鱗に由来するコラーゲンを含む、細胞培養基材。
[2] 前記バラマンディ鱗に由来するコラーゲンにおいて、アミノ酸1000残基当たりのヒドロキシプロリンが80残基以上である、[1]に記載の細胞培養基材。
[3] 前記バラマンディ鱗に由来するコラーゲンにおいて、α鎖とα鎖の分子量差が5kDa以下である、[1]または[2]に記載の細胞培養基材。
[4] [1]~[3]のいずれかに記載の細胞培養基材を含む、細胞培養用のキット。
That is, the present invention includes the following inventions.
[1] A cell culture substrate containing collagen derived from barramundi scale.
[2] The cell culture substrate according to [1], wherein in the collagen derived from barramundi scale, hydroxyproline per 1000 amino acid residues is 80 residues or more.
[3] The cell culture substrate according to [1] or [2], wherein the collagen derived from the barramundi scale has a difference in molecular weight between the α 1 chain and the α 2 chain of 5 kDa or less.
[4] A kit for cell culture, comprising the cell culture substrate according to any one of [1] to [3].
 本発明によれば、バラマンディの鱗に由来するコラーゲンを利用することで、細胞接着性や細胞伸展活性の高い細胞培養基材の提供が可能になる。バラマンディの鱗から調製したコラーゲン線維ゲルは従来ウシやブタの真皮由来のコラーゲンを原料としていた細胞培養基材に匹敵する特性を有するため、特に三次元培養環境に適した培養基材の代替材料となり得る。 According to the present invention, the use of collagen derived from barramundi scales makes it possible to provide a cell culture substrate having high cell adhesiveness and cell spreading activity. Collagen fiber gel prepared from barramundi scale has characteristics comparable to the cell culture substrate that was conventionally made from bovine or porcine dermis collagen, so it is a substitute material for culture substrate particularly suitable for three-dimensional culture environment. Can be.
 バラマンディ由来のコラーゲンとしては、その皮由来のものが知られている(特開2015-180622号公報)。しかしながら、バラマンディの皮由来のコラーゲンは、同公報においてヒドロキシプロリン含量が検出されないほど少ないことが示唆されている点で鱗由来のものと異なり、また、それから調製されたコラーゲン線維ゲルの熱安定性も鱗由来のものより劣っている。 As collagen derived from barramundi, collagen derived from its skin is known (Japanese Unexamined Patent Publication No. 2015-180622). However, collagen derived from barramundi skin differs from that derived from scale in that the publication suggests that the hydroxyproline content is too low to be detected, and the thermal stability of collagen fiber gel prepared therefrom is also high. Are also inferior to those derived from scales.
 更に、WO2017/002767においては、バラマンディの鱗から調製したゼラチンが開示されているが、ゼラチンは熱変性によりコラーゲンの立体構造や分子量が変化したものであり、コラーゲン線維ゲルとは異なる。例えば、ゼラチンゲルはランダムコイル構造をとるゼラチン分子が分子間で架橋した構造を有するのに対し、コラーゲン線維ゲルは三重らせん構造をとるコラーゲン分子が自己集合してできたコラーゲン線維が分子間架橋したこと構造を有する。特にバラマンディの鱗に由来するコラーゲン線維ゲルは、37℃で線維化した後、50度に昇温した後でもG’が90Pa以上の値を示す点でWO2017/002767に記載のゼラチンとは異なっている。 Further, in WO2017 / 002767, gelatin prepared from barramundi scale is disclosed, but gelatin is different from collagen fiber gel in that the three-dimensional structure and molecular weight of collagen are changed by heat denaturation. For example, gelatin gel has a structure in which gelatin molecules having a random coil structure are cross-linked between molecules, whereas collagen fiber gel has inter-molecular cross-linking in which collagen fibers having a triple helix structure are self-assembled. Having that structure. Particularly, the collagen fiber gel derived from barramundy scale is different from the gelatin described in WO2017 / 002767 in that G'shows a value of 90 Pa or more even after fibrosis at 37 ° C and after heating to 50 ° C. ing.
バラマンディ鱗由来のコラーゲンをSDS-PAGEにかけた結果を示す(PC-S:ブタ皮、BC:バラマンディ鱗、BC-S:バラマンディ皮、TC:ティラピア鱗(セルキャンパスAQ-3LE)、CMT:ブタ腱(Cellmatrix Type-IP))。The results obtained by subjecting collagen derived from barramundi scale to SDS-PAGE are shown (PC-S: pig skin, BC: barramundi scale, BC-S: barramundi skin, TC: tilapia scale (cell campus AQ-3LE), CMT. : Pig tendon (Cellmatrix Type-IP)). ゲル内細胞の生死判定の染色結果を示す。The staining result of the viability of the cells in the gel is shown. ゲル内細胞の細胞骨格の顕微鏡像を示す。The microscope image of the cytoskeleton of the cell in a gel is shown.
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary, but the present invention is limited to the present embodiment described below. Not a thing. The present invention can be variously modified without departing from the gist thereof.
 第一の実施形態において、本発明は、バラマンディの鱗由来のコラーゲンを含む、細胞培養基材を提供する。 In a first embodiment, the present invention provides a cell culture substrate containing collagen derived from barramundi scales.
 コラーゲンは、分子量10万程度のα鎖3本から構成される、少なくとも部分的にらせん構造(コラーゲンらせん)を有する。α鎖の中でもアミノ酸組成のわずかな違いによってα鎖、α鎖に大別される。生体内に存在するコラーゲンの多くはヘテロ3量体(α×2本、α×1本)を形成しているが、中には3本のα鎖から構成されるホモ3量体を有するコラーゲンも存在している。各モノマーにはグリシン残基が3個目ごとに、またその他のアミノ酸残基としてプロリン残基、ヒドロキシプロリン残基が高頻度に現れる。コラーゲンを構成するアミノ酸の中でも、プロリンとヒドロキシプロリンは三重らせん構造の熱安定性に寄与していることが知られている。 Collagen at least partially has a helical structure (collagen helix) composed of three α chains having a molecular weight of about 100,000. Among the α chains, α 1 chain and α 2 chain are roughly classified according to slight differences in amino acid composition. Most of the collagen present in the body forms a heterotrimer (α 1 × 2, α 2 × 1), but inside it is a homotrimer composed of 3 α 1 chains. There is also collagen with. A glycine residue appears every 3rd monomer in each monomer, and a proline residue and a hydroxyproline residue as other amino acid residues appear frequently. Among the amino acids that make up collagen, proline and hydroxyproline are known to contribute to the thermal stability of the triple helix structure.
 コラーゲン分子には構造の違いによって19種類の型の存在が報告されており、さらに同じ型に分類されるコラーゲンにも数種類の異なる分子種が存在する場合がある。 -19 types of collagen molecules have been reported to exist due to differences in structure, and there are cases where several different types of collagen are also classified into the same type.
 中でも、I、II、III型およびIV型コラーゲンが主にバイオマテリアルの原料として用いられている。I型はほとんどの結合組織に存在し、細胞外マトリックスを構成する。生体内で最も量の多いコラーゲン型である。特に腱、真皮および骨に多く、工業的にはコラーゲンはこれらの部位から抽出される場合が多い。II型は軟骨を形成するコラーゲンである。III型は少量ではあるがI型と同様の部位に存在することが多い。IV型は基底膜を形成するコラーゲンである。I、IIおよびIII型はコラーゲン線維として生体内に存在し、主に組織あるいは器官の強度を保つ役割を果たしている。IV型は線維形成能力を有しないが、4分子で構成される網目状会合体を形成し、基底膜における細胞分化に関与しているとされる。 Among them, type I, II, III and type IV collagen are mainly used as raw materials for biomaterials. Type I is present in most connective tissues and constitutes the extracellular matrix. It is the most abundant collagen type in the body. Especially in tendons, dermis and bone, industrially collagen is often extracted from these sites. Type II is collagen that forms cartilage. Type III is often present at a similar site as type I, albeit in small amounts. Type IV is collagen that forms the basement membrane. The types I, II and III exist in the body as collagen fibers and mainly play a role of maintaining the strength of tissues or organs. Type IV does not have a fibrogenic ability, but forms a mesh-like aggregate composed of four molecules and is considered to be involved in cell differentiation in basement membrane.
 本発明で使用するバラマンディ(Lates calcarifer)の鱗由来のコラーゲンはIII型コラーゲンに類似の分子量分布を有するが、特に断らない限り、どのタイプのコラーゲンを含んでいてもよい。 The collagen derived from the scales of Barramundi (lates calcarifer) used in the present invention has a molecular weight distribution similar to that of type III collagen, but may contain any type of collagen unless otherwise specified.
 本明細書で使用する場合、コラーゲン線維とは、バラマンディの鱗から抽出され得るコラーゲンの線維であって、少なくとも三重らせん構造を有する線維を意味する。 As used herein, collagen fiber means a fiber of collagen that can be extracted from scales of barramundi and has at least a triple helix structure.
 コラーゲン線維は、熱安定性の観点から、アミノ酸1000残基あたりのヒドロキシプロリンが80残基以上であるものが好ましい。バラマンディの鱗由来のコラーゲンにおけるヒドロキシプロリン含量は、8%以上と高含有であり、好ましい。この値はブタ皮膚由来のコラーゲンのヒドロキシプロリン含量には及ばないものの、魚コラーゲンとしては非常に含有量が高いといえる。 From the viewpoint of thermal stability, the collagen fiber preferably has 80 or more hydroxyproline residues per 1000 amino acid residues. The content of hydroxyproline in collagen derived from barramundi scale is as high as 8% or more, which is preferable. Although this value does not reach the hydroxyproline content of collagen derived from pig skin, it can be said that the content is extremely high for fish collagen.
 SDS-PAGEで測定した場合、通常、コラーゲンは200kDa付近に1本のβ鎖のバンドを示し、そして100kDa付近にα鎖とα鎖の2本のバンドを示す。一方、ゼラチンは300kDa以下に広い分布を示す。また、ゼラチンはα鎖の分解が進んだ低分子量成分を多く有する。 When measured by SDS-PAGE, collagen usually shows one β chain band around 200 kDa and two bands of α 1 chain and α 2 chain around 100 kDa. On the other hand, gelatin shows a wide distribution below 300 kDa. In addition, gelatin has many low molecular weight components in which the α chain is decomposed.
 本実施形態におけるコラーゲンは、その線維を構成するα鎖とα鎖の分子量の違いが5kDa以下であることを特徴とする。ブタ皮膚由来のI型コラーゲンなど、一般的なI型コラーゲンにおけるα鎖とα鎖の分子量は10kDa以上であるのに対し、バラマンディの鱗由来のコラーゲンは、実施例に結果を示すとおり、α鎖とα鎖の分子量が約3.9kDaと近いことを特徴としている。理論に拘束されることを意図するものではないが、α鎖とα鎖の分子量が近いバラマンディの鱗由来のコラーゲンは、ヘテロ3量体のI型よりも線維形成が活発なIII型コラーゲンのようなホモ体に近い構造であると考えられる。 The collagen in the present embodiment is characterized in that the difference in molecular weight between the α 1 chain and the α 2 chain constituting the fiber is 5 kDa or less. While the molecular weight of α 1 chain and α 2 chain in general type I collagen such as type I collagen derived from pig skin is 10 kDa or more, collagen derived from barramundy scales has the same results as shown in Examples. , Α 1 chain and α 2 chain have a molecular weight close to about 3.9 kDa. Although not intending to be bound by theory, collagen derived from barramundy scales, in which the α 1 and α 2 chains have similar molecular weights, is a type III in which fibrosis is more active than type I of the heterotrimer. It is considered to have a structure close to a homozygote such as collagen.
 α鎖とα鎖の分子量の違いは、SDS-ポリアクリルアミドゲル電気泳動法(SDS-PAGE)等の、分子量に基づくタンパク質の分離に適した手法を用いることにより確認することができる。具体的には、分子量差は、分子量マーカーの各バンドの移動度と分子量との関係から検量線を作成し、検量線に各α鎖の移動度を適用することで算出可能である。 The difference in molecular weight between α 1 chain and α 2 chain can be confirmed by using a method suitable for protein separation based on molecular weight, such as SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Specifically, the difference in molecular weight can be calculated by creating a calibration curve from the relationship between the mobility of each band of the molecular weight marker and the molecular weight, and applying the mobility of each α chain to the calibration curve.
 本実施形態におけるゲルは、ゲルを構成するモノマーとしての変性温度が高い、つまり、コラーゲン線維が37.0℃で三重らせん構造を維持していることを特徴とする。例えば、ティラピアの鱗由来のコラーゲンの変性温度は約35.7であるのに対し、バラマンディの鱗由来のコラーゲンの変性温度は約36.1℃である。変性温度は円二色性スペクトル(CD)などの当業者に公知の手段で確認することができる。 The gel in the present embodiment is characterized in that the denaturation temperature as a monomer constituting the gel is high, that is, the collagen fibers maintain a triple helix structure at 37.0 ° C. For example, the denaturation temperature of Tilapia scale-derived collagen is about 35.7, while the denaturation temperature of Barramundi scale-derived collagen is about 36.1 ° C. The denaturation temperature can be confirmed by means known to those skilled in the art such as circular dichroism spectrum (CD).
 CDでコラーゲンを測定した場合、三重らせんに起因する221nmの正のピークが確認できるが、ゼラチンではこのようなピークは見られない。 When measuring collagen with CD, a positive peak at 221 nm due to the triple helix can be confirmed, but no such peak is seen with gelatin.
 変性温度の高さに加え、本実施形態におけるゲルは貯蔵弾性率(G’)の観点でもティラピアの鱗由来のものより優れている。貯蔵弾性率は、レオメーターなどの動的粘弾性特性を評価できる装置を用いて決定することができる。本明細書で使用する場合、貯蔵弾性率(G’)は、特に断らない限り、0.27重量%のコラーゲンを含むpH7の水溶液を回転型レオメーターMCR302(Anton-Paar社製)上で10℃から37℃まで昇温した場合の値を意味する。この条件で測定した場合、バラマンディの鱗を原料とするコラーゲンゲルの貯蔵弾性率G’は90Pa以上である。同じ条件でバラマンディの鱗を原料とするコラーゲンゲルの貯蔵弾性率を測定した場合、昇温による変性過程の軟化温度は45℃以上である。この「軟化温度」とは、温度を37℃で一定にした時に到達したG’の最後の10分間の平均値が、昇温に伴い5%減少した時の温度である。 In addition to the high denaturation temperature, the gel of the present embodiment is superior to that derived from tilapia scale in terms of storage elastic modulus (G ′). The storage elastic modulus can be determined using a device capable of evaluating dynamic viscoelastic properties such as a rheometer. As used herein, the storage modulus (G ′) is 10 on a rotary rheometer MCR302 (manufactured by Anton-Paar) with an aqueous solution of pH 7 containing 0.27% by weight of collagen unless otherwise specified. It means the value when the temperature is raised from 37 ° C to 37 ° C. When measured under these conditions, the storage elastic modulus G'of the collagen gel made of barramundi scale as a raw material is 90 Pa or more. When the storage elastic modulus of the collagen gel made from barramundi scale as a raw material is measured under the same conditions, the softening temperature in the denaturation process due to temperature increase is 45 ° C. or higher. The "softening temperature" is the temperature at which the average value of G'reached for the last 10 minutes when the temperature was kept constant at 37 ° C. decreased by 5% as the temperature increased.
 バラマンディの鱗に由来するコラーゲンの濃度は用途に応じて適宜変更することができる。例えば、細胞などを培養するための培地に使用する場合、コラーゲンの濃度は0.20%~0.53%の範囲であってもよい。コラーゲン濃度が0.20%未満の場合、細胞の牽引力に抵抗する硬さを得ることが難しい。コラーゲン濃度が0.53%以上の場合、ゲル作製に用いるコラーゲン水溶液の粘度が高いため、緩衝液等との混合が不十分となりゲルの均質性が損なわれる。ゲルの硬さは幹細胞の分化に影響するため(Even-Ram et al., Cell, 126, 645-647 (2006))、ゲルの硬さが不均一だと細胞培養基材として好ましくない。 The concentration of collagen derived from barramundi scale can be appropriately changed depending on the application. For example, when used as a medium for culturing cells and the like, the concentration of collagen may be in the range of 0.20% to 0.53%. When the collagen concentration is less than 0.20%, it is difficult to obtain the hardness that resists the traction force of cells. When the collagen concentration is 0.53% or more, the viscosity of the collagen aqueous solution used for gel preparation is high, so that mixing with a buffer solution or the like is insufficient and the homogeneity of the gel is impaired. Since the hardness of the gel affects the differentiation of stem cells (Even-Ram et al., Cell, 126, 645-647 (2006)), nonuniform gel hardness is not preferable as a cell culture substrate.
 バラマンディの鱗に由来するコラーゲン線維ゲルは、コラーゲン線維を構成しているコラーゲン分子間を架橋する方法により製造することができ、コラーゲン線維ゲルの弾性率を効果的に高められるという観点から、コラーゲンの線維化途上に架橋反応を起こす方法が好ましく用いられる。具体的方法としては、例えば、pH1~5、好ましくはpH3程度の、濃度3%以下のコラーゲン水溶液に、pH6~10、好ましくはpH7程度のリン酸ナトリウム緩衝液を、原料となるコラーゲンの変性温度以下の温度(例えば10℃程度)で混合し、所定のコラーゲン濃度を有する溶液を得た後、静置等する方法が挙げられる。緩衝液は任意に架橋剤を含んでもよい。 Collagen fiber gel derived from barramundi scale can be produced by a method of cross-linking collagen molecules constituting collagen fiber, and collagen can be effectively increased in elastic modulus of collagen fiber gel. The method of causing a cross-linking reaction during the fibrosis of is preferably used. As a specific method, for example, a collagen aqueous solution having a concentration of 3% or less and having a pH of 1 to 5, preferably about 3, and a sodium phosphate buffer having a pH of 6 to 10, preferably about 7, is used as a raw material for denaturing collagen. Examples include a method of mixing at the following temperature (for example, about 10 ° C.) to obtain a solution having a predetermined collagen concentration, and then allowing it to stand. The buffer may optionally contain a cross-linking agent.
 コラーゲン水溶液は、例えば鱗を原料として、酢酸などの酸やペプシンなどの酵素を用いた公知の抽出法により製造することができる。コラーゲン水溶液の濃度は、いったん沈殿もしくは乾燥させたコラーゲンを溶解する際のコラーゲン/溶媒の重量比により調節できる。コラーゲン濃度が3%を超えると粘度が高くなり、リン酸水素ナトリウム緩衝液との混合不十分により不均一なゲルが生じる場合があるので好ましくない。好ましい濃度は1%以下である。 The aqueous collagen solution can be produced, for example, from scales by a known extraction method using an acid such as acetic acid and an enzyme such as pepsin. The concentration of the aqueous collagen solution can be adjusted by the weight ratio of collagen / solvent when dissolving the once-precipitated or dried collagen. If the collagen concentration exceeds 3%, the viscosity becomes high, and a non-uniform gel may occur due to insufficient mixing with the sodium hydrogen phosphate buffer solution, which is not preferable. The preferred concentration is 1% or less.
 緩衝液に架橋剤を含める場合の濃度は特に限定されない。しかしながら、架橋剤の濃度は、リン酸水素ナトリウム緩衝液中の濃度よりもむしろ、コラーゲン水溶液と混合した後の濃度(ゲル中の濃度)がゲル形成の成否やゲルの物性を左右する。コラーゲン線維ゲル中の架橋剤濃度は5~80mMの範囲が好ましい。コラーゲン線維ゲル中の架橋剤濃度が5mM未満の場合、コラーゲン分子に架橋が導入されにくくなり、ゲルの弾性率が不足する場合があり好ましくない。一方、架橋剤濃度が80mMを超えると、コラーゲン水溶液とリン酸ナトリウム緩衝液混合後のゲル化速度が速過ぎて、成形性が悪化する場合があり好ましくない。より好ましくは10~30mMの範囲である。 The concentration of the cross-linking agent in the buffer solution is not particularly limited. However, the concentration of the cross-linking agent, rather than the concentration in the sodium hydrogen phosphate buffer, influences the success or failure of gel formation and the physical properties of the gel after being mixed with the aqueous collagen solution (concentration in gel). The concentration of the cross-linking agent in the collagen fiber gel is preferably in the range of 5-80 mM. When the concentration of the cross-linking agent in the collagen fiber gel is less than 5 mM, cross-linking is difficult to be introduced into collagen molecules, and the elastic modulus of the gel may be insufficient, which is not preferable. On the other hand, if the concentration of the cross-linking agent exceeds 80 mM, the gelation rate after mixing the collagen aqueous solution and the sodium phosphate buffer is too fast, which may deteriorate the moldability, which is not preferable. More preferably, it is in the range of 10 to 30 mM.
 ゲル化速度が速過ぎて成形性が悪い場合、必要に応じて、線維化抑制剤として塩化ナトリウムなどの無機塩を添加することができる。添加する無機塩の濃度は、コラーゲン線維ゲル中の濃度として30~150mMの範囲が好ましい。ゲル中の無機塩の濃度が30mM未満の場合、コラーゲンの線維化が速すぎてコラーゲン線維ネットワークが発達せず、ゲルが弱くなる場合がある。ゲル中の無機塩の濃度が150mMを超える場合、コラーゲン線維化が抑制され、ゲルが弱くなる場合がある。より好ましくは50~130mMの範囲である。 If the gelation speed is too fast and moldability is poor, an inorganic salt such as sodium chloride can be added as a fibrosis inhibitor, if necessary. The concentration of the added inorganic salt is preferably in the range of 30 to 150 mM as the concentration in the collagen fiber gel. When the concentration of the inorganic salt in the gel is less than 30 mM, the fibrosis of collagen is too fast, the collagen fiber network does not develop, and the gel may become weak. When the concentration of the inorganic salt in the gel exceeds 150 mM, collagen fibrosis is suppressed and the gel may become weak. More preferably, it is in the range of 50 to 130 mM.
 バラマンディの鱗に由来するコラーゲン線維ゲルにおいて、コラーゲン分子間を架橋するために用いられる架橋剤は、タンパク質を架橋でき、水溶性を有するものであれば特に限定されるものではない。タンパク質の架橋剤については、文献(Biomaterials, 18, p.95-105 (1997))に詳細に記載されている。中でも、グルタルアルデヒドなどのアルデヒド系架橋剤、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩(EDC)などのカルボジイミド系架橋剤、ヘキサメチレンジイソシアネートなどのイソシアネート系架橋剤、エチレングリコールジエチルエーテルなどのポリエポキシ系架橋剤が経済性、安全性および操作性の観点から好ましく用いられる。特に、EDC、1-シクロヘキシル-3-(2-モルホリニル-4-エチル)カルボジイミド・スルホン酸塩などの水溶性カルボジイミドをpH6~10のリン酸緩衝液に溶かした溶液として使用することが好ましい。 In the collagen fiber gel derived from barramundi scale, the cross-linking agent used for cross-linking collagen molecules is not particularly limited as long as it can cross-link proteins and has water solubility. The protein cross-linking agent is described in detail in the literature (Biomaterials, 18, p.95-105 (1997)). Among them, aldehyde-based crosslinking agents such as glutaraldehyde, carbodiimide-based crosslinking agents such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide / hydrochloride (EDC), isocyanate-based crosslinking agents such as hexamethylene diisocyanate, ethylene glycol A polyepoxy-based crosslinking agent such as diethyl ether is preferably used from the viewpoints of economy, safety and operability. In particular, it is preferable to use a solution of a water-soluble carbodiimide such as EDC or 1-cyclohexyl-3- (2-morpholinyl-4-ethyl) carbodiimide sulfonate in a phosphate buffer having a pH of 6 to 10.
 一方、ゼラチン分子は、熱変性により変化してランダムコイル構造をとるが、冷却によりらせん構造が回復し、近傍の分子同士がらせん構造部分を共有して会合・凝集することにより、架橋ゲルを形成し得る。 On the other hand, gelatin molecules change due to thermal denaturation to form a random coil structure, but upon cooling, the helical structure recovers, and neighboring molecules share a helical structure portion and associate / aggregate to form a crosslinked gel. You can
 上記コラーゲン線維ゲルを含む細胞培養基材は培養細胞の足場となるものであり、任意の培地に使用することができる。コラーゲン線維ゲルは三次元培養の培地として好適に使用される。細胞培養基材は単独で提供してもよいし、あるいは、細胞培養に必要な血清等の成分を含む培地やキットとして提供してもよい。細胞培養基材や培地は細胞培養用容器内に含めることができる。細胞培養用容器の種類については特に限定されないが、細胞培養用消耗品として広く用いられているプラスチック製のディッシュやプレートなどが好ましく用いられる。プラスチックはコラーゲンと親和性が低く、ガラス等に比べゲルを剥がしやすい。 The cell culture substrate containing the above collagen fiber gel serves as a scaffold for cultured cells and can be used in any medium. Collagen fiber gel is preferably used as a medium for three-dimensional culture. The cell culture substrate may be provided alone, or may be provided as a medium or a kit containing components such as serum necessary for cell culture. The cell culture substrate and medium can be contained in the cell culture container. The type of cell culture container is not particularly limited, but a plastic dish or plate that is widely used as a consumable product for cell culture is preferably used. Plastic has a low affinity for collagen and is easier to peel off gel than glass.
 バラマンディの鱗に由来するコラーゲン線維ゲルを含む培地において、細胞を接着・増殖させ、あるいは必要に応じて分化させることができる。培養細胞は特に限定されず、例えば、体細胞、生殖細胞、幹細胞等に使用することができる。幹細胞としては、幹細胞胚性幹細胞や人工多能性幹細胞、あるいは間葉系幹細胞などの体性幹細胞が挙げられる。バラマンディの鱗に由来するコラーゲン線維ゲルは、軟骨細胞のように、平面培養では脱分化しやすく長期継代培養が困難な細胞を培養するのに特に適している。 Cell can be adhered / proliferated or differentiated as needed in a medium containing collagen fiber gel derived from barramundi scale. The cultured cells are not particularly limited and can be used, for example, somatic cells, germ cells, stem cells and the like. Examples of stem cells include stem cell embryonic stem cells, induced pluripotent stem cells, and somatic stem cells such as mesenchymal stem cells. Collagen fiber gel derived from barramundi scale is particularly suitable for culturing cells, such as chondrocytes, which are easily dedifferentiated in flat culture and difficult to be subcultured for a long time.
 バラマンディの鱗からのコラーゲン抽出は公知の方法を用いて行うことができる。例えば、魚鱗を原料とし、酵素を用いてコラーゲンを可溶化処理する方法は当業者に公知であり、例えば、特許第4863433号公報及び特許第5692770号公報に記載されている。 The collagen can be extracted from barramundi scales using a known method. For example, a method of solubilizing collagen with an enzyme using fish scales as a raw material is known to those skilled in the art, and is described in, for example, Japanese Patent Nos. 4863433 and 5692770.
 例えば、抽出に使用する酵素としては、鱗を加水分解してコラーゲンを抽出できる酵素、例えば、ペプシンなどが好適に使用できる。酵素の添加量は、特に制限されないが、魚鱗の乾燥重量に対して1~15重量%とすることが好ましい。 For example, as an enzyme used for extraction, an enzyme capable of hydrolyzing scales to extract collagen, such as pepsin, can be preferably used. The amount of enzyme added is not particularly limited, but is preferably 1 to 15% by weight based on the dry weight of the fish scale.
 抽出工程の前に、魚鱗に含まれるリン酸カルシウム等の無機物を取り除き、ひいては抽出効率を上げるために脱灰処理を行うことが好ましい。その他にも、鱗に含まれる不要なタンパク質や脂質を除去するために、鱗を特定の酸を含む水溶液や有機溶媒で洗浄してもよい。 Prior to the extraction step, it is preferable to remove inorganic substances such as calcium phosphate contained in fish scales, and then perform deashing treatment to improve extraction efficiency. In addition, the scales may be washed with an aqueous solution containing a specific acid or an organic solvent in order to remove unnecessary proteins and lipids contained in the scales.
 魚鱗由来コラーゲンの取得方法は、魚鱗を脱灰する工程、脱灰された魚鱗に対して15℃~35℃の温度範囲の酸性水溶液中でプロテアーゼを作用させる工程、および可溶化されたコラーゲンを回収する工程を含んでいてもよい。原料とする魚鱗は、腐敗を防ぐために採取後に冷蔵保存もしくは冷凍保存しておくことが好ましい。採取された魚鱗にはかなりの夾雑物、例えば背鰭、尾鰭等が付着・混入していたり、その表面に余剰タンパク質が付着している。そこで、保存前にこれらを取り除く目的で、原料とする魚鱗は採取された後に前処理として洗浄しておくことが好ましい。 The method for obtaining fish scale-derived collagen includes a step of decalcifying fish scale, a step of treating the decalcified fish scale with an protease in an acidic aqueous solution in a temperature range of 15 ° C to 35 ° C, and recovering solubilized collagen. It may include a step of It is preferable that the fish scale used as a raw material is refrigerated or frozen after collection to prevent spoilage. The collected fish scales have a considerable amount of contaminants attached, for example, dorsal fins, caudal fins, etc., or surplus proteins attached to the surface thereof. Therefore, for the purpose of removing these before storage, it is preferable to wash the raw fish scales as a pretreatment after they are collected.
 具体的には、夾雑物は水洗することにより除去すればよく、表面に付着した余剰タンパク質は、例えば、1~15重量%、好ましくは5~10重量%の塩化ナトリウム水溶液、あるいは0.01~0.5M、好ましくは0.05~0.2Mの水酸化ナトリウム水溶液で、10~72時間、好ましくは24~48時間洗浄することにより除去すればよい(アルカリ処理)。洗浄は、洗浄液を交換して繰り返し洗浄することが好ましく、特に、表面に付着した余剰タンパク質を除去する際には、洗浄後の廃液が濁らない程度まで、好ましくは3~5回程度まで、洗浄液を交換して繰り返し洗浄するのが良い。 Specifically, the contaminants may be removed by washing with water, and the surplus protein adhering to the surface is, for example, 1 to 15% by weight, preferably 5 to 10% by weight of an aqueous sodium chloride solution, or 0.01 to It may be removed by washing with 0.5 M, preferably 0.05 to 0.2 M aqueous sodium hydroxide solution for 10 to 72 hours, preferably 24 to 48 hours (alkali treatment). The washing is preferably repeated by exchanging the washing solution. Particularly, when removing the surplus protein adhering to the surface, the washing solution is washed to such an extent that the waste solution does not become cloudy, preferably about 3 to 5 times. It is good to replace the product and wash it repeatedly.
 前記プロテアーゼ処理に用いるプロテアーゼ水溶液の溶媒としては、pHが2~5の範囲であれば特に限定されないが、安価で取り扱いが容易な塩酸、酢酸、およびリン酸が好ましく用いられる。酸の濃度は前記pHによって規定される。 The solvent of the aqueous protease solution used for the protease treatment is not particularly limited as long as the pH is in the range of 2 to 5, but inexpensive, easy-to-handle hydrochloric acid, acetic acid, and phosphoric acid are preferably used. The acid concentration is defined by the pH.
 コラーゲン線維ゲルの製造においては、例えば、プロテアーゼ処理を15℃~35℃の温度範囲の酸性水溶液中で行ってもよい。これにより、コラーゲンの変成を起こさずにコラーゲンの抽出効率を向上させ、高収率を実現することができる。温度が15℃未満の場合、プロテアーゼ活性が低くなりコラーゲンの抽出効率が低下する場合が考えられ、好ましくない。温度が35℃以上の場合、プロテアーゼ活性は高くなるものの、コラーゲンの変成が起こる場合が考えられ、好ましくない。従って、プロテアーゼ処理は15℃~35℃の温度範囲で、より好ましくは20~30℃の温度範囲で行う。 In the production of collagen fiber gel, for example, the protease treatment may be performed in an acidic aqueous solution in the temperature range of 15 ° C to 35 ° C. As a result, the extraction efficiency of collagen can be improved without causing denaturation of collagen, and a high yield can be realized. If the temperature is lower than 15 ° C., the protease activity may decrease and the collagen extraction efficiency may decrease, which is not preferable. When the temperature is 35 ° C. or higher, protease activity increases, but collagen degeneration may occur, which is not preferable. Therefore, the protease treatment is carried out in a temperature range of 15 ° C to 35 ° C, more preferably 20 ° C to 30 ° C.
 プロテアーゼ処理はプロテアーゼ失活に伴うコラーゲン可溶化能の低下とともに終了すれば良く、例えば、処理時間を12~48時間程度とすればよい。また、抽出効率を高める目的で攪拌羽根などを用いて処理液を攪拌してもよい。 The protease treatment may be completed when the collagen solubilizing ability is reduced due to protease inactivation, and for example, the treatment time may be about 12 to 48 hours. Further, the treatment liquid may be stirred using a stirring blade or the like for the purpose of enhancing the extraction efficiency.
 酸性水溶液に溶解したコラーゲンは、例えば、哺乳動物等由来のコラーゲン調製に従来から使用されている通常の物理的分離手段によって回収すればよく、その方法は特に限定されない。例えば、プロテアーゼ処理後に、遠心分離や濾過等の手段で魚鱗残渣と分離したコラーゲン水溶液に塩化ナトリウム等を加えて塩濃度を上昇させるか、もしくは水酸化ナトリウム等を加えてpHを中性付近に調整することにより、コラーゲンを線維化し、該線維化したコラーゲンを例えば遠心分離法等により分離回収すればよい。 The collagen dissolved in the acidic aqueous solution may be recovered by, for example, an ordinary physical separation means conventionally used for preparing collagen derived from mammals, etc., and the method is not particularly limited. For example, after the protease treatment, sodium chloride or the like is added to the collagen aqueous solution separated from the fish scale residue by means such as centrifugation or filtration to increase the salt concentration, or sodium hydroxide or the like is added to adjust the pH to near neutral. By doing so, the collagen may be fibrillated, and the fibrillated collagen may be separated and collected by, for example, a centrifugation method.
 その後、さらに必要に応じて、例えば精製水に再度溶解し、前記のような方法で線維化-回収操作を一回あるいは複数回繰り返して行うことにより、精製を行うこともできる。なお、コラーゲンの調製は、コラーゲンの変成を抑制するため、前記各前処理、回収、精製等の各工程を、可能な限り室温以下で実施することが好ましい。 Thereafter, if necessary, for example, it can be purified by redissolving it in purified water and repeating the fibrosis-recovery operation once or plural times by the above-mentioned method. In order to suppress the denaturation of collagen, it is preferable to carry out the steps of the above-mentioned pretreatment, recovery, purification and the like at room temperature or below as much as possible in the preparation of collagen.
 第二の実施形態において、細胞培養基材は細胞培養用のキットとして提供される。 In the second embodiment, the cell culture substrate is provided as a cell culture kit.
 かかるキットにおいて、例えば、細胞培養基材は容器に収容されうる。このような容器の種類については特に限定されないが、広く用いられているプラスチック製のディッシュやプレートなどが好ましい。プラスチックはコラーゲンと親和性が低く、ガラスと比べゲルを剥がしやすいという利点もある。 In such a kit, for example, the cell culture substrate can be contained in a container. The type of such container is not particularly limited, but a widely used plastic dish or plate is preferable. Plastic has a low affinity with collagen and has the advantage that it is easier to peel off the gel than glass.
 容器には培養する細胞に適した培地を含めてもよい。培地の組成は、培養する組成により変化するため限定することを意図するものではないが、通常、無機塩類、各種アミノ酸、糖類、ビタミン類、更には血清などを含む。 The container may contain a medium suitable for the cells to be cultured. The composition of the medium is not intended to be limited because it varies depending on the composition to be cultured, but usually it includes inorganic salts, various amino acids, sugars, vitamins, and further serum.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<実験>
1.魚鱗からの可溶性コラーゲンの抽出
(1)魚鱗の前処理(アルカリ処理、ならびに脱灰処理)
 バラマンディの鱗(A.O.KINGDOM INTERNATIONAL CO.,LTDから入手)を水で十分に洗浄し、鰭等の夾雑物を除去した後、風乾した。洗浄した乾燥魚鱗を0.1M 水酸化ナトリウム水溶液に浸漬し、攪拌羽根を用いて24時間穏やかに攪拌した。金網で魚鱗をろ過し、水でpHが中性を示すまで繰り返し洗浄した。さらに、魚鱗をpH2の希塩酸に浸漬した状態で24時間穏やかに攪拌することで脱灰処理を行った。金網で魚鱗をろ過し、水でpHが中性を示すまで繰り返し洗浄し、凍結乾燥処理を行った。得られた凍結乾燥鱗を冷凍庫で保管したものをコラーゲン抽出に供した。
<Experiment>
1. Extraction of soluble collagen from fish scales (1) Pretreatment of fish scales (alkali treatment and decalcification treatment)
Barramundy scales (obtained from AO KINGDOM INTERNATIONAL CO., LTD) were thoroughly washed with water to remove impurities such as fins, and then air-dried. The washed dried fish scale was immersed in a 0.1 M aqueous sodium hydroxide solution, and gently stirred using a stirring blade for 24 hours. The fish scales were filtered with a wire net and washed repeatedly with water until the pH became neutral. Further, the fish scale was immersed in dilute hydrochloric acid having a pH of 2 and gently stirred for 24 hours for decalcification. The fish scales were filtered with a wire net, washed repeatedly with water until the pH became neutral, and freeze-dried. The freeze-dried scale thus obtained was stored in a freezer and subjected to collagen extraction.
(2)魚鱗からのコラーゲン抽出
 凍結乾燥鱗350gを3000mLの0.5M 酢酸水溶液に加え、攪拌羽根を用いて室温で3日間穏やかに攪拌した。この水溶液を遠心(10000×g,20分)し、魚鱗を沈殿させた。上清を回収し、ガラス繊維フィルター(メルク株式会社製)ならびにメンブレンフィルター(メルク株式会社製。0.65μmに続いて0.45μmのものを使用した。)を用いて吸引ろ過を行い、酸可溶性成分を回収した。
(2) Extraction of collagen from fish scales 350 g of freeze-dried scales was added to 3000 mL of 0.5 M acetic acid aqueous solution, and gently stirred at room temperature for 3 days using a stirring blade. This aqueous solution was centrifuged (10000 × g, 20 minutes) to precipitate fish scales. The supernatant was collected and suction-filtered using a glass fiber filter (Merck KK) and a membrane filter (Merck KK; 0.65 μm followed by 0.45 μm) to obtain acid solubility. The ingredients were recovered.
 続けて、金網で魚鱗をろ過し、水でpHが中性を示すまで繰り返し洗浄した。魚鱗を7gのペプシン(富士フイルム和光純薬社。ペプシン1gに対してタンパク100gを加水分解できる活性を有する)を含む1000mLの0.5M 酢酸水溶液に加え、攪拌羽根を用いて室温で3日間穏やかに攪拌した。この水溶液を遠心(10000×g,20分)し、魚鱗を沈殿させた。上清を回収し、ガラス繊維フィルター(メルク株式会社製)ならびにメンブレンフィルター(メルク株式会社製。0.65μmに続いて0.45μmのものを使用した。)を用いて吸引ろ過を行い、ペプシン処理成分を回収した。 Next, the fish scales were filtered with a wire mesh and washed repeatedly with water until the pH became neutral. Add fish scales to 1000mL of 0.5M acetic acid aqueous solution containing 7g of pepsin (Fujifilm Wako Pure Chemical Industries, which has the activity of hydrolyzing 100g of protein to 1g of pepsin), and gently using a stirring blade for 3 days at room temperature. It was stirred. This aqueous solution was centrifuged (10000 × g, 20 minutes) to precipitate fish scales. The supernatant was collected, suction filtered using a glass fiber filter (Merck KK) and a membrane filter (Merck KK, 0.65 μm followed by 0.45 μm), and treated with pepsin. The ingredients were recovered.
(3)抽出したコラーゲンの精製
 上記の酸可溶性成分、ペプシン処理成分に対し、それぞれ終濃度が0.9Mになるように塩化ナトリウム水溶液を加え、ガラス棒で混合した後、4℃で24時間静置して塩析した。これを遠心(10000×g,20分)し、沈殿物を300mlの0.5M 酢酸水溶液に溶解した。この塩析工程を3回繰り返し、コラーゲンの酢酸水溶液をセルロースチューブに入れて蒸留水に対して透析し、凍結乾燥した。脱灰処理した鱗の乾燥重量に対する抽出後の凍結乾燥体の重量から、コラーゲン抽出の収率を算出した。凍結乾燥体をpH3の希塩酸に任意の濃度で溶解させて、酸可溶性コラーゲン、ペプシン抽出コラーゲンを調製した。
(3) Purification of extracted collagen To the above-mentioned acid-soluble component and pepsin-treated component, an aqueous sodium chloride solution was added so that the final concentration was 0.9 M, and the mixture was mixed with a glass rod and allowed to stand still at 4 ° C for 24 hours. It was placed and salted out. This was centrifuged (10000 xg, 20 minutes), and the precipitate was dissolved in 300 ml of 0.5 M acetic acid aqueous solution. This salting-out step was repeated three times, and an aqueous solution of collagen in acetic acid was placed in a cellulose tube, dialyzed against distilled water, and freeze-dried. The yield of collagen extraction was calculated from the weight of the freeze-dried product after extraction with respect to the dry weight of decalcified scale. The freeze-dried product was dissolved in dilute hydrochloric acid having a pH of 3 at an arbitrary concentration to prepare acid-soluble collagen and pepsin-extracted collagen.
2.コラーゲンの構造解析
(1)アミノ酸組成による一次構造の確認
 バラマンディ鱗由来のコラーゲン(BC)の1次構造を調べるためペプシン抽出コラーゲンについてアミノ酸自動分析を行った。コントロールとして、上記と同様の抽出方法で調製したティラピア鱗由来のペプシン抽出コラーゲン(TC)と、ブタ皮膚由来のペプシン抽出コラーゲン(PC-S)(新田ゼラチン社製。商品名「コラーゲンBM」)を使用した。測定は一般財団法人日本食品分析センターに依頼し、アミノ酸1000残基に対する各アミノ酸組成を算出した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
2. Structural Analysis of Collagen (1) Confirmation of Primary Structure by Amino Acid Composition To investigate the primary structure of collagen (BC) derived from barramundi scale, pepsin-extracted collagen was subjected to automatic amino acid analysis. As controls, pepsin-extracted collagen (TC) derived from tilapia scales and pepsin-extracted collagen (PC-S) derived from pig skin prepared by the same extraction method as described above (manufactured by Nitta Gelatin Co., Ltd., trade name "Collagen BM"). It was used. The measurement was requested to the Japan Food Analysis Center, and each amino acid composition was calculated for 1000 amino acid residues. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
(2)SDS-PAGEによるコラーゲンの同定
 上記1.(1)~(3)で抽出・精製されたバラマンディ鱗のペプシン抽出コラーゲンの分子量分布を電気泳動(SDS-PAGE法)によって調べた。泳動ゲルには3~8%トリスアセテートゲル(Thermo Fisher Scientific社製)を用いた。0.06%濃度のコラーゲン溶液を1ウェルにつき10μL量アプライし、ゲル1枚につき20mAの定電流で電気泳動を行った。コントロールとして、バラマンディ皮コラーゲン(BC-S)、セルキャンパスAQ-03LE(TC)(ティラピア鱗由来コラーゲン、多木化学株式会社製)、Cellmatrix TypeI-P(CMT)(ブタ腱由来コラーゲン、新田ゼラチン株式会社製)を使用した。
(2) Identification of collagen by SDS-PAGE The molecular weight distribution of pepsin-extracted collagen of barramundi scales extracted and purified in (1) to (3) was examined by electrophoresis (SDS-PAGE method). A 3 to 8% trisacetate gel (Thermo Fisher Scientific) was used as the electrophoresis gel. A collagen solution having a concentration of 0.06% was applied in an amount of 10 μL per well, and electrophoresis was performed at a constant current of 20 mA per gel. As controls, barramundi skin collagen (BC-S), cell campus AQ-03LE (TC) (tilapia scale-derived collagen, manufactured by Taki Chemical Co., Ltd.), Cellmatrix Type IP (CMT) (porcine tendon-derived collagen, Nitta) Gelatin Co., Ltd.) was used.
 分子量マーカーとしては、Spectra Multicolor High Range Protein Ladder(Thermo Fisher Scientific社製)を用い、泳動後のゲルはQuick-CBB plus(富士フイルム和光純薬社製)を用いて染色を行った。 Spectra Multicolor High Range Protein Ladder (Thermo Fisher Scientific) was used as the molecular weight marker, and Quick-CBB plus (Fujifilm Wako Pure Chemical Co., Ltd.) was used as the gel after electrophoresis.
 結果を図1に示す。 The results are shown in Figure 1.
 図1に示すとおり、ブタ皮膚由来のコラーゲン(PC-S)、バラマンディ鱗由来のコラーゲン(BC)、バラマンディ皮由来のコラーゲン(BC-S)ともに、120kDa付近にα鎖、120kDa付近にα鎖、240kDa付近にβ鎖、270kDa以上の位置にγ鎖を示す泳動バンドが得られた。 As shown in FIG. 1, the collagen derived from pig skin (PC-S), the collagen derived from barramundi scale (BC), and the collagen derived from barramundi skin (BC-S) were α chains near 120 kDa and α near 120 kDa. A band, a β-chain near 240 kDa, and a migration band showing a γ-chain at a position of 270 kDa or more were obtained.
 BCとBC-Sのα鎖の泳動パターンは、鱗、皮ともにα鎖とα鎖間の距離が近いヘテロ3量体構造をしていることが示唆された。α鎖とα鎖間の分子量バンド距離が近いことは、バラマンディの鱗由来のコラーゲンがIII型コラーゲンのようなホモ体に近い構造を有していることを示唆している。 The migration patterns of the α chains of BC and BC-S were suggested to have a heterotrimer structure in which the distance between the α 1 chain and the α 2 chain is close in both scale and skin. The close molecular weight band distance between the α 1 chain and the α 2 chain suggests that collagen derived from barramundy scales has a structure close to a homozygote such as type III collagen.
 図1に示す分子量差は、バラマンディ鱗由来のコラーゲン(BC)が約4.0kDa、バラマンディ皮由来のコラーゲン(BC-S)が約5.5kDa、ティラピア鱗由来のコラーゲン(TC)が約11.0kDa、ブタ皮膚由来のコラーゲンが約10.0kDaであった。 The molecular weight difference shown in FIG. 1 is about 4.0 kDa for barramundi scale-derived collagen (BC), about 5.5 kDa for barramandi skin-derived collagen (BC-S), and about 5.5 for tilapia scale-derived collagen (TC). The collagen derived from pig skin was about 10.0 kDa.
 このように、バラマンディ鱗由来コラーゲンは、処理方法を問わずブタ皮膚やティラピア鱗等に由来する一般的なI型コラーゲンの分子量差が10kDa以上となるのに対し、分子量差が5.0kDa以下となることが分かった。 As described above, the collagen derived from barramundi scale has a molecular weight difference of 10 kDa or more as compared with general type I collagen derived from pig skin or tilapia scale, regardless of the treatment method, while the molecular weight difference is 5.0 kDa or less. It turns out that
3.ゲル包埋細胞培養による評価
(1)ゲル包埋細胞培養
 氷冷した、上記1.(1)~(3)で抽出・精製されたバラマンディ鱗由来のペプシン抽出コラーゲン(0.3%)、5倍濃縮DME培養液(5xDME,新田ゼラチン株式会社製)および再構成用緩衝液(新田ゼラチン株式会社製)を7:2:1の割合で混合し、コラーゲン溶液を調製した。その後、当該コラーゲン溶液にマウス由来線維芽細胞であるNIH3T3細胞を4.2×10Cell/mlの濃度で分散し、24wellプレートに1wellあたり500μlずつ分注し、37℃インキュベータ内で1時間ゲル化した。ゲル化後、10%仔ウシ血清(CS)含有DMEM(SigmaAldrich製)を加え、37℃で培養を開始した。コントロールとして、バラマンディ皮コラーゲン(BC-S)、セルキャンパスAQ-03A(TC)(ティラピア鱗由来コラーゲン、多木化学株式会社製)、Cellmatrix TypeI-A(CMT)(ブタ腱由来コラーゲン、新田ゼラチン株式会社製)を使って同様の培養を行なった。
3. Evaluation by gel-embedded cell culture (1) Gel-embedded cell culture Pallacin-extracted collagen (0.3%) derived from barramundi scales extracted and purified in (1) to (3), 5 times concentrated DME culture solution (5xDME, manufactured by Nitta Gelatin Co., Ltd.) and reconstitution buffer (Manufactured by Nitta Gelatin Co., Ltd.) was mixed at a ratio of 7: 2: 1 to prepare a collagen solution. Thereafter, NIH3T3 cells, which are mouse-derived fibroblasts, were dispersed in the collagen solution at a concentration of 4.2 × 10 Cell / ml, dispensed into a 24-well plate by 500 μl per well, and gelled in a 37 ° C. incubator for 1 hour. . After gelation, DMEM (manufactured by Sigma Aldrich) containing 10% calf serum (CS) was added, and the culture was started at 37 ° C. As controls, barramundi skin collagen (BC-S), cell campus AQ-03A (TC) (tilapia scale-derived collagen, manufactured by Taki Chemical Co., Ltd.), Cellmatrix Type IA (CMT) (porcine tendon-derived collagen, Nitta) The same culture was performed using Gelatin Co., Ltd.).
(2)染色によるゲル内細胞の生死判定
 上記3.(1)で7日間培養した細胞が包埋されたゲルをDPBS(-)(富士フイルム和光純薬株式会社製)で洗浄後、Cellstain(登録商標)-Double StainingKit(同仁化学研究所製)を用いて37℃で15分間インキュベートし染色した。その後、共焦点レーザー顕微鏡を用いて、ゲル内の生死細胞の分布を観察した。
(2) Judgment of life and death of cells in gel by staining The gel in which the cells that had been cultured in (1) for 7 days were embedded was washed with DPBS (-) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and then Cellstein (registered trademark) -Double Staining Kit (manufactured by Dojindo Laboratories). Staining was carried out by incubating at 37 ° C. for 15 minutes. Then, the distribution of live and dead cells in the gel was observed using a confocal laser scanning microscope.
 結果を図2に示す。この二重染色法では、生細胞は細胞質がカルセインAMにより緑色に染まり、死細胞は細胞核が赤く染まる。バラマンディ鱗由来コラーゲン(BC)、バラマンディ皮由来コラーゲン(BC-S)、ティラピア鱗由来コラーゲン(TC)、ブタ腱由来コラーゲン(CMT)で培養した細胞はいずれ緑色に染まっており、生存していることがわかる。 The results are shown in Figure 2. In this double staining method, the cytoplasm of living cells is stained green by calcein AM, and the cell nucleus of dead cells is stained red. Cells cultured with barramundi scale-derived collagen (BC), barramundi skin-derived collagen (BC-S), tilapia scale-derived collagen (TC), and porcine tendon-derived collagen (CMT) were all stained green and survived. You can see that
 (3)染色によるゲル内細胞の細胞骨格観察
 上記3.(1)で7日間培養した細胞が包埋されたゲルをDPBS(-)(富士フイルム和光純薬株式会社製)で洗浄した。その後、0.1%TritonX100(SigmaAldrich製)を加え、30分間室温で静置した後、再びDPBS(-)で洗浄した。100mM Acti-Stain488(Cytoskelton製)を加え、遮光かつ室温環境下60分間静置し、DPBS(-)で洗浄し、染色した。その後、共焦点レーザー顕微鏡を用いてゲル内部の細胞骨格の形状を観察した。
(3) Observation of cytoskeleton of cells in gel by staining The gel in which the cells cultured in (1) for 7 days were embedded was washed with DPBS (-) (Fujifilm Wako Pure Chemical Industries, Ltd.). Then, 0.1% Triton X100 (manufactured by Sigma Aldrich) was added, and the mixture was allowed to stand at room temperature for 30 minutes and then washed again with DPBS (−). 100 mM Acti-Stain 488 (manufactured by Cytoskeleton) was added, and the mixture was allowed to stand in the dark and at room temperature for 60 minutes, washed with DPBS (-), and stained. Then, the shape of the cytoskeleton inside the gel was observed using a confocal laser microscope.
 その結果を図3に示す。この染色法では、細胞骨格である線維(fアクチン)が緑色に染まり、細胞形態が観察できる。バラマンディ鱗由来コラーゲン(BC)、ブタ腱由来コラーゲン(CMT)で培養した細胞は紡錘形に大きく伸展していることに対し、バラマンディ皮由来コラーゲン(BC-S)、ティラピア鱗由来コラーゲン(TC)で培養した細胞は、伸展があまり見られず、細胞形態を支えているアクチン線維がばらばらになり、細胞形態が丸くなっていた。このことは、バラマンディ鱗由来コラーゲンが特異的に細胞接着性を高め、細胞形態を維持する効果を有することを示している。 The results are shown in Figure 3. In this staining method, the fiber (f-actin), which is the cytoskeleton, is stained green, and the cell morphology can be observed. Cells cultured with barramundi scale-derived collagen (BC) and porcine tendon-derived collagen (CMT) spread largely in a spindle shape, whereas barramandi skin-derived collagen (BC-S) and tilapia scale-derived collagen (TC) The cells cultured in No. 2 did not show much spreading, the actin fibers supporting the cell morphology were scattered, and the cell morphology was round. This indicates that collagen derived from barramundi scale specifically has the effect of enhancing cell adhesion and maintaining cell morphology.

Claims (4)

  1.  バラマンディの鱗に由来するコラーゲンを含む、細胞培養基材。 Cell culture substrate containing collagen derived from barramundi scales.
  2.  前記バラマンディ鱗に由来するコラーゲンにおいて、アミノ酸1000残基当たりのヒドロキシプロリンが80残基以上である、請求項1に記載の細胞培養基材。 The cell culture substrate according to claim 1, wherein in the collagen derived from barramundi scale, hydroxyproline per 1000 amino acid residues is 80 residues or more.
  3.  前記バラマンディ鱗に由来するコラーゲンにおいて、α鎖とα鎖の分子量差が5kDa以下である、請求項1または2に記載の細胞培養基材。 The cell culture substrate according to claim 1 or 2, wherein the collagen derived from barramundi scale has a difference in molecular weight between α 1 chain and α 2 chain of 5 kDa or less.
  4.  請求項1~3のいずれか1項に記載の細胞培養基材を含む、細胞培養用のキット。 A kit for cell culture, comprising the cell culture substrate according to any one of claims 1 to 3.
PCT/JP2019/040219 2018-10-12 2019-10-11 Cell culturing substrate containing collagen derived from barramundi scales WO2020075841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980067027.3A CN112840013A (en) 2018-10-12 2019-10-11 Cell culture substrate containing collagen derived from caocho fish scale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018193845A JP2020058323A (en) 2018-10-12 2018-10-12 Cell culture medium comprising barramundi scale derived collagen
JP2018-193845 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075841A1 true WO2020075841A1 (en) 2020-04-16

Family

ID=70164580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040219 WO2020075841A1 (en) 2018-10-12 2019-10-11 Cell culturing substrate containing collagen derived from barramundi scales

Country Status (4)

Country Link
JP (1) JP2020058323A (en)
CN (1) CN112840013A (en)
TW (1) TW202028454A (en)
WO (1) WO2020075841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793175A (en) * 2020-06-19 2020-10-20 湖南电气职业技术学院 Enhanced multi-thorn laser curing 3D printing shape memory material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514633B2 (en) 2020-03-05 2024-07-11 日本電熱株式会社 Cell culture additive, medium and cell culture method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257014A (en) * 2005-03-16 2006-09-28 National Institute For Materials Science Collagen derived from scale and method for obtaining the same collagen
WO2017002767A1 (en) * 2015-07-02 2017-01-05 日本電熱株式会社 Method for manufacturing fish scale processed goods
WO2017122216A1 (en) * 2016-01-14 2017-07-20 Amnivor Medicare Private Limited A process for extraction of collagen from fish scale and polyelectrolyte based bioactive super-absorbent materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514633B2 (en) * 2020-03-05 2024-07-11 日本電熱株式会社 Cell culture additive, medium and cell culture method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257014A (en) * 2005-03-16 2006-09-28 National Institute For Materials Science Collagen derived from scale and method for obtaining the same collagen
WO2017002767A1 (en) * 2015-07-02 2017-01-05 日本電熱株式会社 Method for manufacturing fish scale processed goods
WO2017122216A1 (en) * 2016-01-14 2017-07-20 Amnivor Medicare Private Limited A process for extraction of collagen from fish scale and polyelectrolyte based bioactive super-absorbent materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUAYCHAN, S. ET AL.: "Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer", LWT-FOOD SCIENCE AND TECHNOLOGY, vol. 63, 2015, pages 71 - 76, XP055704012 *
HATAYAMA, HIROSUKE ET AL.: "Non-official translation: 1P-110 Fish-derived collagen that actively fibrates under physiological conditions", PREPRINTS OF THE 40TH CONFERENCE OF JAPANESE SOCIETY FOR BIOMATERIALS, 5 November 2018 (2018-11-05) *
KRISHNAN, S. ET AL.: "Fish Scale Collagen-A Novel Material for Corneal Tissue Engineering", ARTIF ORGANS, vol. 36, no. 9, 2012, pages 829 - 835, XP055704014 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793175A (en) * 2020-06-19 2020-10-20 湖南电气职业技术学院 Enhanced multi-thorn laser curing 3D printing shape memory material and preparation method thereof

Also Published As

Publication number Publication date
CN112840013A (en) 2021-05-25
JP2020058323A (en) 2020-04-16
TW202028454A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
JP4064435B2 (en) Collagen gel and method for producing the same
Yan et al. Enhanced osteogenesis of bone marrow‐derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair
JP5870398B2 (en) High strength collagen fiber membrane and method for producing the same
JP4025897B2 (en) Preparation of collagen
Rey-Rico et al. Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2
Włodarczyk-Biegun et al. Genetically engineered silk–collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response
US11369714B2 (en) Method for producing collagen hydrogels
KR20150127247A (en) Method for decellularization of tissue grafts
JP2006257013A (en) Collagen gel derived from scale and method for preparing the same gel
WO2020075841A1 (en) Cell culturing substrate containing collagen derived from barramundi scales
JP5888670B2 (en) Culture substrate for inducing osteoblast differentiation, method for inducing osteoblast differentiation, and method for producing osteoblast
JP2012126681A (en) Collagen fiber gel and application of the same
EP2780048A1 (en) A dextran-based tissuelette containing platelet-rich plasma lysate for cartilage repair
US8993325B2 (en) Thermally induced gelation of collagen hydrogel and method of thermally inducing gelling a collagen hydrogel
JP2015047076A (en) Cell culture substrate, method for differentiation-inducing of osteoblasts using the same and method for producing osteoblasts
JP5692770B2 (en) Cell culture substrate
CN109265537B (en) Method for preparing microfibril collagen by stepwise utilizing gradient polarity of ionic liquid
US20220305168A1 (en) Method for producing collagen hydrogels
CN118308295B (en) Additive, culture medium and method for promoting cell to produce collagen
RO126403B1 (en) Process for extracting and purifying biologically active atelocollagen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871065

Country of ref document: EP

Kind code of ref document: A1